Liang Li


2024

pdf
Free your mouse! Command Large Language Models to Generate Code to Format Word Documents
Shihao Rao | Liang Li | Jiapeng Liu | Guan Weixin | Xiyan Gao | Bing Lim | Can Ma
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recently, LLMs have significantly improved code generation, making it increasingly accessible to users. As a result, LLM-powered code generation applications have sprung up, vastly boosting user productivity. This paper mainly explores how to improve the efficiency and experience of users in formatting the document. Specifically, we propose an automatic document formatting method, Text-to-Format, which is driven by various prompting strategies. Text-to-Format takes the user’s formatting instructions and then generates code that can be run in Microsoft Word to format the content in a document. Further, to evaluate automatic document formatting approaches and advance the document formatting task, we built an evaluation specification including a high-quality dataset DocFormEval data, a code runtime environment, and evaluation metrics. Extensive experimental results on data reveal that the prompting strategy’s effect positively correlates with how much knowledge it introduces related to document formatting task. We believe the constructed DocFormEval data and the exploration about Text-to-Format can help developers build more intelligent tools for automatic document formatting, especially in offline scenarios, where the data privacy is the top priority.

pdf
Unifying Structured Data as Graph for Data-to-Text Pre-Training
Shujie Li | Liang Li | Ruiying Geng | Min Yang | Binhua Li | Guanghu Yuan | Wanwei He | Shao Yuan | Can Ma | Fei Huang | Yongbin Li
Transactions of the Association for Computational Linguistics, Volume 12

Data-to-text (D2T) generation aims to transform structured data into natural language text. Data-to-text pre-training has proved to be powerful in enhancing D2T generation and yields impressive performance. However, previous pre-training methods either oversimplified structured data into a sequence without considering input structures or designed training objectives tailored for a specific data structure (e.g., table or knowledge graph). In this paper, we unify different types of structured data (i.e., table, key-value data, knowledge graph) into the graph format and cast different D2T generation tasks as graph-to-text generation. To effectively exploit the structural information of the input graph, we propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer. Concretely, we devise a position matrix for the Transformer, encoding relative positional information of connected nodes in the input graph. In addition, we propose a new attention matrix to incorporate graph structures into the original Transformer by taking the available explicit connectivity structure into account. Extensive experiments on six benchmark datasets show the effectiveness of our model. Our source codes are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/unid2t.

pdf
StyleDubber: Towards Multi-Scale Style Learning for Movie Dubbing
Gaoxiang Cong | Yuankai Qi | Liang Li | Amin Beheshti | Zhedong Zhang | Anton Hengel | Ming-Hsuan Yang | Chenggang Yan | Qingming Huang
Findings of the Association for Computational Linguistics: ACL 2024

Given a script, the challenge in Movie Dubbing (Visual Voice Cloning, V2C) is to generate speech that aligns well with the video in both time and emotion, based on the tone of a reference audio track. Existing state-of-the-art V2C models break the phonemes in the script according to the divisions between video frames, which solves the temporal alignment problem but leads to incomplete phoneme pronunciation and poor identity stability. To address this problem, we propose StyleDubber, which switches dubbing learning from the frame level to phoneme level. It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; And (3) a phoneme-guided lip aligner to maintain lip sync. Extensive experiments on two of the primary benchmarks, V2C and Grid, demonstrate the favorable performance of the proposed method as compared to the current state-of-the-art. The code will be made available at https://github.com/GalaxyCong/StyleDubber.

pdf
Context-aware Difference Distilling for Multi-change Captioning
Yunbin Tu | Liang Li | Li Su | Zheng-Jun Zha | Chenggang Yan | Qingming Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-change captioning aims to describe complex and coupled changes within an image pair in natural language. Compared with single-change captioning, this task requires the model to have higher-level cognition ability to reason an arbitrary number of changes. In this paper, we propose a novel context-aware difference distilling (CARD) network to capture all genuine changes for yielding sentences. Given an image pair, CARD first decouples context features that aggregate all similar/dissimilar semantics, termed common/difference context features. Then, the consistency and independence constraints are designed to guarantee the alignment/discrepancy of common/difference context features. Further, the common context features guide the model to mine locally unchanged features, which are subtracted from the pair to distill locally difference features. Next, the difference context features augment the locally difference features to ensure that all changes are distilled. In this way, we obtain an omni-representation of all changes, which is translated into linguistic sentences by a transformer decoder. Extensive experiments on three public datasets show CARD performs favourably against state-of-the-art methods. The code is available at https://github.com/tuyunbin/CARD.

