This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Named Entity Recognition (NER) in Few-Shot setting is imperative for entity tagging in low resource domains. Existing approaches only learn class-specific semantic features and intermediate representations from source domains. This affects generalizability to unseen target domains, resulting in suboptimal performances. To this end, we present CONTaiNER, a novel contrastive learning technique that optimizes the inter-token distribution distance for Few-Shot NER. Instead of optimizing class-specific attributes, CONTaiNER optimizes a generalized objective of differentiating between token categories based on their Gaussian-distributed embeddings. This effectively alleviates overfitting issues originating from training domains. Our experiments in several traditional test domains (OntoNotes, CoNLL’03, WNUT ‘17, GUM) and a new large scale Few-Shot NER dataset (Few-NERD) demonstrate that on average, CONTaiNER outperforms previous methods by 3%-13% absolute F1 points while showing consistent performance trends, even in challenging scenarios where previous approaches could not achieve appreciable performance.
We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference. Our system uses a supervised NER model trained on the source domain, as a feature extractor. Across several test domains, we show that a nearest neighbor classifier in this feature-space is far more effective than the standard meta-learning approaches. We further propose a cheap but effective method to capture the label dependencies between entity tags without expensive CRF training. We show that our method of combining structured decoding with nearest neighbor learning achieves state-of-the-art performance on standard few-shot NER evaluation tasks, improving F1 scores by 6% to 16% absolute points over prior meta-learning based systems.
We propose structured encoding as a novel approach to learning representations for relations and events in neural structured prediction. Our approach explicitly leverages the structure of available relation and event metadata to generate these representations, which are parameterized by both the attribute structure of the metadata as well as the learned representation of the arguments of the relations and events. We consider affine, biaffine, and recurrent operators for building hierarchical representations and modelling underlying features. We apply our approach to the second-order structured prediction task studied in the 2016/2017 Belief and Sentiment analysis evaluations (BeSt): given a document and its entities, relations, and events (including metadata and mentions), determine the sentiment of each entity towards every relation and event in the document. Without task-specific knowledge sources or domain engineering, we significantly improve over systems and baselines that neglect the available metadata or its hierarchical structure. We observe across-the-board improvements on the BeSt 2016/2017 sentiment analysis task of at least 2.3 (absolute) and 10.6% (relative) F-measure over the previous state-of-the-art.
We propose a novel recurrent neural network-based approach to simultaneously handle nested named entity recognition and nested entity mention detection. The model learns a hypergraph representation for nested entities using features extracted from a recurrent neural network. In evaluations on three standard data sets, we show that our approach significantly outperforms existing state-of-the-art methods, which are feature-based. The approach is also efficient: it operates linearly in the number of tokens and the number of possible output labels at any token. Finally, we present an extension of our model that jointly learns the head of each entity mention.
We present a novel attention-based recurrent neural network for joint extraction of entity mentions and relations. We show that attention along with long short term memory (LSTM) network can extract semantic relations between entity mentions without having access to dependency trees. Experiments on Automatic Content Extraction (ACE) corpora show that our model significantly outperforms feature-based joint model by Li and Ji (2014). We also compare our model with an end-to-end tree-based LSTM model (SPTree) by Miwa and Bansal (2016) and show that our model performs within 1% on entity mentions and 2% on relations. Our fine-grained analysis also shows that our model performs significantly better on Agent-Artifact relations, while SPTree performs better on Physical and Part-Whole relations.