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Introduction

The British Government sent Captain Arthur Phillip to establish a colony in New South Wales
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Download
• Source Code
• Models
are freely available

https://github.com/riedlma/sequence_tagging

Exp. 1: Which method 
performs best on the 

contemporary datasets?

Exp. 3: Can Transfer 
Learning help?

Datasets

• Contemporary German
• Conll 2003: Newspaper (220,000 Token)
• GermEval 2014: Wikipedia (450,000)

• Historic Texts
• Friedrich Teßmann Library (LFT): Newspaper (87,000 Token)
• Austrian National Library (ONB): Newspaper (35,000 Token)

Methods

• CRF-based methods:
• StanfordNER [4]: CRF + standard features
• GermaNER [5]: CRF + distributional semantics, gazetteers, …

• Recurrent Neural Network:
• BiLSTM + CRF [6] using character- and word embeddings using FastText

• Wikipedia (contemporary encyclopedia)
• Europeana (historic newspaper from 1703 to 1899)

Conclusion & Future

Contemporary corpora: minor improvements
GermEval: 82.93 à 82.93
CoNLL: 82.99 à 84.73

Historic corpora: major improvements
LFT: 69.62 à 73.44
ONB:  70.46 à 78.56

Same setup as Exp. 2 but with transfer learning and 
considering only the BiLSTM-based method

LSTM + CRF based models outperform traditional CRF if:
• lots of training data is available
• if transfer learning is used
Usage of character- and substring-based embeddings 
(FastText) solves OOV issues

Future
• Learn multilingual models
• Analyze features learned by LSTM

• Generalizing to different domains is hard
• NER on small historical domains is even harder
• CRF outperforms BiLSTM on small ONB dataset 
• CRF performs similar to BiLSTM on LFT

Task: Named Entity Recognition (NER)
Recognition of proper names, e.g. locations, persons, organizations etc.

Research Questions
• How can we build state-of-the-art performing German NER systems trained on …

… big data (contemporary data)?
… small data (historic data)?

• What are the performance differences between: 
• „Traditional“ CRF: established, fast, feature engineering, work with few amounts of 

training data
• BiLSTM+CRF: representation learning, no feature engineering needed, long 

distance dependencies, requires large amounts of training data
è obtain best practice for building NER systems Exp. 2: How is the 

performance within 
and across corpora?2
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BiLSTM outperforms CRFs due to higher recall


