Marie Tahon


2024

pdf
Évaluation perceptive de l’anticipation de la prise de parole lors d’interactions dialogiques en français
Rémi Uro | Albert Rilliard | David Doukhan | Marie Tahon | Antoine Laurent
Actes des 35èmes Journées d'Études sur la Parole

Cette étude présente un test perceptif évaluant les indices permettant la planification de la prise de parole lors d’interactions orales spontanées. Des Unités Inter-Pauses (IPU) ont été extraites de dialogues du corpus REPERE et annotées en terminalité. Afin de déterminer quels paramètres affectent les jugements de la possibilité de prendre la parole, les stimulus ont été présentés sous forme audio ou textuelle.Les participant·es devaient indiquer la possibilité de prendre la parole «~Maintenant~», «~Bientôt~» ou «~Pas encore~», à la fin des IPU tronqués de 0 à 3 mots prosodiques. Les participant·es sont moins susceptibles de prendre la parole pour les frontières non terminales en modalité audio que textuelle. La modalité audio permet également d’anticiper une fin de tour de parole au moins trois mots avant sa fin, tandis que la modalité textuelle permet moins d’anticipation. Ces résultats soutiennent l’importance des indices contenus dans la parole pour la planification des interactions dialogiques.

pdf
Vérification automatique de la voix de locuteurs après resynthèse à l’aide de PPG
Thibault Gaudier | Marie Tahon | Anthony Larcher | Yannick Estève
Actes des 35èmes Journées d'Études sur la Parole

La création de contenu journalistique peut être assistée par des outils technologiques comme la synthèse de parole. Cependant l’éditeur doit avoir la possibilité de contrôler la génération du contenu audio comme la prosodie, la prononciation ou le contenu linguistique. Dans ces travaux, un système de conversion de voix génère un signal de locuteur cible à partir d’une représentation temporelle de type Phonetic PosteriorGrams (PPGs) extraite d’un audio source. Les PPGs démêlent le contenu phonétique du contenu rythmique, et sont généralement considérés indépendants du locuteur. Cet article présente un système de conversion utilisant les PPGs, et son évaluation en qualité audio avec un test perceptif. Nous montrons également qu’un système de vérification du locuteur ne parvient pas à identifier le locuteur source après la conversion, même si le modèle a été entraîné sur des données synthétiques.

pdf
ALLIES: A Speech Corpus for Segmentation, Speaker Diarization, Speech Recognition and Speaker Change Detection
Marie Tahon | Anthony Larcher | Martin Lebourdais | Fethi Bougares | Anna Silnova | Pablo Gimeno
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper presents ALLIES, a meta corpus which gathers and extends existing French corpora collected from radio and TV shows. The corpus contains 1048 audio files for about 500 hours of speech. Agglomeration of data is always a difficult issue, as the guidelines used to collect, annotate and transcribe speech are generally different from one corpus to another. ALLIES intends to homogenize and correct speaker labels among the different files by integrated human feedback within a speaker verification system. The main contribution of this article is the design of a protocol in order to evaluate properly speech segmentation (including music and overlap detection), speaker diarization, speech transcription and speaker change detection. As part of it, a test partition has been carefully manually 1) segmented and annotated according to speech, music, noise, speaker labels with specific guidelines for overlap speech, 2) orthographically transcribed. This article also provides as a second contribution baseline results for several speech processing tasks.

pdf
Annotation of Transition-Relevance Places and Interruptions for the Description of Turn-Taking in Conversations in French Media Content
Rémi Uro | Marie Tahon | Jane Wottawa | David Doukhan | Albert Rilliard | Antoine Laurent
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Few speech resources describe interruption phenomena, especially for TV and media content. The description of these phenomena may vary across authors: it thus leaves room for improved annotation protocols. We present an annotation of Transition-Relevance Places (TRP) and Floor-Taking event types on an existing French TV and Radio broadcast corpus to facilitate studies of interruptions and turn-taking. Each speaker change is annotated with the presence or absence of a TRP, and a classification of the next-speaker floor-taking as Smooth, Backchannel or different types of turn violations (cooperative or competitive, successful or attempted interruption). An inter-rater agreement analysis shows such annotations’ moderate to substantial reliability. The inter-annotator agreement for TRP annotation reaches κ=0.75, κ=0.56 for Backchannel and κ=0.5 for the Interruption/non-interruption distinction. More precise differences linked to cooperative or competitive behaviors lead to lower agreements. These results underline the importance of low-level features like TRP to derive a classification of turn changes that would be less subject to interpretation. The analysis of the presence of overlapping speech highlights the existence of interruptions without overlaps and smooth transitions with overlaps. These annotations are available at https://lium.univ-lemans.fr/corpus-allies/.

