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Noun Compounds

= Two or more nouns function as a unit to create a new concept
m hot dog, hot dog bun, hot dog bun package...
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= Two or more nouns function as a unit to create a new concept

m hot dog, hot dog bun, hot dog bun package...
= We focus on two-word compounds

m Express implicit relationship between the constituent nouns:
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Noun Compounds

= Two or more nouns function as a unit to create a new concept

m hot dog, hot dog bun, hot dog bun package...
= We focus on two-word compounds

m Express implicit relationship between the constituent nouns:

m apple cake: cake made of apples
m birthday cake: cake eaten on a birthday
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Noun Compounds

= Two or more nouns function as a unit to create a new concept

m hot dog, hot dog bun, hot dog bun package...
= We focus on two-word compounds

m Express implicit relationship between the constituent nouns:

m apple cake: cake made of apples
m birthday cake: cake eaten on a birthday

m They are like “text compression devices” [Nakov, 2013]
m We're pretty good at decompressing them!
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We are good at Interpreting Noun-Compounds

= We easily interpret noun-compounds

m Even when we see them for the first time
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We are good at Interpreting Noun-Compounds

= We easily interpret noun-compounds

m Even when we see them for the first time

m What is a “parsley cake™?
m cake eaten on a parsley?
m cake with parsley?
m cake for parsley?
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We are good at Interpreting Noun-Compounds

m We easily interpret noun-compounds

= Even when we see them for the first time

m What is a “parsley cake™?

ol \ S )

m cake eaten on a parsley?

m cake with parsley?

cake for parsley?

1from http://www.bazekalim.com
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Generalizing Existing Knowledge

m What can cake be made of?

Corpus of Contemporary American English (@) B

SEARCH

BICICICIE

CICICICIE

o|oe
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Generalizing Existing Knowledge
m What can cake be made of?

Corpus of Contemporary American English (@) B

SEARCH CONTEXT HELP.

SEE CONTEXT: CLICK ON WORD OR SELECT WORDS + [CONTEXT) [HELP. ) compare

FREQ | ToTAL237 | UNIQUETIS +

1 @ 3 —
2 O caKewmiemon 13 —
b O CaKe wiTH sTRAwBERRIES 0 | —
- O cakewmicanous 7 —

s O caKewimH caRRMEL 7 —

o CAKE WITH FROSTING, o

7 CAKE WITHVANILLA o —

5 CAKE WITH BERRIES 5

5 CakE W EGGs 4 |

) CAKEWTHTOWEL 4

" CAKE WITH RASPBERRY. 3

2 cake W IcE 3

= O GAKEWITH MARSHMALLOW 3

1 O CKEwWTHHONEY 3

1s O GKEWITH CRAMON 3

1 O cakewimn corree 3

&2 O cakewmnsurier 3

s O cake wimvosuRT ]

" O cakewmi Aonn 2 =

2 CAKE WITH BLUEBERRIES 2 =

2 ‘CAKE WTH CocoNUT 2 m

2 cake wTH CITRUS : m

= CAKE WITH BUTTERCREAM 2 m

B CAKE WITH CREME 2 m

= CAKE WITH CREAM 2 m

% CAKEWITH DULCE 2 m

z O owewmH cusTaRD 2 m

= O cwewmruT 2 m

» O caKe wiTH conFecTioneRs 2 m

) O caKewimn orance 2 m

m Parsley (sort of) fits into this distribution
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Generalizing Existing Knowledge
m What can cake be made of?

[B] Corpus of Contemporary Am

—
—

3 CAKE WITH STRAWBERRIES 0 | —

= —

s —

o o —

7 o —

5 CAKE WITH BERRIES 5

5 CakE W EGGs 4 |

) CAKEWTHTOWEL 4 (e

" CAKE WITH RASPBERRY 2 mm

2 cake W IcE 3 mm

= CAKE WITH MARSHMALLOW 3 mm

1 O CKEwWTHHONEY 3 mm

1s O GKEWITH CRAMON 3 mm

® 3 mm

v 3 mm

0 ]

" 2 =

3 2 =

2 4 coconuT 2 m

2 cake wTH CITRUS : m

= CAKE WITH BUTTERCREAM 2 m

B CAKE WITH CREME 2 m

= CAKE WITH CREAM 2 m

% CAKEWITH DULCE 2 m

z O cakewmH cusTARD 2 m

= O cwewmruT 2 m

» O GAKE WITH CONFECTIONERS 2 m

2 CAKE WITH ORANGE 2 m

m Parsley (sort of) fits into this distribution
m Similar to “selectional preferences” [Pantel et al., 2007]

Vered Shwartz and Ido Dagan - Paraphrase to Explicate: Revealing Implicit Noun-Compound Relations - ACL 2018 4/23



We need Computers to Inter ret Noun Com pounds

?  Addan event

Title
create a morning meeting Day
Tomorrow

Time

Morning
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Noun-Compound Interpretation Tasks

Bracketing
[[pumpkin spice] latte]
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Noun-Compound Interpretation Tasks

Bracketing
[[pumpkin spice] latte]

Compositionality Prediction
is spelling bee related to bee?

