Token-level and sequence-level loss smoothing for RNN language models

Maha Elbayad^{1,2}, Laurent Besacier¹, and Jakob Verbeek² 1 LIG , 2 INRIA, Grenoble, France

ACL 2018 Melbourne, Australia

Language generation | Equivalence in the target space

- Ground truth sequences lie in a union of low-dimensional subspaces where sequences convey the same message.
 - France won the world cup for the second time.
 - ► France captured its second world cup title.
- Some words in the vocabulary share the same meaning.
 - ▶ Capture, conquer, win, gain, achieve, accomplish, ...

Take into consideration the nature of the target language space with:

- A token-level smoothing for a "robust" multi-class classification.
- A sequence-level smoothing to explore relevant alternative sequences.

For a pair (x, y), we model the conditional distribution:

$$p_{\theta}(y|x) = \prod_{t}^{|y|} p_{\theta}(y_t|y_{< t}, x)$$
(1)

 $y = y^{\star}$

Given the ground truth target sequence y^* :

$$\ell_{\text{MLE}}(y^{\star}, x) = -\ln p_{\theta}(y^{\star}|x)$$

= $D_{\text{KL}}(\delta(y|y^{\star}) || p_{\theta}(y|x))$ (2)
= $\sum_{t=1}^{|y^{\star}|} D_{\text{KL}}(\delta(y_t|y_t^{\star}) || p_{\theta}(y_t|y_{< t}^{\star}, x))$ (3)

Maximum likelihood estimation (ML)

$$\ell_{\mathsf{MLE}}(y^{\star}, x) = -\ln p_{\theta}(y^{\star}|x)$$

= $D_{\mathsf{KL}}(\delta(y|y^{\star}) || p_{\theta}(y|x))$ (2)
= $\sum_{t=1}^{T} D_{\mathsf{KL}}(\delta(y_t|y_t^{\star}) || p_{\theta}(y_t|h_t))$ (3)

Issues:

- Zero-one loss, all the outputs $y \neq y^*$ are treated equally.
- Discrepancy at the sentence level between the training (1-gram) and evaluation metric (4-gram).

 $y = y^{\star}$

Loss smoothing

Token-level smoothing

く注→

Loss smoothing | Token-level

$$\ell_{RAML}^{tok}(y^{\star}, x) = \sum_{t=1}^{T} D_{\kappa L}(r_{\tau}(y_t|y_t^{\star}) \| p_{\theta}(y_t|h_t))$$
(4)

• Uniform label smoothing over all words in the vocabulary:

$$r_{\tau}(y_t|y_t^{\star}) = \delta(y_t|y_t^{\star}) + \tau . u(\mathcal{V})$$
 (Szegedy et al. 2016)

• We can leverage word co-occurrence statistics to build a non-uniform and "meaningful" distribution.

Loss smoothing

$$\ell_{RAML}^{tok}(y^{\star}, x) = \sum_{t=1}^{T} D_{\mathsf{KL}}(r_{\tau}(y_t|y_t^{\star}) \| \rho_{\theta}(y_t|h_t))$$

$$\tag{4}$$

Prerequisite: A word embedding w (e.g. Glove) in the target space and a distance d.

$$r_{\tau}(y_t|y_t^{\star}) = rac{1}{Z} \exp\left(rac{-\operatorname{\mathsf{d}}(w(y_t), w(y_t^{\star}))}{ au}
ight),$$

with a temperature τ st. $r_{\tau} \xrightarrow[\tau \to 0]{} \delta$.

$$Z$$
 st. $\sum_{y_t \in \mathcal{V}} r_{\tau}(y_t | y_t^{\star}) = 1$

ACL 2018, Melbourne

M. Elbayad || Token-level and Sequence-level Loss Smoothing

Loss smoothing | Token-level

Loss smoothing | Token-level

$$\ell_{RAML}^{tok}(y^{\star}, x) = \sum_{t=1}^{T} D_{\mathsf{KL}}(r_{\tau}(y_t|y_t^{\star}) \| p_{\theta}(y_t|h_t))$$

$$= \sum_{t=1}^{T} \sum_{y_t \in \mathcal{V}} r_{\tau}(y_t|y_t^{\star}) \log\left(\frac{r_{\tau}(y_t|y_t^{\star})}{p_{\theta}(y_t|h_t)}\right)$$
(5)

We can estimate the exact KL divergence for every target token. No approximation needed.

