This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In-context learning (ICL) has demonstrated excellent performance across various downstream NLP tasks, especially when synergized with powerful large language models (LLMs). Existing studies evaluate ICL methods primarily based on downstream task performance. This evaluation protocol overlooks the significant cost associated with the demonstration configuration process, i.e., tuning the demonstration as the ICL prompt. However, in this work, we point out that the evaluation protocol leads to unfair comparisons and potentially biased evaluation, because we surprisingly find the correlation between the configuration costs and task performance. Then we call for a two-dimensional evaluation paradigm that considers both of these aspects, facilitating a fairer comparison.Finally, based on our empirical finding that the optimized demonstration on one language model generalizes across language models of different sizes, we introduce a simple yet efficient strategy that can be applied to any ICL method as a plugin, yielding a better trade-off between the two dimensions according to the proposed evaluation paradigm.
Word-level AutoCompletion (WLAC) is a rewarding yet challenging task in Computer-aided Translation. Existing work addresses this task through a classification model based on a neural network that maps the hidden vector of the input context into its corresponding label (i.e., the candidate target word is treated as a label). Since the context hidden vector itself does not take the label into account and it is projected to the label through a linear classifier, the model cannot sufficiently leverage valuable information from the source sentence as verified in our experiments, which eventually hinders its overall performance. To alleviate this issue, this work proposes an energy-based model for WLAC, which enables the context hidden vector to capture crucial information from the source sentence. Unfortunately, training and inference suffer from efficiency and effectiveness challenges, therefore we employ three simple yet effective strategies to put our model into practice. Experiments on four standard benchmarks demonstrate that our reranking-based approach achieves substantial improvements (about 6.07%) over the previous state-of-the-art model. Further analyses show that each strategy of our approach contributes to the final performance.1
Length extrapolation algorithms based on Rotary position embedding (RoPE) have shown promising results in extending the context length of language models. However, understanding how position embedding can capture longer-range contextual information remains elusive. Based on the intuition that different dimensions correspond to different frequency of changes in RoPE encoding, we conducted a dimension-level analysis to investigate the correlation between a hidden dimension of an attention head and its contribution to capturing long-distance dependencies. Using our correlation metric, we identified a particular type of attention heads, which we named Positional Heads, from various length-extrapolated models. These heads exhibit a strong focus on long-range information interaction and play a pivotal role in long input processing, as evidence by our ablation. We further demonstrate the correlation between the efficiency of length extrapolation and the extension of the high-dimensional attention allocation of these heads. The identification of Positional Heads provides insights for future research in long-text comprehension.
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models. While a major direction to enhance inconsistency detection is to derive stronger Natural Language Inference (NLI) models, we propose an orthogonal aspect that underscores the importance of incorporating task-specific taxonomy into the inference. To this end, we consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs. Extensive experiments on ten datasets of five distinct domains suggest that, zero-shot LLM inference could benefit from the explicit solution space depicted by the error type taxonomy, and achieves state-of-the-art performance overall, surpassing specialized non-LLM baselines, as well as recent LLM baselines. We further distill models that fuse the taxonomy into parameters through our designed prompt completions and supervised training strategies, efficiently substituting state-of-the-art zero-shot inference with much larger LLMs.
Large language models are successful in answering factoid questions but are also prone to hallucination.We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics, an area not previously covered in studies on hallucinations.We are able to conduct this analysis via two key ideas.First, we identify the factual questions that query the same triplet knowledge but result in different answers. The difference between the model behaviors on the correct and incorrect outputs hence suggests the patterns when hallucinations happen.Second, to measure the pattern, we utilize mappings from the residual streams to vocabulary space.We reveal the different dynamics of the output token probabilities along the depths of layers between the correct and hallucinated cases. In hallucinated cases, the output token’s information rarely demonstrates abrupt increases and consistent superiority in the later stages of the model.Leveraging the dynamic curve as a feature, we build a classifier capable of accurately detecting hallucinatory predictions with an 88% success rate. Our study shed light on understanding the reasons for LLMs’ hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating additional information from retrieval. However, studies have shown that LLMs still face challenges in effectively using the retrieved information, even ignore it or be misled by it. The key reason is that the training of LLMs does not clearly make LLMs learn how to utilize input retrieved texts with varied quality. In this paper, we propose a novel perspective that considers the role of LLMs in RAG as “Information Refiner”, which means that regardless of correctness, completeness, or usefulness of retrieved texts, LLMs can consistently integrate knowledge within the retrieved texts and model parameters to generate the texts that are more concise, accurate, and complete than the retrieved texts. To this end, we propose an information refinement training method named INFO-RAG that optimizes LLMs for RAG in an unsupervised manner. INFO-RAG is low-cost and general across various tasks. Extensive experiments on zero-shot prediction of 11 datasets in diverse tasks including Question Answering, Slot-Filling, Language Modeling, Dialogue, and Code Generation show that INFO-RAG improves the performance of LLaMA2 by an average of 9.39% relative points. INFO-RAG also shows advantages in in-context learning and robustness of RAG.
