Marco Ponza


2024

pdf
Leveraging Contextual Information for Effective Entity Salience Detection
Rajarshi Bhowmik | Marco Ponza | Atharva Tendle | Anant Gupta | Rebecca Jiang | Xingyu Lu | Qian Zhao | Daniel Preotiuc-Pietro
Findings of the Association for Computational Linguistics: NAACL 2024

In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task’s uniqueness and complexity.

2018

pdf
Facts That Matter
Marco Ponza | Luciano Del Corro | Gerhard Weikum
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

This work introduces fact salience: The task of generating a machine-readable representation of the most prominent information in a text document as a set of facts. We also present SalIE, the first fact salience system. SalIE is unsupervised and knowledge agnostic, based on open information extraction to detect facts in natural language text, PageRank to determine their relevance, and clustering to promote diversity. We compare SalIE with several baselines (including positional, standard for saliency tasks), and in an extrinsic evaluation, with state-of-the-art automatic text summarizers. SalIE outperforms baselines and text summarizers showing that facts are an effective way to compress information.