What you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic properties

Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, Marco Baroni Facebook Al Research Université Le Mans (LIUM)

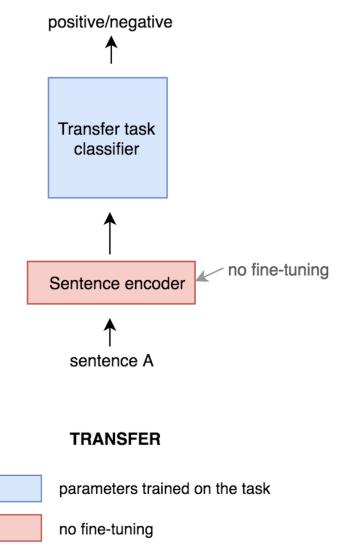
ACL 2018

The quest for universal sentence embeddings

	Words Embed.	Sentences Embed.		
Strong baselines	FastText	Bag-of-Words		
State-of the-art	ELMo	Unsupervised Vess unannotated or veakly-annotated datasetSkip-Thoughts Duick-Thoughts DiscSent Google's dialog input-outputUses annotated datasetBegge's dialog 		

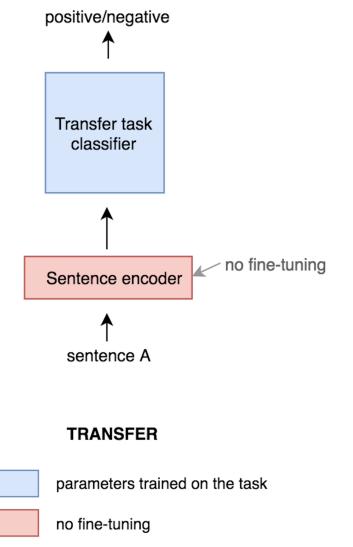
*Courtesy: Thomas Wolf blogpost, Hugging Face

Now-famous Ray Mooney's quote


You can't cram the meaning of a single \$&!#* sentence into a single \$!#&* vector!

- While not capturing meaning, we might still be able to build useful transferable sentence features
- But what can we actually cram into these vectors?

Professor Raymond J. Mooney


The evaluation of universal sentence embeddings

- Transfer learning on many other tasks
- Learn a classifier on top of pretrained sentence embeddings for transfer tasks
- SentEval downstream tasks:
 - Sentiment/topic classification
 - Natural Language Inference
 - Semantic Textual Similarity

The evaluation of universal sentence embeddings

- Downstream tasks are complex
- Hard to infer what information the embeddings really capture
- "Probing tasks" to the rescue!
 - designed for inference
 - evaluate simple isolated properties

Probing tasks and downstream tasks

Probing tasks are simpler and focused on a single property!

Subject Number probing task Natural Language Inference downstream task

Premise: A lot of people walking outside a row of shops with an older man with his Sentence: The hobbits waited patient Mands in his pocket is closer to the camera.

Label: Plural (NNS)

Hypothesis: A lot of dogs barking outside a row of shops with a cat teasing them .

Label: contradiction

Our contributions

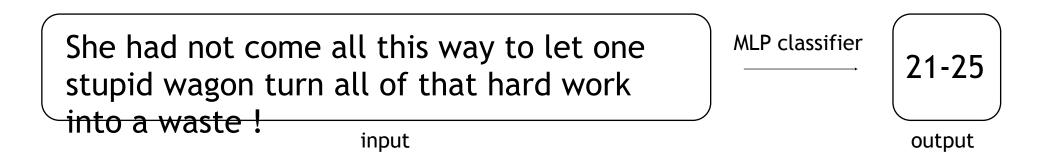
An extensive analysis of sentence embeddings using probing tasks

- We vary the architecture of the encoder (3) and the training task (7)
- We open-source 10 horse-free classification probing tasks.
- Each task being designed to probe a single linguistic property

Shi et al. (EMNLP 2016) - Does string-based neural MT learn source syntax? Adi et al. (ICLR 2017) - Fine-grained analysis of sentence embeddings using auxiliary prediction tasks

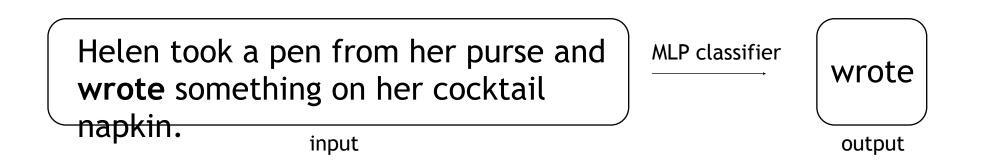
Probing tasks: understanding sentence embeddings content

