Hongfeng Yu


2022

pdf
Assist Non-native Viewers: Multimodal Cross-Lingual Summarization for How2 Videos
Nayu Liu | Kaiwen Wei | Xian Sun | Hongfeng Yu | Fanglong Yao | Li Jin | Guo Zhi | Guangluan Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multimodal summarization for videos aims to generate summaries from multi-source information (videos, audio transcripts), which has achieved promising progress. However, existing works are restricted to monolingual video scenarios, ignoring the demands of non-native video viewers to understand the cross-language videos in practical applications. It stimulates us to propose a new task, named Multimodal Cross-Lingual Summarization for videos (MCLS), which aims to generate cross-lingual summaries from multimodal inputs of videos. First, to make it applicable to MCLS scenarios, we conduct a Video-guided Dual Fusion network (VDF) that integrates multimodal and cross-lingual information via diverse fusion strategies at both encoder and decoder. Moreover, to alleviate the problem of high annotation costs and limited resources in MCLS, we propose a triple-stage training framework to assist MCLS by transferring the knowledge from monolingual multimodal summarization data, which includes: 1) multimodal summarization on sufficient prevalent language videos with a VDF model; 2) knowledge distillation (KD) guided adjustment on bilingual transcripts; 3) multimodal summarization for cross-lingual videos with a KD induced VDF model. Experiment results on the reorganized How2 dataset show that the VDF model alone outperforms previous methods for multimodal summarization, and the performance further improves by a large margin via the proposed triple-stage training framework.

2020

pdf
Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain Videos
Nayu Liu | Xian Sun | Hongfeng Yu | Wenkai Zhang | Guangluan Xu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Multimodal summarization for open-domain videos is an emerging task, aiming to generate a summary from multisource information (video, audio, transcript). Despite the success of recent multiencoder-decoder frameworks on this task, existing methods lack fine-grained multimodality interactions of multisource inputs. Besides, unlike other multimodal tasks, this task has longer multimodal sequences with more redundancy and noise. To address these two issues, we propose a multistage fusion network with the fusion forget gate module, which builds upon this approach by modeling fine-grained interactions between the modalities through a multistep fusion schema and controlling the flow of redundant information between multimodal long sequences via a forgetting module. Experimental results on the How2 dataset show that our proposed model achieves a new state-of-the-art performance. Comprehensive analysis empirically verifies the effectiveness of our fusion schema and forgetting module on multiple encoder-decoder architectures. Specially, when using high noise ASR transcripts (WER>30%), our model still achieves performance close to the ground-truth transcript model, which reduces manual annotation cost.