Feng Jiang


2024

pdf
Humans or LLMs as the Judge? A Study on Judgement Bias
Guiming Hardy Chen | Shunian Chen | Ziche Liu | Feng Jiang | Benyou Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Adopting human and large language models (LLM) as judges (*a.k.a* human- and LLM-as-a-judge) for evaluating the performance of LLMs has recently gained attention. Nonetheless, this approach concurrently introduces potential biases from human and LLMs, questioning the reliability of the evaluation results. In this paper, we propose a novel framework that is free from referencing groundtruth annotations for investigating **Misinformation Oversight Bias**, **Gender Bias**, **Authority Bias** and **Beauty Bias** on LLM and human judges. We curate a dataset referring to the revised Bloom’s Taxonomy and conduct thousands of evaluations. Results show that human and LLM judges are vulnerable to perturbations to various degrees, and that even the cutting-edge judges possess considerable biases. We further exploit these biases to conduct attacks on LLM judges. We hope that our work can notify the community of the bias and vulnerability of human- and LLM-as-a-judge, as well as the urgency of developing robust evaluation systems.

pdf
TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models
Chen Zhang | Chengguang Tang | Dading Chong | Ke Shi | Guohua Tang | Feng Jiang | Haizhou Li
Findings of the Association for Computational Linguistics: EMNLP 2024

Mainstream approaches to aligning large language models (LLMs) heavily rely on human preference data, particularly when models require periodic updates. The standard process for iterative alignment of LLMs involves collecting new human feedback for each update. However, the data collection process is costly and challenging to scale. To address this issue, we introduce the “TS-Align” framework, which fine-tunes a policy model using pairwise feedback data automatically mined from its outputs. This automatic mining process is efficiently accomplished through the collaboration between a large-scale teacher model and a small-scale student model. The policy fine-tuning process can be iteratively repeated using on-policy generations within our proposed teacher-student collaborative framework. Through extensive experiments, we demonstrate that our final aligned policy outperforms the base policy model with an average win rate of 69.7% across seven conversational or instruction-following datasets. Furthermore, we show that the ranking capability of the teacher is effectively distilled into the student through our pipeline, resulting in a small-scale yet effective reward model for policy model alignment.

pdf
CMB: A Comprehensive Medical Benchmark in Chinese
Xidong Wang | Guiming Chen | Song Dingjie | Zhang Zhiyi | Zhihong Chen | Qingying Xiao | Junying Chen | Feng Jiang | Jianquan Li | Xiang Wan | Benyou Wang | Haizhou Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs) provide a possibility to make a great breakthrough in medicine. The establishment of a standardized medical benchmark becomes a fundamental cornerstone to measure progression. However, medical environments in different regions have their local characteristics, e.g., the ubiquity and significance of traditional Chinese medicine within China. Therefore, merely translating English-based medical evaluation may result in contextual incongruities to a local region. To solve the issue, we propose a localized medical benchmark called CMB, a Comprehensive Medical Benchmark in Chinese, designed and rooted entirely within the native Chinese linguistic and cultural framework. While traditional Chinese medicine is integral to this evaluation, it does not constitute its entirety. Using this benchmark, we have evaluated several prominent large-scale LLMs, including ChatGPT, GPT-4, dedicated Chinese LLMs, and LLMs specialized in the medical domain. We hope this benchmark provide first-hand experience in existing LLMs for medicine and also facilitate the widespread adoption and enhancement of medical LLMs within China. Our data and code are publicly available at https://github.com/FreedomIntelligence/CMB.

pdf
PlatoLM: Teaching LLMs in Multi-Round Dialogue via a User Simulator
Chuyi Kong | Yaxin Fan | Xiang Wan | Feng Jiang | Benyou Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT dialogues, as evidenced by Vicuna. However, due to challenges in gathering dialogues involving human participation, current endeavors like Baize and UltraChat rely on ChatGPT conducting roleplay to simulate humans based on instructions, resulting in overdependence on seeds, diminished human-likeness, limited topic diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we propose a paradigm to simulate human behavior better and explore the benefits of incorporating more human-like questions in multi-turn conversations. Specifically, we directly target human questions extracted from genuine human-machine conversations as a learning goal and provide a novel user simulator called ‘Socratic‘. The experimental results show our response model, ‘PlatoLM‘, achieves SoTA performance among LLaMA-based 7B models in MT-Bench. Our findings further demonstrate that our method introduces highly human-like questioning patterns and rich topic structures, which can teach the response model better than previous works in multi-round conversations.

