2024
pdf
abs
AgriLLM:Harnessing Transformers for Framer Queries
Krish Didwania
|
Pratinav Seth
|
Aditya Kasliwal
|
Amit Agarwal
Proceedings of the Third Workshop on NLP for Positive Impact
Agriculture, vital for global sustenance, necessitates innovative solutions due to a lack of organized domain experts, particularly in developing countries where many farmers are impoverished and cannot afford expert consulting. Initiatives like Farmers Helpline play a crucial role in such countries, yet challenges such as high operational costs persist. Automating query resolution can alleviate the burden on traditional call centers, providing farmers with immediate and contextually relevant information.The integration of Agriculture and Artificial Intelligence (AI) offers a transformative opportunity to empower farmers and bridge information gaps.Language models like transformers, the rising stars of AI, possess remarkable language understanding capabilities, making them ideal for addressing information gaps in agriculture.This work explores and demonstrates the transformative potential of Large Language Models (LLMs) in automating query resolution for agricultural farmers, leveraging their expertise in deciphering natural language and understanding context. Using a subset of a vast dataset of real-world farmer queries collected in India, our study focuses on approximately 4 million queries from the state of Tamil Nadu, spanning various sectors, seasonal crops, and query types.
pdf
abs
HGP-NLP at BioLaySumm: Leveraging LoRA for Lay Summarization of Biomedical Research Articles using Seq2Seq Transformers
Hemang Malik
|
Gaurav Pradeep
|
Pratinav Seth
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing
Lay summarization aims to generate summaries of technical articles for non-experts, enabling easy comprehension for a general audience. The technical language used in research often hinders effective communication of scientific knowledge, making it difficult for non-experts to understand. Automatic lay summarization can enhance access to scientific literature, promoting interdisciplinary knowledge sharing and public understanding. This has become especially important for biomedical articles, given the current global need for clear medical information. Large Language Models (LLMs), with their remarkable language understanding capabilities, are ideal for abstractive summarization, helping to make complex information accessible to the public. This paper details our submissions to the BioLaySumm 2024 Shared Task: Lay Summarization of Biomedical Research Articles. We fine-tune and evaluate sequence-to-sequence models like T5 across various training dataset settings and optimization methods such as LoRA for lay summarization. Our submission achieved the 53rd position overall.
2023
pdf
abs
SSS at SemEval-2023 Task 10: Explainable Detection of Online Sexism using Majority Voted Fine-Tuned Transformers
Sriya Rallabandi
|
Sanchit Singhal
|
Pratinav Seth
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
This paper describes our submission to Task 10 at SemEval 2023-Explainable Detection of Online Sexism (EDOS), divided into three subtasks. The recent rise in social media platforms has seen an increase in disproportionate levels of sexism experienced by women on social media platforms. This has made detecting and explaining online sexist content more important than ever to make social media safer and more accessible for women. Our approach consists of experimenting and finetuning BERT-based models and using a Majority Voting ensemble model that outperforms individual baseline model scores. Our system achieves a macro F1 score of 0.8392 for Task A, 0.6092 for Task B, and 0.4319 for Task C.
pdf
abs
RSM-NLP at BLP-2023 Task 2: Bangla Sentiment Analysis using Weighted and Majority Voted Fine-Tuned Transformers
Pratinav Seth
|
Rashi Goel
|
Komal Mathur
|
Swetha Vemulapalli
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)
This paper describes our approach to submissions made at Shared Task 2 at BLP Workshop - Sentiment Analysis of Bangla Social Media Posts. Sentiment Analysis is an action research area in the digital age. With the rapid and constant growth of online social media sites and services and the increasing amount of textual data, the application of automatic Sentiment Analysis is on the rise. However, most of the research in this domain is based on the English language. Despite being the world’s sixth most widely spoken language, little work has been done in Bangla. This task aims to promote work on Bangla Sentiment Analysis while identifying the polarity of social media content by determining whether the sentiment expressed in the text is Positive, Negative, or Neutral. Our approach consists of experimenting and finetuning various multilingual and pre-trained BERT-based models on our downstream tasks and using a Majority Voting and Weighted ensemble model that outperforms individual baseline model scores. Our system scored 0.711 for the multiclass classification task and scored 10th place among the participants on the leaderboard for the shared task. Our code is available at https://github.com/ptnv-s/RSM-NLP-BLP-Task2 .