This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
David R.Mortensen
Also published as:
David Mortensen,
David R Mortensen,
David R. Mortensen
Existing zero-shot cross-lingual NER approaches require substantial prior knowledge of the target language, which is impractical for low-resource languages.In this paper, we propose a novel approach to NER using phonemic representation based on the International Phonetic Alphabet (IPA) to bridge the gap between representations of different languages.Our experiments show that our method significantly outperforms baseline models in extremely low-resource languages, with the highest average F1 score (46.38%) and lowest standard deviation (12.67), particularly demonstrating its robustness with non-Latin scripts. Ourcodes are available at https://github.com/Gabriel819/zeroshot_ner.git
In this paper, we introduce a benchmark for evaluating the overall quality of emergent languages using data-driven methods. Specifically, we interpret the notion of the “quality” of an emergent language as its similarity to human language within a deep learning framework. We measure this by using the emergent language as pretraining data for a downstream NLP tasks in human language—the better the downstream performance, the better the emergent language. We implement this benchmark as an easy-to-use Python package that only requires a text file of utterances from the emergent language to be evaluated. Finally, we empirically test the benchmark’s validity using human, synthetic, and emergent language baselines.
Approaches to improving multilingual language understanding often struggle with significant performance gaps between high-resource and low-resource languages. While there are efforts to align the languages in a single latent space to mitigate such gaps, how different input-level representations influence such gaps has not been investigated, particularly with phonemic inputs. We hypothesize that the performance gaps are affected by representation discrepancies between those languages, and revisit the use of phonemic representations as a means to mitigate these discrepancies.To demonstrate the effectiveness of phonemic representations, we present experiments on three representative cross-lingual tasks on 12 languages in total. The results show that phonemic representations exhibit higher similarities between languages compared to orthographic representations, and it consistently outperforms grapheme-based baseline model on languages that are relatively low-resourced.We present quantitative evidence from three cross-lingual tasks that demonstrate the effectiveness of phonemic representations, and it is further justified by a theoretical analysis of the cross-lingual performance gap.
Thousands of the world’s languages are in danger of extinction—a tremendous threat to cultural identities and human language diversity. Interlinear Glossed Text (IGT) is a form of linguistic annotation that can support documentation and resource creation for these languages’ communities. IGT typically consists of (1) transcriptions, (2) morphological segmentation, (3) glosses, and (4) free translations to a majority language. We propose Wav2Gloss: a task in which these four annotation components are extracted automatically from speech, and introduce the first dataset to this end, Fieldwork: a corpus of speech with all these annotations, derived from the work of field linguists, covering 37 languages, with standard formatting, and train/dev/test splits. We provide various baselines to lay the groundwork for future research on IGT generation from speech, such as end-to-end versus cascaded, monolingual versus multilingual, and single-task versus multi-task approaches.
Existing work implementing comparative reconstruction of ancestral languages (proto-languages) has usually required full supervision. However, historical reconstruction models are only of practical value if they can be trained with a limited amount of labeled data. We propose a semisupervised historical reconstruction task in which the model is trained on only a small amount of labeled data (cognate sets with proto-forms) and a large amount of unlabeled data (cognate sets without proto-forms). We propose a neural architecture for comparative reconstruction (DPD-BiReconstructor) incorporating an essential insight from linguists’ comparative method: that reconstructed words should not only be reconstructable from their daughter words, but also deterministically transformable back into their daughter words. We show that this architecture is able to leverage unlabeled cognate sets to outperform strong semisupervised baselines on this novel task.
In this paper, we make a contribution that can be understood from two perspectives: from an NLP perspective, we introduce a small challenge dataset for NLI with large lexical overlap, which minimises the possibility of models discerning entailment solely based on token distinctions, and show that GPT-4 and Llama 2 fail it with strong bias. We then create further challenging sub-tasks in an effort to explain this failure. From a Computational Linguistics perspective, we identify a group of constructions with three classes of adjectives which cannot be distinguished by surface features. This enables us to probe for LLM’s understanding of these constructions in various ways, and we find that they fail in a variety of ways to distinguish between them, suggesting that they don’t adequately represent their meaning or capture the lexical properties of phrasal heads.