This work introduces an original and practical paradigm for narrative comprehension, stemming from the characteristics that individual passages within narratives tend to be more cohesively related than isolated.Complementary to the common end-to-end paradigm, we propose a fine-grained modeling of narrative context, by formulating a graph dubbed NarCo, which explicitly depicts task-agnostic coherence dependencies that are ready to be consumed by various downstream tasks. In particular, edges in NarCo encompass free-form retrospective questions between context snippets, inspired by human cognitive perception that constantly reinstates relevant events from prior context. Importantly, our graph formalism is practically instantiated by LLMs without human annotations, through our designed two-stage prompting scheme.To examine the graph properties and its utility, we conduct three studies in narratives, each from a unique angle: edge relation efficacy, local context enrichment, and broader application in QA. All tasks could benefit from the explicit coherence captured by NarCo.
Comprehending characters’ personalities is a crucial aspect of story reading. As readers engage with a story, their understanding of a character evolves based on new events and information; and multiple fine-grained aspects of personalities can be perceived. This leads to a natural problem of situated and fine-grained personality understanding. The problem has not been studied in the NLP field, primarily due to the lack of appropriate datasets mimicking the process of book reading. We present the first labeled dataset PersoNet for this problem. Our novel annotation strategy involves annotating user notes from online reading apps as a proxy for the original books. Experiments and human studies indicate that our dataset construction is both efficient and accurate; and our task heavily relies on long-term context to achieve accurate predictions for both machines and humans.
We compare various forms of prompts to represent event types and develop a unified framework to incorporate the event type specific prompts for supervised, few-shot, and zero-shot event detection. The experimental results demonstrate that a well-defined and comprehensive event type prompt can significantly improve event detection performance, especially when the annotated data is scarce (few-shot event detection) or not available (zero-shot event detection). By leveraging the semantics of event types, our unified framework shows up to 22.2% F-score gain over the previous state-of-the-art baselines.
We focus on dialogue reading comprehension (DRC) that extracts answers from dialogues. Compared to standard RC tasks, DRC has raised challenges because of the complex speaker information and noisy dialogue context. Essentially, the challenges come from the speaker-centric nature of dialogue utterances — an utterance is usually insufficient in its surface form, but requires to incorporate the role of its speaker and the dialogue context to fill the latent pragmatic and intention information. We propose to deal with these problems in two folds. First, we propose a new key-utterances-extracting method, which can realize more answer-contained utterances. Second, based on the extracted utterances, we then propose a Question-Interlocutor Scope Realized Graph (QuISG). QuISG involves the question and question-mentioning speaker as nodes. To realize interlocutor scopes, utterances are connected with corresponding speakers in the dialogue. Experiments on the benchmarks show that our method achieves state-of-the-art performance against previous works.
Commonsense reasoning simulates the human ability to make presumptions about our physical world, and it is an essential cornerstone in building general AI systems. We proposea new commonsense reasoning dataset based on human’s Interactive Fiction (IF) gameplaywalkthroughs as human players demonstrate plentiful and diverse commonsense reasoning. The new dataset provides a natural mixture of various reasoning types and requires multi-hopreasoning. Moreover, the IF game-based construction procedure requires much less humaninterventions than previous ones. Different from existing benchmarks, our dataset focuseson the assessment of functional commonsense knowledge rules rather than factual knowledge. Hence, in order to achieve higher performance on our tasks, models need to effectively uti-lize such functional knowledge to infer the outcomes of actions, rather than relying solely onmemorizing facts. Experiments show that the introduced dataset is challenging to previousmachine reading models as well as the new large language models with a significant 20%performance gap compared to human experts.
Language models have been shown to perform remarkably well on a wide range of natural language processing tasks. In this paper, we propose LEAP, a novel system that uses language models to perform multi-step logical reasoning and incorporates explicit planning into the inference procedure. Explicit planning enables the system to make more informed reasoning decisions at each step by looking ahead into their future effects. Moreover, we propose a training strategy that safeguards the planning process from being led astray by spurious features. Our full system significantly outperforms other competing methods on multiple standard datasets. When using small T5 models as its core selection and deduction components, our system performs competitively compared to GPT-3 despite having only about 1B parameters (i.e., 175 times smaller than GPT-3). When using GPT-3.5, it significantly outperforms chain-of-thought prompting on the challenging PrOntoQA dataset. We have conducted extensive empirical studies to demonstrate that explicit planning plays a crucial role in the system’s performance.
