

Learning to Ask Questions in Opendomain Conversational Systems with Typed Decoders

Yansen Wang¹, Chenyi Liu¹, Minlie Huang¹, Liqiang Nie²

¹Tsinghua University, China

²Shandong University, China

aihuang@tsinghua.edu.cn

http://coai.cs.tsinghua.edu.cn/hml

1

Outline

- Background
- Problem & task definition
- Motivation
- Related works
- Method
- Experiments
- Summary

Good Examples from DL Models

User: 时间啊,你这把杀猪刀。。。 Time is a killer... Machine: 我是被杀的 I am the one who was killed.

User:最幸福的人不是拿到了最好的东西,而是学会去珍惜手 上已经拥有的人。

The happiest person is not the one who gets the best thing, instead who cherishes what she/he already has. Machine: 是的,所以我也要珍惜自己的幸福

Agree, I will cherish my happiness too.

User: 怕孤獨,又捨不下自己的小自由。

Afraid to be lonely, but wont' give up my little freedom.

3Machine: 我想去流浪,但没有人陪我去。

want to wander, but no one accompany me.

Bad Examples are More!

User: 其实,他没有那么爱你。 Ohh, he does not love you that much. Machine: 幸福的一天开始了。 <u>A happy day starts.</u>

User: 回北京了! 很冷很高兴!

Back to Beijing now. So cold so happy! Machine: 什么时候来北京啊?

When will you come to Beijing?

User: 会做饭的男人是最性感的男人。 Mans who can cook are the most sexy. Machine: 会做饭的男人是最性感的<u>女人</u>

Mans who can cook are the most sexy women.

Bad Examples are More!

Xiaoice by MSRA

语义理解的问题 Semantic User: 你象愛人? How large is your house? 小冰: 这么快就要爆年龄了? So soon to reveal my age?

User: 你是素食主义者还是吃肉啊? Are you vegan or meatatarian? 小冰: 怎么减肥 How can I lose weight?

上下文理解的问题 Context issue

User: 早饭不好吃 小冰: 那明早一起吃 User: 行,你推荐的应该不错 小冰: 是吗? User: 哈哈,我相信你

5 小冰: 呃呃

个性身份一致性问题 Inconsistency in personality

User: 你几岁了? 小冰: 我啊。。。反正是九零后! User: 那你是几几年出生的? 小冰: 错,75年阳历一月出生。 User: 你是九零后,怎么会75年出生? 小冰: 生在九零后,在深圳只能被当做八 零后了。

Bad Examples (AI Ethics)

Picture from Prof. Frank Rudzicz, University of Toronto

Challenges in Chatting Machines

More Intelligent Chatting Machines

- Behaving more **interactively**:
 - Emotional Chatting Machine (AAAI 2018)
 - Proactive Behavior by Asking Good Questions (ACL 2018)
 - Controlling sentence function (ACL 2018)
- Behaving more <u>consistently</u>:
 - Explicit Personality Assignment (IJCAI-ECAI 2018)
- Behaving more **intelligently** with **semantics**:
 - Better Understanding and Generation Using Commonsense Knowledge (IJCAI-ECAI 2018 Distinguished Paper)

References:

- 1 Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory. **AAAI 2018**.
- Assigning personality/identity to a chatting machine for coherent conversation generation. IJCAI-ECAI 2018.
- ③ Commonsense Knowledge Aware Conversation Generation with Graph Attention. IJCAI-ECAI 2018.
- (4) Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders. ACL 2018.
- (5) Generating Informative Responses with Controlled Sentence Function. ACL 2018.

Problem & Task Definition

• How to ask **good** questions in open-domain conversational systems?

用户: 我昨天晚上去聚餐了

Post: I went to dinner yesterday night.

Problem & Task Definition

• Is it an Italian restaurant?

10

Problem & Task Definition

Scene: Dining at a restaurant

Asking good questions requires scene understanding

Motivation

- Responding + asking (Li et al., 2016)
 - More interactive chatting machines
- Key proactive behaviors (Yu et al., 2016)
 - Less dialogue breakdowns
- Asking good questions is indication of understanding
 - As in course teaching
 - Scene understanding in this paper

Related Work

- Traditional question generation (Andrenucci and Sneiders, 2005; Popowich and Winne, 2013)
- Syntactic Transformation
- <u>Given context</u>: As recently as 12,500 years ago, the Earth was in the midst of a glacial age referred to as the Last Ice Age.
- <u>Generated question</u>: How would you describe the Last Ice Age?