Protolanguage reconstruction is central to historical linguistics. The comparative method, one of the most influential theoretical and methodological frameworks in the history of the language sciences, allows linguists to infer protoforms (reconstructed ancestral words) from their reflexes (related modern words) based on the assumption of regular sound change. Not surprisingly, numerous computational linguists have attempted to operationalize comparative reconstruction through various computational models, the most successful of which have been supervised encoder-decoder models, which treat the problem of predicting protoforms given sets of reflexes as a sequence-to-sequence problem. We argue that this framework ignores one of the most important aspects of the comparative method: not only should protoforms be inferable from cognate sets (sets of related reflexes) but the reflexes should also be inferable from the protoforms. Leveraging another line of research—reflex prediction—we propose a system in which candidate protoforms from a reconstruction model are reranked by a reflex prediction model. We show that this more complete implementation of the comparative method allows us to surpass state-of-the-art protoform reconstruction methods on three of four Chinese and Romance datasets.
Received wisdom in linguistic typology holds that if the structure of a language becomes more complex in one dimension, it will simplify in another, building on the assumption that all languages are equally complex (Joseph and Newmeyer, 2012). We study this claim on a micro-level, using a tightly-controlled sample of Dutch dialects (across 366 collection sites) and Min dialects (across 60 sites), which enables a more fair comparison across varieties. Even at the dialect level, we find empirical evidence for a tradeoff between word length and a computational measure of phonotactic complexity from a LSTM-based phone-level language model—a result previously documented only at the language level. A generalized additive model (GAM) shows that dialects with low phonotactic complexity concentrate around the capital regions, which we hypothesize to correspond to prior hypotheses that language varieties of greater or more diverse populations show reduced phonotactic complexity. We also experiment with incorporating the auxiliary task of predicting syllable constituency, but do not find an increase in the strength of the negative correlation observed.
Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
Lexical-syntactic flexibility, in the form of conversion (or zero-derivation) is a hallmark of English morphology. In conversion, a word with one part of speech is placed in a non-prototypical context, where it is coerced to behave as if it had a different part of speech. However, while this process affects a large part of the English lexicon, little work has been done to establish the degree to which language models capture this type of generalization. This paper reports the first study on the behavior of large language models with reference to conversion. We design a task for testing lexical-syntactic flexibility—the degree to which models can generalize over words in a construction with a non-prototypical part of speech. This task is situated within a natural language inference paradigm. We test the abilities of five language models—two proprietary models (GPT-3.5 and GPT-4), three open source model (Mistral 7B, Falcon 40B, and Llama 2 70B). We find that GPT-4 performs best on the task, followed by GPT-3.5, but that the open source language models are also able to perform it and that the 7-billion parameter Mistral displays as little difference between its baseline performance on the natural language inference task and the non-prototypical syntactic category task, as the massive GPT-4.
Protoform reconstruction is the task of inferring what morphemes or words appeared like in the ancestral languages of a set of daughter languages. Meloni et al (2021) achieved the state-of-the-art on Latin protoform reconstruction with an RNN-based encoder-decoder with attention model. We update their model with the state-of-the-art seq2seq model: the Transformer. Our model outperforms their model on a suite of different metrics on two different datasets: their Romance data of 8,000 cognates spanning 5 languages and a Chinese dataset (Hou 2004) of 800+ cognates spanning 39 varieties. We also probe our model for potential phylogenetic signal contained in the model. Our code is publicly available at https://github.com/cmu-llab/acl-2023.
Construction Grammar (CxG) has recently been used as the basis for probing studies that have investigated the performance of large pretrained language models (PLMs) with respect to the structure and meaning of constructions. In this position paper, we make suggestions for the continuation and augmentation of this line of research. We look at probing methodology that was not designed with CxG in mind, as well as probing methodology that was designed for specific constructions. We analyse selected previous work in detail, and provide our view of the most important challenges and research questions that this promising new field faces.
We describe a set of new methods to partially automate linguistic phylogenetic inference given (1) cognate sets with their respective protoforms and sound laws, (2) a mapping from phones to their articulatory features and (3) a typological database of sound changes.We train a neural network on these sound change data to weight articulatory distances between phones and predict intermediate sound change steps between historical protoforms and their modern descendants, replacing a linguistic expert in part of a parsimony-based phylogenetic inference algorithm. In our best experiments on Tukanoan languages, this method produces trees with a Generalized Quartet Distance of 0.12 from a tree that used expert annotations, a significant improvement over other semi-automated baselines. We discuss potential benefits and drawbacks to our neural approach and parsimony-based tree prediction. We also experiment with a minimal generalization learner for automatic sound law induction, finding it less effective than sound laws from expert annotation. Our code is publicly available.
Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference speed. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets.
Large language models (LLMs) have recently reached an impressive level of linguistic capability, prompting comparisons with human language skills. However, there have been relatively few systematic inquiries into the linguistic capabilities of the latest generation of LLMs, and those studies that do exist (i) ignore the remarkable ability of humans to generalize, (ii) focus only on English, and (iii) investigate syntax or semantics and overlook other capabilities that lie at the heart of human language, like morphology. Here, we close these gaps by conducting the first rigorous analysis of the morphological capabilities of ChatGPT in four typologically varied languages (specifically, English, German, Tamil, and Turkish). We apply a version of Berko’s (1958) wug test to ChatGPT, using novel, uncontaminated datasets for the four examined languages. We find that ChatGPT massively underperforms purpose-built systems, particularly in English. Overall, our results—through the lens of morphology—cast a new light on the linguistic capabilities of ChatGPT, suggesting that claims of human-like language skills are premature and misleading.
Language models have graduated from being research prototypes to commercialized products offered as web APIs, and recent works have highlighted the multilingual capabilities of these products. The API vendors charge their users based on usage, more specifically on the number of “tokens” processed or generated by the underlying language models. What constitutes a token, however, is training data and model dependent with a large variance in the number of tokens required to convey the same information in different languages. In this work, we analyze the effect of this non-uniformity on the fairness of an API’s pricing policy across languages. We conduct a systematic analysis of the cost and utility of OpenAI’s language model API on multilingual benchmarks in 22 typologically diverse languages. We show evidence that speakers of a large number of the supported languages are overcharged while obtaining poorer results. These speakers tend to also come from regions where the APIs are less affordable, to begin with. Through these analyses, we aim to increase transparency around language model APIs’ pricing policies and encourage the vendors to make them more equitable.
Interlinear glossing provides a vital type of morphosyntactic annotation, both for linguists and language revitalists, and numerous conventions exist for representing it formally and computationally. Some of these formats are human readable; others are machine readable. Some are easy to edit with general-purpose tools. Few represent non-concatentative processes like infixation, reduplication, mutation, truncation, and tonal overwriting in a consistent and formally rigorous way (on par with affixation). We propose an annotation convention—Generalized Glossing Guidelines (GGG) that combines all of these positive properties using an Item-and-Process (IP) framework. We describe the format, demonstrate its linguistic adequacy, and compare it with two other interlinear glossed text annotation schemes.
In our submission to the SIGMORPHON 2023 Shared Task on interlinear glossing (IGT), we explore approaches to data augmentation and modeling across seven low-resource languages. For data augmentation, we explore two approaches: creating artificial data from the provided training data and utilizing existing IGT resources in other languages. On the modeling side, we test an enhanced version of the provided token classification baseline as well as a pretrained multilingual seq2seq model. Additionally, we apply post-correction using a dictionary for Gitksan, the language with the smallest amount of data. We find that our token classification models are the best performing, with the highest word-level accuracy for Arapaho and highest morpheme-level accuracy for Gitksan out of all submissions. We also show that data augmentation is an effective strategy, though applying artificial data pretraining has very different effects across both models tested.
Large language models (LLMs) implicitly learn to perform a range of language tasks, including machine translation (MT). Previous studies explore aspects of LLMs’ MT capabilities. However, there exist a wide variety of languages for which recent LLM MT performance has never before been evaluated. Without published experimental evidence on the matter, it is difficult for speakers of the world’s diverse languages to know how and whether they can use LLMs for their languages. We present the first experimental evidence for an expansive set of 204 languages, along with MT cost analysis, using the FLORES-200 benchmark. Trends reveal that GPT models approach or exceed traditional MT model performance for some high-resource languages (HRLs) but consistently lag for low-resource languages (LRLs), under-performing traditional MT for 84.1% of languages we covered. Our analysis reveals that a language’s resource level is the most important feature in determining ChatGPT’s relative ability to translate it, and suggests that ChatGPT is especially disadvantaged for LRLs and African languages.
Multilingual transfer techniques often improve low-resource machine translation (MT). Many of these techniques are applied without considering data characteristics. We show in the context of Haitian-to-English translation that transfer effectiveness is correlated with amount of training data and relationships between knowledge-sharing languages. Our experiments suggest that for some languages beyond a threshold of authentic data, back-translation augmentation methods are counterproductive, while cross-lingual transfer from a sufficiently related language is preferred. We complement this finding by contributing a rule-based French-Haitian orthographic and syntactic engine and a novel method for phonological embedding. When used with multilingual techniques, orthographic transformation makes statistically significant improvements over conventional methods. And in very low-resource Jamaican MT, code-switching with a transfer language for orthographic resemblance yields a 6.63 BLEU point advantage.