pdf
Automatic Speech Interruption Detection: Analysis, Corpus, and System
Martin Lebourdais | Marie Tahon | Antoine Laurent | Sylvain Meignier
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Interruption detection is a new yet challenging task in the field of speech processing. This article presents a comprehensive study on automatic speech interruption detection, from the definition of this task, the assembly of a specialized corpus, and the development of an initial baseline system. We provide three main contributions: Firstly, we define the task, taking into account the nuanced nature of interruptions within spontaneous conversations. Secondly, we introduce a new corpus of conversational data, annotated for interruptions, to facilitate research in this domain. This corpus serves as a valuable resource for evaluating and advancing interruption detection techniques. Lastly, we present a first baseline system, which use speech processing methods to automatically identify interruptions in speech with promising results. In this article, we derivate from theoretical notions of interruption to build a simplification of this notion based on overlapped speech detection. Our findings can not only serve as a foundation for further research in the field but also provide a benchmark for assessing future advancements in automatic speech interruption detection.

2022

pdf
Overlaps and Gender Analysis in the Context of Broadcast Media
Martin Lebourdais | Marie Tahon | Antoine Laurent | Sylvain Meignier | Anthony Larcher
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Our main goal is to study the interactions between speakers according to their gender and role in broadcast media. In this paper, we propose an extensive study of gender and overlap annotations in various speech corpora mainly dedicated to diarisation or transcription tasks. We point out the issue of the heterogeneity of the annotation guidelines for both overlapping speech and gender categories. On top of that, we analyse how the speech content (casual speech, meetings, debate, interviews, etc.) impacts the distribution of overlapping speech segments. On a small dataset of 93 recordings from LCP French channel, we intend to characterise the interactions between speakers according to their gender. Finally, we propose a method which aims to highlight active speech areas in terms of interactions between speakers. Such a visualisation tool could improve the efficiency of qualitative studies conducted by researchers in human sciences.

pdf
A Semi-Automatic Approach to Create Large Gender- and Age-Balanced Speaker Corpora: Usefulness of Speaker Diarization & Identification.
Rémi Uro | David Doukhan | Albert Rilliard | Laetitia Larcher | Anissa-Claire Adgharouamane | Marie Tahon | Antoine Laurent
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper presents a semi-automatic approach to create a diachronic corpus of voices balanced for speaker’s age, gender, and recording period, according to 32 categories (2 genders, 4 age ranges and 4 recording periods). Corpora were selected at French National Institute of Audiovisual (INA) to obtain at least 30 speakers per category (a total of 960 speakers; only 874 have be found yet). For each speaker, speech excerpts were extracted from audiovisual documents using an automatic pipeline consisting of speech detection, background music and overlapped speech removal and speaker diarization, used to present clean speaker segments to human annotators identifying target speakers. This pipeline proved highly effective, cutting down manual processing by a factor of ten. Evaluation of the quality of the automatic processing and of the final output is provided. It shows the automatic processing compare to up-to-date process, and that the output provides high quality speech for most of the selected excerpts. This method is thus recommendable for creating large corpora of known target speakers.

2020

pdf
Towards Interactive Annotation for Hesitation in Conversational Speech
Jane Wottawa | Marie Tahon | Apolline Marin | Nicolas Audibert
Proceedings of the Twelfth Language Resources and Evaluation Conference

Manual annotation of speech corpora is expensive in both human resources and time. Furthermore, recognizing affects in spontaneous, non acted speech presents a challenge for humans and machines. The aim of the present study is to automatize the labeling of hesitant speech as a marker of expressed uncertainty. That is why, the NCCFr-corpus was manually annotated for ‘degree of hesitation’ on a continuous scale between -3 and 3 and the affective dimensions ‘activation, valence and control’. In total, 5834 chunks of the NCCFr-corpus were manually annotated. Acoustic analyses were carried out based on these annotations. Furthermore, regression models were trained in order to allow automatic prediction of hesitation for speech chunks that do not have a manual annotation. Preliminary results show that the number of filled pauses as well as vowel duration increase with the degree of hesitation, and that automatic prediction of the hesitation degree reaches encouraging RMSE results of 1.6.