Relation Classification Paraphrasing
apple cake — ingredient cake made of apples
birthday cake — time cake eaten on a birthday |




Noun-Compound Paraphrasing



Motivation
Given a noun-compound wyWw>, express the relation between the
head w; and the modifier wy with multiple prepositional and verbal
paraphrases [Nakov and Hearst, 2006]

olive oil —— [w3] extracted from [w;]
apple cake [w32] made of [wq]
ground attack ——— [wj] from [wi]
boat whistle —— [wj,] located in [wi]
sea bass ———— w,] live in [wi]

ame room
g " [w3] used for [wq]

service door
;zﬁvz] for [wy]
/

baby oil



Evaluation Setting

m Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]
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Evaluation Setting

Available dataset: SemEval 2013 task 4 [Hendrickx et al., 2013]

A ranking rather than a retrieval task

Systems get a list of noun compounds
Extract paraphrases from free text
Rank them

Evaluated for correlation with human judgments
Gold paraphrase score: how many annotators suggested it?



Prior Methods (1/2)

m Based on constituent co-occurrences: “cake made of apple”
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Prior Methods (1/2)

m Based on constituent co-occurrences: “cake made of apple”

= Problems:
1. Many unseen compounds, no paraphrases in the corpus
m rare: parsley cake or highly lexicalized: ice cream
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Prior Methods (1/2)

Based on constituent co-occurrences: “cake made of apple”

Problems:
Many unseen compounds, no paraphrases in the corpus
rare: parsley cake or highly lexicalized: ice cream

Many compounds with just a few paraphrases
Can we infer “cake containing apple” given “cake made of apple™?

Prior work provides partial solutions to either (1) or (2)



Prior Methods (2/2)

1. MELODI [Van de Cruys et al., 2013]:

m Represent NC by applying a function to its constituent
distributional vectors: vec(apple cake) = f(vec(apple), vec(cake))

Vered Shwartz and Ido Dagan - Paraphrase to Explicate: Revealing Implicit Noun-Compound Relations - ACL 2018 11/23



Prior Methods (2/2)

MELODI [Van de Cruys et al., 2013]:
Represent NC by applying a function to its constituent
distributional vectors: vec(apple cake) = f(vec(apple), vec(cake))
Predict paraphrase templates given NC vector



Prior Methods (2/2)

MELODI [Van de Cruys et al., 2013]:

Represent NC by applying a function to its constituent
distributional vectors: vec(apple cake) = f(vec(apple), vec(cake))
Predict paraphrase templates given NC vector

Generalizes for similar unseen NCs, e.g. pear tart



Prior Methods (2/2)

MELODI [Van de Cruys et al., 2013]:
Represent NC by applying a function to its constituent
distributional vectors: vec(apple cake) = f(vec(apple), vec(cake))
Predict paraphrase templates given NC vector
Generalizes for similar unseen NCs, e.g. pear tart

[IITH [Surtani et al., 2013]:

Learn “is-a” relations between paraphrases:
e.g. “[w;] extracted from [wi]” C “[w;] made of [wi]”



Prior Methods (2/2)

MELODI [Van de Cruys et al., 2013]:

Represent NC by applying a function to its constituent
distributional vectors: vec(apple cake) = f(vec(apple), vec(cake))
Predict paraphrase templates given NC vector

Generalizes for similar unseen NCs, e.g. pear tart

[IITH [Surtani et al., 2013]:

Learn “is-a” relations between paraphrases:
e.g. “[w;] extracted from [wi]” C “[w;] made of [wi]”

Our solution: multi-task learning to address both problems



Model
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Multi-task Reformulation

m Training example {w; = apple, w; = cake, p = “[w;] made of [w1]’}
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Multi-task Reformulation

m Training example {w; = apple, w; = cake, p = “[w;] made of [w1]’}

1. Predict a paraphrase p for a given NC wyw;:
What is the relation between apple and cake?

Vered Shwartz and Ido Dagan - Paraphrase to Explicate: Revealing Implicit Noun-Compound Relations - ACL 2018 13/23



Multi-task Reformulation

Training example {wy = apple, w; = cake, p = “[w;] made of [w1]"}

Predict a paraphrase p for a given NC wyw;:
What is the relation between apple and cake?

