Changye Li


2024

pdf
Too Big to Fail: Larger Language Models are Disproportionately Resilient to Induction of Dementia-Related Linguistic Anomalies
Changye Li | Zhecheng Sheng | Trevor Cohen | Serguei Pakhomov
Findings of the Association for Computational Linguistics: ACL 2024

As artificial neural networks grow in complexity, understanding their inner workings becomes increasingly challenging, which is particularly important in healthcare applications. The intrinsic evaluation metrics of autoregressive neural language models (NLMs), perplexity (PPL), can reflect how “surprised” an NLM model is at novel input. PPL has been widely used to understand the behavior of NLMs. Previous findings show that changes in PPL when masking attention layers in pre-trained transformer-based NLMs reflect linguistic anomalies associated with Alzheimer’s disease dementia. Building upon this, we explore a novel bidirectional attention head ablation method that exhibits properties attributed to the concepts of cognitive and brain reserve in human brain studies, which postulate that people with more neurons in the brain and more efficient processing are more resilient to neurodegeneration. Our results show that larger GPT-2 models require a disproportionately larger share of attention heads to be masked/ablated to display degradation of similar magnitude to masking in smaller models. These results suggest that the attention mechanism in transformer models may present an analogue to the notions of cognitive and brain reserve and could potentially be used to model certain aspects of the progression of neurodegenerative disorders and aging.

2022

pdf
GPT-D: Inducing Dementia-related Linguistic Anomalies by Deliberate Degradation of Artificial Neural Language Models
Changye Li | David Knopman | Weizhe Xu | Trevor Cohen | Serguei Pakhomov
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Deep learning (DL) techniques involving fine-tuning large numbers of model parameters have delivered impressive performance on the task of discriminating between language produced by cognitively healthy individuals, and those with Alzheimer’s disease (AD). However, questions remain about their ability to generalize beyond the small reference sets that are publicly available for research. As an alternative to fitting model parameters directly, we propose a novel method by which a Transformer DL model (GPT-2) pre-trained on general English text is paired with an artificially degraded version of itself (GPT-D), to compute the ratio between these two models’ perplexities on language from cognitively healthy and impaired individuals. This technique approaches state-of-the-art performance on text data from a widely used “Cookie Theft” picture description task, and unlike established alternatives also generalizes well to spontaneous conversations. Furthermore, GPT-D generates text with characteristics known to be associated with AD, demonstrating the induction of dementia-related linguistic anomalies. Our study is a step toward better understanding of the relationships between the inner workings of generative neural language models, the language that they produce, and the deleterious effects of dementia on human speech and language characteristics.