Jianing Wang


2024

pdf
Knowledgeable In-Context Tuning: Exploring and Exploiting Factual Knowledge for In-Context Learning
Jianing Wang | Chengyu Wang | Chuanqi Tan | Jun Huang | Ming Gao
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models (LLMs) enable in-context learning (ICL) by conditioning on a few labeled training examples as a text-based prompt, eliminating the need for parameter updates and achieving competitive performance. In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets: the inherent knowledge learned in LLMs, the factual knowledge derived from the selected in-context examples, and the knowledge biases in LLMs for output generation. To unleash the power of LLMs in few-shot learning scenarios, we introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL:1) injecting knowledge into LLMs during continual self-supervised pre-training, 2) judiciously selecting the examples for ICL with high knowledge relevance, and 3) calibrating the prediction results based on prior knowledge.We evaluate the proposed approaches on autoregressive models (e.g., GPT-style LLMs) over multiple text classification and question-answering tasks. Experimental results demonstrate that KICT substantially outperforms strong baselines and improves by more than 13% and 7% on text classification and question-answering tasks, respectively.

pdf
InstructGraph: Boosting Large Language Models via Graph-centric Instruction Tuning and Preference Alignment
Jianing Wang | Junda Wu | Yupeng Hou | Yao Liu | Ming Gao | Julian McAuley
Findings of the Association for Computational Linguistics: ACL 2024

Do current large language models (LLMs) better solve graph reasoning and generation tasks with parameter updates? In this paper, we propose InstructGraph, a framework that empowers LLMs with the abilities of graph reasoning and generation by instruction tuning and preference alignment. Specifically, we first propose a structured format verbalizer to unify all graph data into a universal code-like format, which can simply represent the graph without any external graph-specific encoders. Furthermore, a graph instruction tuning stage is introduced to guide LLMs in solving graph reasoning and generation tasks. Finally, we identify potential hallucination problems in graph tasks and sample negative instances for preference alignment, the target of which is to enhance the output’s reliability of the model. Extensive experiments across multiple graph-centric tasks exhibit that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13% and 38%, respectively.

pdf
Boosting Language Models Reasoning with Chain-of-Knowledge Prompting
Jianing Wang | Qiushi Sun | Xiang Li | Ming Gao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, Chain-of-Thought (CoT) prompting has delivered success on complex reasoning tasks, which aims at designing a simple prompt like “Let’s think step by step” or multiple in-context exemplars with well-designed rationales to elicit Large Language Models (LLMs) to generate intermediate reasoning steps. However, the generated rationales often come with hallucinations, making unfactual and unfaithful reasoning chains. To mitigate this brittleness, we propose a novel Chain-of-Knowledge (CoK) prompting, where we aim at eliciting LLMs to generate explicit pieces of knowledge evidence in the form of structure triple. This is inspired by our human behaviors, i.e., we can draw a mind map or knowledge map as the reasoning evidence in the brain before answering a complex question. Benefiting from CoK, we additionally introduce an F2-Verification method to estimate the reliability of the reasoning chains in terms of factuality and faithfulness. For the unreliable response, the wrong evidence can be indicated to prompt the LLM to rethink. Extensive experiments demonstrate that our method can further improve the performance of commonsense, factual, symbolic, and arithmetic reasoning tasks.

pdf
TransCoder: Towards Unified Transferable Code Representation Learning Inspired by Human Skills
Qiushi Sun | Nuo Chen | Jianing Wang | Ming Gao | Xiang Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Code pre-trained models (CodePTMs) have recently demonstrated a solid capacity to process various code intelligence tasks, e.g., code clone detection, code translation, and code summarization. The current mainstream method that deploys these models to downstream tasks is to fine-tune them on individual tasks, which is generally costly and needs sufficient data for large models. To tackle the issue, in this paper, we present TransCoder, a unified Transferable fine-tuning strategy for Code representation learning. Inspired by human inherent skills of knowledge generalization, TransCoder drives the model to learn better code-related knowledge like human programmers. Specifically, we employ a tunable prefix encoder to first capture cross-task and cross-language transferable knowledge, subsequently applying the acquired knowledge for optimized downstream adaptation. Besides, our approach confers benefits for tasks with minor training sample sizes and languages with smaller corpora, underscoring versatility and efficacy. Extensive experiments conducted on representative datasets clearly demonstrate that our method can lead to superior performance on various code-related tasks and encourage mutual reinforcement, especially in low-resource scenarios. Our codes are available at https://github.com/QiushiSun/TransCoder.

