Costas Mavromatis


2024

pdf
CoverICL: Selective Annotation for In-Context Learning via Active Graph Coverage
Costas Mavromatis | Balasubramaniam Srinivasan | Zhengyuan Shen | Jiani Zhang | Huzefa Rangwala | Christos Faloutsos | George Karypis
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In-context learning (ICL) adapts Large Language Models (LLMs) to new tasks, without requiring any parameter updates, but few annotated examples as input. In this work, we investigate selective annotation for ICL, where there is a limited budget for annotating examples, similar to low-budget active learning (AL). Although uncertainty-based selection is unreliable with few annotated data, we present CoverICL, an adaptive graph-based selection algorithm, that effectively incorporates uncertainty sampling into selective annotation for ICL. First, CoverICL builds a nearest-neighbor graph based on the semantic similarity between candidate ICL examples. Then, CoverICL employs uncertainty estimation by the LLM to identify hard examples for the task. Selective annotation is performed over the active graph of the hard examples, adapting the process to the particular LLM used and the task tackled. CoverICL selects the most representative examples by solving a Maximum Coverage problem, approximating diversity-based sampling. Extensive experiments on ten datasets and seven LLMs show that, by incorporating uncertainty via coverage on the active graph, CoverICL (1) outperforms existing AL methods for ICL by 2–4.6% accuracy points, (2) is up to 2x more budget-efficient than SOTA methods for low-budget AL, and (3) generalizes better across tasks compared to non-graph alternatives.

2022

pdf
ReaRev: Adaptive Reasoning for Question Answering over Knowledge Graphs
Costas Mavromatis | George Karypis
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Graph Question Answering (KGQA) involves retrieving entities as answers from a Knowledge Graph (KG) using natural language queries. The challenge is to learn to reason over question-relevant KG facts that traverse KG entities and lead to the question answers. To facilitate reasoning, the question is decoded into instructions, which are dense question representations used to guide the KG traversals. However, if the derived instructions do not exactly match the underlying KG information, they may lead to reasoning under irrelevant context.Our method, termed ReaRev, introduces a new way to KGQA reasoning with respectto both instruction decoding and execution. To improve instruction decoding, we perform reasoning in an adaptive manner, where KG-aware information is used to iteratively update the initial instructions. To improve instruction execution, we emulate breadth-first search (BFS) with graph neural networks (GNNs). The BFS strategy treats the instructions as a set and allows our method to decide on their execution order on the fly. Experimental results on three KGQA benchmarks demonstrate the ReaRev’s effectiveness compared with previous state-of-the-art, especially when the KG is incomplete or when we tackle complex questions. Our code is publicly available at https://github.com/cmavro/ReaRev_KGQA.