Coordinate compounds (CCs) and elaborate expressions (EEs) are coordinate constructions common in languages of East and Southeast Asia. Mortensen (2006) claims that (1) the linear ordering of EEs and CCs in Hmong, Lahu, and Chinese can be predicted via phonological hierarchies and (2) that these phonological hierarchies lack a clear phonetic rationale. These claims are significant because morphosyntax has often been seen as in a feed-forward relationship with phonology, and phonological generalizations have often been assumed to be phonetically “natural”. We investigate whether the ordering of CCs and EEs can be learned empirically and whether computational models (classifiers and sequence-labeling models) learn unnatural hierarchies similar to those posited by Mortensen (2006). We find that decision trees and SVMs learn to predict the order of CCs/EEs on the basis of phonology, beating strong baselines for all three languages, with DTs learning hierarchies strikingly similar to those proposed by Mortensen. However, we also find that a neural sequence labeling model is able to learn the ordering of elaborate expressions in Hmong very effectively without using any phonological information. We argue that EE ordering can be learned through two independent routes: phonology and lexical distribution, presenting a more nuanced picture than previous work.
A variety of NLP applications use word2vec skip-gram, GloVe, and fastText word embeddings. These models learn two sets of embedding vectors, but most practitioners use only one of them, or alternately an unweighted sum of both. This is the first study to systematically explore a range of linear combinations between the first and second embedding sets. We evaluate these combinations on a set of six NLP benchmarks including IR, POS-tagging, and sentence similarity. We show that the default embedding combinations are often suboptimal and demonstrate 1.0-8.0% improvements. Notably, GloVes default unweighted sum is its least effective combination across tasks. We provide a theoretical basis for weighting one set of embeddings more than the other according to the algorithm and task. We apply our findings to improve accuracy in applications of cross-lingual alignment and navigational knowledge by up to 15.2%.
Grapheme-to-Phoneme (G2P) has many applications in NLP and speech fields. Most existing work focuses heavily on languages with abundant training datasets, which limits the scope of target languages to less than 100 languages. This work attempts to apply zero-shot learning to approximate G2P models for all low-resource and endangered languages in Glottolog (about 8k languages). For any unseen target language, we first build the phylogenetic tree (i.e. language family tree) to identify top-k nearest languages for which we have training sets. Then we run models of those languages to obtain a hypothesis set, which we combine into a confusion network to propose a most likely hypothesis as an approximation to the target language. We test our approach on over 600 unseen languages and demonstrate it significantly outperforms baselines.
Identifying phone inventories is a crucial component in language documentation and the preservation of endangered languages. However, even the largest collection of phone inventory only covers about 2000 languages, which is only 1/4 of the total number of languages in the world. A majority of the remaining languages are endangered. In this work, we attempt to solve this problem by estimating the phone inventory for any language listed in Glottolog, which contains phylogenetic information regarding 8000 languages. In particular, we propose one probabilistic model and one non-probabilistic model, both using phylogenetic trees (“language family trees”) to measure the distance between languages. We show that our best model outperforms baseline models by 6.5 F1. Furthermore, we demonstrate that, with the proposed inventories, the phone recognition model can be customized for every language in the set, which improved the PER (phone error rate) in phone recognition by 25%.
This paper describes the first publicly available corpus of Hmong, a minority language of China, Vietnam, Laos, Thailand, and various countries in Europe and the Americas. The corpus has been scraped from a long-running Usenet newsgroup called soc.culture.hmong and consists of approximately 12 million tokens. This corpus (called SCH) is also the first substantial corpus to be annotated for elaborate expressions, a kind of four-part coordinate construction that is common and important in the languages of mainland Southeast Asia. We show that word embeddings trained on SCH can benefit tasks in Hmong (solving analogies) and that a model trained on it can label previously unseen elaborate expressions, in context, with an F1 of 90.79 (precision: 87.36, recall: 94.52). [ISO 639-3: mww, hmj]
Most comparative datasets of Chinese varieties are not digital; however, Wiktionary includes a wealth of transcriptions of words from these varieties. The usefulness of these data is limited by the fact that they use a wide range of variety-specific romanizations, making data difficult to compare. The current work collects this data into a single constituent (IPA, or International Phonetic Alphabet) and structured form (TSV) for use in comparative linguistics and Chinese NLP. At the time of writing, the dataset contains 67,943 entries across 8 varieties and Middle Chinese. The dataset is validated on a protoform reconstruction task using an encoder-decoder cross-attention architecture (Meloni et al 2021), achieving an accuracy of 54.11%, a PER (phoneme error rate) of 17.69%, and a FER (feature error rate) of 6.60%.