Answering how-to questions remains a major challenge in question answering research. A vast number of narrow, long-tail questions cannot be readily answered using a search engine. Moreover, there is little to no annotated data available to develop such systems. This paper makes a first attempt at generating coherent, long-form answers for how-to questions. We propose new architectures, consisting of passage retrieval, subtopic planning and narrative generation, to consolidate multiple relevant passages into a coherent, explanatory answer. Our subtopic planning module aims to produce a set of relevant, diverse subtopics that serve as the backbone for answer generation to improve topic coherence. We present extensive experiments on a WikiHow dataset repurposed for long-form question answering. Empirical results demonstrate that generating narratives to answer how-to questions is a challenging task. Nevertheless, our architecture incorporated with subtopic planning can produce high-quality, diverse narratives evaluated using automatic metrics and human assessment.
We propose a new task for assessing machines’ skills of understanding fictional characters in narrative stories. The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues. Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters’ personalities, facts and memories of personal experience, which are well aligned with the psychological and literary theories about the theory of mind (ToM) of human beings on understanding fictional characters during reading. We further propose new model architectures to support the contextualized encoding of long scene texts. Experiments show that our proposed approaches significantly outperform baselines, yet still largely lag behind the (nearly perfect) human performance. Our work serves as a first step toward the goal of narrative character comprehension.
We propose novel AI-empowered chat bots for learning as conversation where a user does not read a passage but gains information and knowledge through conversation with a teacher bot. Our information acquisition-oriented dialogue system employs a novel adaptation of reinforced self-play so that the system can be transferred to various domains without in-domain dialogue data, and can carry out conversations both informative and attentive to users.
Knowledge-grounded conversational models are known to suffer from producing factually invalid statements, a phenomenon commonly called hallucination. In this work, we investigate the underlying causes of this phenomenon: is hallucination due to the training data, or to the models? We conduct a comprehensive human study on both existing knowledge-grounded conversational benchmarks and several state-of-the-art models. Our study reveals that the standard benchmarks consist of > 60% hallucinated responses, leading to models that not only hallucinate but even amplify hallucinations. Our findings raise important questions on the quality of existing datasets and models trained using them. We make our annotations publicly available for future research.
Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing on the reading education research, we introduce FairytaleQA, a dataset focusing on narrative comprehension of kindergarten to eighth-grade students. Generated by educational experts based on an evidence-based theoretical framework, FairytaleQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements or relations. Our dataset is valuable in two folds: First, we ran existing QA models on our dataset and confirmed that this annotation helps assess models’ fine-grained learning skills. Second, the dataset supports question generation (QG) task in the education domain. Through benchmarking with QG models, we show that the QG model trained on FairytaleQA is capable of asking high-quality and more diverse questions.
Existing question answering (QA) techniques are created mainly to answer questions asked by humans. But in educational applications, teachers often need to decide what questions they should ask, in order to help students to improve their narrative understanding capabilities. We design an automated question-answer generation (QAG) system for this education scenario: given a story book at the kindergarten to eighth-grade level as input, our system can automatically generate QA pairs that are capable of testing a variety of dimensions of a student’s comprehension skills. Our proposed QAG model architecture is demonstrated using a new expert-annotated FairytaleQA dataset, which has 278 child-friendly storybooks with 10,580 QA pairs. Automatic and human evaluations show that our model outperforms state-of-the-art QAG baseline systems. On top of our QAG system, we also start to build an interactive story-telling application for the future real-world deployment in this educational scenario.
Generating educational questions of fairytales or storybooks is vital for improving children’s literacy ability. However, it is challenging to generate questions that capture the interesting aspects of a fairytale story with educational meaningfulness. In this paper, we propose a novel question generation method that first learns the question type distribution of an input story paragraph, and then summarizes salient events which can be used to generate high-cognitive-demand questions. To train the event-centric summarizer, we finetune a pre-trained transformer-based sequence-to-sequence model using silver samples composed by educational question-answer pairs. On a newly proposed educational question-answering dataset FairytaleQA, we show good performance of our method on both automatic and human evaluation metrics. Our work indicates the necessity of decomposing question type distribution learning and event-centric summary generation for educational question generation.
Event extraction is typically modeled as a multi-class classification problem where event types and argument roles are treated as atomic symbols. These approaches are usually limited to a set of pre-defined types. We propose a novel event extraction framework that uses event types and argument roles as natural language queries to extract candidate triggers and arguments from the input text. With the rich semantics in the queries, our framework benefits from the attention mechanisms to better capture the semantic correlation between the event types or argument roles and the input text. Furthermore, the query-and-extract formulation allows our approach to leverage all available event annotations from various ontologies as a unified model. Experiments on ACE and ERE demonstrate that our approach achieves state-of-the-art performance on each dataset and significantly outperforms existing methods on zero-shot event extraction.
