Hongcheng Gao


2024

pdf
Efficient Detection of LLM-generated Texts with a Bayesian Surrogate Model
Yibo Miao | Hongcheng Gao | Hao Zhang | Zhijie Deng
Findings of the Association for Computational Linguistics: ACL 2024

The detection of machine-generated text, especially from large language models (LLMs), is crucial in preventing serious social problems resulting from their misuse. Some methods train dedicated detectors on specific datasets but fall short in generalizing to unseen test data, while other zero-shot ones often yield suboptimal performance. Although the recent DetectGPT has shown promising detection performance, it suffers from significant inefficiency issues, as detecting a single candidate requires querying the source LLM with hundreds of its perturbations. This paper aims to bridge this gap. Concretely, we propose to incorporate a Bayesian surrogate model, which allows us to select typical samples based on Bayesian uncertainty and interpolate scores from typical samples to other samples, to improve query efficiency. Empirical results demonstrate that our method significantly outperforms existing approaches under a low query budget. Notably, when detecting the text generated by LLaMA family models, our method with just 2 or 3 queries can outperform DetectGPT with 200 queries.

pdf
AdaMoE: Token-Adaptive Routing with Null Experts for Mixture-of-Experts Language Models
Zihao Zeng | Yibo Miao | Hongcheng Gao | Hao Zhang | Zhijie Deng
Findings of the Association for Computational Linguistics: EMNLP 2024

Mixture of experts (MoE) has become the standard for constructing production-level large language models (LLMs) due to its promise to boost model capacity without causing significant overheads. Nevertheless, existing MoE methods usually enforce a constant top-k routing for all tokens, which is arguably restrictive because various tokens (e.g., "<EOS>” vs. “apple”) may require various numbers of experts for feature abstraction. Lifting such a constraint can help make the most of limited resources and unleash the potential of the model for downstream tasks. In this sense, we introduce **AdaMoE** to realize token-adaptive routing for MoE, where different tokens are permitted to select a various number of experts. AdaMoE makes minimal modifications to the vanilla MoE with top-k routing—it simply introduces a fixed number of *null experts*, which do not consume any FLOPs, to the expert set and increases the value of k. AdaMoE does not force each token to occupy a fixed number of null experts but ensures the average usage of the null experts with a load-balancing loss, leading to an adaptive number of null/true experts used by each token. AdaMoE exhibits a strong resemblance to MoEs with expert choice routing while allowing for trivial auto-regressive modeling. AdaMoE is easy to implement and can be effectively applied to pre-trained (MoE-)LLMs. Extensive studies show that AdaMoE can reduce average expert load (FLOPs) while achieving superior performance. For example, on the ARC-C dataset, applying our method to fine-tuning Mixtral-8x7B can reduce FLOPs by 14.5% while increasing accuracy by 1.69%.Code is available at [this link](https://github.com/CengZihao/AdaMoE).

pdf
Adaptive Token Biaser: Knowledge Editing via Biasing Key Entities
Baolong Bi | Shenghua Liu | Yiwei Wang | Lingrui Mei | Hongcheng Gao | Yilong Xu | Xueqi Cheng
Findings of the Association for Computational Linguistics: EMNLP 2024

The parametric knowledge memorized by large language models (LLMs) becomes outdated quickly. In-context editing (ICE) is currently the most effective method for updating the knowledge of LLMs. Recent advancements involve enhancing ICE by modifying the decoding strategy, obviating the need for altering internal model structures or adjusting external prompts.However, this enhancement operates across the entire sequence generation, encompassing a plethora of non-critical tokens.In this work, we introduce **A**daptive **T**oken **Bias**er (ATBias), a new decoding technique designed to enhance ICE.It focuses on the tokens that are mostly related to knowledge during decoding, biasing their logits by matching key entities related to new and parametric knowledge.Experimental results show that ATBias significantly enhances ICE performance, achieving up to a 32.3% improvement over state-of-the-art ICE methods while incurring only half the latency.ATBias not only improves the knowledge editing capabilities of ICE but can also be widely applied to LLMs with negligible cost.

pdf
Universal Prompt Optimizer for Safe Text-to-Image Generation
Zongyu Wu | Hongcheng Gao | Yueze Wang | Xiang Zhang | Suhang Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Text-to-Image (T2I) models have shown great performance in generating images based on textual prompts. However, these models are vulnerable to unsafe input to generate unsafe content like sexual, harassment and illegal-activity images. Existing studies based on image checker, model fine-tuning and embedding blocking are impractical in real-world applications. Hence, we propose the first universal **p**rompt **o**ptimizer for **s**afe T2**I** (**POSI**) generation in black-box scenario. We first construct a dataset consisting of toxic-clean prompt pairs by GPT-3.5 Turbo. To guide the optimizer to have the ability of converting toxic prompt to clean prompt while preserving semantic information, we design a novel reward function measuring toxicity and text alignment of generated images and train the optimizer through Proximal Policy Optimization. Experiments show that our approach can effectively reduce the likelihood of various T2I models in generating inappropriate images, with no significant impact on text alignment. It is also flexible to be combined with methods to achieve better performance. Our code is available at [https://github.com/wzongyu/POSI](https://github.com/wzongyu/POSI).