∢ ≣⇒

Sequence-level smoothing

く注→

$$\ell_{RAML}^{seq}(y^{\star}, x) = D_{\mathsf{KL}}(r_{\tau}(y|y^{\star}) \| p_{\theta}(y|x))$$
(6)

Prerequisite: A distance *d* in the sequences space \mathcal{V}^n , $n \in \mathbb{N}$.

$$egin{aligned} &r_{ au}(y|y^{\star}) = rac{1}{Z} \exp\left(rac{-\operatorname{\mathsf{d}}(y,y^{\star})}{ au}
ight), \ &Z ext{ st. } \sum_{y \in \mathcal{V}^n, n \in \mathbb{N}} r_{ au}(y|y^{\star}) = 1 \end{aligned}$$

Possible (pseudo-)distances:

Hamming • Edit • 1–BLEU • 1–CIDEr

< ∃→

Can we evaluate the partition function Z for a given reward?

$$r_{\tau}(y_t|y_t^{\star}) = rac{1}{Z} \exp\left(rac{-\mathsf{d}(y, y^{\star})}{ au}
ight),$$
 $Z = \sum_{y \in \mathcal{V}^n, n \in \mathbb{N}} \exp\left(rac{-\mathsf{d}(y, y^{\star})}{ au}
ight),$

We can approximate Z for Hamming distance.

< ≥⇒

Assumption:

consider only sequences of the same length as y^* (d(y, y') = 0 if $|y| \neq |y'|$). We partition the set of sequences \mathcal{V}^T w.r.t. their distance to the ground truth y^* :

$$\begin{cases} S_d = \{ y \in \mathcal{V}_{sub}^{\mathcal{T}} | d(y, y^*) = d \} \\ \mathcal{V}^{\mathcal{T}} = \bigcup_d S_d, \\ \forall d, d' : S_d \cap S_{d'} = \emptyset. \end{cases}$$

- The reward in each subset is a constant.
- The cardinality of each subset is known.

$$Z = \sum_{d} |S_d| \exp\left(-\frac{d}{\tau}\right)$$

We can easily draw from r_{τ} with Hamming distance:

- Sample a distance d from $\{0, \ldots, T\}$.
- Pick d positions in the sequence to be changed among $\{1, \ldots, T\}$.
- ${\ensuremath{{ \ \ o} }}$ Sample substitutions from ${\mathcal V}$ of the vocabulary.

< ∃⇒

We can easily draw from r_{τ} with Hamming distance:

- Sample a distance d from $\{0, \ldots, T\}$.
- Pick d positions in the sequence to be changed among $\{1, \ldots, T\}$.
- ${\ensuremath{\textcircled{}}}$ Sample substitutions from ${\mathcal V}$ of the vocabulary.

Monte Carlo estimation:

$$\ell_{RAML}^{seq}(y^{\star}, x) = D_{\mathsf{KL}}(r_{\tau}(y|y^{\star})||p_{\theta}(y|x))$$

$$= -\mathbb{E}_{r_{\tau}}[\log p_{\theta}(.|x)] + cst$$

$$(7)$$

$$(y' \sim r_{\tau}) \qquad \approx -\frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(y'|x)$$
 (8)

< ∃→

We cannot "easily" sample from more complicated rewards such as BLEU or CIDEr. **Importance sampling:**

$$\ell_{RAML}^{seq}(y^{\star}, x) = -\mathbb{E}_{r_{\tau}}[\log p_{\theta}(.|x)]$$
(9)

$$= -\mathbb{E}_q[\frac{r_\tau}{q}\log p_\theta] \tag{10}$$

$$(y' \sim q) \approx -\frac{1}{L} \sum_{l=1}^{L} \omega_l \log p_{\theta}(y'|x)$$
 (11)

$$\omega_l \approx \frac{r_\tau(y^l|y^\star)/q(y^l|y^\star)}{\sum_{k=1}^L r_\tau(y^k|y^\star)/q(y^k|y^\star)},$$

Choose q the reward distribution relative to Hamming distance.

