Jiayi Wang


2024

pdf
Strings from the Library of Babel: Random Sampling as a Strong Baseline for Prompt Optimisation
Yao Lu | Jiayi Wang | Raphael Tang | Sebastian Riedel | Pontus Stenetorp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recent prompt optimisation approaches use the generative nature of language models to produce prompts – even rivaling the performance of human-curated prompts. In this paper, we demonstrate that randomly sampling tokens from the model vocabulary as “separators” can be as effective as language models for prompt-style text classification. Our experiments show that random separators are competitive baselines, having less than a 1% difference compared to previous self-optimisation methods and showing a 12% average relative improvement over strong human baselines across nine text classification tasks and eight language models. We further analyse this phenomenon in detail using three different random generation strategies, establishing that the language space is rich with potentially good separators, with a greater than 40% average chance that a randomly drawn separator performs better than human-curated separators. These observations challenge the common assumption that an effective prompt should be human readable or task relevant and establish a strong baseline for prompt optimisation research.

pdf
AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang | David Adelani | Sweta Agrawal | Marek Masiak | Ricardo Rei | Eleftheria Briakou | Marine Carpuat | Xuanli He | Sofia Bourhim | Andiswa Bukula | Muhidin Mohamed | Temitayo Olatoye | Tosin Adewumi | Hamam Mokayed | Christine Mwase | Wangui Kimotho | Foutse Yuehgoh | Anuoluwapo Aremu | Jessica Ojo | Shamsuddeen Muhammad | Salomey Osei | Abdul-Hakeem Omotayo | Chiamaka Chukwuneke | Perez Ogayo | Oumaima Hourrane | Salma El Anigri | Lolwethu Ndolela | Thabiso Mangwana | Shafie Mohamed | Hassan Ayinde | Oluwabusayo Awoyomi | Lama Alkhaled | Sana Al-azzawi | Naome Etori | Millicent Ochieng | Clemencia Siro | Njoroge Kiragu | Eric Muchiri | Wangari Kimotho | Toadoum Sari Sakayo | Lyse Naomi Wamba | Daud Abolade | Simbiat Ajao | Iyanuoluwa Shode | Ricky Macharm | Ruqayya Iro | Saheed Abdullahi | Stephen Moore | Bernard Opoku | Zainab Akinjobi | Abeeb Afolabi | Nnaemeka Obiefuna | Onyekachi Ogbu | Sam Ochieng’ | Verrah Otiende | Chinedu Mbonu | Yao Lu | Pontus Stenetorp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).

pdf bib
Are LLMs Breaking MT Metrics? Results of the WMT24 Metrics Shared Task
Markus Freitag | Nitika Mathur | Daniel Deutsch | Chi-Kiu Lo | Eleftherios Avramidis | Ricardo Rei | Brian Thompson | Frederic Blain | Tom Kocmi | Jiayi Wang | David Ifeoluwa Adelani | Marianna Buchicchio | Chrysoula Zerva | Alon Lavie
Proceedings of the Ninth Conference on Machine Translation

The WMT24 Metrics Shared Task evaluated the performance of automatic metrics for machine translation (MT), with a major focus on LLM-based translations that were generated as part of the WMT24 General MT Shared Task. As LLMs become increasingly popular in MT, it is crucial to determine whether existing evaluation metrics can accurately assess the output of these systems.To provide a robust benchmark for this evaluation, human assessments were collected using Multidimensional Quality Metrics (MQM), continuing the practice from recent years. Furthermore, building on the success of the previous year, a challenge set subtask was included, requiring participants to design contrastive test suites that specifically target a metric’s ability to identify and penalize different types of translation errors.Finally, the meta-evaluation procedure was refined to better reflect real-world usage of MT metrics, focusing on pairwise accuracy at both the system- and segment-levels.We present an extensive analysis on how well metrics perform on three language pairs: English to Spanish (Latin America), Japanese to Chinese, and English to German. The results strongly confirm the results reported last year, that fine-tuned neural metrics continue to perform well, even when used to evaluate LLM-based translation systems.

pdf
Evaluating WMT 2024 Metrics Shared Task Submissions on AfriMTE (the African Challenge Set)
Jiayi Wang | David Ifeoluwa Adelani | Pontus Stenetorp
Proceedings of the Ninth Conference on Machine Translation

The AfriMTE challenge set from WMT 2024 Metrics Shared Task aims to evaluate the capabilities of evaluation metrics for machine translation on low-resource African languages, which primarily assesses cross-lingual transfer learning and generalization of machine translation metrics across a wide range of under-resourced languages. In this paper, we analyze the submissions to WMT 2024 Metrics Shared Task. Our findings indicate that language-specific adaptation, cross-lingual transfer learning, and larger language model sizes contribute significantly to improved metric performance. Moreover, supervised models with relatively moderate sizes demonstrate robust performance, when augmented with specific language adaptation for low-resource African languages. Finally, submissions show promising results for language pairs including Darija-French, English-Egyptian Arabic, and English-Swahili. However, significant challenges persist for extremely low-resource languages such as English-Luo and English-Twi, highlighting areas for future research and improvement in machine translation metrics for African languages.