Probing tasks What they have in common:


- Artificially-created datasets all framed as classification
- ... but based on natural sentences extracted from the TBC (5-to-28 words)
- 100k training set, 10k valid, 10k test, with balanced classes
- Carefully removed obvious biases (words highly predictive of a class, etc)

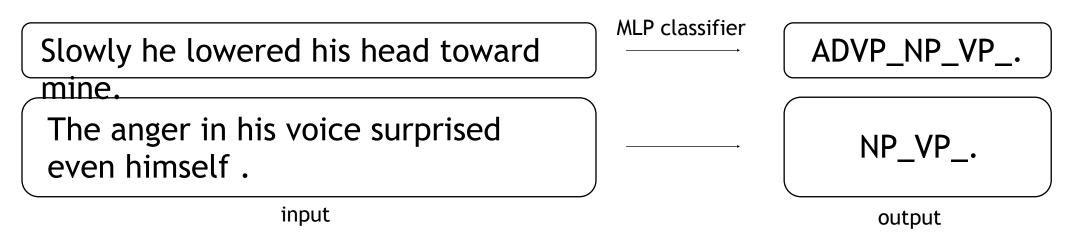
Probing tasks

Grouped in three categories:


- Surface information
- Syntactic information
- Semantic information

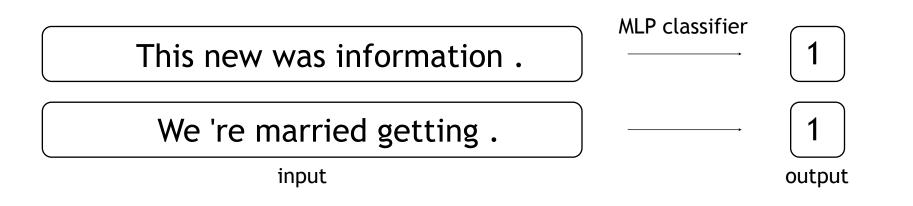
Probing tasks (1/10) – Sentence Length

- Goal: Predict the length range of the input sentence (6 bins)
- <u>Question</u>: Do embeddings preserve information about sentence length?


Probing tasks (2/10) – Word Content

- <u>Goal</u>: 1000 output words. Which one (only one) belongs to the sentence?
- <u>Question</u>: Do embeddings preserve information about words?

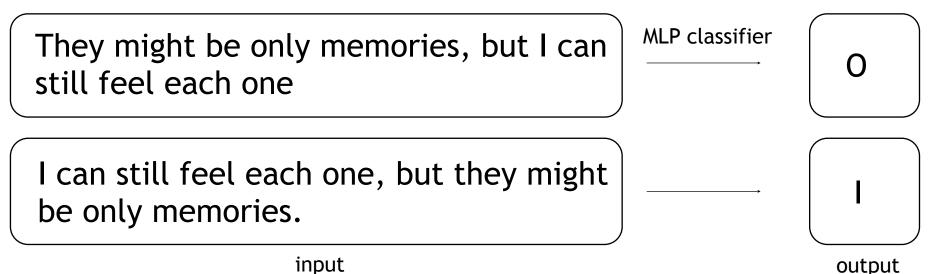
Adi et al. (ICLR 2017) - Fine-grained analysis of sentence embeddings using auxiliary prediction tasks
Surface information


Probing tasks (3/10) – Top Constituents

- <u>Goal</u>: Predict top-constituents of parse-tree (20 classes)
- <u>Note</u>: 19 most common top-constituent sequences + 1 category for others
- <u>Question</u>: Can we extract grammatical information from the embeddings? Shi et al. (EMNLP 2016) - Does string-based neural MT learn source syntax?

Syntactic information

Probing tasks (4/10) – Bigram Shift



- <u>Goal</u>: Predict whether a bigram has been shifted or not.
- <u>Question</u>: Are embeddings sensible to word order?