An NLP model that understands stories should be able to understand the characters in them. To support the development of neural models for this purpose, we construct a benchmark, Story2Personality. The task is to predict a movie character’s MBTI or Big 5 personality types based on the narratives of the character. Experiments show that our task is challenging for the existing text classification models, as none is able to largely outperform random guesses. We further proposed a multi-view model for personality prediction using both verbal and non-verbal descriptions, which gives improvement compared to using only verbal descriptions. The uniqueness and challenges in our dataset call for the development of narrative comprehension techniques from the perspective of understanding characters.
Text games present opportunities for natural language understanding (NLU) methods to tackle reinforcement learning (RL) challenges. However, recent work has questioned the necessity of NLU by showing random text hashes could perform decently. In this paper, we pursue a fine-grained investigation into the roles of text in the face of different RL challenges, and reconcile that semantic and non-semantic language representations could be complementary rather than contrasting. Concretely, we propose a simple scheme to extract relevant contextual information into an approximate state hash as extra input for an RNN-based text agent. Such a lightweight plug-in achieves competitive performance with state-of-the-art text agents using advanced NLU techniques such as knowledge graph and passage retrieval, suggesting non-NLU methods might suffice to tackle the challenge of partial observability. However, if we remove RNN encoders and use approximate or even ground-truth state hash alone, the model performs miserably, which confirms the importance of semantic function approximation to tackle the challenge of combinatorially large observation and action spaces. Our findings and analysis provide new insights for designing better text game task setups and agents.
Adversarial attack of structured prediction models faces various challenges such as the difficulty of perturbing discrete words, the sentence quality issue, and the sensitivity of outputs to small perturbations. In this work, we introduce SHARP, a new attack method that formulates the black-box adversarial attack as a search-based optimization problem with a specially designed objective function considering sentence fluency, meaning preservation and attacking effectiveness. Additionally, three different searching strategies are analyzed and compared, , Beam Search, Metropolis-Hastings Sampling, and Hybrid Search. We demonstrate the effectiveness of our attacking strategies on two challenging structured prediction tasks: part-of-speech (POS) tagging and dependency parsing. Through automatic and human evaluations, we show that our method performs a more potent attack compared with pioneer arts. Moreover, the generated adversarial examples can be used to successfully boost the robustness and performance of the victim model via adversarial training.
The goal of information-seeking dialogue is to respond to seeker queries with natural language utterances that are grounded on knowledge sources. However, dialogue systems often produce unsupported utterances, a phenomenon known as hallucination. To mitigate this behavior, we adopt a data-centric solution and create FaithDial, a new benchmark for hallucination-free dialogues, by editing hallucinated responses in the Wizard of Wikipedia (WoW) benchmark. We observe that FaithDial is more faithful than WoW while also maintaining engaging conversations. We show that FaithDial can serve as training signal for: i) a hallucination critic, which discriminates whether an utterance is faithful or not, and boosts the performance by 12.8 F1 score on the BEGIN benchmark compared to existing datasets for dialogue coherence; ii) high-quality dialogue generation. We benchmark a series of state-of-the-art models and propose an auxiliary contrastive objective that achieves the highest level of faithfulness and abstractiveness based on several automated metrics. Further, we find that the benefits of FaithDial generalize to zero-shot transfer on other datasets, such as CMU-Dog and TopicalChat. Finally, human evaluation reveals that responses generated by models trained on FaithDial are perceived as more interpretable, cooperative, and engaging.
Recent advancements in open-domain question answering (ODQA), that is, finding answers from large open-domain corpus like Wikipedia, have led to human-level performance on many datasets. However, progress in QA over book stories (Book QA) lags despite its similar task formulation to ODQA. This work provides a comprehensive and quantitative analysis about the difficulty of Book QA: (1) We benchmark the research on the NarrativeQA dataset with extensive experiments with cutting-edge ODQA techniques. This quantifies the challenges Book QA poses, as well as advances the published state-of-the-art with a ∼7% absolute improvement on ROUGE-L. (2) We further analyze the detailed challenges in Book QA through human studies.1 Our findings indicate that the event-centric questions dominate this task, which exemplifies the inability of existing QA models to handle event-oriented scenarios.
We propose a simple method to align multilingual contextual embeddings as a post-pretraining step for improved cross-lingual transferability of the pretrained language models. Using parallel data, our method aligns embeddings on the word level through the recently proposed Translation Language Modeling objective as well as on the sentence level via contrastive learning and random input shuffling. We also perform sentence-level code-switching with English when finetuning on downstream tasks. On XNLI, our best model (initialized from mBERT) improves over mBERT by 4.7% in the zero-shot setting and achieves comparable result to XLM for translate-train while using less than 18% of the same parallel data and 31% fewer model parameters. On MLQA, our model outperforms XLM-R_Base, which has 57% more parameters than ours.