Related Work

 A few neural models for question generation in reading comprehension (Du et al., 2017; Zhou et al., 2017; Yuan et al., 2017)

Given

- <u>Passage</u>: ...Oxygen is used in cellular respiration and released by *photosynthesis*, which uses the energy of sunlight to produce oxygen from water.
 - •••
- <u>Answer</u>: photosynthesis
- <u>Generated question</u>: What life process produces oxygen in the presence of light?

Related Work

- Visual question generation for eliciting interactions (Mostafazadeh, 2016): beyond image captioning
- <u>Given image:</u>

• Generated question: What happened?

Difference to Existing Works

- Different goals:
 - To enhance **interactiveness and persistence** of human-machine interactions
 - Information seeking in read comprehension
- Various patterns: YES-NO, WH-, HOW-ABOUT, etc.
- **Topic transition:** from topics in post to topics in response
 - Dinner→food; fat → climbing; sports → soccer

Key Observations

- A good question is a natural **composition** of
 - Interrogatives for using various questioning patterns
 - Topic words for addressing interesting yet novel topics
 - Ordinary words for playing grammar or syntacticant plays

User: I am too <u>fat</u> ...

Machine: How about <u>climbing</u> this weekend?

Example 2: User: Last night, I stayed in <u>KTV</u> with friends. Machine: **Are** you happy with your <u>singing</u>?

Hard/Soft Typed Decoders (HTD/STD)

Encoder-decoder Framework

$$X = x_1 x_2 \cdots x_m$$
$$Y = y_1 y_2 \cdots y_n$$
$$Y^* = \underset{Y}{\operatorname{argmax}} \mathcal{P}(Y|X).$$

$$\mathcal{P}(y_t | y_{< t}, X) = \mathbf{MLP}(\mathbf{s}_t, \boldsymbol{e}(y_{t-1}), \mathbf{c}_t),$$

$$\mathbf{s}_t = \mathbf{GRU}(\mathbf{s}_{t-1}, \boldsymbol{e}(y_{t-1}), \mathbf{c}_t),$$

$$\mathbf{c}_t = \sum_{i=1}^T \alpha_{t,i} \mathbf{h}_i$$

$$\mathbf{h}_t = \mathbf{GRU}(\mathbf{h}_{t-1}, \boldsymbol{e}(x_t)),$$

Soft Typed Decoder(STD)

Soft Typed Decoder(STD)

- Applying multiple type-specific generation distributions over the same vocabulary
- Each word has a latent distribution among the set
 type(w)∈{interrogative, topic word, ordinary

word}

$$\mathcal{P}(y_t | y_{< t}, X) = \sum_{i=1}^k \mathcal{P}(y_t | ty_t = c_i, y_{< t}, X) \cdot \mathcal{P}(ty_t = c_i | y_{< t}, X),$$

$$\underbrace{\mathsf{type-specific}_{\substack{\text{generation} \\ \text{distribution}}}}_{\text{distribution}} \underbrace{\mathsf{word}_{ype}_{\substack{\text{distribution} \\ \text{distribution}}}}_{\text{word}_{ype}}$$

Soft Typed Decoder(STD)

• Estimate the **type distribution** of each word:

 $\mathcal{P}(ty_t | y_{< t}, X) = softmax(\mathbf{W}_0 \mathbf{s}_t + \mathbf{b}_0),$

 Estimate the type-specific generation distribution of each word:

$$\mathcal{P}(y_t | ty_t = c_i | y_{< t}, X) = softmax(\mathbf{W}_{c_i} \mathbf{s}_t + \mathbf{b}_{c_i}),$$

• The final generation distribution is a **mixture** of the three type-specific generation distribution. $_{k}$ $\mathcal{P}(u_{t}|u_{< t}, X) = \sum \mathcal{P}(u_{t}|tu_{t} = c_{i}, u_{< t}, X) \cdot \mathcal{P}(tu_{t} = c_{i}|u_{< t}, X)$

$$\mathcal{P}(y_t | y_{< t}, X) = \sum_{i=1}^{\infty} \mathcal{P}(y_t | ty_t = c_i, y_{< t}, X) \cdot \mathcal{P}(ty_t = c_i | y_{< t}, X),$$

- In soft typed decoder, word types are modeled in a latent, implicit way
- Can we control the word type more explicitly in generation?
 - Stronger control