pdf
Advancing Topic Segmentation and Outline Generation in Chinese Texts: The Paragraph-level Topic Representation, Corpus, and Benchmark
Feng Jiang | Weihao Liu | Xiaomin Chu | Peifeng Li | Qiaoming Zhu | Haizhou Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Topic segmentation and outline generation strive to divide a document into coherent topic sections and generate corresponding subheadings, unveiling the discourse topic structure of a document. Compared with sentence-level topic structure, the paragraph-level topic structure can quickly grasp and understand the overall context of the document from a higher level, benefitting many downstream tasks such as summarization, discourse parsing, and information retrieval. However, the lack of large-scale, high-quality Chinese paragraph-level topic structure corpora restrained relative research and applications. To fill this gap, we build the Chinese paragraph-level topic representation, corpus, and benchmark in this paper. Firstly, we propose a hierarchical paragraph-level topic structure representation with three layers to guide the corpus construction. Then, we employ a two-stage man-machine collaborative annotation method to construct the largest Chinese Paragraph-level Topic Structure corpus (CPTS), achieving high quality. We also build several strong baselines, including ChatGPT, to validate the computability of CPTS on two fundamental tasks (topic segmentation and outline generation) and preliminarily verified its usefulness for the downstream task (discourse parsing).

pdf
Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue: An Empirical Study
Yaxin Fan | Feng Jiang | Peifeng Li | Haizhou Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models, like ChatGPT, have shown remarkable capability in many downstream tasks, yet their ability to understand discourse structures of dialogues remains less explored, where it requires higher level capabilities of understanding and reasoning. In this paper, we aim to systematically inspect ChatGPT’s performance in two discourse analysis tasks: topic segmentation and discourse parsing, focusing on its deep semantic understanding of linear and hierarchical discourse structures underlying dialogue. To instruct ChatGPT to complete these tasks, we initially craft a prompt template consisting of the task description, output format, and structured input. Then, we conduct experiments on four popular topic segmentation datasets and two discourse parsing datasets. The experimental results showcase that ChatGPT demonstrates proficiency in identifying topic structures in general-domain conversations yet struggles considerably in specific-domain conversations. We also found that ChatGPT hardly understands rhetorical structures that are more complex than topic structures. Our deeper investigation indicates that ChatGPT can give more reasonable topic structures than human annotations but only linearly parses the hierarchical rhetorical structures. In addition, we delve into the impact of in-context learning (e.g., chain-of-thought) on ChatGPT and conduct the ablation study on various prompt components, which can provide a research foundation for future work. The code is available at https://github.com/yxfanSuda/GPTforDDA.

2023

pdf
Factual Relation Discrimination for Factuality-oriented Abstractive Summarization
Zhiguang Gao | Peifeng Li | Feng Jiang | Xiaomin Chu | Qiaoming Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Most neural abstractive summarization models are capable of producing high-quality summaries. However, they still frequently contain factual errors. Existing factuality-oriented abstractive summarization models only consider the integration of factual information and ignore the causes of factual errors. To address this issue, we propose a factuality-oriented abstractive summarization model DASum, which is based on a new task factual relation discrimination that is able to identify the causes of factual errors. First, we use data augmentation methods to construct counterfactual summaries (i. e., negative samples), and build a factual summarization dataset. Then, we propose the factual relation discrimination task, which determines the factuality of the dependency relations in summaries during summary generation and guides our DASum to generate factual relations, thereby improving the factuality of summaries. Experimental results on the CNN/DM and XSUM datasets show that our DASum outperforms several state-of-the-art benchmarks in terms of the factual metrics.

pdf
HuatuoGPT, Towards Taming Language Model to Be a Doctor
Hongbo Zhang | Junying Chen | Feng Jiang | Fei Yu | Zhihong Chen | Guiming Chen | Jianquan Li | Xiangbo Wu | Zhang Zhiyi | Qingying Xiao | Xiang Wan | Benyou Wang | Haizhou Li
Findings of the Association for Computational Linguistics: EMNLP 2023

