Harshavardhan Kamarthi


2024

pdf
LSTPrompt: Large Language Models as Zero-Shot Time Series Forecasters by Long-Short-Term Prompting
Haoxin Liu | Zhiyuan Zhao | Jindong Wang | Harshavardhan Kamarthi | B. Aditya Prakash
Findings of the Association for Computational Linguistics: ACL 2024

Time-series forecasting (TSF) finds broad applications in real-world scenarios. Prompting off-the-shelf Large Language Models (LLMs) demonstrates strong zero-shot TSF capabilities while preserving computational efficiency. However, existing prompting methods oversimplify TSF as language next-token predictions, overlooking its dynamic nature and lack of integration with state-of-the-art prompt strategies such as Chain-of-Thought. Thus, we propose LSTPrompt, a novel approach for prompting LLMs in zero-shot TSF tasks. LSTPrompt decomposes TSF into short-term and long-term forecasting sub-tasks, tailoring prompts to each. LSTPrompt guides LLMs to regularly reassess forecasting mechanisms to enhance adaptability. Extensive evaluations demonstrate consistently better performance of LSTPrompt than existing prompting methods, and competitive results compared to foundation TSF models.

2019

pdf
Integrating Lexical Knowledge in Word Embeddings using Sprinkling and Retrofitting
Aakash Srinivasan | Harshavardhan Kamarthi | Devi Ganesan | Sutanu Chakraborti
Proceedings of the 16th International Conference on Natural Language Processing

Neural network based word embeddings, such as Word2Vec and Glove, are purely data driven in that they capture the distributional information about words from the training corpus. Past works have attempted to improve these embeddings by incorporating semantic knowledge from lexical resources like WordNet. Some techniques like retrofitting modify word embeddings in the post-processing stage while some others use a joint learning approach by modifying the objective function of neural networks. In this paper, we discuss two novel approaches for incorporating semantic knowledge into word embeddings. In the first approach, we take advantage of Levy et al’s work which showed that using SVD based methods on co-occurrence matrix provide similar performance to neural network based embeddings. We propose a ‘sprinkling’ technique to add semantic relations to the co-occurrence matrix directly before factorization. In the second approach, WordNet similarity scores are used to improve the retrofitting method. We evaluate the proposed methods in both intrinsic and extrinsic tasks and observe significant improvements over the baselines in many of the datasets.