2023

pdf
When Gradient Descent Meets Derivative-Free Optimization: A Match Made in Black-Box Scenario
Chengcheng Han | Liqing Cui | Renyu Zhu | Jianing Wang | Nuo Chen | Qiushi Sun | Xiang Li | Ming Gao
Findings of the Association for Computational Linguistics: ACL 2023

Large pre-trained language models (PLMs) have garnered significant attention for their versatility and potential for solving a wide spectrum of natural language processing (NLP) tasks. However, the cost of running these PLMs may be prohibitive. Furthermore, PLMs may not be open-sourced due to commercial considerations and potential risks of misuse, such as GPT-3. The parameters and gradients of PLMs are unavailable in this scenario. To solve the issue, black-box tuning has been proposed, which utilizes derivative-free optimization (DFO), instead of gradient descent, for training task-specific continuous prompts. However, these gradient-free methods still exhibit a significant gap compared to gradient-based methods. In this paper, we introduce gradient descent into black-box tuning scenario through knowledge distillation. Furthermore, we propose a novel method GDFO, which integrates gradient descent and derivative-free optimization to optimize task-specific continuous prompts in a harmonized manner. Experimental results show that GDFO can achieve significant performance gains over previous state-of-the-art methods.

pdf
XtremeCLIP: Extremely Parameter-efficient Tuning for Low-resource Vision Language Understanding
Moming Tang | Chengyu Wang | Jianing Wang | Chuanqi Tan | Songfang Huang | Cen Chen | Weining Qian
Findings of the Association for Computational Linguistics: ACL 2023

Recently, Contrastive Visual-Language Pre-training (CLIP) has demonstrated remarkable capability in various Visual Language Understanding (VLU) tasks. Yet, most CLIP-based methods require tasks-specific designs and sufficient training data. In this paper, we introduce a simple yet efficient paradigm for low-resource VLU named XtremeCLIP, which involves very few trainable parameters to improve the generalization ability of the trained models. In our XtremeCLIP framework, we reformulate a series of VLU tasks as a unified open-book affinity-matching problem. Furthermore, to handle the insufficient supervised signals in small datasets, we adopt contrastive learning to utilize the implicit sorting information of ground-truth labels to provide more supervised cues. Extensive experiments over multiple datasets on visual entailment, visual question answering, and image classification show that XtremeCLIP consistently outperforms existing baselines in low-resource settings.

pdf
Pass-Tuning: Towards Structure-Aware Parameter-Efficient Tuning for Code Representation Learning
Nuo Chen | Qiushi Sun | Jianing Wang | Xiang Li | Ming Gao
Findings of the Association for Computational Linguistics: EMNLP 2023

Code pre-trained models (CodePTMs) have recently become the de-facto paradigm for various tasks in the domain of code intelligence. To achieve excellent performance, the widely used strategy is to fine-tune all the parameters of CodePTMs. However, as the model size increases along with the number of downstream tasks, this strategy becomes excessively expensive. There are also some prior works that utilize Parameter-Efficient Learning (PEL) methods for model tuning in natural language processing to mitigate similar problems, but applying them directly to CodePTMs fails to capture the inherent structural characteristics of codes. To address the problem, in this paper, we propose Pass-Tuning for structure-aware Parameter-Efficient code representation learning. Specifically, a plug-and-play graph neural network module that can learn from Abstract Syntax Tree (AST) is employed as a tunable prefix. On the one hand, Pass-Tuning can further exploit the structural information of source code. On the other hand, it could serve as a replacement for full fine-tuning. We evaluate our method on multiple tasks across eight programming languages, including code understanding and generation. These results demonstrate the effectiveness, robustness, and universality of our method.

pdf
Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised Language Understanding
Jianing Wang | Qiushi Sun | Nuo Chen | Chengyu Wang | Jun Huang | Ming Gao | Xiang Li
Findings of the Association for Computational Linguistics: EMNLP 2023

The recent success of large pre-trained language models (PLMs) heavily hinges on massive labeled data, which typically produces inferior performance in low-resource scenarios. To remedy this dilemma, we study self-training as one of the predominant semi-supervised learning (SSL) approaches, which utilizes large-scale unlabeled data to generate synthetic examples. However, too many noisy labels will hurt the model performance, and the self-training procedure requires multiple training iterations making it more expensive if all the model parameters of the PLM are updated. This paper presents UPET, a novel Uncertainty-aware Parameter-Efficient self-Training framework to effectively and efficiently address the labeled data scarcity issue. Specifically, we incorporate Monte Carlo (MC) dropout in Bayesian neural network (BNN) to perform uncertainty estimation for the teacher model and then judiciously select reliable pseudo-labeled examples based on confidence and certainty. During the student training, we introduce multiple parameter-efficient learning (PEL) paradigms that allow optimizes only a small percentage of parameters. We also propose a novel Easy-Hard Contrastive Tuning to enhance the robustness and generalization. Extensive experiments over multiple downstream tasks demonstrate that UPET achieves a substantial improvement in terms of performance and efficiency. Our codes and data are released at https: //github.com/wjn1996/UPET.