Predict wy given a paraphrase p and w;:
What can cake be made of?



Multi-task Reformulation

Training example {wy = apple, w; = cake, p = “[w;] made of [w1]"}

Predict a paraphrase p for a given NC wyw;:
What is the relation between apple and cake?

Predict wy given a paraphrase p and w;:
What can cake be made of?

Predict w; given a paraphrase p and wy:
What can be made of apple?
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Main Task (1): Predicting Paraphrases
What is the relation between apple and cake?

(23) made
(28) apple (78) [w;] containing [w1]
(4145) cake (1) [wil
(2) [wa] (131) [w,] made of [wi]
(7891) of (3) [p]

Encode placeholder [p] in “cake [p] apple” using biLSTM
Predict an index in the paraphrase vocabulary

Fixed word embeddings,

(1) Generalizes NCs: pear tart expected to yield similar results
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Helper Task (2): Predicting Missing Constituents
What can cake be made of?

Wy =28

;

MLP,,

|

S Y T
[ cake ][ made ][ of ][ [wi] ]
(23) made (1) [wi]

(28) apple (2) [wa]

(4145) cake (3) [r]

(7891) of

Encode placeholder in “cake made of [w1]” using biLSTM
Predict an index in the word vocabulary
(2) Generalizes paraphrases:

“[w] containing [w1]” expected to yield similar results



Training Data

= Collected from Google N-grams
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Training Data

Collected from Google N-grams

Input:
Set of NCs
Templates of POS tags (e.g. “[w;] verb prep [w1]")

Weighting by frequency and length

140k instances



Evaluation



Ranking Model

m Predict top k paraphrases for each noun compound
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Ranking Model

Predict top k paraphrases for each noun compound

Learn to re-rank the paraphrases
to better correlate with human judgments

SVM pair-wise ranking with the following features:

POS tags in the paraphrase
Prepositions in the paraphrase
Length

Special symbols

Similarity to predicted paraphrase
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Results

60 :
54.8 [] MELODI [van de Cruys et aL., 2013]
|:| SemeEval 2013 Baseline [Hendrickx et al., 2013]
[] sFs [verstey, 2013]
40.6 I IIITH [Surtani et al., 2013]
40 |- I PaNiC [Shwartz and Dagan, 2018] B
28.4 28.2
25.8
23.1 23.1
20 17.9 —
13 138
I I
N\ | non-isomorphic isomorphic
‘conservative”
models rewards rewards recall
only precision and precision
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Error Analysis
False Positive

1. Valid, missing from gold-standard
(“discussion by group”)
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2. Too specific
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E.g., n-grams don’t respect syntactic
structure: “rinse away the oil from

baby ’s head” = “oil from baby”
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(“life of women in community”)

3. Incorrect prepositions
E.g., n-grams don’t respect syntactic
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baby ’s head” = “oil from baby”
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Error Analysis
False Positive

1. Valid, missing from gold-standard
(“discussion by group”)

2. Too specific
(“life of women in community”)

3. Incorrect prepositions

E.g., n-grams don’t respect syntactic
structure: “rinse away the oil from

baby ’s head” = “oil from baby”
4. Syntactic errors

vl

. Borderline grammatical
(“force of coalition forces”)
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Error Analysis
False Positive

1. Valid, missing from gold-standard
(“discussion by group”)

2. Too specific
(“life of women in community”)

3. Incorrect prepositions
E.g., n-grams don’t respect syntactic
structure: “rinse away the oil from

baby ’s head” = “oil from baby”
4. Syntactic errors

vl

. Borderline grammatical
(“force of coalition forces”)

6. Other errors

Vered Shwartz and Ido Dagan - Paraphrase to Explicate: Revealing Implicit Noun-Compound Relations - ACL 2018 20/ 23



Error Analysis
False Negative

1. Long paraphrase (n > 5)
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Error Analysis
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Error Analysis
False Negative

1. Long paraphrase (n > 5)

2. Determiners
(“‘mutation of a gene”)

3. Inflected constituents
(“holding of shares”)
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Error Analysis
False Negative

1. Long paraphrase (n > 5)

2. Determiners
(“‘mutation of a gene”)

3. Inflected constituents
(“holding of shares”)

4. Other errors
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Recap

= A model for generating paraphrases for given noun-compounds
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Recap

A model for generating paraphrases for given noun-compounds

Better generalization abilities:

Generalize for unseen noun-compounds
Embed semantically-similar paraphrases in proximity

Improved performance in challenging evaluation settings

Thank youl!
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