Minji Tang


2023

pdf
NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in Natural Language Processing
Tingting Wu | Xiao Ding | Minji Tang | Hao Zhang | Bing Qin | Ting Liu
Findings of the Association for Computational Linguistics: ACL 2023

Large-scale datasets in the real world inevitably involve label noise. Deep models can gradually overfit noisy labels and thus degrade model generalization. To mitigate the effects of label noise, learning with noisy labels (LNL) methods are designed to achieve better generalization performance. Due to the lack of suitable datasets, previous studies have frequently employed synthetic label noise to mimic real-world label noise. However, synthetic noise is not instance-dependent, making this approximation not always effective in practice. Recent research has proposed benchmarks for learning with real-world noisy labels. However, the noise sources within may be single or fuzzy, making benchmarks different from data with heterogeneous label noises in the real world. To tackle these issues, we contribute NoisywikiHow, the largest NLP benchmark built with minimal supervision. Specifically, inspired by human cognition, we explicitly construct multiple sources of label noise to imitate human errors throughout the annotation, replicating real-world noise, whose corruption is affected by both ground-truth labels and instances. Moreover, we provide a variety of noise levels to support controlled experiments on noisy data, enabling us to evaluate LNL methods systematically and comprehensively. After that, we conduct extensive multi-dimensional experiments on a broad range of LNL methods, obtaining new and intriguing findings.

2022

pdf
STGN: an Implicit Regularization Method for Learning with Noisy Labels in Natural Language Processing
Tingting Wu | Xiao Ding | Minji Tang | Hao Zhang | Bing Qin | Ting Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Noisy labels are ubiquitous in natural language processing (NLP) tasks. Existing work, namely learning with noisy labels in NLP, is often limited to dedicated tasks or specific training procedures, making it hard to be widely used. To address this issue, SGD noise has been explored to provide a more general way to alleviate the effect of noisy labels by involving benign noise in the process of stochastic gradient descent. However, previous studies exert identical perturbation for all samples, which may cause overfitting on incorrect ones or optimizing correct ones inadequately. To facilitate this, we propose a novel stochastic tailor-made gradient noise (STGN), mitigating the effect of inherent label noise by introducing tailor-made benign noise for each sample. Specifically, we investigate multiple principles to precisely and stably discriminate correct samples from incorrect ones and thus apply different intensities of perturbation to them. A detailed theoretical analysis shows that STGN has good properties, beneficial for model generalization. Experiments on three different NLP tasks demonstrate the effectiveness and versatility of STGN. Also, STGN can boost existing robust training methods.