2023

pdf
CATS: A Pragmatic Chinese Answer-to-Sequence Dataset with Large Scale and High Quality
Liang Li | Ruiying Geng | Chengyang Fang | Bing Li | Can Ma | Rongyu Cao | Binhua Li | Fei Huang | Yongbin Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

There are three problems existing in the popular data-to-text datasets. First, the large-scale datasets either contain noise or lack real application scenarios. Second, the datasets close to real applications are relatively small in size. Last, current datasets bias in the English language while leaving other languages underexplored.To alleviate these limitations, in this paper, we present CATS, a pragmatic Chinese answer-to-sequence dataset with large scale and high quality. The dataset aims to generate textual descriptions for the answer in the practical TableQA system. Further, to bridge the structural gap between the input SQL and table and establish better semantic alignments, we propose a Unified Graph Transformation approach to establish a joint encoding space for the two hybrid knowledge resources and convert this task to a graph-to-text problem. The experiment results demonstrate the effectiveness of our proposed method. Further analysis on CATS attests to both the high quality and challenges of the dataset

pdf
Plan-then-Seam: Towards Efficient Table-to-Text Generation
Liang Li | Ruiying Geng | Chengyang Fang | Bing Li | Can Ma | Binhua Li | Yongbin Li
Findings of the Association for Computational Linguistics: EACL 2023

Table-to-text generation aims at automatically generating text to help people conveniently obtain salient information in tables. Recent works explicitly decompose the generation process into content planning and surface generation stages, employing two autoregressive networks for them respectively. However, they are computationally expensive due to the non-parallelizable nature of autoregressive decoding and the redundant parameters of two networks. In this paper, we propose the first totally non-autoregressive table-to-text model (Plan-then-Seam, PTS) that produces its outputs in parallel with one single network.PTS firstly writes and calibrates one plan of the content to be generated with a novel rethinking pointer predictor, and then takes the plan as the context for seaming to decode the description. These two steps share parameters and perform iteratively to capture token inter-dependency while keeping parallel decoding. Experiments on two public benchmarks show that PTS achieves 3.0 5.6 times speedup for inference time, reducing 50% parameters, while maintaining as least comparable performance against strong two-stage table-to-text competitors.

pdf
ACROSS: An Alignment-based Framework for Low-Resource Many-to-One Cross-Lingual Summarization
Peiyao Li | Zhengkun Zhang | Jun Wang | Liang Li | Adam Jatowt | Zhenglu Yang
Findings of the Association for Computational Linguistics: ACL 2023

This research addresses the challenges of Cross-Lingual Summarization (CLS) in low-resource scenarios and over imbalanced multilingual data. Existing CLS studies mostly resort to pipeline frameworks or multi-task methods in bilingual settings. However, they ignore the data imbalance in multilingual scenarios and do not utilize the high-resource monolingual summarization data. In this paper, we propose the Aligned CROSs-lingual Summarization (ACROSS) model to tackle these issues. Our framework aligns low-resource cross-lingual data with high-resource monolingual data via contrastive and consistency loss, which help enrich low-resource information for high-quality summaries. In addition, we introduce a data augmentation method that can select informative monolingual sentences, which facilitates a deep exploration of high-resource information and introduce new information for low-resource languages. Experiments on the CrossSum dataset show that ACROSS outperforms baseline models and obtains consistently dominant performance on 45 language pairs.

2022

pdf
Fast-R2D2: A Pretrained Recursive Neural Network based on Pruned CKY for Grammar Induction and Text Representation
Xiang Hu | Haitao Mi | Liang Li | Gerard de Melo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Chart-based models have shown great potential in unsupervised grammar induction, running recursively and hierarchically, but requiring O(n³) time-complexity. The Recursive Transformer based on Differentiable Trees (R2D2) makes it possible to scale to large language model pretraining even with a complex tree encoder, by introducing a heuristic pruning method.However, its rule-based pruning process suffers from local optima and slow inference. In this paper, we propose a unified R2D2 method that overcomes these issues. We use a top-down unsupervised parser as a model-guided pruning method, which also enables parallel encoding during inference. Our parser casts parsing as a split point scoring task by first scoring all split points for a given sentence and then using the highest-scoring one to recursively split a span into two parts. The reverse order of the splits is considered as the order of pruning in the encoder. We optimize the unsupervised parser by minimizing the Kullback–Leibler distance between tree probabilities from the parser and the R2D2 model.Our experiments show that our Fast-R2D2 significantly improves the grammar induction quality and achieves competitive results in downstream tasks.

pdf
Think Beyond Words: Exploring Context-Relevant Visual Commonsense for Diverse Dialogue Generation
Yiting Liu | Liang Li | Beichen Zhang | Qingming Huang
Findings of the Association for Computational Linguistics: EMNLP 2022