Intent detection is a key component of modern goal-oriented dialog systems that accomplish a user task by predicting the intent of users’ text input. There are three primary challenges in designing robust and accurate intent detection models. First, typical intent detection models require a large amount of labeled data to achieve high accuracy. Unfortunately, in practical scenarios it is more common to find small, unbalanced, and noisy datasets. Secondly, even with large training data, the intent detection models can see a different distribution of test data when being deployed in the real world, leading to poor accuracy. Finally, a practical intent detection model must be computationally efficient in both training and single query inference so that it can be used continuously and re-trained frequently. We benchmark intent detection methods on a variety of datasets. Our results show that Watson Assistant’s intent detection model outperforms other commercial solutions and is comparable to large pretrained language models while requiring only a fraction of computational resources and training data. Watson Assistant demonstrates a higher degree of robustness when the training and test distributions differ.
This paper proposes a new problem of complementary evidence identification for open-domain question answering (QA). The problem aims to efficiently find a small set of passages that covers full evidence from multiple aspects as to answer a complex question. To this end, we proposes a method that learns vector representations of passages and models the sufficiency and diversity within the selected set, in addition to the relevance between the question and passages. Our experiments demonstrate that our method considers the dependence within the supporting evidence and significantly improves the accuracy of complementary evidence selection in QA domain.
Timeline Summarization identifies major events from a news collection and describes them following temporal order, with key dates tagged. Previous methods generally generate summaries separately for each date after they determine the key dates of events. These methods overlook the events’ intra-structures (arguments) and inter-structures (event-event connections). Following a different route, we propose to represent the news articles as an event-graph, thus the summarization becomes compressing the whole graph to its salient sub-graph. The key hypothesis is that the events connected through shared arguments and temporal order depict the skeleton of a timeline, containing events that are semantically related, temporally coherent and structurally salient in the global event graph. A time-aware optimal transport distance is then introduced for learning the compression model in an unsupervised manner. We show that our approach significantly improves on the state of the art on three real-world datasets, including two public standard benchmarks and our newly collected Timeline100 dataset.
A lot of progress has been made to improve question answering (QA) in recent years, but the special problem of QA over narrative book stories has not been explored in-depth. We formulate BookQA as an open-domain QA task given its similar dependency on evidence retrieval. We further investigate how state-of-the-art open-domain QA approaches can help BookQA. Besides achieving state-of-the-art on the NarrativeQA benchmark, our study also reveals the difficulty of evidence retrieval in books with a wealth of experiments and analysis - which necessitates future effort on novel solutions for evidence retrieval in BookQA.
Multi-hop reasoning approaches over knowledge graphs infer a missing relationship between entities with a multi-hop rule, which corresponds to a chain of relationships. We extend existing works to consider a generalized form of multi-hop rules, where each rule is a set of relation chains. To learn such generalized rules efficiently, we propose a two-step approach that first selects a small set of relation chains as a rule and then evaluates the confidence of the target relationship by jointly scoring the selected chains. A game-theoretical framework is proposed to this end to simultaneously optimize the rule selection and prediction steps. Empirical results show that our multi-chain multi-hop (MCMH) rules result in superior results compared to the standard single-chain approaches, justifying both our formulation of generalized rules and the effectiveness of the proposed learning framework.
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches.
Many approaches to extract multiple relations from a paragraph require multiple passes over the paragraph. In practice, multiple passes are computationally expensive and this makes difficult to scale to longer paragraphs and larger text corpora. In this work, we focus on the task of multiple relation extractions by encoding the paragraph only once. We build our solution upon the pre-trained self-attentive models (Transformer), where we first add a structured prediction layer to handle extraction between multiple entity pairs, then enhance the paragraph embedding to capture multiple relational information associated with each entity with entity-aware attention. We show that our approach is not only scalable but can also perform state-of-the-art on the standard benchmark ACE 2005.
Existing models for extractive summarization are usually trained from scratch with a cross-entropy loss, which does not explicitly capture the global context at the document level. In this paper, we aim to improve this task by introducing three auxiliary pre-training tasks that learn to capture the document-level context in a self-supervised fashion. Experiments on the widely-used CNN/DM dataset validate the effectiveness of the proposed auxiliary tasks. Furthermore, we show that after pre-training, a clean model with simple building blocks is able to outperform previous state-of-the-art that are carefully designed.
