A Framework for Representing

Language Acquisition in a Population Setting

Jordan Kodner Christopher Cerezo Falco University of Pennsylvania

> ACL - July 16, 2018 Melbourne

Language Change

Languages change over time

- Both an internal and external process
- Fundamentally social
- Individuals acquire language and transmit it to future generations
- New variants propagate through populations

Modelling Change

• Must model how the individual reacts to linguistic input and to the community

- /p/ "cot" is pronounced the same as /ɔ/ "caught"
- *Minimal pairs* distinguished by /p/~/ɔ/ become *homophones*

/ɑ/	
cot	caught
Don	Dawn
collar	caller
knotty	naughty
odd	awed
pond	pawned

- /p/ "cot" is pronounced the same as /ɔ/ "caught"
- Present in many dialects of North American English
 - Eastern New England
 - Western Pennsylvania
 - Lower Midwest
 - West
 - Canada (all)

- /p/ "cot" is pronounced the same as /ɔ/ "caught"
- Present in many dialects of North American English
 - Eastern New England
 - Western Pennsylvania
 - Lower Midwest
 - West
 - Canada (all)
- Spreading into Rhode Island (Johnson 2007)

- /p/ "cot" is pronounced the same as /ɔ/ "caught"
- Present in many dialects of North American English
 - Eastern New England
 - Western Pennsylvania
 - Lower Midwest
 - West
 - Canada (all)
- Spreading into Rhode Island
- Rapid! Families with Non-merged parents and older siblings but merged younger siblings

Joshua Katz, Dept of Statistics, NC State University

Existing Frameworks

- **1. Swarm Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks

1. Swarm Frameworks

- Individual agents on a grid moving randomly and interacting (ABM)
- e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & Kenny 2013

1. Swarm Frameworks

- Individual agents on a grid moving randomly and interacting (ABM)
- e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & Kenny 2013
- + Bloomfield (1933)'s Principle of Density for free
- + Diffusion is straightforward
- Not a lot of control over the network
- Thousands of degrees of freedom
 - -> should run many many times

-> slow

- **1. Swarm Frameworks**
- 2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction
 - e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et al. 2010, Minett & Wang 2008, Kauhanen 2016

- **1. Swarm Frameworks**
- 2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction
 - e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et al. 2010, Minett & Wang 2008, Kauhanen 2016
 - + Much more control over network structure
 - + Easy to model concepts from the sociolinguistic lit. (e.g., Milroy & Milroy)
 - Nodes only interact with immediate neighbours -> slow and less realistic?
 - Practically implemented as random interactions between neighbours -> same problem as #1

- **1. Swarm Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks
 - Expected outcome of interactions is calculated analytically
 - e.g., Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi & Berwick 1997, Yang 2000, Niyogi & Berwick 2009

- **1. Swarm Frameworks**
- 2. Network Frameworks

3. Algebraic Frameworks

- Expected outcome of interactions is calculated analytically
- e.g., Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi & Berwick 1997, Yang 2000, Niyogi & Berwick 2009
- + Closed-form solution rather than simulation -> faster and more direct
- No network structure! Always implemented over perfectly mixed populations

- **1. Swarm Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks

This proliferation of "boutique" frameworks is a problem

- An ad hoc framework risks "overfitting" the pattern
- Comparison between frameworks is challenging

Our Framework

Best of All Worlds

Impose density effects on a network structure and calculate the outcome of each iteration analytically

Best of All Worlds

Impose density effects on a network structure and calculate the outcome of each iteration analytically

Swarm

+ Captures the Principle of Density

Network

+ Models key facts about social networks

Algebraic

+ No random process in the core algorithm

The Model

Language change as a two-step loop

- **1. Propagation: Variants distribute through the network**
- 2. Acquisition: Individuals internalize them

Vocabulary

L: That which is transmitted

Language ≈ Variant ≈ Sample

G: That which generates/describes/distinguishes L That which is learned/influenced by L Grammar ≈ Variety ≈ Latent Variable

