
Supplementary Material:
Situated Mapping of Sequential Instructions to Actions

with Single-step Reward Observation

Alane Suhr and Yoav Artzi
Department of Computer Science and Cornell Tech

Cornell University
New York, NY, 10044

{suhr, yoav}@cs.cornell.edu

A Domain-Specific Implementation
Details

For each domain ALCHEMY, SCENE, and TAN-
GRAMS, we describe the world state representa-
tion, state distance function, transition function,
and the state encoder. For all states s, s =
T (s, STOP).

ALCHEMY The world state in ALCHEMY is a
sequence of beakers 〈b̄1, b̄2, ..., b̄N 〉 of fixed length
N = 7. Each beaker b̄i = 〈ci,1, ci,2, ...ci,|b̄i|〉
is a variable length sequence containing chemi-
cal units c, each one of six possible colors. The
distance between two world states is the sum over
distances for each corresponding beaker pair. The
distance between two beakers is the edit distance
of the list of chemical units in each. The action
space of ALCHEMY includes two action types,
POP and PUSH. The POP action takes one argu-
ment: N ∈ {1, . . . , N} denoting the beaker to
pop a chemical unit from. The PUSH action takes
two arguments: N and C, one of six colors. The
transition function T is defined by two cases: (a)
T (s, a = PUSH N C) will return a state where
C is added to the beaker with index N; and (b)
T (s, a = POP N) will remove the top element
from the beaker with index N, or if the beaker
with index N is empty, the input state s is returned.
The state encoding function ENC is parameterized
by (a) φc, an embedding function for each color;
(b) φp, a positional embedding function for each
beaker position; and (c) LSTMB , a forward RNN
used to encode each beaker. We encoder each
beaker b̄i with an RNN:

hb
i,j = LSTMB

(
φc(ci,j);h

b
i,j−1

)
.

ENC returns a set of N vectors {hi}Ni=1 , where
each hi = [hb

i,|b̄i|
;φp(i)] represents a beaker.

SCENE The world state in SCENE is a se-
quence of positions S = 〈p1, p2, ..., pN 〉 of
fixed length N = 10. Each position is a tuple
pi = 〈si, hi〉, where si is a shirt color hi is a hat
color. There are six colors, and a special NULL
marker indicating no shirt or hat is present. The
distance between two world states is the sum
over positions of the number of steps required
to modify two corresponding positions to be
the same given the domain actions space. The
action space of SCENE includes four action types:
APPEAR_PERSON, APPEAR_HAT, REMOVE_PERSON,
and REMOVE_HAT. APPEAR_PERSON and
APPEAR_HAT take two arguments: a position
index N and a color C. REMOVE_PERSON and
REMOVE_HAT take one argument: a position
index N. The transition function T is defined by
four cases: (a) T (s, a = APPEAR_PERSON N C)
returns a state where position N contains shirt
color C if the shirt color in position N is NULL,
otherwise the action is invalid and the input state
s is returned; (b) T (s, a = APPEAR_HAT N C)
is defined analogously to APPEAR_PERSON; (c)
T (s, a = REMOVE_PERSON N) returns a state
where the shirt color at position N is set to NULL if
there is a color at position N, otherwise the action
is invalid and the input state s is returned; and (d)
T (s, a = REMOVE_HAT N) is defined analogously
to REMOVE_PERSON. The state encoding function
ENC is parameterized by (a) φc, an embedding
function for shirt and hat colors; (b) φp, a posi-
tional embedding for each position in the scene;
and (c) LSTMS , a bidirectional RNN over all
positions in order. Each position is embedded
using a function φ′(pi) = [φc(si);φ

c(hi);φ
p(i)].

We compute a sequence of forward hidden states:
−→
h s

i =
−−−−→
LSTMS

(
φ′(pi);

−→
h s

i−1

)
.

The backward RNN is equivalent. ENC returns
the set {hi}Ni=1, where hi = [

−→
h s

i ;
←−
h s

i ;φ
′(pi)] rep-

1 2 3 4

Coref.
Beaker 24 7 2 0
Action 3 0 0 0
Action + Arguments 1 0 0 0

Ellipsis Beaker 0 0 3 1

Table 1: Count of phenomena in ALCHEMY.

resents a position.

TANGRAMS The world state in TANGRAMS is a
list of positions T = 〈p1, p2, ..., pn〉 of a variable
length n. Each position contains one of five unique
shapes. The distance function between states is the
edit distance between the lists, with a cost of two
for substitutions. The action space of TANGRAMS

includes two action types, INSERT and REMOVE.
The INSERT action takes two arguments: a posi-
tion N ∈ {1, · · · ,M}, where M is the maximum
length of a state in the TANGRAMS dataset, and a
shape type T, which is one the five possible shapes.
The REMOVE action takes a single argument: a po-
sition N. The transition function T is defined by
two cases: (a) T (s, a = INSERT N T) returns a
state where the shape T is in position N and all ob-
jects to its right shifted by one position if T is not
already in the state, otherwise the action is invalid
and s is returned; and (b) T (s, a = REMOVE N) re-
turns a state where the object in position N was
removed if N ≤ n, otherwise the action is in-
valid and s is returned. The state encoding func-
tion ENC is parameterized by (a) hNULL, a vector
used when n = 0; (b) φs, an embedding function
for the shapes; and (c) φp, a positional embedding
of the position i. ENC returns a set {hi}ni=1, where
hi = [φp(i);φs(pi)] is the position encoding, or it
returns {hNULL} if the state contains no objects.

B Data Analysis

We analyze SCONE to identify the frequency
of various discourse phenomena in the three do-
mains, including explicit coreference and ellipsis,
which is implicit reference to previous entities.
We observe references to previous objects (e.g.,
beakers in ALCHEMY), actions, locations (e.g.,
positions in SCENE), and world states. We ana-
lyze thirty development set interactions for each
domain for presence of these references. We de-
fine the age of each referent as the number of turns
since it was last explicitly mentioned. This illus-
trates the extent to which this dataset challenges
models for context-dependent reasoning.

1 2 3 4

Coref.
Person 42 16 5 3
Hat 2 0 0 0
Action + Arguments 3 0 0 0
Position 2 0 0 0

Table 2: Count of phenomena in SCENE.

1 2 3 4

Coref.
Object 13 0 0 0
Object via Arguments 6 10 2 1
Position 0 2 0 0
Action 5 2 0 0
Action + Arguments 1 0 0 0

Ellipsis Position 3 0 0 0
Action + Arguments 1 0 0 0

Table 3: Count of phenomena in TANGRAMS.

ALCHEMY Table 1 shows phenomena counts in
ALCHEMY. Each interaction contains on average
1.4 references dependent on the interaction his-
tory. Each non-first utterance contains on average
0.3 references. The most common form of refer-
ence is explicit coreference (Coref.) to previously-
mentioned beakers, for example mix it. Other ref-
erences are to previous actions, referring to the ac-
tion only (e.g., same with the last beaker) or the
action as well as the arguments (e.g., same for
one more unit, referring to draining one unit from
a previously-used beaker). Ellipsis occurred four
times in the thirty evaluated interactions, for ex-
ample then, drain 1 unit, implicitly referring to a
specific beaker to drain from.

SCENE Table 2 shows phenomena counts in
SCENE. Each interaction contains on average
2.4 references dependent on the interaction his-
tory. Each non-first utterance contains on average
0.6 references. The most common form of refer-
ence is explicit coreference (Coref.) to previously-
mentioned people, for example he moves to the left
end. Coreference also occurs on hat colors (e.g.,
he gives it back), actions along with their argu-
ments (e.g., they did it again referring to trading
specific hats), and positions (e.g., he moves back).

TANGRAMS Table 3 shows phenomena counts
in TANGRAMS. Each interaction contains on av-
erage 1.7 references dependent on the interaction
history. Each non-first utterance contains on av-
erage 0.4 references. The most common form of
reference is on objects via reference to a previous
step, for example put the item you just removed
in the second spot. This requires recalling actions
taken in previous turns, including the actions’ ar-

guments and the previous world state. Coreference
(Coref.) also occurs for positions (e.g., ...where
the last deleted figure was), actions (e.g., do the
same with the second to last figure and one before
it), and actions along with the previously-used ar-
guments (e.g., repeat the first step). Ellipsis oc-
curs for positions (e.g., add it again, implicitly
referring to the item’s previous location) and ac-
tions along with their arguments (e.g., undo the
last step).

C Attention Analysis

Figure 1 shows attention distributions for a hand-
picked example in ALCHEMY. We show the at-
tention probabilities (α in Section 4) for the cur-
rent and previous utterances, initial state, and cur-
rent state throughout execution. In this example,
the previous-instruction attention puts most of the
weight on brown one during generation, which is
the referent of it in the current instruction. The
initial and current state attentions are placed heav-
ily on the beaker being manipulated. However, for
randomly selected examples, we observe that the
attention distribution does not always correspond
to intuitions about what should be attended on.
Figures 2, 3, and 4 show examples of attention
distributions for three random instructions in the
development sets of the three domains where the
action sequence was predicted correctly.

D Architecture and Training Details

Model Architecture We use an embedding size
of 50 for words and action types and argu-
ments. Action embedding is a concatenation of
the embeddings of each part, including the ac-
tion type and the two arguments; an embed-
ded action is a vector of size 150. Embed-
dings of colors in ALCHEMY and SCENE, and
shapes in TANGRAMS, are of size 10. Posi-
tional embeddings are of size 10. Wd and Wa

are square matrices. All matrices are initial-
ized by sampling from the uniform distribution

U
([
−
√

6
M+N ,

√
6

M+N

])
(Glorot and Bengio,

2010), where M and N are the matrix dimension-
ality. All RNNs are single-layer LSTMs. For the
main model, both the instruction encoder and ac-
tion sequence decoder use a hidden size of 100 in
each direction. The action sequence decoder is ini-
tialized by first setting the hidden state and cell
memory to zero-vectors, and passing in a zero-
vector to update the states, after which attention

is computed for the first time. For ALCHEMY, the
world state encoder has a hidden size of 20. For
SCENE, the world state encoder has a hidden size
of 5.

Training We apply dropout in three places: (a)
in each attention computation after multiplying by
W; (b) after computing hk, the input to each de-
coder step; and (c) for all attention keys except
for the current utterance. For POLICYGRADI-
ENT, CONTEXTUALBANDIT, and our approach,
we optimize parameters using RMSPROP (Tiele-
man and Hinton, 2012). For supervised learning,
we use ADAM (Kingma and Ba, 2014) for opti-
mization. We use a learning rate of 0.001 for all
experiments. Our validation set is a held-out sub-
set containing 7.0% of the training data. We stop
training by observing the instruction-level reward
on the validation set. We use patience for early
stopping. We reset patience to 50 · 1.005x the x-
th time the reward has improved on the validation
set, decrease by one each epoch reward does not
improve, and stop when patience runs out. Re-
gardless of patience, we terminate training after
200 epochs. We tune λ, δ, and M on the devel-
opment set. In ALCHEMY, λ = 0.1, δ = 0.15,
and M = 7. In SCENE, λ = 0.07, δ = 0.2, and
M = 5. In TANGRAMS, λ = 0.1, δ = 0.0, and
M = 5.

References
Xavier Glorot and Yoshua Bengio. 2010. Understand-

ing the difficulty of training deep feedforward neural
networks. In International Conference on Artificial
Intelligence and Statistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31.

It

tu
rn

s

co
m

pl
et

el
y

br

ow
n

<
EO

S>

POP 6
POP 6
POP 6

PUSH 6 B
PUSH 6 B
PUSH 6 B

T
hr

ow

ou
t

re
d

be
ak

er

<
SE

P>

Po
ur

la

st

be
ak

er

in
to

gr

ee
n

on
e

<
SE

P>

It

tu
rn

s
br

ow
n

<
SE

P>

Po
ur

fir

st

be
ak

er

in
to

br

ow
n

on
e

<
SE

P>

POP 6
POP 6
POP 6

PUSH 6 B
PUSH 6 B
PUSH 6 B

POP 6

POP 6

POP 6

PUSH 6 B

PUSH 6 B

PUSH 6 B

Current instruction Initial state

Current state

Previous instructions

Figure 1: Example of the attention distributions for executing the instruction It turns completely brown in
ALCHEMY. This is the fifth instruction in the interaction. The correct action sequence mixes the chemicals in
the sixth beaker by removing the three units and re-adding three brown units. Our model correctly predicts this
sequence. We show the different attention distributions when generating this sequence of actions. Clockwise start-
ing from the top left: (a) attention over the current instruction; (b) two attention heads over the initial state; (c) two
attention heads over the current world state, which changes following each action; and (d) the attention over the
previous instructions in the interaction.

A

pe
rs

on

wi
th

a bl
ue

sh

ir
t

ap
pe

ar
s

to

th
e

le
ft

of

hi
m

<

EO
S>

ADD_PERSON 9 B

ADD_PERSON 9 B

T
he

pe

rs
on

wi

th

a re
d

sh
ir

t
an

d
a bl
ue

ha

t
m

ov
es

to

th

e
ri

gh
t

en
d

<
SE

P>

ADD_PERSON 9 B

Current instruction

Previous instructions

Initial and current state

Figure 2: Example of attention for a randomly selected instruction from the development set for SCENE. The
instruction A person with a blue shirt appears to the left of him is the second in the interaction, following the
instruction The person with a red shirt and a blue hat moves to the right end. The correct action sequence consists
of a single action, ADD_PERSON 9 B, where a person wearing a blue shirt appears in position 9, to the left of the
person in the red shirt. Our model predicts this action correctly. We show the different attention distributions when
generating this sequence of a single action. From top to bottom: (a) attention over the current instruction; (b)
attention over the previous instruction; and (c) attention over the world state. As the sequence contains a single
action only, the current and initial world states are the same, and their distributions are shown together. There are
two attention heads over both the initial (top two rows) and current (bottom two rows) world states.

Po
ur

gr

ee
n

be
ak

er

in
to

or

an
ge

on

e
<

EO
S>

POP 6
PUSH 1 G
PUSH 1 G

POP 6

T
hr

ow

ou
t

pu
rp

le

be
ak

er

<
SE

P>

Po
ur

la

st

be
ak

er

in
to

se

co
nd

on

e
<

SE
P>

It

tu

rn
s

br
ow

n
<

SE
P>

T
hr

ow

ou
t

br
ow

n
be

ak
er

<

SE
P>

POP 6
PUSH 1 G
PUSH 1 G

POP 6

POP 6

PUSH 1 G

PUSH 1 G

POP 6

Current instruction Initial state

Current state

Previous instructions

Figure 3: Example of attention for a randomly selected instruction from the development set for ALCHEMY. The
instruction executed is Pour green beaker into orange one, the fifth instruction in the sequence. We show the
different attention distributions when generating the correct action sequence, which removes green items from the
sixth beaker and adds the same number of green items to the beaker containing orange. Clockwise starting from
the top left: (a) attention on the current instruction; (b) the two attention heads over the initial state; (c) the two
attention heads over the current state as it changes during execution; and (d) attention over previous instructions.

Sw
itc

h
th

e
fir

st

an
d

se
co

nd

fig
ur

e
<

EO
S>

REMOVE 2
INSERT 1 E

G
et

ri

d
of

th

e
fir

st

ite
m

<

SE
P>

Pu

t
it ba

ck

wh
er

e
it wa

s
<

SE
P>

th

en

de
le
te

it ag

ai
n

<
SE

P>

REMOVE 2
INSERT 1 E

REMOVE 2

INSERT 1 E

Current instruction Initial state Current state

Previous instructions

Figure 4: Example of attention for a randomly selected instruction from the development set for TANGRAMS. The
instruction executed is Switch the first and second figure, the fourth instruction in the sequence. We show the
different attention distributions when generating the correct action sequence, which removes the figure in position
two and adds it in position one, thereby swapping the first two items. Clockwise starting from the top left: (a)
attention on the current instruction; (b) the two attention heads over the initial state; (c) the two attention heads
over the current state as it changes during execution; and (d) attention over previous instructions.