Commonsense knowledge has been widely considered for building intelligent open-domain dialogue agents, aiming to generate meaningful and diverse responses. Previous works in this field usually lack the ability to effectively obtain and utilize auxiliary commonsense from the external visual world. In this paper, we argue that exploiting logical information in images related to context can be effective to enrich and steer the generation process. In view of this, we propose VICTOR, a context-relevant VIsual Commonsense enhanced dialogue generaTOR for generating coherent and informative responses. To obtain the associated visual commonsense, we devise a novel approach that expands topic words on the knowledge graph and maps them into daily scenarios. During the generation, the model adopts multimodal fusion mechanism to integrate visual and textual information, and adaptively combine their decoding distributions for better response generation. The experimental results on two public datasets show that our proposed method outperforms the latest competitive methods in terms of coherence and diversity.

pdf
Graph-to-Text Generation with Dynamic Structure Pruning
Liang Li | Ruiying Geng | Bowen Li | Can Ma | Yinliang Yue | Binhua Li | Yongbin Li
Proceedings of the 29th International Conference on Computational Linguistics

Most graph-to-text works are built on the encoder-decoder framework with cross-attention mechanism. Recent studies have shown that explicitly modeling the input graph structure can significantly improve the performance. However, the vanilla structural encoder cannot capture all specialized information in a single forward pass for all decoding steps, resulting in inaccurate semantic representations. Meanwhile, the input graph is flatted as an unordered sequence in the cross attention, ignoring the original graph structure. As a result, the obtained input graph context vector in the decoder may be flawed. To address these issues, we propose a Structure-Aware Cross-Attention (SACA) mechanism to re-encode the input graph representation conditioning on the newly generated context at each decoding step in a structure aware manner. We further adapt SACA and introduce its variant Dynamic Graph Pruning (DGP) mechanism to dynamically drop irrelevant nodes in the decoding process. We achieve new state-of-the-art results on two graph-to-text datasets, LDC2020T02 and ENT-DESC, with only minor increase on computational cost.

2021

pdf
Improving Encoder by Auxiliary Supervision Tasks for Table-to-Text Generation
Liang Li | Can Ma | Yinliang Yue | Dayong Hu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Table-to-text generation aims at automatically generating natural text to help people conveniently obtain salient information in tables. Although neural models for table-to-text have achieved remarkable progress, some problems are still overlooked. Previous methods cannot deduce the factual results from the entity’s (player or team) performance and the relations between entities. To solve this issue, we first build an entity graph from the input tables and introduce a reasoning module to perform reasoning on the graph. Moreover, there are different relations (e.g., the numeric size relation and the importance relation) between records in different dimensions. And these relations may contribute to the data-to-text generation. However, it is hard for a vanilla encoder to capture these. Consequently, we propose to utilize two auxiliary tasks, Number Ranking (NR) and Importance Ranking (IR), to supervise the encoder to capture the different relations. Experimental results on ROTOWIRE and RW-FG show that our method not only has a good generalization but also outperforms previous methods on several metrics: BLEU, Content Selection, Content Ordering.

pdf
Semantic Relation-aware Difference Representation Learning for Change Captioning
Yunbin Tu | Tingting Yao | Liang Li | Jiedong Lou | Shengxiang Gao | Zhengtao Yu | Chenggang Yan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Rˆ3Net:Relation-embedded Representation Reconstruction Network for Change Captioning
Yunbin Tu | Liang Li | Chenggang Yan | Shengxiang Gao | Zhengtao Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Change captioning is to use a natural language sentence to describe the fine-grained disagreement between two similar images. Viewpoint change is the most typical distractor in this task, because it changes the scale and location of the objects and overwhelms the representation of real change. In this paper, we propose a Relation-embedded Representation Reconstruction Network (Rˆ3Net) to explicitly distinguish the real change from the large amount of clutter and irrelevant changes. Specifically, a relation-embedded module is first devised to explore potential changed objects in the large amount of clutter. Then, based on the semantic similarities of corresponding locations in the two images, a representation reconstruction module (RRM) is designed to learn the reconstruction representation and further model the difference representation. Besides, we introduce a syntactic skeleton predictor (SSP) to enhance the semantic interaction between change localization and caption generation. Extensive experiments show that the proposed method achieves the state-of-the-art results on two public datasets.

2018

pdf
A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding
Changliang Li | Liang Li | Ji Qi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Spoken Language Understanding (SLU), which typically involves intent determination and slot filling, is a core component of spoken dialogue systems. Joint learning has shown to be effective in SLU given that slot tags and intents are supposed to share knowledge with each other. However, most existing joint learning methods only consider joint learning by sharing parameters on surface level rather than semantic level. In this work, we propose a novel self-attentive model with gate mechanism to fully utilize the semantic correlation between slot and intent. Our model first obtains intent-augmented embeddings based on neural network with self-attention mechanism. And then the intent semantic representation is utilized as the gate for labelling slot tags. The objectives of both tasks are optimized simultaneously via joint learning in an end-to-end way. We conduct experiment on popular benchmark ATIS. The results show that our model achieves state-of-the-art and outperforms other popular methods by a large margin in terms of both intent detection error rate and slot filling F1-score. This paper gives a new perspective for research on SLU.