Binary G Examples

- **G:** {Merged grammar, Non-merged grammar}
- L: Merged or non-merged instances of *cot* and *caught* words
- **G:** {*Dived*-generating grammar, *Dove*-generating grammar}
- L: Instances of the past tense of *dive* as *dived* or *dove*
- **G:** {*have*+NEG = *haven't got* grammar, *have*+NEG = *don't have* grammar}
- L: Instances of *haven't got* and instances of *don't have*

The Model

Language change as a two-step loop

- **1. Propagation:** L distributes through the network
- 2. Acquisition: Individuals react to L to create G

If this were a linear chain,

$$L_0 \rightarrow G_1 \rightarrow L_1 \rightarrow G_2 \rightarrow L_2 \rightarrow \dots \rightarrow L_n \rightarrow G_{n+1} \rightarrow \dots$$

The Model

Language change as a two-step loop

1. Propagation: L distributes through the network

2. Acquisition: Individuals react to L to create G

Generic. Not problem-specific.

For T iterations,

For the individual at each node Begin *travelling*; While travelling **Randomly select outgoing edge** by weight and follow it OR stop; **Increase chance of stopping next time;** End Interact with the individual at the current Node;

For T iterations,

For the individual at each node

Begin travelling; In While travelling Randomly select outgoing edge by weight and follow it OR stop; Increase chance of stopping next time; End

Interact with the individual at the current node;

End

Nodes are not individuals. Individuals "stand on" nodes

For T iterations,

For the individual at each node

Begin travelling;

While travelling

Randomly select outgoing edge by weight and follow it OR stop; Increase chance of stopping next time;

End

Interact with the individual at the current node;

Individuals "travel" along edges and find someone to interact with

For T iterations. For the individual at each node Begin travelling; While travelling Randomly select outgoing edge by weight and follow it OR stop; **Increase chance of stopping next time;** End Interact with the individual at the current node;

Individuals connected by shorter or higher weighted paths are more likely to interact.

For T iterations,

Rather than simulating interactions in a loop, calculate a closed-form solution

$E = G^{T} \alpha (I - (1 - \alpha) A)^{-1}$

$E = G^T \alpha (I - (1 - \alpha) A)^{-1}$

The Linguistic Environment

- **E** is a *g* x *n* matrix: *n* individuals, *g* possible grammars
- For each individual, the proportion of input drawn from each grammar

$E = G^{T} \alpha (I - (1 - \alpha) A)^{-1}$

The Linguistic Environment

Distribution of Grammars

- Of the previous generation
- G is an *n* x g matrix
- Proportions by which each individual produces L

$E = G^{T} \alpha (I - (1 - \alpha) A)^{-1}$

The Linguistic Environment Distribution of Grammars Interaction Probabilities

- A is an *n* x *n* adjacency matrix
- The probabilities that nodes *i*, *j* interact given that the number of steps travelled declines by a geometric distribution
- α parameter from that distribution [0,1]

The Acquisition Function

- Problem-specific
- Should take E, as input and produce G, as output
- In the simplest case (*neutral change*), $G_{t+1} = E_t^T$
- The following case study uses a *variational learner*

Case Study Spread of the Cot-Caught Merger

Learners will acquire the merged grammar iff more than ~17% of their environment is merged

Learners will acquire the merged grammar iff more than ~17% of their environment is merged

- + Accounts for mergers' tendency to spread (Labov 1994)
- + 17% is close to the merged rate estimated in Johnson 2007

Learners will acquire the merged grammar iff more than ~17% of their environment is merged

- + Accounts for mergers' tendency to spread (Labov 1994)
- + 17% is close to the merged rate estimated in Johnson 2007
- In a perfectly-mixed model, population will immediately fix at 100% g_{+} or g_{-}

Claim: The merged grammar has a processing advantage

Claim: The merged grammar has a processing advantage **Claim:** Merged listeners have a lower rate of *initial* misinterpretation

Claim: The merged grammar has a processing advantage **Claim:** Merged listeners have a lower rate of *initial* misinterpretation **Claim:** Only *minimal pairs* are relevant

Claim: The merged grammar has a processing advantage Claim: Merged listeners have a lower rate of *initial* misinterpretation Claim: Only *minimal pairs* are relevant

