This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We present a model for predicting word forms based on morphological relational reasoning with analogies. While previous work has explored tasks such as morphological inflection and reinflection, these models rely on an explicit enumeration of morphological features, which may not be available in all cases. To address the task of predicting a word form given a demo relation (a pair of word forms) and a query word, we devise a character-based recurrent neural network architecture using three separate encoders and a decoder. We also investigate a multiclass learning setup, where the prediction of the relation type label is used as an auxiliary task. Our results show that the exact form can be predicted for English with an accuracy of 94.7%. For Swedish, which has a more complex morphology with more inflectional patterns for nouns and verbs, the accuracy is 89.3%. We also show that using the auxiliary task of learning the relation type speeds up convergence and improves the prediction accuracy for the word generation task.
We propose an approach for named entity recognition in medical data, using a character-based deep bidirectional recurrent neural network. Such models can learn features and patterns based on the character sequence, and are not limited to a fixed vocabulary. This makes them very well suited for the NER task in the medical domain. Our experimental evaluation shows promising results, with a 60% improvement in F 1 score over the baseline, and our system generalizes well between different datasets.