pdf
AlloSat: A New Call Center French Corpus for Satisfaction and Frustration Analysis
Manon Macary | Marie Tahon | Yannick Estève | Anthony Rousseau
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present a new corpus, named AlloSat, composed of real-life call center conversations in French that is continuously annotated in frustration and satisfaction. This corpus has been set up to develop new systems able to model the continuous aspect of semantic and paralinguistic information at the conversation level. The present work focuses on the paralinguistic level, more precisely on the expression of emotions. In the call center industry, the conversation usually aims at solving the caller’s request. As far as we know, most emotional databases contain static annotations in discrete categories or in dimensions such as activation or valence. We hypothesize that these dimensions are not task-related enough. Moreover, static annotations do not enable to explore the temporal evolution of emotional states. To solve this issue, we propose a corpus with a rich annotation scheme enabling a real-time investigation of the axis frustration / satisfaction. AlloSat regroups 303 conversations with a total of approximately 37 hours of audio, all recorded in real-life environments collected by Allo-Media (an intelligent call tracking company). First regression experiments, with audio features, show that the evolution of frustration / satisfaction axis can be retrieved automatically at the conversation level.

pdf
Prédiction continue de la satisfaction et de la frustration dans des conversations de centre d’appels (AlloSat : A New Call Center French Corpus for Affect Analysis)
Manon Macary | Marie Tahon | Yannick Estève | Anthony Rousseau
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 1 : Journées d'Études sur la Parole

Nous présentons un nouveau corpus, nommé AlloSat, composé de conversations en français extraites de centre d’appels, annotées de façon continue en frustration et satisfaction. Dans le contexte des centres d’appels, une conversation vise généralement à résoudre la demande de l’appelant. Ce corpus a été mis en place afin de développer de nouveaux systèmes capables de modéliser l’aspect continu de l’information sémantique et para-linguistique au niveau conversationnel. Nous nous concentrons sur le niveau para-linguistique, plus précisément sur l’expression des émotions. À notre connaissance, la plupart des corpus émotionnels contiennent des annotations en catégories discrètes ou dans des dimensions continues telles que l’activation ou la valence. Nous supposons que ces dimensions ne sont pas suffisamment liées à notre contexte. Pour résoudre ce problème, nous proposons un corpus permettant une connaissance en temps réel de l’axe frustration/satisfaction. AlloSat regroupe 303 conversations pour un total d’environ 37 heures d’audio, toutes enregistrées dans des environnements réels, collectées par Allo-Media (une société spécialisée dans l’analyse automatique d’appels). Les premières expériences de classification montrent que l’évolution de l’axe frustration/satisfaction peut être prédite automatiquement par conversation.

2018

pdf
SynPaFlex-Corpus: An Expressive French Audiobooks Corpus dedicated to expressive speech synthesis.
Aghilas Sini | Damien Lolive | Gaëlle Vidal | Marie Tahon | Élisabeth Delais-Roussarie
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2014

pdf
Détection des états affectifs lors d’interactions parlées : robustesse des indices non verbaux [Automatic in-voice affective state detection in spontaneous speech: robustness of non-verbal cues]
Laurence Devillers | Marie Tahon | Mohamed A. Sehili | Agnès Delaborde
Traitement Automatique des Langues, Volume 55, Numéro 2 : Traitement automatique du langage parlé [Spoken language processing]

2012

pdf
Corpus of Children Voices for Mid-level Markers and Affect Bursts Analysis
Marie Tahon | Agnes Delaborde | Laurence Devillers
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

This article presents a corpus featuring children playing games in interaction with the humanoid robot Nao: children have to express emotions in the course of a storytelling by the robot. This corpus was collected to design an affective interactive system driven by an interactional and emotional representation of the user. We evaluate here some mid-level markers used in our system: reaction time, speech duration and intensity level. We also question the presence of affect bursts, which are quite numerous in our corpus, probably because of the young age of the children and the absence of predefined lexical content.