pdf
Evaluating and Enhancing the Robustness of Code Pre-trained Models through Structure-Aware Adversarial Samples Generation
Nuo Chen | Qiushi Sun | Jianing Wang | Ming Gao | Xiaoli Li | Xiang Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Code pre-trained models (CodePTMs) have significantly advanced the field of neural code intelligence. Despite their capabilities, these models are susceptible to adversarial attacks that subtly modify the model inputs, resulting in incorrect outputs or predictions. Previous methods of robustness evaluation for CodePTMs primarily stem from a textual perspective, without explicitly taking into account the structure of the code. Furthermore, prior studies fail to encompass a broad enough spectrum of tasks and models. In this paper, we propose a set of novel robustness evaluation methods based on the intrinsic structure of the code. Specifically, we first launch adversarial attacks on crucial identifier tokens and sub-tree structures to explore the impact of imperceptible perturbation. Then, we perform global restructuring of the code using different traversal methods for abstract syntax trees, aiming to explore the model’s sensitivity to input samples with equivalent information. Moreover, for each scenario, we employ adversarial training methods to explore the possibility of restoring the performance of perturbed models. For both code understanding and generation, our proposed method has demonstrated its effectiveness across a wide range of models and tasks, thereby allowing us to make one step forward in our understanding of the inner mechanisms of CodePTMs.

pdf
Prompting Large Language Models with Chain-of-Thought for Few-Shot Knowledge Base Question Generation
Yuanyuan Liang | Jianing Wang | Hanlun Zhu | Lei Wang | Weining Qian | Yunshi Lan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The task of Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question. For the sake of expensive cost of large-scale question annotation, the methods of KBQG under low-resource scenarios urgently need to be developed. However, current methods heavily rely on annotated data for fine-tuning, which is not well-suited for few-shot question generation. The emergence of Large Language Models (LLMs) has shown their impressive generalization ability in few-shot tasks. Inspired by Chain-of-Thought (CoT) prompting, which is an in-context learning strategy for reasoning, we formulate KBQG task as a reasoning problem, where the generation of a complete question is splitted into a series of sub-question generation. Our proposed prompting method KQG-CoT first retrieves supportive logical forms from the unlabeled data pool taking account of the characteristics of the logical form. Then, we write a prompt to explicit the reasoning chain of generating complicated questions based on the selected demonstrations. To further ensure prompt quality, we extend KQG-CoT into KQG-CoT+ via sorting the logical forms by their complexity. We conduct extensive experiments over three public KBQG datasets. The results demonstrate that our prompting method consistently outperforms other prompting baselines on the evaluated datasets. Remarkably, our KQG-CoT+ method could surpass existing few-shot SoTA results of the PathQuestions dataset by 18.25, 10.72, and 10.18 absolute points on BLEU-4, METEOR, and ROUGE-L, respectively.

2022

pdf
KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive Question Answering
Jianing Wang | Chengyu Wang | Minghui Qiu | Qiuhui Shi | Hongbin Wang | Jun Huang | Ming Gao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Extractive Question Answering (EQA) is one of the most essential tasks in Machine Reading Comprehension (MRC), which can be solved by fine-tuning the span selecting heads of Pre-trained Language Models (PLMs). However, most existing approaches for MRC may perform poorly in the few-shot learning scenario. To solve this issue, we propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP). Instead of adding pointer heads to PLMs, we introduce a seminal paradigm for EQA that transforms the task into a non-autoregressive Masked Language Modeling (MLM) generation problem. Simultaneously, rich semantics from the external knowledge base (KB) and the passage context support enhancing the query’s representations. In addition, to boost the performance of PLMs, we jointly train the model by the MLM and contrastive learning objectives. Experiments on multiple benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.