• If speaker A- and listener B- are both non-merged, B- misunderstands A- at the rate of mishearing one vowel for the other (A- said /ɒ/ but B- heard /ɔ/)

Claim: The merged grammar has a processing advantage Claim: Merged listeners have a lower rate of *initial* misinterpretation Claim: Only *minimal pairs* are relevant

- If speaker A- and listener B- are both non-merged, B- misunderstands A- at the rate of mishearing one vowel for the other (A- said /p/ but B- heard /ɔ/)
- If A+ speaks to B-, B- initially misunderstands whenever A+ says /p/ when Bexpects /ɔ/ and visa-versa

Claim: The merged grammar has a processing advantage Claim: Merged listeners have a lower rate of *initial* misinterpretation Claim: Only *minimal pairs* are relevant

- If speaker A- and listener B- are both non-merged, B- misunderstands A- at the rate of mishearing one vowel for the other (A- said /p/ but B- heard /ɔ/)
- If A+ speaks to B-, B- initially misunderstands whenever A+ says /p/ when Bexpects /ɔ/ and visa-versa
- If A- or A+ speaks to B+, B+ cannot hear A-'s distinctions. Initial misunderstandings come down to lexical access if the intended meaning is not the most frequent meaning (Carmazza et al 2001)

Variational Model for Merger Acquisition

Probability of initial misunderstanding depends on

- minimal pair frequencies
- mix merged (+) and non-merged (-) speakers in the environment

Variational Model for Merger Acquisition

Probability of initial misunderstanding depends on

- minimal pair frequencies
- mix merged (+) and non-merged (-) speakers in the environment

Using minimal pair frequencies estimated from SUBTLEXus and a variational learner, learners will acquire the merged grammar iff more than ~17% of their environment is merged (Yang 2009)

Acquisition Function

Two Grammars:

Merged grammar g₊ Non-merged grammar g₋

Precomputed Acquisition Function

An individual acquires 100% g_{+} if >17% environment is generated by the g_{+} , else acquire 100% g_{-}

- 100 clusters of 75 individuals each
- Each cluster is centralised randomly such that some community members are better connected than others

- 100 clusters of 75 individuals each
- Each cluster is centralised randomly such that some community members are better connected than others
- One cluster begins 100% merged (Massachusetts)
- The rest start 100% non-merged (Rhode Island)

- 100 clusters of 75 individuals each
- Each cluster is centralised randomly such that some community members are better connected than others
- One cluster begins 100% merged (Massachusetts)
- The rest start 100% non-merged (Rhode Island)
- Half the RI clusters are connected to the MA cluster (the "Frontier")

- 100 clusters of 75 individuals each
- Each cluster is centralised randomly such that some community members are better connected than others
- One cluster begins 100% merged (Massachusetts)
- The rest start 100% non-merged (Rhode Island)
- Half the RI clusters are connected to the MA cluster (the "Frontier")
- Two members of each RI cluster are randomly connected to other clusters

Merger Rate in Rhode Island over Time

- The average merger rate across all Rhode Island clusters follows an S-shape
- The 99 RI community cluster curves are also S-shaped
 - Staggered in time
 - Steep slopes = rapid change

Conclusions

The Propagation Function

- Removes the need to simulate interactions
- Is widely applicable rather than made-to-order

The Cot-Caught Application

- Predicts behaviour consistent with the empirical data
- And with principles of language change

Acknowledgements:

- Charles Yang
- Mitch Marcus
- NDSEG Fellowship (US ARO)

Implementation:

github.com/jkodner05/NetworksAndLangChange

• Learners consider multiple grammars g₁, g₂ simultaneously

•
$$P(g_1) = p$$
, $P(g_2) = q$, $p+q = 1$

- Learners consider multiple grammars g₁, g₂ simultaneously
- Each g is penalised when it cannot parse an input

•
$$P(g_1) = p$$
, $P(g_2) = q$, $p+q = 1$

•
$$p' = \begin{cases} p + \gamma q, & \text{if } g_1 \text{ parses input} \\ (1-\gamma)p, & \text{if } g_1 \text{ fails} \end{cases}$$

