Mathilde Dargnat


2020

pdf
Étude comparative de corrélats prosodiques de marqueurs discursifs français et anglais selon leur fonction pragmatique (Comparative study on prosodic correlates of discourse markers in French and English according to their pragmatic function)
Lou Lee | Denis Jouvet | Katarina Bartkova | Yvon Keromnes | Mathilde Dargnat
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole

Ce papier présente une étude des caractéristiques prosodiques de marqueurs discursifs en fonction de leur sens pragmatique. L’étude est menée sur trois marqueurs discursifs français (alors, bon, donc) et trois marqueurs anglais (now, so, well) afin de comparer leurs caractéristiques prosodiques dans ces deux langues. Plusieurs paramètres prosodiques ont été calculés sur les marqueurs discursifs, et analysés selon les fonctions pragmatiques de ceux-ci. L’analyse a été effectuée sur plusieurs centaines d’occurrences de marqueurs discursifs extraits de corpus oraux français et anglais. Les résultats montrent que certaines fonctions pragmatiques des marqueurs discursifs amènent leurs propres caractéristiques prosodiques au niveau des pauses et des mouvements de la fréquence fondamentale. On observe également que les fonctions pragmatiques similaires partagent fréquemment des caractéristiques prosodiques similaires à travers les deux langues.

pdf
Do sentence embeddings capture discourse properties of sentences from Scientific Abstracts ?
Laurine Huber | Chaker Memmadi | Mathilde Dargnat | Yannick Toussaint
Proceedings of the First Workshop on Computational Approaches to Discourse

We introduce four tasks designed to determine which sentence encoders best capture discourse properties of sentences from scientific abstracts, namely coherence and cohesion between clauses of a sentence, and discourse relations within sentences. We show that even if contextual encoders such as BERT or SciBERT encodes the coherence in discourse units, they do not help to predict three discourse relations commonly used in scientific abstracts. We discuss what these results underline, namely that these discourse relations are based on particular phrasing that allow non-contextual encoders to perform well.

2019

pdf
Aligning Discourse and Argumentation Structures using Subtrees and Redescription Mining
Laurine Huber | Yannick Toussaint | Charlotte Roze | Mathilde Dargnat | Chloé Braud
Proceedings of the 6th Workshop on Argument Mining

In this paper, we investigate similarities between discourse and argumentation structures by aligning subtrees in a corpus containing both annotations. Contrary to previous works, we focus on comparing sub-structures and not only relations matches. Using data mining techniques, we show that discourse and argumentation most often align well, and the double annotation allows to derive a mapping between structures. Moreover, this approach enables the study of similarities between discourse structures and differences in their expressive power.