Previous cross-lingual knowledge graph (KG) alignment studies rely on entity embeddings derived only from monolingual KG structural information, which may fail at matching entities that have different facts in two KGs. In this paper, we introduce the topic entity graph, a local sub-graph of an entity, to represent entities with their contextual information in KG. From this view, the KB-alignment task can be formulated as a graph matching problem; and we further propose a graph-attention based solution, which first matches all entities in two topic entity graphs, and then jointly model the local matching information to derive a graph-level matching vector. Experiments show that our model outperforms previous state-of-the-art methods by a large margin.
We propose a new end-to-end question answering model, which learns to aggregate answer evidence from an incomplete knowledge base (KB) and a set of retrieved text snippets. Under the assumptions that structured data is easier to query and the acquired knowledge can help the understanding of unstructured text, our model first accumulates knowledge ofKB entities from a question-related KB sub-graph; then reformulates the question in the latent space and reads the text with the accumulated entity knowledge at hand. The evidence from KB and text are finally aggregated to predict answers. On the widely-used KBQA benchmark WebQSP, our model achieves consistent improvements across settings with different extents of KB incompleteness.
Natural Language Sentence Matching (NLSM) has gained substantial attention from both academics and the industry, and rich public datasets contribute a lot to this process. However, biased datasets can also hurt the generalization performance of trained models and give untrustworthy evaluation results. For many NLSM datasets, the providers select some pairs of sentences into the datasets, and this sampling procedure can easily bring unintended pattern, i.e., selection bias. One example is the QuoraQP dataset, where some content-independent naive features are unreasonably predictive. Such features are the reflection of the selection bias and termed as the “leakage features.” In this paper, we investigate the problem of selection bias on six NLSM datasets and find that four out of them are significantly biased. We further propose a training and evaluation framework to alleviate the bias. Experimental results on QuoraQP suggest that the proposed framework can improve the generalization ability of trained models, and give more trustworthy evaluation results for real-world adoptions.
With social media becoming increasingly popular on which lots of news and real-time events are reported, developing automated question answering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets have concentrated on question answering (QA) for formal text like news and Wikipedia, we present the first large-scale dataset for QA over social media data. To ensure that the tweets we collected are useful, we only gather tweets used by journalists to write news articles. We then ask human annotators to write questions and answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answers are extractive, we allow the answers to be abstractive. We show that two recently proposed neural models that perform well on formal texts are limited in their performance when applied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind human performance with a large margin. Our results thus point to the need of improved QA systems targeting social media text.
Existing entity typing systems usually exploit the type hierarchy provided by knowledge base (KB) schema to model label correlations and thus improve the overall performance. Such techniques, however, are not directly applicable to more open and practical scenarios where the type set is not restricted by KB schema and includes a vast number of free-form types. To model the underlying label correlations without access to manually annotated label structures, we introduce a novel label-relational inductive bias, represented by a graph propagation layer that effectively encodes both global label co-occurrence statistics and word-level similarities. On a large dataset with over 10,000 free-form types, the graph-enhanced model equipped with an attention-based matching module is able to achieve a much higher recall score while maintaining a high-level precision. Specifically, it achieves a 15.3% relative F1 improvement and also less inconsistency in the outputs. We further show that a simple modification of our proposed graph layer can also improve the performance on a conventional and widely-tested dataset that only includes KB-schema types.
Conventional approaches to relation extraction usually require a fixed set of pre-defined relations. Such requirement is hard to meet in many real applications, especially when new data and relations are emerging incessantly and it is computationally expensive to store all data and re-train the whole model every time new data and relations come in. We formulate such challenging problem as lifelong relation extraction and investigate memory-efficient incremental learning methods without catastrophically forgetting knowledge learned from previous tasks. We first investigate a modified version of the stochastic gradient methods with a replay memory, which surprisingly outperforms recent state-of-the-art lifelong learning methods. We further propose to improve this approach to alleviate the forgetting problem by anchoring the sentence embedding space. Specifically, we utilize an explicit alignment model to mitigate the sentence embedding distortion of learned model when training on new data and new relations. Experiment results on multiple benchmarks show that our proposed method significantly outperforms the state-of-the-art lifelong learning approaches.
Medical relation extraction discovers relations between entity mentions in text, such as research articles. For this task, dependency syntax has been recognized as a crucial source of features. Yet in the medical domain, 1-best parse trees suffer from relatively low accuracies, diminishing their usefulness. We investigate a method to alleviate this problem by utilizing dependency forests. Forests contain more than one possible decisions and therefore have higher recall but more noise compared with 1-best outputs. A graph neural network is used to represent the forests, automatically distinguishing the useful syntactic information from parsing noise. Results on two benchmarks show that our method outperforms the standard tree-based methods, giving the state-of-the-art results in the literature.
Out-of-domain (OOD) detection for low-resource text classification is a realistic but understudied task. The goal is to detect the OOD cases with limited in-domain (ID) training data, since in machine learning applications we observe that training data is often insufficient. In this work, we propose an OOD-resistant Prototypical Network to tackle this zero-shot OOD detection and few-shot ID classification task. Evaluations on real-world datasets show that the proposed solution outperforms state-of-the-art methods in zero-shot OOD detection task, while maintaining a competitive performance on ID classification task.
