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The quest for universal sentence 
embeddings

 2*Courtesy: Thomas Wolf blogpost, Hugging Face



Now-famous Ray Mooney’s quote
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You can’t cram the meaning of 
a single $&!#* sentence into a 

single $!#&* vector! 

Professor Raymond J. 
Mooney

• While not capturing meaning, we might still be 
able to build useful transferable sentence features 
• But what can we actually cram into these vectors?



The evaluation of universal sentence 
embeddings
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• Transfer learning on many other tasks 

• Learn a classifier on top of 
pretrained sentence embeddings for 
transfer tasks 

• SentEval downstream tasks: 
• Sentiment/topic classification 
• Natural Language Inference 
• Semantic Textual Similarity 



The evaluation of universal sentence 
embeddings

 5

• Downstream tasks are complex 

• Hard to infer what information 
the embeddings really capture 

• “Probing tasks” to the rescue! 
• designed for inference 
• evaluate simple isolated properties



Probing tasks and downstream tasks
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Natural Language Inference 
downstream task

Subject Number  
probing task

Premise: A lot of people walking outside a 
row of shops with an older man with his 
hands in his pocket is closer to the camera . 
  
Hypothesis: A lot of dogs barking outside a 
row of shops with a cat teasing them .   
 
Label: contradiction

Sentence: The hobbits waited patiently . 

Label: Plural (NNS)

Probing tasks are simpler and focused on a single property!



Our contributions
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An extensive analysis of sentence embeddings using probing tasks 

• We vary the architecture of the encoder (3) and the training task 
(7) 

• We open-source 10 horse-free classification probing tasks. 

• Each task being designed to probe a single linguistic property

Shi et al. (EMNLP 2016) – Does string-based neural MT learn source syntax? 
Adi et al. (ICLR 2017) – Fine-grained analysis of sentence embeddings using auxiliary prediction 
tasks



Probing tasks: understanding 
sentence embeddings content
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Probing task

Sentence 
Encoder



Probing 
tasks
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Probing task

Sentence 
Encoder

What they have in common: 

• Artificially-created datasets all framed as classification 

• ... but based on natural sentences extracted from the TBC (5-to-28 
words) 

• 100k training set, 10k valid, 10k test, with balanced classes 

• Carefully removed obvious biases (words highly predictive of a class, etc)



Probing 
tasks
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Probing task

Sentence 
Encoder

Grouped in three categories: 

• Surface information 

• Syntactic information 

• Semantic information



Probing tasks (1/10) – Sentence Length

• Goal: Predict the length range of the input sentence (6 bins) 

• Question: Do embeddings preserve information about sentence length?
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She had not come all this way to let one 
stupid wagon turn all of that hard work 
into a waste !

21-25
MLP classifier

input output

Surface information



Probing tasks (2/10) – Word Content
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• Goal: 1000 output words. Which one (only one) belongs to the 
sentence? 

• Question: Do embeddings preserve information about words?

Helen took a pen from her purse and 
wrote something on her cocktail 
napkin.

wrote
MLP classifier

input output

Adi et al. (ICLR 2017) – Fine-grained analysis of sentence embeddings using auxiliary prediction 
tasks Surface information



Probing tasks (3/10) – Top Constituents
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• Goal: Predict top-constituents of parse-tree (20 classes) 

• Note: 19 most common top-constituent sequences + 1 category for others 

• Question: Can we extract grammatical information from the embeddings?

Slowly he lowered his head toward 
mine.

ADVP_NP_VP_.

The anger in his voice surprised 
even himself .

NP_VP_.

MLP classifier

outputinput

Shi et al. (EMNLP 2016) – Does string-based neural MT learn source syntax?

Syntactic information



Probing tasks (4/10) – Bigram Shift
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• Goal: Predict whether a bigram has been shifted or not. 

• Question: Are embeddings sensible to word order?

This new was information . 1

We 're married getting . 1

MLP classifier

outputinput

Syntactic information



Probing tasks – 5 more
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• 5/10:   Tree Depth (depth of the parse tree) 

• 6/10:   Tense prediction (main clause tense, past or present) 

• 7-8/10:  Object/Subject Number (singular or plural) 

• 9/10:   Semantic Odd Man Out (noun/verb replaced by one with same 
POS)



Probing tasks (10/10) – Coordination 
Inversion
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• Goal: Sentences made of two coordinate clauses: inverted (I) or not (O)? 

• Note: human evaluation: 85% 

• Question: Can extract sentence-model information?

They might be only memories, but I can 
still feel each one O

I can still feel each one, but they might 
be only memories. I

MLP classifier

outputinput

Semantic information



Experiments and 
results

 17



Experiments
We analyse almost 30 encoders trained in different ways: 

• Our baselines: 
• Human evaluation, Length (1-dim vector) 
• NB-uni and NB-uni/bi with TF-IDF 
• CBOW (average of word embeddings) 

• Our 3 architectures: 
• Three encoders: BiLSTM-last/max, and Gated ConvNet 

• Our 7 training tasks: 
• Auto-encoding, Seq2Tree, SkipThought, NLI 
• Seq2seq NMT without attention En-Fr, En-De, En-Fi
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Experiments – training tasks
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Source and target examples for seq2seq training tasks

Sutskever et al. (NIPS 2014) – Sequence to sequence learning with neural networks  
Kiros et al. (NIPS 2015) – SkipThought vectors 
Vinyals et al. (NIPS 2015) – Grammar as a Foreign Language



Baselines and sanity checks
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Probing tasks evaluation baselines
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Impact of training tasks
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Probing tasks results for BiLSTM-last trained in different ways
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Impact of model architecture
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Average accuracies for different models
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Evolution during training
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• Evaluation on probing tasks 
at each epoch of training 

• What do embeddings 
encode along training? 

• NMT: Most increase and 
converge rapidly (only 
SentLen decreases). WC 
correlated with BLEU.



Correlation with downstream tasks
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• Strong correlation between WC 
and downstream tasks 

• Word-level information 
important for downstream 
tasks (classification, NLI, STS) 

• If WC good predictor -> maybe 
current downstream tasks are 
not the right ones?

Correlation between probing and downstream 
tasks 

Blue=higher - Red=lower - Grey=not significant



Take-home messages and future work
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• Sentence embeddings need not be good on probing tasks 

• Probing tasks are simply meant to understand what linguistic 
features are encoded and to designed to compare encoders. 

• Future work 
• Understanding the impact of multi-task learning 
• Studying the impact of language model pretraining (ELMO) 
• Study other encoders (Transformer, RNNG)



Thank you!
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Thank you!
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• Publicly available in SentEval 

• Automatically generated 
datasets (generalize to other 
languages) 

• Natural sentences from Toronto 
Book Corpus 

• Used Stanford parser for 
grammatical tasks

https://github.com/facebookresearch/SentEval/tree/master/data/
probing

https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing
https://github.com/facebookresearch/SentEval/tree/master/data/probing


Probing tasks – Semantic Odd Man Out
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• Goal: Predict whether a sentence has been modified or not: one 
verb/noun randomly by another verb/noun with same POS 

• Note: preserved bigrams frequency, human eval.: 81.2% 

• Question: Can we identify well-formed sentences (sentence model)?

No one could see this Hayes and I 
wanted to know if it was real or a 
spoonful (orig: “ploy”)

M
MLP classifier