Probing tasks – 5 more

- 5/10: Tree Depth (depth of the parse tree)
- 6/10: Tense prediction (main clause tense, past or present)
- 7-8/10: **Object/Subject Number** (singular or plural)
- 9/10: Semantic Odd Man Out (noun/verb replaced by one with same POS)

Probing tasks (10/10) – Coordination Inversion

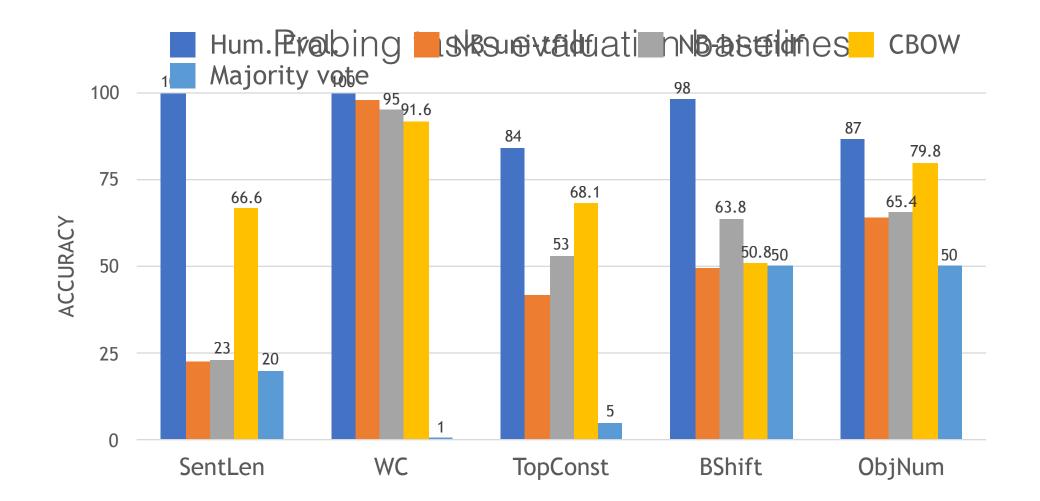
- <u>Goal</u>: Sentences made of two coordinate clauses: inverted (I) or not (O)?
- <u>Note</u>: human evaluation: 85%
- <u>Question</u>: Can extract sentence-model information?

Experiments and results

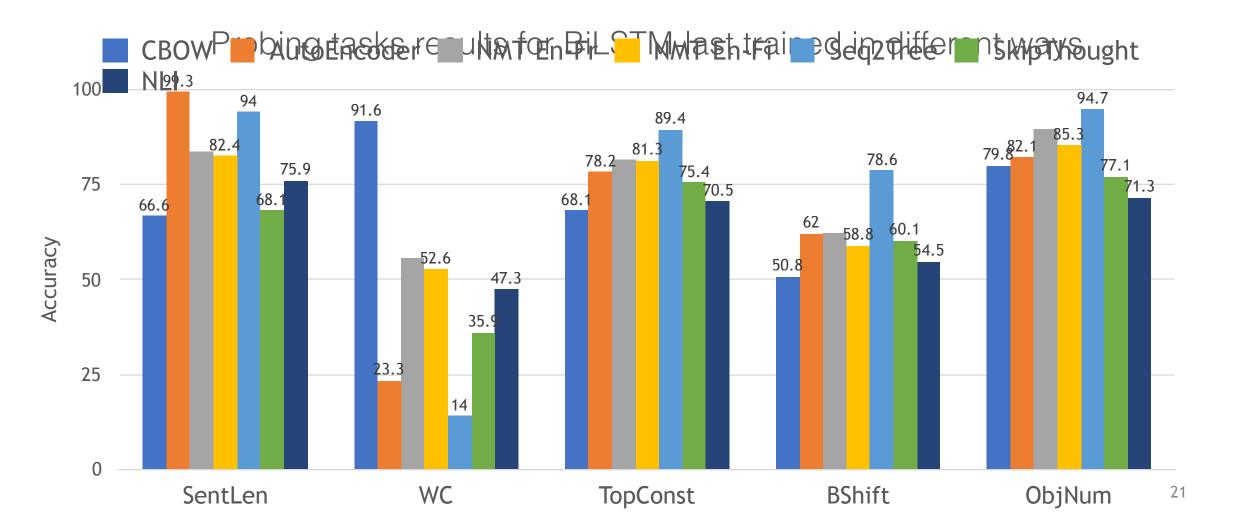
Experiments

We analyse almost 30 encoders trained in different ways:

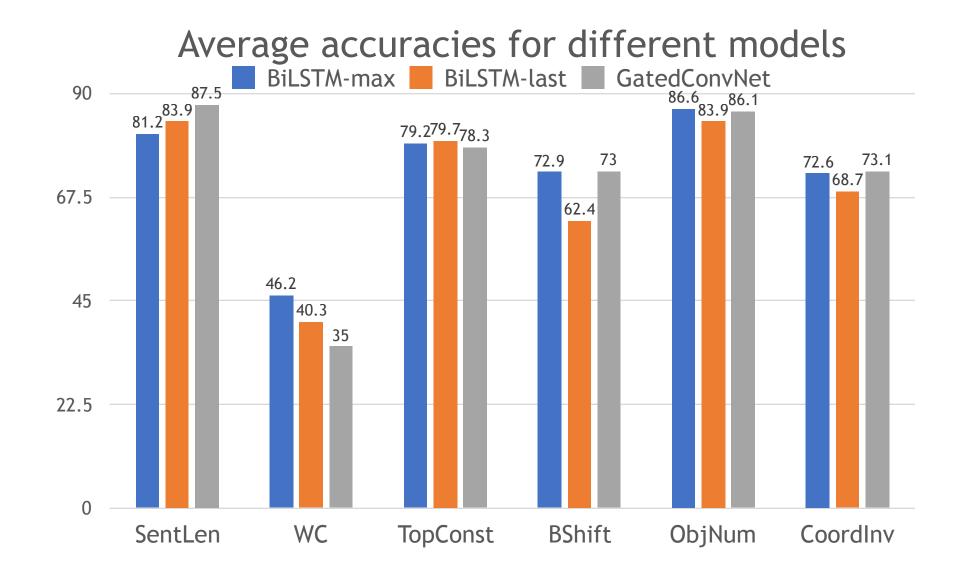
- Our baselines:
 - Human evaluation, Length (1-dim vector)
 - NB-uni and NB-uni/bi with TF-IDF
 - CBOW (average of word embeddings)
- Our 3 architectures:
 - Three encoders: BiLSTM-last/max, and Gated ConvNet
- Our 7 training tasks:
 - Auto-encoding, Seq2Tree, SkipThought, NLI
 - Seq2seq NMT without attention En-Fr, En-De, En-Fi


Experiments – training tasks

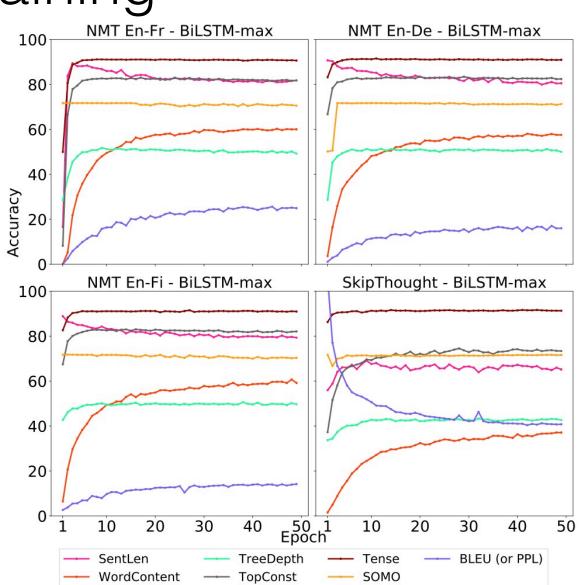
task	source	target		
AutoEncoder	I myself was out on an island in the	I myself was out on an island in the Swedish		
	Swedish archipelago, at Sandhamn.	archipelago, at Sand@ham@n.		
NMT En-Fr	I myself was out on an island in the	Je me trouvais ce jour là sur une île de l'archipel sué-		
	Swedish archipelago, at Sandhamn.	dois, à Sand@ham@n.		
NMT En-De	We really need to up our particular con-	Wir müssen wirklich unsere spezielle Hilfs@ leistung		
	tribution in that regard.	in dieser Hinsicht aufstocken.		
NMT En-Fi	It is too early to see one system as a uni-	Nyt on liian aikaista nostaa yksi järjestelmä jal@		
	versal panacea and dismiss another.	usta@ lle ja antaa jollekin toiselle huono arvo@ sana .		
SkipThought	the old somi was gone and he was a	the new sami didn 't mind standing barefoot in dirty		
	the old sami was gone, and he was a different person new	white , sans ra@ y-@ bans and without beautiful		
	different person now .	women following his every move .		
Seq2Tree	Dikova is a village in Sri Lanka	$(_{ROOT} (_{S} (_{NP} NNP)_{NP} (_{VP} VBZ (_{NP} (_{NP} DT NN)_{NP})_{NP})$		
	Dikoya is a village in Sri Lanka .	$(_{PP} IN (_{NP} NNP NNP)_{NP})_{PP})_{NP})_{VP} .)_{S})_{ROOT}$		