Selective rationalization has become a common mechanism to ensure that predictive models reveal how they use any available features. The selection may be soft or hard, and identifies a subset of input features relevant for prediction. The setup can be viewed as a co-operate game between the selector (aka rationale generator) and the predictor making use of only the selected features. The co-operative setting may, however, be compromised for two reasons. First, the generator typically has no direct access to the outcome it aims to justify, resulting in poor performance. Second, there’s typically no control exerted on the information left outside the selection. We revise the overall co-operative framework to address these challenges. We introduce an introspective model which explicitly predicts and incorporates the outcome into the selection process. Moreover, we explicitly control the rationale complement via an adversary so as not to leave any useful information out of the selection. We show that the two complementary mechanisms maintain both high predictive accuracy and lead to comprehensive rationales.
In multi-party chat, it is common for multiple conversations to occur concurrently, leading to intermingled conversation threads in chat logs. In this work, we propose a novel Context-Aware Thread Detection (CATD) model that automatically disentangles these conversation threads. We evaluate our model on four real-world datasets and demonstrate an overall im-provement in thread detection accuracy over state-of-the-art benchmarks.
A key challenge of multi-hop question answering (QA) in the open-domain setting is to accurately retrieve the supporting passages from a large corpus. Existing work on open-domain QA typically relies on off-the-shelf information retrieval (IR) techniques to retrieve answer passages, i.e., the passages containing the groundtruth answers. However, IR-based approaches are insufficient for multi-hop questions, as the topic of the second or further hops is not explicitly covered by the question. To resolve this issue, we introduce a new subproblem of open-domain multi-hop QA, which aims to recognize the bridge (i.e., the anchor that links to the answer passage) from the context of a set of start passages with a reading comprehension model. This model, the bridge reasoner, is trained with a weakly supervised signal and produces the candidate answer passages for the passage reader to extract the answer. On the full-wiki HotpotQA benchmark, we significantly improve the baseline method by 14 point F1. Without using any memory inefficient contextual embeddings, our result is also competitive with the state-of-the-art that applies BERT in multiple modules.
General Question Answering (QA) systems over texts require the multi-hop reasoning capability, i.e. the ability to reason with information collected from multiple passages to derive the answer. In this paper we conduct a systematic analysis to assess such an ability of various existing models proposed for multi-hop QA tasks. Specifically, our analysis investigates that whether providing the full reasoning chain of multiple passages, instead of just one final passage where the answer appears, could improve the performance of the existing QA models. Surprisingly, when using the additional evidence passages, the improvements of all the existing multi-hop reading approaches are rather limited, with the highest error reduction of 5.8% on F1 (corresponding to 1.3% improvement) from the BERT model. To better understand whether the reasoning chains indeed could help find the correct answers, we further develop a co-matching-based method that leads to 13.1% error reduction with passage chains when applied to two of our base readers (including BERT). Our results demonstrate the existence of the potential improvement using explicit multi-hop reasoning and the necessity to develop models with better reasoning abilities.
Multi-hop question answering (QA) requires an information retrieval (IR) system that can find multiple supporting evidence needed to answer the question, making the retrieval process very challenging. This paper introduces an IR technique that uses information of entities present in the initially retrieved evidence to learn to ‘hop’ to other relevant evidence. In a setting, with more than 5 million Wikipedia paragraphs, our approach leads to significant boost in retrieval performance. The retrieved evidence also increased the performance of an existing QA model (without any training) on the benchmark by 10.59 F1.
Self-explaining text categorization requires a classifier to make a prediction along with supporting evidence. A popular type of evidence is sub-sequences extracted from the input text which are sufficient for the classifier to make the prediction. In this work, we define multi-granular ngrams as basic units for explanation, and organize all ngrams into a hierarchical structure, so that shorter ngrams can be reused while computing longer ngrams. We leverage the tree-structured LSTM to learn a context-independent representation for each unit via parameter sharing. Experiments on medical disease classification show that our model is more accurate, efficient and compact than the BiLSTM and CNN baselines. More importantly, our model can extract intuitive multi-granular evidence to support its predictions.