- Learners consider multiple grammars g₁, g₂ simultaneously
- Each g is penalised when it cannot parse an input
- The *g* with lower penalty probability has the advantage

- $P(g_1) = p$, $P(g_2) = q$, p+q = 1
- $p' = \begin{cases} p + \gamma q, & \text{if } g_1 \text{ parses input} \\ (1-\gamma)p, & \text{if } g_1 \text{ fails} \end{cases}$
- $\lim_{t \to \infty} p_t = C_2 / (C_1 + C_2)$
- $\lim_{t \to \infty} q_t = C_1 / (C_2 + C_1)$

- Learners consider multiple grammars g₁, g₂ simultaneously
- Each g is penalised when it cannot parse an input
- The *g* with lower penalty probability has the advantage
- If mature speakers adopt one grammar categorically, the one with smaller *C* wins

•
$$P(g_1) = p$$
, $P(g_2) = q$, $p+q = 1$

•
$$p' = \begin{cases} p + \gamma q, & \text{if } g_1 \text{ parses input} \\ (1-\gamma)p, & \text{if } g_1 \text{ fails} \end{cases}$$

•
$$\lim_{t \to \infty} \frac{p_t}{p_t} = \frac{C_2}{C_1} + \frac{C_2}{C_2}$$

$$\lim_{t \to \infty} \boldsymbol{q}_t = \boldsymbol{C}_1 / (\boldsymbol{C}_2 + \boldsymbol{C}_1)$$

•
$$\lim_{t \to \infty} p_t = \begin{bmatrix} 1, & \text{if } C_1 < C_2 \\ 0, & \text{if } C_2 < C_1 \end{bmatrix}$$

Variational Model for Merger Acquisition

Penalty probabilities depend on

- minimal pair frequencies
- mix merged (+) and non-merged (-) speakers in the environment

Variational Model for Merger Acquisition

Penalty probabilities depend on

- minimal pair frequencies
- mix merged (+) and non-merged (-) speakers in the environment
- $m_i, n_i =$ frequencies of each member of a minimal pair $H = \Sigma_i m_i + n_i$
- ε = probability of mishearing one vowel for the other

$$C_{+} = (1/H) \Sigma_{i} \min(m_{i}, n_{i})$$
hearing the less freq word

$$C_{-} = (1/H) \Sigma_{i} [p_{+}((1-\varepsilon_{m})m_{i} + \varepsilon_{n}n_{i})$$
mishearing + input

$$+ p_{-}(\varepsilon_{m}m_{i} + \varepsilon_{n}n_{i})]$$
misinterpreting - input

Results - Updating Connections

- Social connections change constantly
- Rewire the edges (recalculate A) at every iteration

Results - Updating Connections

- Social connections change constantly
- Rewire the edges (recalculate A) at every iteration
- The outcome is similar, but clusters tipping points are temporally closer
- No cluster remains particularly well or poorly connected for long

Fractional Updating

- The merger spreads rapidly enough to distinguish older and younger siblings
- Only a fraction of the population is of the correct age at any moment
- Update only 10% of random nodes at every iteration

Fractional Updating

- The merger spreads rapidly enough to distinguish older and younger siblings
- Only a fraction of the population is of the correct age at any moment
- Update only 10% of random nodes at every iteration
- Similar outcome with wider spread between cluster "tipping points"
- Simulation took about 5x as long because

Results - Network Size

- Tested our network size assumptions
- Repeat the experiment with 40 clusters of 18 individuals each

Results - Network Size

- Tested our network size assumptions
- Repeat the experiment with 40 clusters of 18 individuals each
- Qualitatively similar
- The S-shape is less S-shaped
- Individual clusters shows step pattern

Results - Community Averages

- At small network sizes, the community average is more sensitive to random connections
- Repeat the small-scale experiment 10 times

Results - Community Averages

- At small network sizes, the community average is more sensitive to random connections
- Repeat the small-scale experiment 10 times
- The slope is ~consistent in most simulations
- A few simulations show aberrant behaviour

