Rilyn Han


2024

pdf
Rethinking Efficient Multilingual Text Summarization Meta-Evaluation
Rilyn Han | Jiawen Chen | Yixin Liu | Arman Cohan
Findings of the Association for Computational Linguistics: ACL 2024

Evaluating multilingual summarization evaluation metrics, i.e., meta-evaluation, is challenging because of the difficulty of human annotation collection. Therefore, we investigate an efficient multilingual meta-evaluation framework that uses machine translation systems to transform a monolingual meta-evaluation dataset into multilingual versions. To this end, we introduce a statistical test to verify the transformed dataset quality by checking the meta-evaluation result consistency on the original dataset and back-translated dataset. With this quality verification method, we transform an existing English summarization meta-evaluation dataset, RoSE, into 30 languages, and conduct a multilingual meta-evaluation of several representative automatic evaluation metrics. In our meta-evaluation, we find that metric performance varies in different languages and neural metrics generally outperform classical text-matching-based metrics in non-English languages. Moreover, we identify a two-stage evaluation method with superior performance, which first translates multilingual texts into English and then performs evaluation. We make the transformed datasets publicly available to facilitate future research.