- Estimate the generation probability distril $\mathcal{P}(y_t|y_{< t}, X) = softmax(\mathbf{W}_0\mathbf{s}_t + \mathbf{b}_0).$
- Estimate the type probability distribution $\mathcal{P}(ty_t|y_{< t}, X) = softmax(\mathbf{W}_1\mathbf{s}_t + \mathbf{b}_1).$
- Modulate words' probability by its corresponding type probability:

 $\mathcal{P}'(y_t|y_{< t}, X) = \mathcal{P}(y_t|y_{< t}, X) \cdot \boldsymbol{m}(y_t)$

 $m(y_t)$ is related to the type probability of word y_t

Generation distr.Type distr.Modulated distr.what 0.3 $T_{interrogative}$ 0.7what0.8food0.2X T_{topic} 0.1 \rightarrow food0.050.050.10.10.10.10.1

- Afgmax ?. (firstly select large type probisition sand le word from generation dist.)
 - •....Indifferentiable
 - Serious grammar errors if word type is wrongly selected

- Gumble-Softmax:
 - A differentiable surrogate to the **argmax** function.

$$\boldsymbol{m}(y_t) = \mathbf{GS}(\mathcal{P}(ty_t = c(y_t) | y_{< t}, X))$$
$$\mathbf{GS}(\pi_i) = \frac{e^{(log(\pi_i) + g_i)/\tau}}{\sum_{j=1}^k e^{(log(\pi_j) + g_j)/\tau}},$$

,

- In HTD, the types of words are given in advance.
 - How to determine the word types?

- Interrogatives:
 - A list of about 20 interrogatives are given by hand.
- Topic words:
 - Training: all nouns and verbs in response are topic words.
 - Test: 20 words are predicted by parameters $PMI(w_x, w_y) = log \frac{p(w_x, w_y)}{p_1(w_x) * p_2(w_y)},$

$$Rel(k_i, X) = \sum_{w_x \in X} e^{PMI(w_x, k_i)},$$

- Ordinary words:
 - All other words, for grammar or syntactic roles

Loss Function

- Cross entropy
- Supervisions are on both final probability and the type distribution:

$$\Phi_1 = \sum_t -\log \mathcal{P}(y_t = \tilde{y}_t | y_{< t}, X),$$

$$\Phi_2 = \sum_t -\log \mathcal{P}(ty_t = \tilde{t}\tilde{y}_t | y_{< t}, X),$$

$$\Phi = \Phi_1 + \lambda \Phi_2,$$

• λ is a term to balance the two kinds of losses.

Experiments

Dataset

- PMI estimation: calculated from 9 million postresponse pairs from Weibo.
- Dialogue Question Generation Dataset(DQG), about 491,000 pairs:
 - Distilled questioning responses using about 20 hand-draft templates
 - Removed universal questions
 - Available at <u>http://coai.cs.tsinghua.edu.cn/</u> <u>hml/dataset/</u>

Baselines

- Seq2Seq: A simple encoder-decoder model (Luong et al., 2015)
- Mechanism-Aware (MA): Multiple responding mechanisms represented by real-valued vectors (Zhou et al., 2017)
- Topic-Aware (TA): Topic Aware Model by incorporating topic words (Xing et al., 2017)
- Elastic Responding Machine (ERM): Enhanced MA using reinforcement learning (Zhou et al., 2018)

Automatic Evaluation

Model	Perplexity	Distinct-1	Distinct-2	TRR
Seq2Seq	63.71	0.0573	0.0836	6.6%
MA	54.26	0.0576	0.0644	4.5%
TA	58.89	0.1292	0.1781	8.7%
ERM	67.62	0.0355	0.0710	4.5%
STD	56.77	0.1325	0.2509	12.1%
HTD	56.10	0.1875	0.3576	43.6%

Table 1: Results of automatic evaluation.

Evaluation metrics

- Perplexity & Distinct
- TRR (Topical Response Ratio):
 - 20 topic words are predicted with PMI for each post.
 - TRR is the proportion of the responses containing at least one topic word.