ACL 2018, Melbourne

< ≥ >

$$\ell_{RAML}^{seq}(y^{\star}, x) = D_{\mathsf{KL}}(r_{\tau}(y|y^{\star}) \| p_{\theta}(y|x))$$
(6)

Can we reduce the support of r_{τ} ?

$$r_{\tau}(y|y^{\star}) = rac{1}{Z} \exp\left(rac{-d(y, y^{\star})}{ au}
ight), \ Z = \sum_{y \in \mathcal{V}^{T}} \exp\left(rac{-d(y, y^{\star})}{ au}
ight)$$

Reduce the support from $\mathcal{V}^{|y^*|}$ to $\mathcal{V}^{|y^*|}_{sub}$ where $\mathcal{V}_{sub} \subset \mathcal{V}$.

- $V_{sub} = V_{batch}$: tokens occuring in the SGD mini-batch.
- $V_{sub} = V_{refs}$: tokens occuring in the available references.

< ∃⇒

Default training

$$\ell_{RAML}^{seq}(y^{\star},x) = -\mathbb{E}_{r_{\tau}}[\log p_{ heta}(.|x)] \ pprox -rac{1}{L}\sum_{l=1}^{L}\log p_{ heta}(y^{l}|x)$$

 $\forall I, y'$ is:

- forwarded in the RNN.
- o used as target.

 $\log p_{\theta}(y_{l}|y_{l},x)$

Lazy training

$$\ell_{RAML}^{seq}(y^{\star}, x) = -\mathbb{E}_{r_{\tau}}[\log p_{\theta}(.|x)]$$

 $pprox -rac{1}{L}\sum_{l=1}^{L}\log p_{\theta}(y^{l}|x)$

 $\forall I, y'$ is: **not forwarded** in the RNN.

o used as target.

 $\log p_{\theta}(y_l|\mathbf{y}^{\star}, x)$

∢ ≣⇒

Default training

$$egin{aligned} &\ell_{RAML}^{seq}(y^{\star},x) = -\mathbb{E}_{r_{ au}}[\log p_{ heta}(.|x)] \ &pprox -rac{1}{L}\sum_{l=1}^{L}\log p_{ heta}(y^{l}|x) \end{aligned}$$

 $\forall I, y'$ is:

forwarded in the RNN.

used as target.

 $\log p_{\theta}(y_{I}|y_{I}, x)$ Complexity : $\mathcal{O}(2L.\lambda)$

Lazy training

$$\mathcal{\ell}_{RAML}^{seq}(y^{\star},x) = -\mathbb{E}_{r_{\tau}}[\log p_{ heta}(.|x)] \ pprox -rac{1}{L}\sum_{l=1}^{L}\log p_{ heta}(y^{l}|x)$$

 $\forall l, y'$ is: **••• not forwarded** in the RNN.

used as target.

 $\log p_{\theta}(y_l|\mathbf{y}^{\star}, x)$

Complexity: $\mathcal{O}((L+1)\lambda)$

 $\lambda = |y| |\theta_{\mathit{cell}}|,$ where θ_{cell} are the cell parameters.

< ≥ >

< 注→

Image captioning on MS-COCO | Setup

Ground truth:

two soccer players pushing against each other as they try to get to the ball
 a man standing next to another man while kicking a soccer ball
 two men in a soccer field chasing a bal
 two soccer players pushing each other for the ball

two soccer players appear to be pushing each othe

Generated:

a couple of men playing a game of soccer

5 captions for every image.

