This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks, yet their efficacy is hampered by inaccuracies and outdated knowledge. Model editing emerges as a promising solution to address these challenges. However, existing editing methods struggle to track and incorporate changes in knowledge associated with edits, which limits the generalization ability of post-edit LLMs in processing edited knowledge. To tackle these problems, we propose a novel model editing method that leverages knowledge graphs for enhancing LLM editing, namely GLAME. Specifically, we first utilize a knowledge graph augmentation module to uncover associated knowledge that has changed due to editing, obtaining its internal representations within LLMs. This approach allows knowledge alterations within LLMs to be reflected through an external graph structure. Subsequently, we design a graph-based knowledge edit module to integrate structured knowledge into the model editing. This ensures that the updated parameters reflect not only the modifications of the edited knowledge but also the changes in other associated knowledge resulting from the editing process. Comprehensive experiments conducted on GPT-J and GPT-2 XL demonstrate that GLAME significantly improves the generalization capabilities of post-edit LLMs in employing edited knowledge.
Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in accuracy improvement, let alone explainability, a critical capability of fact verification systems.Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant, high-quality dataset. Previous datasets either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EX-FEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification, and validate the significance of our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.
Temporal Knowledge Graph (TKG) forecasting aims to predict future facts based on given histories. Most recent graph-based models excel at capturing structural information within TKGs but lack semantic comprehension abilities. Nowadays, with the surge of LLMs, the LLM-based TKG prediction model has emerged. However, the existing LLM-based model exhibits three shortcomings: (1) It only focuses on the first-order history for prediction while ignoring high-order historical information, resulting in the provided information for LLMs being extremely limited. (2) LLMs struggle with optimal reasoning performance under heavy historical information loads. (3) For TKG prediction, the temporal reasoning capability of LLM alone is limited. To address the first two challenges, we propose Chain-of-History (CoH) reasoning which explores high-order histories step-by-step, achieving effective utilization of high-order historical information for LLMs on TKG prediction. To address the third issue, we design CoH as a plug-and-play module to enhance the performance of graph-based models for TKG prediction. Extensive experiments on three datasets and backbones demonstrate the effectiveness of CoH.
Recently, the powerful large language models (LLMs) have been instrumental in propelling the progress of recommender systems (RS). However, while these systems have flourished, their susceptibility to security threats has been largely overlooked. In this work, we reveal that the introduction of LLMs into recommendation models presents new security vulnerabilities due to their emphasis on the textual content of items. We demonstrate that attackers can significantly boost an item’s exposure by merely altering its textual content during the testing phase, without requiring direct interference with the model’s training process. Additionally, the attack is notably stealthy, as it does not affect the overall recommendation performance and the modifications to the text are subtle, making it difficult for users and platforms to detect. Our comprehensive experiments across four mainstream LLM-based recommendation models demonstrate the superior efficacy and stealthiness of our approach. Our work unveils a significant security gap in LLM-based recommendation systems and paves the way for future research on protecting these systems.
Fact verification aims to automatically judge the veracity of a claim according to several pieces of evidence. Due to the manual construction of datasets, spurious correlations between claim patterns and its veracity (i.e., biases) inevitably exist. Recent studies show that models usually learn such biases instead of understanding the semantic relationship between the claim and evidence. Existing debiasing works can be roughly divided into data-augmentation-based and weight-regularization-based pipeline, where the former is inflexible and the latter relies on the uncertain output on the training stage. Unlike previous works, we propose a novel method from a counterfactual view, namely CLEVER, which is augmentation-free and mitigates biases on the inference stage. Specifically, we train a claim-evidence fusion model and a claim-only model independently. Then, we obtain the final prediction via subtracting output of the claim-only model from output of the claim-evidence fusion model, which counteracts biases in two outputs so that the unbiased part is highlighted. Comprehensive experiments on several datasets have demonstrated the effectiveness of CLEVER.
Temporal Knowledge Graph (TKG) reasoning aims to predict future facts based on historical data. However, due to the limitations in construction tools and data sources, many important associations between entities may be omitted in TKG. We refer to these missing associations as latent relations. Most existing methods have some drawbacks in explicitly capturing intra-time latent relations between co-occurring entities and inter-time latent relations between entities that appear at different times. To tackle these problems, we propose a novel Latent relations Learning method for TKG reasoning, namely L2TKG. Specifically, we first utilize a Structural Encoder (SE) to obtain representations of entities at each timestamp. We then design a Latent Relations Learning (LRL) module to mine and exploit the intra- and inter-time latent relations. Finally, we extract the temporal representations from the output of SE and LRL for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of L2TKG.
Distantly supervised relation extraction (DSRE) aims to extract relational facts from texts but suffers from noisy instances. To mitigate the influence of noisy labels, current methods typically use the Multi-Instance-Learning framework to extract relations for each bag. However, these approaches are not capable of extracting relation labels for individual sentences. Several studies have focused on sentence-level DSRE to solve the above problem. These studies primarily aim to develop methods for identifying noisy samples and filtering them out to mitigate the impact of noise. However, discarding noisy samples directly leads to the loss of useful information. To this end, we propose SSLRE, a novel Semi-Supervised-Learning Relation Extraction framework for sentence-level DSRE. We discard only the labels of the noisy samples and utilize these instances without labels as unlabeled samples. Our SSLRE framework utilizes a weighted K-NN graph to select confident samples as labeled data and the rest as unlabeled. We then design a robust semi-supervised learning framework that can efficiently handle remaining label noise present in the labeled dataset, while also making effective use of unlabeled samples. Based on our experiments on two real-world datasets, the SSLRE framework we proposed has achieved significant enhancements in sentence-level relation extraction performance compared to the existing state-of-the-art methods. Moreover, it has also attained a state-of-the-art level of performance in bag-level relation extraction with ONE aggregation strategy.