- Pair-wise comparison: win, loss, tie
- Three evaluation criteria:
 - **Appropriateness:** whether a question is reasonable in logic and content, and has key info.
 - Richness: containing topic words or not
 - Willingness to respond to a generated question

Manual Evaluation(Pairwise)

Models	Appropriateness		Richness			Willingness			
	Win (%)	Lose (%)	Tie (%)	Win (%)	Lose (%)	Tie (%)	Win (%)	Lose (%)	Tie (%)
STD vs. Seq2Seq	42.0	38.6	19.4	37.2**	15.2	47.6	45.4*	38.6	16.0
STD vs. MA	39.6*	31.2	29.2	32.6**	16.8	50.6	49.4**	27.0	23.6
STD vs. TA	42.2	40.0	17.8	49.0**	5.4	45.6	47.6^{*}	40.2	12.2
STD vs. ERM	43.4*	34.4	22.2	60.6**	13.2	26.2	43.2*	36.8	20.0
HTD vs. Seq2Seq	50.6**	30.6	18.8	46.0**	10.2	43.8	58.4**	33.2	8.4
HTD vs. MA	54.8**	24.4	20.8	45.0**	17.0	38.0	67.0**	18.0	15.0
HTD vs. TA	52.0**	38.2	9.8	55.0**	5.4	39.6	62.6**	31.0	6.4
HTD vs. ERM	64.8**	23.2	12.0	72.2**	8.4	19.4	56.6**	36.6	6.8
HTD vs. STD	52.0**	33.0	15.0	38.0**	26.2	35.8	61.8**	30.6	7.6

Table 2: Annotation results. Win for "A vs. B" means A is better than B. Significance tests with Z-test were conducted. Values marked with * means *p*-value < 0.05, and ** for *p*-value < 0.01.

Score: the probability of win/lose/tie of our model vs. baseline

Examples

Post:	我们昨天去唱歌了
	We went to karaoke yesterday.
Seq2Seq:	什么时候?
	When?
MA:	你怎么知道我是在问
	How did you know I am questioning you?
TA:	什么?
	What?
ERM:	什么情况?
	What happened ?
STD:	去哪里唱歌?
	Where did you sing karaoke?
HTD:	你们几个人唱歌?
	How many people were <u>singing</u> with you?

Table 4: Generated question examples. Interrogative words are bolded and topic words underlined.

More Examples

• Different questioning patterns and topic

Post-3:	我在体育中心上班。	
	I work at the sports center.	
Human:	你每天从家过去要多久?	
	How long does it take you to go there from home?	
STD:	你是什么部门的啊?	
	Which department are you from?	Work→Department
HTD:	那你是体育学院的学生吗?	Sports \rightarrow College
	Are you a student from the College of Physical Education?	-1 - 5
Post-4:	今天的寿司真好吃。	
	The sushi today is so delicious!	
Human:	我记得你不喜欢吃日式料理的不是吗?	
	I remember you didn't like eating Japanese food, did you?	
STD:	你什么时候来无锡,我请你。	Suchi→Treat
	When will you come to Wuxi? It is my treat.	Suchi→Trv
HTD:	是吗?改天尝尝!	
	Really? I will try sometime!	

Visualization

• Type prediction at each decoding position

Summary

- Stronger control in language generation via word semantic type
- What's new
 - A new task: question generation in open-domain dialogue systems
 - A new dataset: Dialog Question Generation Dataset
 - A new model with two variants: possibly applicable to other generation tasks if word semantic types can be easily identified
- The compatibility issue between topic control and other word type control is NOT well solved
 - Bad grammar or not reasonable responses

Thanks for your attentions

- Dataset: <u>http://coai.cs.tsinghua.edu.cn/hml/dataset/</u>
- Codes: <u>https://github.com/victorywys/</u> <u>Learning2Ask_TypedDecoder</u>
- Homepage: <u>http://coai.cs.tsinghua.edu.cn/hml</u>
- Recruiting post-doctors!

Error Analysis

- Main error types
 - No topic words (NoT) in a response
 - Wrong topics (WrT) where topic words are irrelevant
 - **Type generation error (TGE)** where a wrong word type is predicted

Error Type	NoT	WrT	TGE	Others
STD	34%	34%	29%	3%
HTD	29%	39%	29%	3%

Table 6: Error type distribution.

Error Analysis: Examples

	Post-1:	今天好开心啊!			
No topic		I am so happy today!			
words	STD:	你怎么知道?			
w01 U3		How do you know ?			
	Post-2:	海报非常棒,期待若曦与我们男人的首			
		度合作。			
		The poster is great and we look forward to ou			
wrong topics		first cooperation with Ruoxi.			
	HTD:	你海报怎么样啊?			
		How about your poster ?			
	Post-3:	又生病啦?吃点药就好了。			
		Got sick again? Just take some medicine and			
Tuno		you'll be fine soon.			
iype	STD:	我也不知道怎么回事。			
generation error		I don't know what happened.			
	HTD:	<u>肠胃痛了,上火</u> 吗?			
	l	Stomach aching, ulcer ?			