In this paper, we present HuatuoGPT, a Large Language Model (LLM) for medical consultation. The core recipe of HuatuoGPT is to leverage both distilled data from **ChatGPT** and real-world data from **doctors** in the supervised fine-tuning stage. This is not only because purely using **ChatGPT**-distilled data might cause ‘model collapse’, but also because real-world data from **doctors** would be complementary to **ChatGPT**-distilled data. The responses from ChatGPT are usually detailed, well-presented, fluent, and instruction-followed, but it cannot perform like a doctor in many aspects, e.g. for interactive diagnosis. Therefore, the extra doctors’ data could tame a distilled language model to perform like doctors. To synergize the strengths of both data sources, we introduce RLMF (Reinforcement Learning from Mixed Feedback) where a reward model is trained to align the language model with the merits that both sources (ChatGPT and doctors) bring. Experimental results (in GPT-4 evaluation, human evaluation, and medical benchmark datasets) demonstrate that HuatuoGPT achieves state-of-the-art results in performing medical consultation among open-source LLMs. It is worth noting that by using additional real-world data and RLMF, the distilled language model (i.e., HuatuoGPT) outperforms its teacher model (i.e., ChatGPT) in most cases.

pdf
Improving Dialogue Discourse Parsing via Reply-to Structures of Addressee Recognition
Yaxin Fan | Feng Jiang | Peifeng Li | Fang Kong | Qiaoming Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Dialogue discourse parsing aims to reflect the relation-based structure of dialogue by establishing discourse links according to discourse relations. To alleviate data sparsity, previous studies have adopted multitasking approaches to jointly learn dialogue discourse parsing with related tasks (e.g., reading comprehension) that require additional human annotation, thus limiting their generality. In this paper, we propose a multitasking framework that integrates dialogue discourse parsing with its neighboring task addressee recognition. Addressee recognition reveals the reply-to structure that partially overlaps with the relation-based structure, which can be exploited to facilitate relation-based structure learning. To this end, we first proposed a reinforcement learning agent to identify training examples from addressee recognition that are most helpful for dialog discourse parsing. Then, a task-aware structure transformer is designed to capture the shared and private dialogue structure of different tasks, thereby further promoting dialogue discourse parsing. Experimental results on both the Molweni and STAC datasets show that our proposed method can outperform the SOTA baselines. The code will be available at https://github.com/yxfanSuda/RLTST.

2022

pdf
基于新闻图式结构的篇章功能语用识别方法(Discourse Functional Pragmatics Recognition Based on News Schemata)
Mengqi Du (杜梦琦) | Feng Jiang (蒋峰) | Xiaomin Chu (褚晓敏) | Peifeng Li (李培峰)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“篇章分析是自然语言处理领域的研究热点和重点,篇章功能语用研究旨在分析篇章单元在篇章中的功能和作用,有助于深入理解篇章的主题和内容。目前篇章分析研究以形式语法为主,而篇章作为一个整体的语义单位,其功能和语义却没有引起足够重视。已有功能语用研究以面向事件抽取任务为主,并未进行通用领域的功能语用研究。鉴于功能语用研究的重要性和研究现状,本文提出了基于新闻图式结构的篇章功能语用识别方法来识别篇章功能语用。该方法在获取段落交互信息的同时又融入了篇章的新闻图式结构信息,并结合段落所在篇章中的位置信息,从而有效地提高了篇章功能语用的识别能力。在汉语宏观篇章树库的实验结果证明,本文提出的方法优于所有基准系统。”

pdf
Key Mention Pairs Guided Document-Level Relation Extraction
Feng Jiang | Jianwei Niu | Shasha Mo | Shengda Fan
Proceedings of the 29th International Conference on Computational Linguistics