In this paper, we present DUBLIN, a pixel-based model for visual document understanding that does not rely on OCR. DUBLIN can process both images and texts in documents just by the pixels and handle diverse document types and tasks. DUBLIN is pretrained on a large corpus of document images with novel tasks that enhance its visual and linguistic abilities. We evaluate DUBLIN on various benchmarks and show that it achieves state-of-the-art performance on extractive tasks such as DocVQA, InfoVQA, AI2D, OCR-VQA, RefExp, and CORD, as well as strong performance on abstraction datasets such as VisualMRC and text captioning. Our model demonstrates the potential of OCR-free document processing and opens new avenues for applications and research.
It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. However, dependency trees built by tools usually have a certain percentage of errors. Under such circumstances, how to better use relevant structured information while ignoring irrelevant or wrong structured information from the dependency trees to improve NER performance is still a challenging research problem. In this paper, we propose the Attention and Edge-Label guided Graph Convolution Network (AELGCN) model. Then, we integrate it into BiLSTM-CRF to form BiLSTM-AELGCN-CRF model. We design an edge-aware node joint update module and introduce a node-aware edge update module to explore hidden in structured information entirely and solve the wrong dependency label information to some extent. After two modules, we apply attention-guided GCN, which automatically learns how to attend to the relevant structured information selectively. We conduct extensive experiments on several standard datasets across four languages and achieve better results than previous approaches. Through experimental analysis, it is found that our proposed model can better exploit the structured information on the dependency tree to improve the recognition of long entities.
Reasoning over Temporal Knowledge Graphs (TKGs) aims to predict future facts based on given history. One of the key challenges for prediction is to learn the evolution of facts. Most existing works focus on exploring evolutionary information in history to obtain effective temporal embeddings for entities and relations, but they ignore the variation in evolution patterns of facts, which makes them struggle to adapt to future data with different evolution patterns. Moreover, new entities continue to emerge along with the evolution of facts over time. Since existing models highly rely on historical information to learn embeddings for entities, they perform poorly on such entities with little historical information. To tackle these issues, we propose a novel Temporal Meta-learning framework for TKG reasoning, MetaTKG for brevity. Specifically, our method regards TKG prediction as many temporal meta-tasks, and utilizes the designed Temporal Meta-learner to learn evolutionary meta-knowledge from these meta-tasks. The proposed method aims to guide the backbones to learn to adapt quickly to future data and deal with entities with little historical information by the learned meta-knowledge. Specially, in temporal meta-learner, we design a Gating Integration module to adaptively establish temporal correlations between meta-tasks. Extensive experiments on four widely-used datasets and three backbones demonstrate that our method can greatly improve the performance.
Learning embedding layers (for classes, words, items, etc.) is a key component of lots of applications, ranging from natural language processing, recommendation systems to electronic health records, etc. However, the frequency of real-world items follows a long-tail distribution in these applications, causing naive training methods perform poorly on the rare items. A line of previous works address this problem by transferring the knowledge from the frequent items to rare items by introducing an auxiliary transfer loss. However, when defined improperly, the transfer loss may introduce harmful biases and deteriorate the performance. In this work, we propose a harmless transfer learning framework that limits the impact of the potential biases in both the definition and optimization of the transfer loss. On the definition side, we reduce the bias in transfer loss by focusing on the items to which information from high-frequency items can be efficiently transferred. On the optimization side, we leverage a lexicographic optimization framework to efficiently incorporate the information of the transfer loss without hurting the minimization of the main prediction loss function. Our method serves as a plug-in module and significantly boosts the performance on a variety of NLP and recommendation system tasks.
In this work we addressed the problem of capturing sequential information contained in longitudinal electronic health records (EHRs). Clinical notes, which is a particular type of EHR data, are a rich source of information and practitioners often develop clever solutions how to maximise the sequential information contained in free-texts. We proposed a systematic methodology for learning from chronological events available in clinical notes. The proposed methodological path signature framework creates a non-parametric hierarchical representation of sequential events of any type and can be used as features for downstream statistical learning tasks. The methodology was developed and externally validated using the largest in the UK secondary care mental health EHR data on a specific task of predicting survival risk of patients diagnosed with Alzheimer’s disease. The signature-based model was compared to a common survival random forest model. Our results showed a 15.4% increase of risk prediction AUC at the time point of 20 months after the first admission to a specialist memory clinic and the signature method outperformed the baseline mixed-effects model by 13.2 %.
State-of-the-art NLP models can often be fooled by human-unaware transformations such as synonymous word substitution. For security reasons, it is of critical importance to develop models with certified robustness that can provably guarantee that the prediction is can not be altered by any possible synonymous word substitution. In this work, we propose a certified robust method based on a new randomized smoothing technique, which constructs a stochastic ensemble by applying random word substitutions on the input sentences, and leverage the statistical properties of the ensemble to provably certify the robustness. Our method is simple and structure-free in that it only requires the black-box queries of the model outputs, and hence can be applied to any pre-trained models (such as BERT) and any types of models (world-level or subword-level). Our method significantly outperforms recent state-of-the-art methods for certified robustness on both IMDB and Amazon text classification tasks. To the best of our knowledge, we are the first work to achieve certified robustness on large systems such as BERT with practically meaningful certified accuracy.