Samira Khorshidi


2024

pdf bib
APE: Active Learning-based Tooling for Finding Informative Few-shot Examples for LLM-based Entity Matching
Kun Qian | Yisi Sang | Farima Bayat† | Anton Belyi | Xianqi Chu | Yash Govind | Samira Khorshidi | Rahul Khot | Katherine Luna | Azadeh Nikfarjam | Xiaoguang Qi | Fei Wu | Xianhan Zhang | Yunyao Li
Proceedings of the Fifth Workshop on Data Science with Human-in-the-Loop (DaSH 2024)

Prompt engineering is an iterative procedure that often requires extensive manual effort to formulate suitable instructions for effectively directing large language models (LLMs) in specific tasks. Incorporating few-shot examples is a vital and effective approach to provide LLMs with precise instructions, leading to improved LLM performance. Nonetheless, identifying the most informative demonstrations for LLMs is labor-intensive, frequently entailing sifting through an extensive search space. In this demonstration, we showcase a human-in-the-loop tool called ool (Active Prompt Engineering) designed for refining prompts through active learning. Drawing inspiration from active learning, ool iteratively selects the most ambiguous examples for human feedback, which will be transformed into few-shot examples within the prompt.

2023

pdf
FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge
Farima Fatahi Bayat | Kun Qian | Benjamin Han | Yisi Sang | Anton Belyy | Samira Khorshidi | Fei Wu | Ihab Ilyas | Yunyao Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Detecting factual errors of textual information, whether generated by large language models (LLM) or curated by humans, is crucial for making informed decisions. LLMs’ inability to attribute their claims to external knowledge and their tendency to hallucinate makes it difficult to rely on their responses. Humans, too, are prone to factual errors in their writing. Since manual detection and correction of factual er- rors is labor-intensive, developing an automatic approach can greatly reduce human effort. We present a prototype tool that automatically extracts factual claims from text, gathers evidence from external knowledge sources, evaluates the factuality of each claim, and suggests revisions for identified errors using the collected evidence. Initial empirical evaluation on fact error detection (77-85% F1) shows the potential of our tool.