Many Natural Language Processing (NLP) tasks depend on using Named Entities (NEs) that are contained in texts and in external knowledge sources. While this is easy for humans, the present neural methods that rely on learned word embeddings may not perform well for these NLP tasks, especially in the presence of Out-Of-Vocabulary (OOV) or rare NEs. In this paper, we propose a solution for this problem, and present empirical evaluations on: a) a structured Question-Answering task, b) three related Goal-Oriented dialog tasks, and c) a Reading-Comprehension task, which show that the proposed method can be effective in dealing with both in-vocabulary and OOV NEs. We create extended versions of dialog bAbI tasks 1,2 and 4 and OOV versions of the CBT test set which are available at - https://github.com/IBM/ne-table-datasets/
We study few-shot learning in natural language domains. Compared to many existing works that apply either metric-based or optimization-based meta-learning to image domain with low inter-task variance, we consider a more realistic setting, where tasks are diverse. However, it imposes tremendous difficulties to existing state-of-the-art metric-based algorithms since a single metric is insufficient to capture complex task variations in natural language domain. To alleviate the problem, we propose an adaptive metric learning approach that automatically determines the best weighted combination from a set of metrics obtained from meta-training tasks for a newly seen few-shot task. Extensive quantitative evaluations on real-world sentiment analysis and dialog intent classification datasets demonstrate that the proposed method performs favorably against state-of-the-art few shot learning algorithms in terms of predictive accuracy. We make our code and data available for further study.
Multi-choice reading comprehension is a challenging task, which involves the matching between a passage and a question-answer pair. This paper proposes a new co-matching approach to this problem, which jointly models whether a passage can match both a question and a candidate answer. Experimental results on the RACE dataset demonstrate that our approach achieves state-of-the-art performance.
Recently, Reinforcement Learning (RL) approaches have demonstrated advanced performance in image captioning by directly optimizing the metric used for testing. However, this shaped reward introduces learning biases, which reduces the readability of generated text. In addition, the large sample space makes training unstable and slow. To alleviate these issues, we propose a simple coherent solution that constrains the action space using an n-gram language prior. Quantitative and qualitative evaluations on benchmarks show that RL with the simple add-on module performs favorably against its counterpart in terms of both readability and speed of convergence. Human evaluation results show that our model is more human readable and graceful. The implementation will become publicly available upon the acceptance of the paper.
Existing neural semantic parsers mainly utilize a sequence encoder, i.e., a sequential LSTM, to extract word order features while neglecting other valuable syntactic information such as dependency or constituent trees. In this paper, we first propose to use the syntactic graph to represent three types of syntactic information, i.e., word order, dependency and constituency features; then employ a graph-to-sequence model to encode the syntactic graph and decode a logical form. Experimental results on benchmark datasets show that our model is comparable to the state-of-the-art on Jobs640, ATIS, and Geo880. Experimental results on adversarial examples demonstrate the robustness of the model is also improved by encoding more syntactic information.
Attention-based models are successful when trained on large amounts of data. In this paper, we demonstrate that even in the low-resource scenario, attention can be learned effectively. To this end, we start with discrete human-annotated rationales and map them into continuous attention. Our central hypothesis is that this mapping is general across domains, and thus can be transferred from resource-rich domains to low-resource ones. Our model jointly learns a domain-invariant representation and induces the desired mapping between rationales and attention. Our empirical results validate this hypothesis and show that our approach delivers significant gains over state-of-the-art baselines, yielding over 15% average error reduction on benchmark datasets.
Knowledge graphs (KG) are the key components of various natural language processing applications. To further expand KGs’ coverage, previous studies on knowledge graph completion usually require a large number of positive examples for each relation. However, we observe long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge distilled by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.
Relation detection is a core component of many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning which detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different levels of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to make the two components enhance each other. Our experimental results show that our approach not only achieves outstanding relation detection performance, but more importantly, it helps our KBQA system achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.
This work focuses on answering single-relation factoid questions over Freebase. Each question can acquire the answer from a single fact of form (subject, predicate, object) in Freebase. This task, simple question answering (SimpleQA), can be addressed via a two-step pipeline: entity linking and fact selection. In fact selection, we match the subject entity in a fact candidate with the entity mention in the question by a character-level convolutional neural network (char-CNN), and match the predicate in that fact with the question by a word-level CNN (word-CNN). This work makes two main contributions. (i) A simple and effective entity linker over Freebase is proposed. Our entity linker outperforms the state-of-the-art entity linker over SimpleQA task. (ii) A novel attentive maxpooling is stacked over word-CNN, so that the predicate representation can be matched with the predicate-focused question representation more effectively. Experiments show that our system sets new state-of-the-art in this task.
Lexical embeddings can serve as useful representations for words for a variety of NLP tasks, but learning embeddings for phrases can be challenging. While separate embeddings are learned for each word, this is infeasible for every phrase. We construct phrase embeddings by learning how to compose word embeddings using features that capture phrase structure and context. We propose efficient unsupervised and task-specific learning objectives that scale our model to large datasets. We demonstrate improvements on both language modeling and several phrase semantic similarity tasks with various phrase lengths. We make the implementation of our model and the datasets available for general use.