Source and target examples for seq2seq training tasks

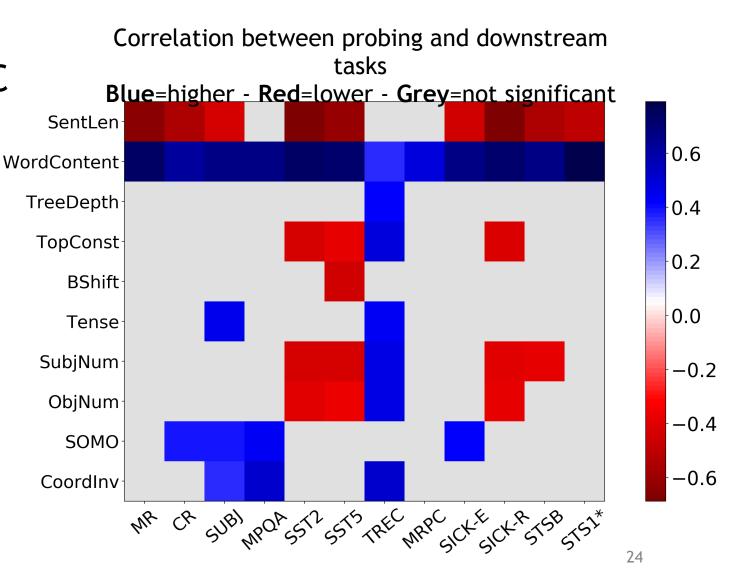
Sutskever et al. (NIPS 2014) - Sequence to sequence learning with neural networks Kiros et al. (NIPS 2015) - SkipThought vectors Vinyals et al. (NIPS 2015) - Grammar as a Foreign Language


Baselines and sanity checks

Impact of training tasks


Impact of model architecture

22


Evolution during training

- Evaluation on probing tasks at each epoch of training
- What do embeddings encode along training?
- NMT: Most increase and converge rapidly (only SentLen decreases). WC correlated with BLEU.

Correlation with downstream tasks

- Strong correlation between WC and downstream tasks
- Word-level information important for downstream tasks (classification, NLI, STS)
- If WC good predictor -> maybe current downstream tasks are not the right ones?

Take-home messages and future work

- Sentence embeddings need not be good on probing tasks
- Probing tasks are simply meant to understand what linguistic features are encoded and to designed to compare encoders.
- Future work
 - Understanding the impact of multi-task learning
 - Studying the impact of language model pretraining (ELMO)
 - Study other encoders (Transformer, RNNG)

Thank you!

Thank you!

- Publicly available in SentEval
- Automatically generated datasets (generalize to other languages)
- Natural sentences from Toronto Book Corpus
- Used Stanford parser for grammatical tasks

Task	Туре	#train	#test
SentLen	Length prediction	100k	10k
WC	Word Content analysis	100k	10k
TreeDepth	Tree depth prediction	100k	10k
TopConst	Top Constituents prediction	100k	10k
BShift	Word order analysis	100k	10k
Tense	Verb tense prediction	100k	10k
SubjNum	Subject number prediction	100k	10k
ObjNum	Object number prediction	100k	10k
SOMO	Semantic odd man out	100k	10k
CoordInv	Coordination Inversion	100k	10k

https://github.com/facebookresearch/SentEval/tree/master/data/ probing

Probing tasks – Semantic Odd Man Out

No one could see this Hayes and I wanted to know if it was real or a **spoonful** (orig: "ploy")

- <u>Goal</u>: Predict whether a sentence has been modified or not: one verb/noun randomly by another verb/noun with same POS
- <u>Note</u>: preserved bigrams frequency, human eval.: 81.2%
- <u>Question</u>: Can we identify well-formed sentences (sentence model)?