Document-level Relation Extraction (DocRE) aims at extracting relations between entities in a given document. Since different mention pairs may express different relations or even no relation, it is crucial to identify key mention pairs responsible for the entity-level relation labels. However, most recent studies treat different mentions equally while predicting the relations between entities, leading to sub-optimal performance. To this end, we propose a novel DocRE model called Key Mention pairs Guided Relation Extractor (KMGRE) to directly model mention-level relations, containing two modules: a mention-level relation extractor and a key instance classifier. These two modules could be iteratively optimized with an EM-based algorithm to enhance each other. We also propose a new method to solve the multi-label problem in optimizing the mention-level relation extractor. Experimental results on two public DocRE datasets demonstrate that the proposed model is effective and outperforms previous state-of-the-art models.

pdf
Automated Chinese Essay Scoring from Multiple Traits
Yaqiong He | Feng Jiang | Xiaomin Chu | Peifeng Li
Proceedings of the 29th International Conference on Computational Linguistics

Automatic Essay Scoring (AES) is the task of using the computer to evaluate the quality of essays automatically. Current research on AES focuses on scoring the overall quality or single trait of prompt-specific essays. However, the users not only expect to obtain the overall score but also the instant feedback from different traits to help their writing in the real world. Therefore, we first annotate a mutli-trait dataset ACEA including 1220 argumentative essays from four traits, i.e., essay organization, topic, logic, and language. And then we design a hierarchical multi-task trait scorer HMTS to evaluate the quality of writing by modeling these four traits. Moreover, we propose an inter-sequence attention mechanism to enhance information interaction between different tasks and design the trait-specific features for various tasks in AES. The experimental results on ACEA show that our HMTS can effectively score essays from multiple traits, outperforming several strong models.

2021

pdf
ReTraCk: A Flexible and Efficient Framework for Knowledge Base Question Answering
Shuang Chen | Qian Liu | Zhiwei Yu | Chin-Yew Lin | Jian-Guang Lou | Feng Jiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We present Retriever-Transducer-Checker (ReTraCk), a neural semantic parsing framework for large scale knowledge base question answering (KBQA). ReTraCk is designed as a modular framework to maintain high flexibility. It includes a retriever to retrieve relevant KB items efficiently, a transducer to generate logical form with syntax correctness guarantees and a checker to improve transduction procedure. ReTraCk is ranked at top1 overall performance on the GrailQA leaderboard and obtains highly competitive performance on the typical WebQuestionsSP benchmark. Our system can interact with users timely, demonstrating the efficiency of the proposed framework.

pdf
Not Just Classification: Recognizing Implicit Discourse Relation on Joint Modeling of Classification and Generation
Feng Jiang | Yaxin Fan | Xiaomin Chu | Peifeng Li | Qiaoming Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Implicit discourse relation recognition (IDRR) is a critical task in discourse analysis. Previous studies only regard it as a classification task and lack an in-depth understanding of the semantics of different relations. Therefore, we first view IDRR as a generation task and further propose a method joint modeling of the classification and generation. Specifically, we propose a joint model, CG-T5, to recognize the relation label and generate the target sentence containing the meaning of relations simultaneously. Furthermore, we design three target sentence forms, including the question form, for the generation model to incorporate prior knowledge. To address the issue that large discourse units are hardly embedded into the target sentence, we also propose a target sentence construction mechanism that automatically extracts core sentences from those large discourse units. Experimental results both on Chinese MCDTB and English PDTB datasets show that our model CG-T5 achieves the best performance against several state-of-the-art systems.

2020

pdf
Chinese Paragraph-level Discourse Parsing with Global Backward and Local Reverse Reading
Feng Jiang | Xiaomin Chu | Peifeng Li | Fang Kong | Qiaoming Zhu
Proceedings of the 28th International Conference on Computational Linguistics

Discourse structure tree construction is the fundamental task of discourse parsing and most previous work focused on English. Due to the cultural and linguistic differences, existing successful methods on English discourse parsing cannot be transformed into Chinese directly, especially in paragraph level suffering from longer discourse units and fewer explicit connectives. To alleviate the above issues, we propose two reading modes, i.e., the global backward reading and the local reverse reading, to construct Chinese paragraph level discourse trees. The former processes discourse units from the end to the beginning in a document to utilize the left-branching bias of discourse structure in Chinese, while the latter reverses the position of paragraphs in a discourse unit to enhance the differentiation of coherence between adjacent discourse units. The experimental results on Chinese MCDTB demonstrate that our model outperforms all strong baselines.