2023

pdf
Easy Guided Decoding in Providing Suggestions for Interactive Machine Translation
Ke Wang | Xin Ge | Jiayi Wang | Yuqi Zhang | Yu Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Machine translation technology has made great progress in recent years, but it cannot guarantee error-free results. Human translators perform post-editing on machine translations to correct errors in the scene of computer aided translation. In favor of expediting the post-editing process, many works have investigated machine translation in interactive modes, in which machines can automatically refine the rest of translations constrained by human’s edits. Translation Suggestion (TS), as an interactive mode to assist human translators, requires machines to generate alternatives for specific incorrect words or phrases selected by human translators. In this paper, we utilize the parameterized objective function of neural machine translation (NMT) and propose a novel constrained decoding algorithm, namely Prefix-Suffix Guided Decoding (PSGD), to deal with the TS problem without additional training. Compared to state-of-the-art lexical-constrained decoding method, PSGD improves translation quality by an average of 10.6 BLEU and reduces time overhead by an average of 63.4% on benchmark datasets. Furthermore, on both the WeTS and the WMT 2022 Translation Suggestion datasets, it is superior over other supervised learning systems trained with TS annotated data.

2022

pdf
Distinguishing Non-natural from Natural Adversarial Samples for More Robust Pre-trained Language Model
Jiayi Wang | Rongzhou Bao | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: ACL 2022

Recently, the problem of robustness of pre-trained language models (PrLMs) has received increasing research interest. Latest studies on adversarial attacks achieve high attack success rates against PrLMs, claiming that PrLMs are not robust. However, we find that the adversarial samples that PrLMs fail are mostly non-natural and do not appear in reality. We question the validity of the current evaluation of robustness of PrLMs based on these non-natural adversarial samples and propose an anomaly detector to evaluate the robustness of PrLMs with more natural adversarial samples. We also investigate two applications of the anomaly detector: (1) In data augmentation, we employ the anomaly detector to force generating augmented data that are distinguished as non-natural, which brings larger gains to the accuracy of PrLMs. (2) We apply the anomaly detector to a defense framework to enhance the robustness of PrLMs. It can be used to defend all types of attacks and achieves higher accuracy on both adversarial samples and compliant samples than other defense frameworks.

pdf
TSMind: Alibaba and Soochow University’s Submission to the WMT22 Translation Suggestion Task
Xin Ge | Ke Wang | Jiayi Wang | Nini Xiao | Xiangyu Duan | Yu Zhao | Yuqi Zhang
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper describes the joint submission of Alibaba and Soochow University to the WMT 2022 Shared Task on Translation Suggestion (TS). We participate in the English to/from German and English to/from Chinese tasks. Basically, we utilize the model paradigm fine-tuning on the downstream tasks based on large-scale pre-trained models, which has recently achieved great success. We choose FAIR’s WMT19 English to/from German news translation system and MBART50 for English to/from Chinese as our pre-trained models. Considering the task’s condition of limited use of training data, we follow the data augmentation strategies provided by Yang to boost our TS model performance. And we further involve the dual conditional cross-entropy model and GPT-2 language model to filter augmented data. The leader board finally shows that our submissions are ranked first in three of four language directions in the Naive TS task of the WMT22 Translation Suggestion task.

2021

pdf
QEMind: Alibaba’s Submission to the WMT21 Quality Estimation Shared Task
Jiayi Wang | Ke Wang | Boxing Chen | Yu Zhao | Weihua Luo | Yuqi Zhang
Proceedings of the Sixth Conference on Machine Translation

Quality Estimation, as a crucial step of quality control for machine translation, has been explored for years. The goal is to to investigate automatic methods for estimating the quality of machine translation results without reference translations. In this year’s WMT QE shared task, we utilize the large-scale XLM-Roberta pre-trained model and additionally propose several useful features to evaluate the uncertainty of the translations to build our QE system, named QEMind . The system has been applied to the sentence-level scoring task of Direct Assessment and the binary score prediction task of Critical Error Detection. In this paper, we present our submissions to the WMT 2021 QE shared task and an extensive set of experimental results have shown us that our multilingual systems outperform the best system in the Direct Assessment QE task of WMT 2020.