We adopt an evolutionary view on language change in which cognitive factors (in addition to social ones) affect the fitness of words and their success in the linguistic ecosystem. Specifically, we propose a variety of psycholinguistic factors—semantic, distributional, and phonological—that we hypothesize are predictive of lexical decline, in which words greatly decrease in frequency over time. Using historical data across three languages (English, French, and German), we find that most of our proposed factors show a significant difference in the expected direction between each curated set of declining words and their matched stable words. Moreover, logistic regression analyses show that semantic and distributional factors are significant in predicting declining words. Further diachronic analysis reveals that declining words tend to decrease in the diversity of their lexical contexts over time, gradually narrowing their ‘ecological niches’.
Much work in cross-lingual transfer learning explored how to select better transfer languages for multilingual tasks, primarily focusing on typological and genealogical similarities between languages. We hypothesize that these measures of linguistic proximity are not enough when working with pragmatically-motivated tasks, such as sentiment analysis. As an alternative, we introduce three linguistic features that capture cross-cultural similarities that manifest in linguistic patterns and quantify distinct aspects of language pragmatics: language context-level, figurative language, and the lexification of emotion concepts. Our analyses show that the proposed pragmatic features do capture cross-cultural similarities and align well with existing work in sociolinguistics and linguistic anthropology. We further corroborate the effectiveness of pragmatically-driven transfer in the downstream task of choosing transfer languages for cross-lingual sentiment analysis.
Text generation systems are ubiquitous in natural language processing applications. However, evaluation of these systems remains a challenge, especially in multilingual settings. In this paper, we propose L’AMBRE – a metric to evaluate the morphosyntactic well-formedness of text using its dependency parse and morphosyntactic rules of the language. We present a way to automatically extract various rules governing morphosyntax directly from dependency treebanks. To tackle the noisy outputs from text generation systems, we propose a simple methodology to train robust parsers. We show the effectiveness of our metric on the task of machine translation through a diachronic study of systems translating into morphologically-rich languages.
We introduce a new resource, AlloVera, which provides mappings from 218 allophones to phonemes for 14 languages. Phonemes are contrastive phonological units, and allophones are their various concrete realizations, which are predictable from phonological context. While phonemic representations are language specific, phonetic representations (stated in terms of (allo)phones) are much closer to a universal (language-independent) transcription. AlloVera allows the training of speech recognition models that output phonetic transcriptions in the International Phonetic Alphabet (IPA), regardless of the input language. We show that a “universal” allophone model, Allosaurus, built with AlloVera, outperforms “universal” phonemic models and language-specific models on a speech-transcription task. We explore the implications of this technology (and related technologies) for the documentation of endangered and minority languages. We further explore other applications for which AlloVera will be suitable as it grows, including phonological typology.
Creating a descriptive grammar of a language is an indispensable step for language documentation and preservation. However, at the same time it is a tedious, time-consuming task. In this paper, we take steps towards automating this process by devising an automated framework for extracting a first-pass grammatical specification from raw text in a concise, human- and machine-readable format. We focus on extracting rules describing agreement, a morphosyntactic phenomenon at the core of the grammars of many of the world’s languages. We apply our framework to all languages included in the Universal Dependencies project, with promising results. Using cross-lingual transfer, even with no expert annotations in the language of interest, our framework extracts a grammatical specification which is nearly equivalent to those created with large amounts of gold-standard annotated data. We confirm this finding with human expert evaluations of the rules that our framework produces, which have an average accuracy of 78%. We release an interface demonstrating the extracted rules at https://neulab.github.io/lase/
Traditionally, historical phonologists have relied on tedious manual derivations to calibrate the sequences of sound changes that shaped the phonological evolution of languages. However, humans are prone to errors, and cannot track thousands of parallel word derivations in any efficient manner. We propose to instead automatically derive each lexical item in parallel, and we demonstrate forward reconstruction as both a computational task with metrics to optimize, and as an empirical tool for inquiry. For this end we present DiaSim, a user-facing application that simulates “cascades” of diachronic developments over a language’s lexicon and provides diagnostics for “debugging” those cascades. We test our methodology on a Latin-to-French reflex prediction task, using a newly compiled dataset FLLex with 1368 paired Latin/French forms. We also present, FLLAPS, which maps 310 Latin reflexes through five stages until Modern French, derived from Pope (1934)’s sound tables. Our publicly available rule cascades include the baselines BaseCLEF and BaseCLEF*, representing the received view of Latin to French development, and DiaCLEF, build by incremental corrections to BaseCLEF aided by DiaSim’s diagnostics. DiaCLEF vastly outperforms the baselines, improving final accuracy on FLLex from 3.2%to 84.9%, and similar improvements across FLLAPS’ stages.