 $|\mathcal{V}| \approx 10k$ words (freq ≥ 5)

	images
Train	82k
Dev	5k
Test	5k

(Lin et al. 2014, Karpathy et al. 2015)

Architecture: Top-down attention

(Anderson et al. 2017)

Ground truth:

- a small blue plane sitting on top of a field
- an e2 airplane painted blue with black and white stripes
- model airplane with an american insignia and stripes on wings
- an old warplane is on display in a field.
- a blue small plane standing at the airstri

Generated:

a small plane is sitting on the grass

< ∃→

Loss	Reward	\mathcal{V}_{sub}	BLEU-1	BLEU-4	CIDEr
MLE			73.40	33.11	101.63
Tok	Glove, cosine		74.01	33.25	102.81

く注→

Loss	Reward	\mathcal{V}_{sub}	BLEU-1	BLEU-4	CIDEr	
MLE			73.40	33.11	101.63	
Tok	Glove, cosine		74.01	33.25	102.81	
Seq	Hamming	\mathcal{V}	73.12	32.71	101.25	(Norouzi et al. 2016)
Seq	Hamming	\mathcal{V}_{batch}	73.26	32.73	101.90	
Seq, lazy	Hamming	\mathcal{V}_{batch}	73.43	32.95	102.03	

< 注→

Loss	Reward	\mathcal{V}_{sub}	BLEU-1	BLEU-4	CIDEr
MLE			73.40	33.11	101.63
Tok	Glove, cosine		74.01	33.25	102.81
Seq Seq	Hamming Hamming	${\cal V} \ {\cal V}_{batch}$	73.12 73.26	32.71 32.73	101.25 101.90
Seq, lazy	Hamming	\mathcal{V}_{batch}	73.43	32.95	102.03
Seq Seq Seq, lazy	CIDEr CIDEr CIDEr	${\cal V}_{batch} \ {\cal V}_{refs} \ {\cal V}_{refs}$	73.50 73.42 73.92	33.04 32.91 33.10	102.98 102.23 102.64

く注→

Loss	Reward	\mathcal{V}_{sub}	BLEU-1	BLEU-4	CIDEr
MLE			73.40	33.11	101.63
Tok	Glove, cosine		74.01	33.25	102.81
Seq Seq Seq, lazy	Hamming Hamming Hamming	${\cal V} \ {\cal V}_{batch} \ {\cal V}_{batch}$	73.12 73.26 73.43	32.71 32.73 32.95	101.25 101.90 102.03
Seq Seq Seq, lazy	CIDEr CIDEr CIDEr	${\cal V}_{batch} \ {\cal V}_{refs} \ {\cal V}_{refs}$	73.50 73.42 73.92	33.04 32.91 33.10	102.98 102.23 102.64
Tok-Seq	CIDEr	$\mathcal{V}_{\textit{refs}}$	74.28	33.34	103.81

ACL 2018, Melbourne

く注→

Machine translation | Setup

- Architecture: Bi-LSTM encoder-decoder with attention (Bahdanau et al. 2015)
- Corpora:

IWSLT'14 DE→EN						
		Pairs				
	Train	153k				
	Dev	7k				
	Test	7k				

• $|\mathcal{V}| = 22k$ words.

V	VMT'14	EN→F	R
		Pairs	
	Train	12M	
	Dev	6k	
	Test	3k	

• $|\mathcal{V}| = 30k$ words.

∢ ≣⇒

Loss	Reward	\mathcal{V}_{sub}	WMT'14 En $ ightarrow$ Fr	IWSLT'14 De $ ightarrow$ En
MLE			30.03	27.55
tok	Glove, cosine		30.19	27.83

◆ 臣 ▶

Loss	Reward	\mathcal{V}_{sub}	WMT'14 En $ ightarrow$ Fr	IWSLT'14 De $ ightarrow$ En	
MLE			30.03	27.55	
tok	Glove, cosine		30.19	27.83	
Seq	Hamming	\mathcal{V}	30.85	27.98 (Norouzi	et al. 2016)
Seq	Hamming	\mathcal{V}_{batch}	31.18	28.54	
Seq	BLEU-4	\mathcal{V}_{batch}	31.29	28.53	

< 注→

Loss	Reward	\mathcal{V}_{sub}	WMT'14 En $ ightarrow$ Fr	IWSLT'14 De \rightarrow En
MLE			30.03	27.55
tok	Glove, cosine		30.19	27.83
Seq	Hamming	\mathcal{V}	30.85	27.98
Seq	Hamming	\mathcal{V}_{batch}	31.18	28.54
Seq	BLEU-4	$\mathcal{V}_{\textit{batch}}$	31.29	28.53
Tok-Seq Tok-Seq	Hamming BLEU-4	${\cal V}_{batch} \ {\cal V}_{batch}$	31.36 31.39	28.70 28.74

◆ 臣 ▶

Conclusion

◆ 臣 ▶

Improving over MLE with:

• Sequence-level smoothing: an extension of RAML (Norouzi et al. 2016)

- Reduced support of the reward distribution.
- Importance sampling.
- Lazy training.

