Heidi Jauhiainen


2022

pdf
Italian Language and Dialect Identification and Regional French Variety Detection using Adaptive Naive Bayes
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Ninth Workshop on NLP for Similar Languages, Varieties and Dialects

This article describes the language identification approach used by the SUKI team in the Identification of Languages and Dialects of Italy and the French Cross-Domain Dialect Identification shared tasks organized as part of the VarDial workshop 2022. We describe some experiments and the preprocessing techniques we used for the training data in preparation for the shared task submissions, which are also discussed. Our Naive Bayes-based adaptive system reached the first position in Italian language identification and came second in the French variety identification task.

pdf
Optimizing Naive Bayes for Arabic Dialect Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

This article describes the language identification system used by the SUKI team in the 2022 Nuanced Arabic Dialect Identification (NADI) shared task. In addition to the system description, we give some details of the dialect identification experiments we conducted while preparing our submissions. In the end, we submitted only one official run. We used a Naive Bayes-based language identifier with character n-grams from one to four, of which we implemented a new version, which automatically optimizes its parameters. We also experimented with clustering the training data according to different topics. With the macro F1 score of 0.1963 on test set A and 0.1058 on test set B, we achieved the 18th position out of the 19 competing teams.

pdf
HeLI-OTS, Off-the-shelf Language Identifier for Text
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper introduces HeLI-OTS, an off-the-shelf text language identification tool using the HeLI language identification method. The HeLI-OTS language identifier is equipped with language models for 200 languages and licensed for academic as well as commercial use. We present the HeLI method and its use in our previous research. Then we compare the performance of the HeLI-OTS language identifier with that of fastText on two different data sets, showing that fastText favors the recall of common languages, whereas HeLI-OTS reaches both high recall and high precision for all languages. While introducing existing off-the-shelf language identification tools, we also give a picture of digital humanities-related research that uses such tools. The validity of the results of such research depends on the results given by the language identifier used, and especially for research focusing on the less common languages, the tendency to favor widely used languages might be very detrimental, which Heli-OTS is now able to remedy.

2021

pdf bib
Findings of the VarDial Evaluation Campaign 2021
Bharathi Raja Chakravarthi | Gaman Mihaela | Radu Tudor Ionescu | Heidi Jauhiainen | Tommi Jauhiainen | Krister Lindén | Nikola Ljubešić | Niko Partanen | Ruba Priyadharshini | Christoph Purschke | Eswari Rajagopal | Yves Scherrer | Marcos Zampieri
Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects

This paper describes the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2021. The campaign was part of the eighth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2021. Four separate shared tasks were included this year: Dravidian Language Identification (DLI), Romanian Dialect Identification (RDI), Social Media Variety Geolocation (SMG), and Uralic Language Identification (ULI). DLI was organized for the first time and the other three continued a series of tasks from previous evaluation campaigns.

pdf
Naive Bayes-based Experiments in Romanian Dialect Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects

This article describes the experiments and systems developed by the SUKI team for the second edition of the Romanian Dialect Identification (RDI) shared task which was organized as part of the 2021 VarDial Evaluation Campaign. We submitted two runs to the shared task and our second submission was the overall best submission by a noticeable margin. Our best submission used a character n-gram based naive Bayes classifier with adaptive language models. We describe our experiments on the development set leading to both submissions.

2020

pdf bib
A Report on the VarDial Evaluation Campaign 2020
Mihaela Gaman | Dirk Hovy | Radu Tudor Ionescu | Heidi Jauhiainen | Tommi Jauhiainen | Krister Lindén | Nikola Ljubešić | Niko Partanen | Christoph Purschke | Yves Scherrer | Marcos Zampieri
Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects

This paper presents the results of the VarDial Evaluation Campaign 2020 organized as part of the seventh workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with COLING 2020. The campaign included three shared tasks each focusing on a different challenge of language and dialect identification: Romanian Dialect Identification (RDI), Social Media Variety Geolocation (SMG), and Uralic Language Identification (ULI). The campaign attracted 30 teams who enrolled to participate in one or multiple shared tasks and 14 of them submitted runs across the three shared tasks. Finally, 11 papers describing participating systems are published in the VarDial proceedings and referred to in this report.

pdf
Uralic Language Identification (ULI) 2020 shared task dataset and the Wanca 2017 corpora
Tommi Jauhiainen | Heidi Jauhiainen | Niko Partanen | Krister Lindén
Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects

This article introduces the Wanca 2017 web corpora from which the sentences written in minor Uralic languages were collected for the test set of the Uralic Language Identification (ULI) 2020 shared task. We describe the ULI shared task and how the test set was constructed using the Wanca 2017 corpora and texts in different languages from the Leipzig corpora collection. We also provide the results of a baseline language identification experiment conducted using the ULI 2020 dataset.

pdf
Experiments in Language Variety Geolocation and Dialect Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the 7th Workshop on NLP for Similar Languages, Varieties and Dialects

In this paper we describe the systems we used when participating in the VarDial Evaluation Campaign organized as part of the 7th workshop on NLP for similar languages, varieties and dialects. The shared tasks we participated in were the second edition of the Romanian Dialect Identification (RDI) and the first edition of the Social Media Variety Geolocation (SMG). The submissions of our SUKI team used generative language models based on Naive Bayes and character n-grams.

pdf
Building Web Corpora for Minority Languages
Heidi Jauhiainen | Tommi Jauhiainen | Krister Lindén
Proceedings of the 12th Web as Corpus Workshop

Web corpora creation for minority languages that do not have their own top-level Internet domain is no trivial matter. Web pages in such minority languages often contain text and links to pages in the dominant language of the country. When building corpora in specific languages, one has to decide how and at which stage to make sure the texts gathered are in the desired language. In the “Finno-Ugric Languages and the Internet” (Suki) project, we created web corpora for Uralic minority languages using web crawling combined with a language identification system in order to identify the language while crawling. In addition, we used language set identification and crowdsourcing before making sentence corpora out of the downloaded texts. In this article, we describe a strategy for collecting textual material from the Internet for minority languages. The strategy is based on the experiences we gained during the Suki project.