pdf
Knowledge Prompting in Pre-trained Language Model for Natural Language Understanding
Jianing Wang | Wenkang Huang | Minghui Qiu | Qiuhui Shi | Hongbin Wang | Xiang Li | Ming Gao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge-enhanced Pre-trained Language Model (PLM) has recently received significant attention, which aims to incorporate factual knowledge into PLMs. However, most existing methods modify the internal structures of fixed types of PLMs by stacking complicated modules, and introduce redundant and irrelevant factual knowledge from knowledge bases (KBs). In this paper, to address these problems, we introduce a seminal knowledge prompting paradigm and further propose a knowledge-prompting-based PLM framework KP-PLM. This framework can be flexibly combined with existing mainstream PLMs. Specifically, we first construct a knowledge sub-graph from KBs for each context. Then we design multiple continuous prompts rules and transform the knowledge sub-graph into natural language prompts. To further leverage the factual knowledge from these prompts, we propose two novel knowledge-aware self-supervised tasks including prompt relevance inspection and masked prompt modeling. Extensive experiments on multiple natural language understanding (NLU) tasks show the superiority of KP-PLM over other state-of-the-art methods in both full-resource and low-resource settings. Our source codes will be released upon the acceptance of the paper.

pdf
SpanProto: A Two-stage Span-based Prototypical Network for Few-shot Named Entity Recognition
Jianing Wang | Chengyu Wang | Chuanqi Tan | Minghui Qiu | Songfang Huang | Jun Huang | Ming Gao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data. Previous methods solve this problem based on token-wise classification, which ignores the information of entity boundaries, and inevitably the performance is affected by the massive non-entity tokens. To this end, we propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach, including span extraction and mention classification. In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information. For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities. To further improve the model performance, we split out the false positives generated by the span extractor but not labeled in the current episode set, and then present a margin-based loss to separate them from each prototype region. Experiments over multiple benchmarks demonstrate that our model outperforms strong baselines by a large margin.

pdf
EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing
Chengyu Wang | Minghui Qiu | Taolin Zhang | Tingting Liu | Lei Li | Jianing Wang | Ming Wang | Jun Huang | Wei Lin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (https://github.com/alibaba/EasyNLP).

pdf
Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training
Taolin Zhang | Junwei Dong | Jianing Wang | Chengyu Wang | Ang Wang | Yinghui Liu | Jun Huang | Yong Li | Xiaofeng He
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge bases, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT). Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT consistently outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.

pdf
Towards Unified Prompt Tuning for Few-shot Text Classification
Jianing Wang | Chengyu Wang | Fuli Luo | Chuanqi Tan | Minghui Qiu | Fei Yang | Qiuhui Shi | Songfang Huang | Ming Gao
Findings of the Association for Computational Linguistics: EMNLP 2022

Prompt-based fine-tuning has boosted the performance of Pre-trained Language Models (PLMs) on few-shot text classification by employing task-specific prompts. Yet, PLMs are unfamiliar with prompt-style expressions during pre-training, which limits the few-shot learning performance on downstream tasks.It would be desirable if the models can acquire some prompting knowledge before adapting to specific NLP tasks. We present the Unified Prompt Tuning (UPT) framework, leading to better few-shot text classification for BERT-style models by explicitly capturing prompting semantics from non-target NLP datasets. In UPT, a novel paradigm Prompt-Options-Verbalizer is proposed for joint prompt learning across different NLP tasks, forcing PLMs to capture task-invariant prompting knowledge. We further design a self-supervised task named Knowledge-enhanced Selective Masked Language Modeling to improve the PLM’s generalization abilities for accurate adaptation to previously unseen tasks. After multi-task learning across multiple tasks, the PLM can be better prompt-tuned towards any dissimilar target tasks in low-resourced settings. Experiments over a variety of NLP tasks show that UPT consistently outperforms state-of-the-arts for prompt-based fine-tuning.

2021

pdf
TransPrompt: Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification
Chengyu Wang | Jianing Wang | Minghui Qiu | Jun Huang | Ming Gao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that prompts improve the performance of large pre-trained language models for few-shot text classification. Yet, it is unclear how the prompting knowledge can be transferred across similar NLP tasks for the purpose of mutual reinforcement. Based on continuous prompt embeddings, we propose TransPrompt, a transferable prompting framework for few-shot learning across similar tasks. In TransPrompt, we employ a multi-task meta-knowledge acquisition procedure to train a meta-learner that captures cross-task transferable knowledge. Two de-biasing techniques are further designed to make it more task-agnostic and unbiased towards any tasks. After that, the meta-learner can be adapted to target tasks with high accuracy. Extensive experiments show that TransPrompt outperforms single-task and cross-task strong baselines over multiple NLP tasks and datasets. We further show that the meta-learner can effectively improve the performance on previously unseen tasks; and TransPrompt also outperforms strong fine-tuning baselines when learning with full training sets.