< ≥ >

Improving over MLE with:

• Sequence-level smoothing: an extension of RAML (Norouzi et al. 2016)

- Reduced support of the reward distribution.
- Importance sampling.
- Lazy training.
- **Token-level smoothing:** smoothing across semantically similar tokens instead of the usual uniform noise.
- Both schemes can be combined for better results.

< ≥ >

- Validate on other seq2seq models besides LSTM encoder-decoders.
- Validate on models with BPE instead of words.

• Sequence-level smoothing:

▶ Experiment with other distributions for sampling other than the Hamming distance.

Token-level smoothing:

► Sparsify the reward distribution for scalability.

< ∃⇒

Thank you!

◆ 臣 ▶

Appendices

◆ 臣 ▶

Hyper-parameters: α , α_1 , $\alpha_2 \in (0, 1)$ ($\forall \alpha$, $\bar{\alpha} = 1 - \alpha$). Combining ML and RAML:

$$\ell_{\mathsf{RAML},\alpha}^{\mathsf{seq}}(y^{\star},x) = \alpha \ell_{\mathsf{RAML}}^{\mathsf{seq}}(y^{\star},x) + \bar{\alpha} \ell_{\mathsf{MLE}}(y^{\star},x)$$
(12)

$$\ell_{\mathsf{RAML},\alpha}^{\mathsf{tok}}(y^{\star},x) = \alpha \ell_{\mathsf{RAML}}^{\mathsf{tok}}(y^{\star},x) + \bar{\alpha} \ell_{\mathsf{MLE}}(y^{\star},x)$$
(13)

Combininig the smoothing schemes:

$$\ell_{\mathsf{RAML},\alpha_{1},\alpha_{2}}^{\mathsf{seq, tok}}(y^{\star},x) = \alpha_{1}\mathbb{E}_{r_{\tau}}[\ell_{\mathsf{RAML}}^{tok}(y,x)] + \bar{\alpha}_{1}\ell_{\mathsf{RAML}}^{tok}(y^{\star},x)$$
$$= \alpha_{1}\mathbb{E}_{r_{\tau}}[\alpha_{2}\ell_{\mathsf{RAML}}^{tok}(y,x) + \bar{\alpha}_{2}\ell_{\mathsf{MLE}}(y,x)]$$
$$+ \bar{\alpha}_{1}(\alpha_{2}\ell_{\mathsf{RAML}}^{tok}(y^{\star},x) + \bar{\alpha}_{2}\ell_{\mathsf{MLE}}(y^{\star},x)).$$
(14)

4 E -

Average wall time to process a single batch (10 images 50 captions) when training the RNN language model with fixed CNN (without attention) on a Titan X GPU.

Loss	MLE	Tok	Seq	Seq lazy	Seq	Seq lazy	Seq	Seq lazy	Tok-Seq	Tok-Seq	Tok-Seq
Reward		Glove sim					Ham	ming			
\mathcal{V}_{sub} ms/batch	347	359	V 390	V 349	V _{batch} 395	\mathcal{V}_{batch} 337	\mathcal{V}_{refs} 401	\mathcal{V}_{refs} 336	V 445	\mathcal{V}_{batch} 446	V _{refs} 453

∢ ≣⇒

Generated captions

< ≣⇒

Generated captions

< ∃→

Source (en) Target (fr) MLE Tok-Seq	l think it's conceivable that these data are used for mutual benefit. J'estime qu'il est concevable que ces données soient utilisées dans leur intérêt mutuel. Je pense qu'il est possible que ces données soient utilisées <mark>à des fins réciproques</mark> . Je pense qu'il est possible que ces données soient utilisées <mark>pour le bénéfice mutuel</mark> .
Source (en)	The public will be able to enjoy the technical prowess of young skaters , some of whom , like Hyeres' young star , Lorenzo Palumbo , have already taken part in top-notch competitions.
Target (fr)	Le public pourra admirer les prouesses techniques de jeunes qui , pour certains , fréquentent déjà les compétitions au plus haut niveau , à l'instar du jeune prodige hyérois Lorenzo Palumbo.
MLE	Le public sera en mesure de profiter <mark>des connaissances techniques des jeunes garçons</mark> , dont certains , à l'instar de la jeune <mark>star américaine</mark> , Lorenzo , ont déjà participé à <mark>des compétitions de compétition</mark> .
Tok-Seq	Le public sera en mesure de profiter de la finesse technique des jeunes musiciens , dont certains , comme la jeune star de l'entreprise , Lorenzo , ont déjà pris part à des compétitions de gymnastique.

∢ 注→

MS-COCO server results

	BLEU-1		BLEU-2		BLEU-3		BLEU-4		METEOR		ROUGE-L		CIDEr		SPICE	
	c5	c40	c5	c40	c5	c40	c5	c40								
Google NIC ⁺ (Vinyals et al., 2015)	71.3	89.5	54.2	80.2	40.7	69.4	30.9	58.7	25.4	34.6	53.0	68.2	94.3	94.6	18.2	63.6
Hard-Attention (Xu et al., 2015)	70.5	88.1	52.8	77.9	38.3	65.8	27.7	53.7	24.1	32.2	51.6	65.4	86.5	89.3	17.2	59.8
ATT-FCN ⁺ (You et al., 2016)	73.1	90.0	56.5	81.5	42.4	70.9	31.6	59.9	25.0	33.5	53.5	68.2	94.3	95.8	18.2	63.1
Review Net ⁺ (Yang et al., 2016)	72.0	90.0	55.0	81.2	41.4	70.5	31.3	59.7	25.6	34.7	53.3	68.6	96.5	96.9	18.5	64.9
Adaptive ⁺ (Lu et al., 2017)	74.8	92.0	58.4	84.5	44.4	74.4	33.6	63.7	26.4	35.9	55.0	70.5	104.2	105.9	19.7	67.3
SCST:Att2all ^{+†} (Rennie et al., 2017)	78.1	93.7	61.9	86.0	47.0	75.9	35.2	64.5	27.0	35.5	56.3	70.7	114.7	116.7	-	-
LSTM-A3 ^{+†} ° (Yao et al., 2017)	78.7	93.7	62.7	86.7	47.6	76.5	35.6	65.2	27.0	35.4	56.4	70.5	116	118	-	-
Up-Down ^{+†} ° (Anderson et al., 2017)	80.2	95.2	64.1	88.8	49.1	79.4	36.9	68.5	27.6	36.7	57.1	72.4	117.9	120.5	-	-
Ours: Tok-Seq CIDEr	72.6	89.7	55.7	80.9	41.2	69.8	30.2	58.3	25.5	34.0	53.5	68.0	96.4	99.4	-	-
Ours: Tok-Seq CIDEr +	74.9	92.4	58.5	84.9	44.8	75.1	34.3	64.7	26.5	36.1	55.2	71.1	103.9	104.2	-	-

Table: MS-COCO 's server evaluation . (⁺) for ensemble submissions, ([†]) for submissions with CIDEr optimization and (°) for models using additional data.

< ∃→

- P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. 2017. Bottom-up and top-down attention for image captioning and visual question answering. *arXiv preprint arXiv:1707.07998*.
- J. Lu, C. Xiong, D. Parikh, and R. Socher. 2017. Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In *CVPR*.
- S. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. 2017. Self-critical sequence training for image captioning. In *CVPR*.
- O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015. Show and tell: A neural image caption generator. In *CVPR*.
- K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In *ICML*.

< ∃⇒

- Z. Yang, Y. Yuan, Y. Wu, R. Salakhutdinov, and W. Cohen. 2016. Encode, review, and decode: Reviewer module for caption generation. In *NIPS*.
- T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei. 2017. Boosting image captioning with attributes. In *ICLR*.
- Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. 2016. Image captioning with semantic attention. In *CVPR*.

< ∃⇒