This paper presents the submission by the CMU-01 team to the SIGMORPHON 2019 task 2 of Morphological Analysis and Lemmatization in Context. This task requires us to produce the lemma and morpho-syntactic description of each token in a sequence, for 107 treebanks. We approach this task with a hierarchical neural conditional random field (CRF) model which predicts each coarse-grained feature (eg. POS, Case, etc.) independently. However, most treebanks are under-resourced, thus making it challenging to train deep neural models for them. Hence, we propose a multi-lingual transfer training regime where we transfer from multiple related languages that share similar typology.
Much work in Natural Language Processing (NLP) has been for resource-rich languages, making generalization to new, less-resourced languages challenging. We present two approaches for improving generalization to low-resourced languages by adapting continuous word representations using linguistically motivated subword units: phonemes, morphemes and graphemes. Our method requires neither parallel corpora nor bilingual dictionaries and provides a significant gain in performance over previous methods relying on these resources. We demonstrate the effectiveness of our approaches on Named Entity Recognition for four languages, namely Uyghur, Turkish, Bengali and Hindi, of which Uyghur and Bengali are low resource languages, and also perform experiments on Machine Translation. Exploiting subwords with transfer learning gives us a boost of +15.2 NER F1 for Uyghur and +9.7 F1 for Bengali. We also show improvements in the monolingual setting where we achieve (avg.) +3 F1 and (avg.) +1.35 BLEU.
We introduce the URIEL knowledge base for massively multilingual NLP and the lang2vec utility, which provides information-rich vector identifications of languages drawn from typological, geographical, and phylogenetic databases and normalized to have straightforward and consistent formats, naming, and semantics. The goal of URIEL and lang2vec is to enable multilingual NLP, especially on less-resourced languages and make possible types of experiments (especially but not exclusively related to NLP tasks) that are otherwise difficult or impossible due to the sparsity and incommensurability of the data sources. lang2vec vectors have been shown to reduce perplexity in multilingual language modeling, when compared to one-hot language identification vectors.
In Sorani Kurdish, one of the most useful orthographic features in named-entity recognition – capitalization – is absent, as the language’s Perso-Arabic script does not make a distinction between uppercase and lowercase letters. We describe a system for deriving an inferred capitalization value from closely related languages by phonological similarity, and illustrate the system using several related Western Iranian languages.
This paper describes our construction of named-entity recognition (NER) systems in two Western Iranian languages, Sorani Kurdish and Tajik, as a part of a pilot study of “Linguistic Rapid Response” to potential emergency humanitarian relief situations. In the absence of large annotated corpora, parallel corpora, treebanks, bilingual lexica, etc., we found the following to be effective: exploiting distributional regularities in monolingual data, projecting information across closely related languages, and utilizing human linguist judgments. We show promising results on both a four-month exercise in Sorani and a two-day exercise in Tajik, achieved with minimal annotation costs.
This paper contributes to a growing body of evidence that—when coupled with appropriate machine-learning techniques–linguistically motivated, information-rich representations can outperform one-hot encodings of linguistic data. In particular, we show that phonological features outperform character-based models. PanPhon is a database relating over 5,000 IPA segments to 21 subsegmental articulatory features. We show that this database boosts performance in various NER-related tasks. Phonologically aware, neural CRF models built on PanPhon features are able to perform better on monolingual Spanish and Turkish NER tasks that character-based models. They have also been shown to work well in transfer models (as between Uzbek and Turkish). PanPhon features also contribute measurably to Orthography-to-IPA conversion tasks.