Dylan Phelps


2024

pdf
Sign of the Times: Evaluating the use of Large Language Models for Idiomaticity Detection
Dylan Phelps | Thomas M. R. Pickard | Maggie Mi | Edward Gow-Smith | Aline Villavicencio
Proceedings of the Joint Workshop on Multiword Expressions and Universal Dependencies (MWE-UD) @ LREC-COLING 2024

Despite the recent ubiquity of large language models and their high zero-shot prompted performance across a wide range of tasks, it is still not known how well they perform on tasks which require processing of potentially idiomatic language. In particular, how well do such models perform in comparison to encoder-only models fine-tuned specifically for idiomaticity tasks? In this work, we attempt to answer this question by looking at the performance of a range of LLMs (both local and software-as-a-service models) on three idiomaticity datasets: SemEval 2022 Task 2a, FLUTE, and MAGPIE. Overall, we find that whilst these models do give competitive performance, they do not match the results of fine-tuned task-specific models, even at the largest scales (e.g. for GPT-4). Nevertheless, we do see consistent performance improvements across model scale. Additionally, we investigate prompting approaches to improve performance, and discuss the practicalities of using LLMs for these tasks.

pdf
Word Boundary Information Isn’t Useful for Encoder Language Models
Edward Gow-Smith | Dylan Phelps | Harish Tayyar Madabushi | Carolina Scarton | Aline Villavicencio
Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)

All existing transformer-based approaches to NLP using subword tokenisation algorithms encode whitespace (word boundary information) through the use of special space symbols (such as ## or _) forming part of tokens. These symbols have been shown to a) lead to reduced morphological validity of tokenisations, and b) give substantial vocabulary redundancy. As such, removing these symbols has been shown to have a beneficial effect on the processing of morphologically complex words for transformer encoders in the pretrain-finetune paradigm. In this work, we explore whether word boundary information is at all useful to such models. In particular, we train transformer encoders across four different training scales, and investigate several alternative approaches to including word boundary information, evaluating on two languages (English and Finnish) with a range of tasks across different domains and problem set-ups: sentence classification datasets, NER (for token-level classification), and two classification datasets involving complex words (Superbizarre and FLOTA). Overall, through an extensive experimental setup that includes the pre-training of 35 models, we find no substantial improvements from our alternative approaches, suggesting that modifying tokenisers to remove word boundary information isn’t leading to a loss of useful information.

2022

pdf
drsphelps at SemEval-2022 Task 2: Learning idiom representations using BERTRAM
Dylan Phelps
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes our system for SemEval-2022 Task 2 Multilingual Idiomaticity Detection and Sentence Embedding sub-task B. We modify a standard BERT sentence transformer by adding embeddings for each idiom, which are created using BERTRAM and a small number of contexts. We show that this technique increases the quality of idiom representations and leads to better performance on the task. We also perform analysis on our final results and show that the quality of the produced idiom embeddings is highly sensitive to the quality of the input contexts.

pdf
Sample Efficient Approaches for Idiomaticity Detection
Dylan Phelps | Xuan-Rui Fan | Edward Gow-Smith | Harish Tayyar Madabushi | Carolina Scarton | Aline Villavicencio
Proceedings of the 18th Workshop on Multiword Expressions @LREC2022

Deep neural models, in particular Transformer-based pre-trained language models, require a significant amount of data to train. This need for data tends to lead to problems when dealing with idiomatic multiword expressions (MWEs), which are inherently less frequent in natural text. As such, this work explores sample efficient methods of idiomaticity detection. In particular we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings, on the task of idiomaticity detection. In addition, to further explore generalisability, we focus on the identification of MWEs not present in the training data. Our experiments show that while these methods improve performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT. Regardless, we believe sample efficient methods for both identifying and representing potentially idiomatic MWEs are very encouraging and hold significant potential for future exploration.