Louis Clouatre


2024

pdf
MVP: Minimal Viable Phrase for Long Text Understanding
Louis Clouatre | Amal Zouaq | Sarath Chandar
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

A recent renewal in interest in long text understanding has sparked the emergence of high-quality long text benchmarks, as well as new models demonstrating significant performance improvements on these benchmarks. However, gauging the implication of these advancements based solely on the length of the input text offers limited insight. Such benchmarks may require models to parse long-range dependencies or merely to locate and comprehend the relevant paragraph within a longer text. This work introduces the Minimal Viable Phrase (MVP), a novel metric that determines, through perturbations to the input text, the shortest average text length that needs to be preserved to execute the task with limited performance degradation. Our evaluation of the popular SCROLLS benchmark reveals that only one of its seven tasks necessitates an MVP of over 512 tokens–the maximum text length manageable by the previous generation of pre-trained models. We highlight the limited need for understanding long-range dependencies in resolving these tasks, discuss the specific design decisions that seem to have led to the QuALITY task requiring reliance on long-range dependencies to be solved, and point out specific modeling choices that seem to outperform on the QuALITY task.

2022

pdf
Local Structure Matters Most: Perturbation Study in NLU
Louis Clouatre | Prasanna Parthasarathi | Amal Zouaq | Sarath Chandar
Findings of the Association for Computational Linguistics: ACL 2022

Recent research analyzing the sensitivity of natural language understanding models to word-order perturbations has shown that neural models are surprisingly insensitive to the order of words. In this paper, we investigate this phenomenon by developing order-altering perturbations on the order of words, subwords, and characters to analyze their effect on neural models’ performance on language understanding tasks. We experiment with measuring the impact of perturbations to the local neighborhood of characters and global position of characters in the perturbed texts and observe that perturbation functions found in prior literature only affect the global ordering while the local ordering remains relatively unperturbed. We empirically show that neural models, invariant of their inductive biases, pretraining scheme, or the choice of tokenization, mostly rely on the local structure of text to build understanding and make limited use of the global structure.

pdf
Detecting Languages Unintelligible to Multilingual Models through Local Structure Probes
Louis Clouatre | Prasanna Parthasarathi | Amal Zouaq | Sarath Chandar
Findings of the Association for Computational Linguistics: EMNLP 2022

Providing better language tools for low-resource and endangered languages is imperative for equitable growth.Recent progress with massively multilingual pretrained models has proven surprisingly effective at performing zero-shot transfer to a wide variety of languages.However, this transfer is not universal, with many languages not currently understood by multilingual approaches.It is estimated that only 72 languages possess a “small set of labeled datasets” on which we could test a model’s performance, the vast majority of languages not having the resources available to simply evaluate performances on.In this work, we attempt to clarify which languages do and do not currently benefit from such transfer.To that end, we develop a general approach that requires only unlabelled text to detect which languages are not well understood by a cross-lingual model.Our approach is derived from the hypothesis that if a model’s understanding is insensitive to perturbations to text in a language, it is likely to have a limited understanding of that language.We construct a cross-lingual sentence similarity task to evaluate our approach empirically on 350, primarily low-resource, languages.

pdf
Local Structure Matters Most in Most Languages
Louis Clouatre | Prasanna Parthasarathi | Amal Zouaq | Sarath Chandar
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Many recent perturbation studies have found unintuitive results on what does and does not matter when performing Natural Language Understanding (NLU) tasks in English. Coding properties, such as the order of words, can often be removed through shuffling without impacting downstream performances. Such insight may be used to direct future research into English NLP models. As many improvements in multilingual settings consist of wholesale adaptation of English approaches, it is important to verify whether those studies replicate or not in multilingual settings. In this work, we replicate a study on the importance of local structure, and the relative unimportance of global structure, in a multilingual setting. We find that the phenomenon observed on the English language broadly translates to over 120 languages, with a few caveats.

2021

pdf
MLMLM: Link Prediction with Mean Likelihood Masked Language Model
Louis Clouatre | Philippe Trempe | Amal Zouaq | Sarath Chandar
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021