pdf
Defending Pre-trained Language Models from Adversarial Word Substitution Without Performance Sacrifice
Rongzhou Bao | Jiayi Wang | Hai Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Beyond Glass-Box Features: Uncertainty Quantification Enhanced Quality Estimation for Neural Machine Translation
Ke Wang | Yangbin Shi | Jiayi Wang | Yuqi Zhang | Yu Zhao | Xiaolin Zheng
Findings of the Association for Computational Linguistics: EMNLP 2021

Quality Estimation (QE) plays an essential role in applications of Machine Translation (MT). Traditionally, a QE system accepts the original source text and translation from a black-box MT system as input. Recently, a few studies indicate that as a by-product of translation, QE benefits from the model and training data’s information of the MT system where the translations come from, and it is called the “glass-box QE”. In this paper, we extend the definition of “glass-box QE” generally to uncertainty quantification with both “black-box” and “glass-box” approaches and design several features deduced from them to blaze a new trial in improving QE’s performance. We propose a framework to fuse the feature engineering of uncertainty quantification into a pre-trained cross-lingual language model to predict the translation quality. Experiment results show that our method achieves state-of-the-art performances on the datasets of WMT 2020 QE shared task.

2020

pdf
Alibaba’s Submission for the WMT 2020 APE Shared Task: Improving Automatic Post-Editing with Pre-trained Conditional Cross-Lingual BERT
Jiayi Wang | Ke Wang | Kai Fan | Yuqi Zhang | Jun Lu | Xin Ge | Yangbin Shi | Yu Zhao
Proceedings of the Fifth Conference on Machine Translation

The goal of Automatic Post-Editing (APE) is basically to examine the automatic methods for correcting translation errors generated by an unknown machine translation (MT) system. This paper describes Alibaba’s submissions to the WMT 2020 APE Shared Task for the English-German language pair. We design a two-stage training pipeline. First, a BERT-like cross-lingual language model is pre-trained by randomly masking target sentences alone. Then, an additional neural decoder on the top of the pre-trained model is jointly fine-tuned for the APE task. We also apply an imitation learning strategy to augment a reasonable amount of pseudo APE training data, potentially preventing the model to overfit on the limited real training data and boosting the performance on held-out data. To verify our proposed model and data augmentation, we examine our approach with the well-known benchmarking English-German dataset from the WMT 2017 APE task. The experiment results demonstrate that our system significantly outperforms all other baselines and achieves the state-of-the-art performance. The final results on the WMT 2020 test dataset show that our submission can achieve +5.56 BLEU and -4.57 TER with respect to the official MT baseline.

pdf
Computer Assisted Translation with Neural Quality Estimation and Automatic Post-Editing
Ke Wang | Jiayi Wang | Niyu Ge | Yangbin Shi | Yu Zhao | Kai Fan
Findings of the Association for Computational Linguistics: EMNLP 2020

With the advent of neural machine translation, there has been a marked shift towards leveraging and consuming the machine translation results. However, the gap between machine translation systems and human translators needs to be manually closed by post-editing. In this paper, we propose an end-to-end deep learning framework of the quality estimation and automatic post-editing of the machine translation output. Our goal is to provide error correction suggestions and to further relieve the burden of human translators through an interpretable model. To imitate the behavior of human translators, we design three efficient delegation modules – quality estimation, generative post-editing, and atomic operation post-editing and construct a hierarchical model based on them. We examine this approach with the English–German dataset from WMT 2017 APE shared task and our experimental results can achieve the state-of-the-art performance. We also verify that the certified translators can significantly expedite their post-editing processing with our model in human evaluation.

2018

pdf
Alibaba Submission for WMT18 Quality Estimation Task
Jiayi Wang | Kai Fan | Bo Li | Fengming Zhou | Boxing Chen | Yangbin Shi | Luo Si
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

The goal of WMT 2018 Shared Task on Translation Quality Estimation is to investigate automatic methods for estimating the quality of machine translation results without reference translations. This paper presents the QE Brain system, which proposes the neural Bilingual Expert model as a feature extractor based on conditional target language model with a bidirectional transformer and then processes the semantic representations of source and the translation output with a Bi-LSTM predictive model for automatic quality estimation. The system has been applied to the sentence-level scoring and ranking tasks as well as the word-level tasks for finding errors for each word in translations. An extensive set of experimental results have shown that our system outperformed the best results in WMT 2017 Quality Estimation tasks and obtained top results in WMT 2018.