2023

pdf
From Adversarial Arms Race to Model-centric Evaluation: Motivating a Unified Automatic Robustness Evaluation Framework
Yangyi Chen | Hongcheng Gao | Ganqu Cui | Lifan Yuan | Dehan Kong | Hanlu Wu | Ning Shi | Bo Yuan | Longtao Huang | Hui Xue | Zhiyuan Liu | Maosong Sun | Heng Ji
Findings of the Association for Computational Linguistics: ACL 2023

Textual adversarial attacks can discover models’ weaknesses by adding semantic-preserved but misleading perturbations to the inputs. The long-lasting adversarial attack-and-defense arms race in Natural Language Processing (NLP) is algorithm-centric, providing valuable techniques for automatic robustness evaluation. However, the existing practice of robustness evaluation may exhibit issues of incomprehensive evaluation, impractical evaluation protocol, and invalid adversarial samples. In this paper, we aim to set up a unified automatic robustness evaluation framework, shifting towards model-centric evaluation to further exploit the advantages of adversarial attacks. To address the above challenges, we first determine robustness evaluation dimensions based on model capabilities and specify the reasonable algorithm to generate adversarial samples for each dimension. Then we establish the evaluation protocol, including evaluation settings and metrics, under realistic demands. Finally, we use the perturbation degree of adversarial samples to control the sample validity. We implement a toolkit RobTest that realizes our automatic robustness evaluation framework. In our experiments, we conduct a robustness evaluation of RoBERTa models to demonstrate the effectiveness of our evaluation framework, and further show the rationality of each component in the framework.

2022

pdf
Textual Backdoor Attacks Can Be More Harmful via Two Simple Tricks
Yangyi Chen | Fanchao Qi | Hongcheng Gao | Zhiyuan Liu | Maosong Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Backdoor attacks are a kind of emergent security threat in deep learning. After being injected with a backdoor, a deep neural model will behave normally on standard inputs but give adversary-specified predictions once the input contains specific backdoor triggers. In this paper, we find two simple tricks that can make existing textual backdoor attacks much more harmful. The first trick is to add an extra training task to distinguish poisoned and clean data during the training of the victim model, and the second one is to use all the clean training data rather than remove the original clean data corresponding to the poisoned data. These two tricks are universally applicable to different attack models. We conduct experiments in three tough situations including clean data fine-tuning, low-poisoning-rate, and label-consistent attacks. Experimental results show that the two tricks can significantly improve attack performance. This paper exhibits the great potential harmfulness of backdoor attacks. All the code and data can be obtained at https://github.com/thunlp/StyleAttack.

pdf
Why Should Adversarial Perturbations be Imperceptible? Rethink the Research Paradigm in Adversarial NLP
Yangyi Chen | Hongcheng Gao | Ganqu Cui | Fanchao Qi | Longtao Huang | Zhiyuan Liu | Maosong Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Textual adversarial samples play important roles in multiple subfields of NLP research, including security, evaluation, explainability, and data augmentation. However, most work mixes all these roles, obscuring the problem definitions and research goals of the security role that aims to reveal the practical concerns of NLP models. In this paper, we rethink the research paradigm of textual adversarial samples in security scenarios. We discuss the deficiencies in previous work and propose our suggestions that the research on the Security-oriented adversarial NLP (SoadNLP) should: (1) evaluate their methods on security tasks to demonstrate the real-world concerns; (2) consider real-world attackers’ goals, instead of developing impractical methods. To this end, we first collect, process, and release a security datasets collection Advbench. Then, we reformalize the task and adjust the emphasis on different goals in SoadNLP. Next, we propose a simple method based on heuristic rules that can easily fulfill the actual adversarial goals to simulate real-world attack methods. We conduct experiments on both the attack and the defense sides on Advbench. Experimental results show that our method has higher practical value, indicating that the research paradigm in SoadNLP may start from our new benchmark. All the code and data of Advbench can be obtained at https://github.com/thunlp/Advbench.

pdf
Exploring the Universal Vulnerability of Prompt-based Learning Paradigm
Lei Xu | Yangyi Chen | Ganqu Cui | Hongcheng Gao | Zhiyuan Liu
Findings of the Association for Computational Linguistics: NAACL 2022

Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting. However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text. In this paper, we explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text. In both scenarios, we demonstrate that our triggers can totally control or severely decrease the performance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the universal vulnerability of the prompt-based learning paradigm. Further experiments show that adversarial triggers have good transferability among language models. We also find conventional fine-tuning models are not vulnerable to adversarial triggers constructed from pre-trained language models. We conclude by proposing a potential solution to mitigate our attack methods. Code and data are publicly available.