pdf
融合全局和局部信息的汉语宏观篇章结构识别(Combining Global and Local Information to Recognize Chinese Macro Discourse Structure)
Yaxin Fan (范亚鑫) | Feng Jiang (蒋峰) | Xiaomin Chu (褚晓敏) | Peifeng Li (李培峰) | Qiaoming Zhu (朱巧明)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

作为宏观篇章分析中的基础任务,篇章结构识别任务的目的是识别相邻篇章单元之间的结构,并层次化构建篇章结构树。已有的工作只考虑局部的结构和语义信息或只考虑全局信息。因此,本文提出了一种融合全局和局部信息的指针网络模型,该模型在考虑全局的语义信息同时,又考虑局部段落间的语义关系密切程度,从而有效地提高宏观篇章结构识别的能力。在汉语宏观篇章树库(MCDTB)的实验结果表明,本文所提出的模型性能优于目前性能最好的模型。

2019

pdf
Enhancing Neural Data-To-Text Generation Models with External Background Knowledge
Shuang Chen | Jinpeng Wang | Xiaocheng Feng | Feng Jiang | Bing Qin | Chin-Yew Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent neural models for data-to-text generation rely on massive parallel pairs of data and text to learn the writing knowledge. They often assume that writing knowledge can be acquired from the training data alone. However, when people are writing, they not only rely on the data but also consider related knowledge. In this paper, we enhance neural data-to-text models with external knowledge in a simple but effective way to improve the fidelity of generated text. Besides relying on parallel data and text as in previous work, our model attends to relevant external knowledge, encoded as a temporary memory, and combines this knowledge with the context representation of data before generating words. This allows the model to infer relevant facts which are not explicitly stated in the data table from an external knowledge source. Experimental results on twenty-one Wikipedia infobox-to-text datasets show our model, KBAtt, consistently improves a state-of-the-art model on most of the datasets. In addition, to quantify when and why external knowledge is effective, we design a metric, KBGain, which shows a strong correlation with the observed performance boost. This result demonstrates the relevance of external knowledge and sparseness of original data are the main factors affecting system performance.

2018

pdf
Joint Modeling of Structure Identification and Nuclearity Recognition in Macro Chinese Discourse Treebank
Xiaomin Chu | Feng Jiang | Yi Zhou | Guodong Zhou | Qiaoming Zhu
Proceedings of the 27th International Conference on Computational Linguistics

Discourse parsing is a challenging task and plays a critical role in discourse analysis. This paper focus on the macro level discourse structure analysis, which has been less studied in the previous researches. We explore a macro discourse structure presentation schema to present the macro level discourse structure, and propose a corresponding corpus, named Macro Chinese Discourse Treebank. On these bases, we concentrate on two tasks of macro discourse structure analysis, including structure identification and nuclearity recognition. In order to reduce the error transmission between the associated tasks, we adopt a joint model of the two tasks, and an Integer Linear Programming approach is proposed to achieve global optimization with various kinds of constraints.

pdf
MCDTB: A Macro-level Chinese Discourse TreeBank
Feng Jiang | Sheng Xu | Xiaomin Chu | Peifeng Li | Qiaoming Zhu | Guodong Zhou
Proceedings of the 27th International Conference on Computational Linguistics

In view of the differences between the annotations of micro and macro discourse rela-tionships, this paper describes the relevant experiments on the construction of the Macro Chinese Discourse Treebank (MCDTB), a higher-level Chinese discourse corpus. Fol-lowing RST (Rhetorical Structure Theory), we annotate the macro discourse information, including discourse structure, nuclearity and relationship, and the additional discourse information, including topic sentences, lead and abstract, to make the macro discourse annotation more objective and accurate. Finally, we annotated 720 articles with a Kappa value greater than 0.6. Preliminary experiments on this corpus verify the computability of MCDTB.

pdf
Building a Macro Chinese Discourse Treebank
Xiaomin Chu | Feng Jiang | Sheng Xu | Qiaoming Zhu
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2004

pdf
An Enhanced Model for Chinese Word Segmentation and Part-of-Speech Tagging
Feng Jiang | Hui Liu | Yuquan Chen | Ruzhan Lu
Proceedings of the Third SIGHAN Workshop on Chinese Language Processing