2019

pdf
Language and Dialect Identification of Cuneiform Texts
Tommi Jauhiainen | Heidi Jauhiainen | Tero Alstola | Krister Lindén
Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects

This article introduces a corpus of cuneiform texts from which the dataset for the use of the Cuneiform Language Identification (CLI) 2019 shared task was derived as well as some preliminary language identification experiments conducted using that corpus. We also describe the CLI dataset and how it was derived from the corpus. In addition, we provide some baseline language identification results using the CLI dataset. To the best of our knowledge, the experiments detailed here represent the first time that automatic language identification methods have been used on cuneiform data.

pdf
Discriminating between Mandarin Chinese and Swiss-German varieties using adaptive language models
Tommi Jauhiainen | Krister Lindén | Heidi Jauhiainen
Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects

This paper describes the language identification systems used by the SUKI team in the Discriminating between the Mainland and Taiwan variation of Mandarin Chinese (DMT) and the German Dialect Identification (GDI) shared tasks which were held as part of the third VarDial Evaluation Campaign. The DMT shared task included two separate tracks, one for the simplified Chinese script and one for the traditional Chinese script. We submitted three runs on both tracks of the DMT task as well as on the GDI task. We won the traditional Chinese track using Naive Bayes with language model adaptation, came second on GDI with an adaptive version of the HeLI 2.0 method, and third on the simplified Chinese track using again the adaptive Naive Bayes.

2018

pdf
Iterative Language Model Adaptation for Indo-Aryan Language Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

This paper presents the experiments and results obtained by the SUKI team in the Indo-Aryan Language Identification shared task of the VarDial 2018 Evaluation Campaign. The shared task was an open one, but we did not use any corpora other than what was distributed by the organizers. A total of eight teams provided results for this shared task. Our submission using a HeLI-method based language identifier with iterative language model adaptation obtained the best results in the shared task with a macro F1-score of 0.958.

pdf
HeLI-based Experiments in Discriminating Between Dutch and Flemish Subtitles
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

This paper presents the experiments and results obtained by the SUKI team in the Discriminating between Dutch and Flemish in Subtitles shared task of the VarDial 2018 Evaluation Campaign. Our best submission was ranked 8th, obtaining macro F1-score of 0.61. Our best results were produced by a language identifier implementing the HeLI method without any modifications. We describe, in addition to the best method we used, some of the experiments we did with unsupervised clustering.

pdf
HeLI-based Experiments in Swiss German Dialect Identification
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

In this paper we present the experiments and results by the SUKI team in the German Dialect Identification shared task of the VarDial 2018 Evaluation Campaign. Our submission using HeLI with adaptive language models obtained the best results in the shared task with a macro F1-score of 0.686, which is clearly higher than the other submitted results. Without some form of unsupervised adaptation on the test set, it might not be possible to reach as high an F1-score with the level of domain difference between the datasets of the shared task. We describe the methods used in detail, as well as some additional experiments carried out during the shared task.

2017

pdf
Evaluation of language identification methods using 285 languages
Tommi Jauhiainen | Krister Lindén | Heidi Jauhiainen
Proceedings of the 21st Nordic Conference on Computational Linguistics

pdf
Evaluating HeLI with Non-Linear Mappings
Tommi Jauhiainen | Krister Lindén | Heidi Jauhiainen
Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)

In this paper we describe the non-linear mappings we used with the Helsinki language identification method, HeLI, in the 4th edition of the Discriminating between Similar Languages (DSL) shared task, which was organized as part of the VarDial 2017 workshop. Our SUKI team participated on the closed track together with 10 other teams. Our system reached the 7th position in the track. We describe the HeLI method and the non-linear mappings in mathematical notation. The HeLI method uses a probabilistic model with character n-grams and word-based backoff. We also describe our trials using the non-linear mappings instead of relative frequencies and we present statistics about the back-off function of the HeLI method.

2016

pdf
HeLI, a Word-Based Backoff Method for Language Identification
Tommi Jauhiainen | Krister Lindén | Heidi Jauhiainen
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)

In this paper we describe the Helsinki language identification method, HeLI, and the resources we created for and used in the 3rd edition of the Discriminating between Similar Languages (DSL) shared task, which was organized as part of the VarDial 2016 workshop. The shared task comprised of a total of 8 tracks, of which we participated in 7. The shared task had a record number of participants, with 17 teams providing results for the closed track of the test set A. Our system reached the 2nd position in 4 tracks (A closed and open, B1 open and B2 open) and in this paper we are focusing on the methods and data used for those tracks. We describe our word-based backoff method in mathematical notation. We also describe how we selected the corpus we used in the open tracks.

2015

pdf
Discriminating Similar Languages with Token-Based Backoff
Tommi Jauhiainen | Heidi Jauhiainen | Krister Lindén
Proceedings of the Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects