

Incorporating Latent Meanings of Morphological Compositions to Enhance Word Embeddings

Yang Xu, Jiawei Liu, Wei Yang, and Liusheng Huang

School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230027, China

July 17th 2018

OUTLINE 02 Latent Meaning Models

04 Experimental Results

Neural Network-Based

F	<u> </u>						
	INPUT	PROJECTION	OUTPUT	INPUT	PROJECTION	OUTPUT	
							1
L		CBOW			Skip-gram		
_							

e.g., CBOW, Skip-gram (Mikolov et al.)

e.g., GloVe (Pennington et al.)

Morphology-based Word Embedding

Our Original Intention

-	

Word-level models: InputWords; Output Word Embeddings

Morphology-based models: Input Words + Morphemes Output Word Embeddings + Morpheme Embeddings

Our Latent Meaning Models: InputWords + Latent Meanings of Morphemes Output Word Embeddings (no by-product, e.g., morpheme

embedding)

PURPOSE: to not only encode morphological properties into words, but also enhance the semantic similarities among word embeddings

ACL2018

*Note: The lookup table can be derived from morphological lexicons.

02 Latent Meaning Models

8

(Context Words)

rd)

LMM-A (Latent Meaning Model-Average)

 \bigcirc

LMM-M (Latent Meaning Model-Max)

 \bigcirc

LMM-S (Latent Meaning Model-Similarity)

0

	incredibl	e			_	<u>-</u>	W	'ord	Мар		
in	cred	ible			Word			efix	Root	S	uffix
						incredible	in	not	believe	able	aanahla
						increatote	in	μοι	Delleve		capable
						unbelievable	ľ	not	believe	able	capable
u	Inbelieval	ble									
							frov	vs =	vocab	ulary	
un	believ	able									

*Note: The derivational morphemes, not the inflectional morphemes, are mainly concerned

Latent Meaning Model-Average (LMM-A)

Sequence of tokens

 The latent meanings of 's morphemes have equal contributions to

The modified embedding of :

: a set of latent meanings of 's morphemes: the length of

● is utilized for training

A paradigm of LMM-A

Latent Meaning

 $Context(t_i)$

ACL2018

Latent Meaning Model-Similarity (LMM-S)

Sequence of tokens

• The latent meanings of 's morphemes are assigned with different weights: $\omega_{< t_j, w>} = \frac{\cos(v_{t_j}, v_w)}{\sum_{x \in M_j} \cos(v_{t_j}, v_x)}, w \in M_j$

The modified embedding of :

: a set of latent meanings of 's morphemes

Latent Meaning

 $Context(t_i)$

Latent Meaning Model-Max (LMM-M)

Sequence of tokens

• Keep the latent meanings that have
maximum similarities to :

$$P_{max}^{j} = arg \max_{w} cos(v_{t_{j}}, v_{w}), w \in P_{j}$$

 $R_{max}^{j} = arg \max_{w} cos(v_{t_{j}}, v_{w}), w \in R_{j}$
 $S_{max}^{j} = arg \max_{w} cos(v_{t_{j}}, v_{w}), w \in S_{j}$

The modified embedding of :

$$M_{max}^{j} = \left\{ P_{max}^{j}, R_{max}^{j}, S_{max}^{j} \right\}$$

ACL2018

New Objective Function (After modifying the input layer of CBOW):

$$\hat{L} = \frac{1}{n} \sum_{i=1}^{n} \log p(v_{t_i} | \sum_{\substack{t_j \in Context(t_i)}} \hat{v}_{t_j})$$

All parameters introduced by our models can be directly derived using the word map and word embeddings

Update not just but the embeddings of the latent meanings with the same weights as they are assigned in the forward propagation period

03 Experimental Setup

Corpus

- News corpus **2009** (2013 ACL • **Eighth Workshop**)
- Size: 1.7GB
- ~500 million tokens \bullet
- ~600,000 words \bullet
- **Digits & punctuation marks are** \bullet filtered

Word Map

- Morpheme segmentation using ٠ Morefessor (Creutz & Lagus, 2007)
- Assign latent meanings •
- Lookup table ٠
 - derived from the resources provided by Michigan State University*
 - ▶ 90 prefixes, 382 roots, 67 suffixes

*Resources web link:

https://msu.edu/~defores1/gre/roots/gre rts afx1.htm

ACL2018

@ Baselines:

- □ Word-level models: CBOW, Skip-gram, GloVe
- Explicitly Morpheme-related Model (EMM)

Super-parameter Settings:

- **□** Equal settings to all models
- □ Vector Dimension: 200
- **Context window size: 5**
- □ #Negative_Samples: 20

A paradigm of EMM

Morphemes

Q Word Similarity:

Dataset

Name	# Pairs	Name	#Pairs	Name	#Pairs
RG-65	65	Rare-Word	2034	Men-3k	3000
Wordsim-353	353	SCWS	2003	WS-353-Related	252

Gold Standard Datasets

Widely-used Datasets

Syntactic Analogy:

□ "a b as c <u>? (d)</u>" e.g., Queen King as Woman (Man)

□ Microsoft Research Syntactic Analogies dataset (8000 items)

Q Text Classification:

20 Newsgroups dataset (19000 documents of 20 different topics)
 4 text classification tasks, each involves 10 topics
 Training/Validation/Test subsets (6:2:2)
 Feature vector: average word embedding of words in each document
 L2-regularized logistic regression classifier

04 Experimental Results

Results on Word Similarity

	CBOW	Skip-gram	GloVe	EMM	LMM-A	LMM-S	LMM-M
Wordsim-353	58.77	61.94	49.40	60.01	62.05	63.13	61.54
Rare-Word	40.58	36.42	33.40	40.83	43.12	42.14	40.51
RG-65	56.50	62.81	59.92	60.85	62.51	62.49	63.07
SCWS	63.13	60.20	47.98	60.28	61.86	61.71	63.02
Men-3k	68.07	66.30	60.56	66.76	66.26	68.36	64.65
WS-353-Related	49.72	57.05	47.46	54.48	56.14	58.47	55.19

(Given different models) Spearman's rank correlation (%) on different datasets

Results on Syntactic Analogy

Question: "a b as c (d) "

Answer:

	CBOW	Skip-gram	GloVe	EMM	LMM-A	LMM-S	LMM-M
Syntactic Analogy	13.46	13.14	13.94	17.34	20.38	17.59	18.30

Syntactic analogy performance (%)

	CBOW	Skip-gram	GloVe	EMM	LMM-A	LMM-S	LMM-M
Text Classification	78.26	79.40	77.01	80.00	80.67	80.59	81.28

Average text classification accuracy across the 4 tasks (%)

The Impact of Corpus Size

ACL2018

Results on Wordsim-353 task with different corpus size

R The Impact of Context Window Size

Results on Wordsim-353 task with different context window size

Word Embedding Visualization

ACL2018

Visualization of word embeddings based on PCA

ACL2018

- Employ latent meanings of morphemes rather than the internal compositions themselves to train word embeddings
- By modifying the input layer and update rules of CBOW, we proposed three latent meaning models (LMM-A, LMM-S, LMM-M)
- The comprehensive quality of word embedings are enhanced by incorporating latent meanings of morphemes
- In the future, we intend to evaluate our models for some morpheme-rich languages like Russian, German, etc.

Thank you! Questions?