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The Role of Morphology in SRL 4 Explaining Improvement over Word is easy \

Koy+lU+ler sehr+e geldi —k IOW rates are well aligned with Out-of-Vocabulary (OOV)%
people from the village (o town came.— Highest IOW in agglutinative languages <— Many morphemes attached to a word (e.g.,belge-len-dir-il-eme-yen-ler)
e P & Moderate IOW in German, Czech <— ~7.9% of the test tokens are not seen in the training
| 7 N 52 & \Low IOW in Spanish, Catalan <+— ~5% of the test tokens are not seen in the training /
L ® O1: moti S o kY laini h is hard!
rwm— prtEnc P [ 2 A(p aining Improvement over Character is hard.!
=) ...oame as answering when MLM provides more structure then CLM
S Y.ﬁmd, (1) dol+Verb+Positive+Aorist+3sg “It fills”
. . A dzTIR | SvTimieToe ~ .y| (2) dola+Verb+Positive+Aorist+3sg “He wraps”
Sendika+li+lar meclis+e geldi = Summer houseryourrat "DB itrwas
n

people from the union to council came

> i - A' ,-.
T ey W
s N - B X
Ly _-‘ e e Ay =y
\/ e =
- - v — -
i Lals)y- o =
o T Q*I i =7 1 | | | | | | | | | | | | | | | || I
Leo 4 3 7 =
A * A el =
AT A , Do b
XN o &Y (e
& B | LB
\ G{\J oy =ty
H "“ b :.l‘::'.-;}.:‘ CO e O 1 Ot I O
\; - A m m n
g § v
5 . =
N — :‘—;;:_._.
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Arg4: End Point

a Derivational morphology*

e Contextual Ambiguity

_ _ ] ] Derivational Non-Derivational Non-Ambiguous Ambiguous
Morphology is essential for semantic role labeling (SRL) | | L. ..o
but expensive, so we ask the following questions: Morpheme ambiguity ru;e perfective 2nd person  singular
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Arg1 Arg4 _ - "._ 6o - oracle:  15.4 + 6.38 In x
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a Experiments : 1 d s ongages
S
/ Dataset: ' = Finnish Turkish Spanish Catalan 550 2 4 6 8 10
CoNLL-09 dependency-based SRL shared task dataset for Czech, Spanlsh
Catalan, German and English and Free PropBanks: Turkish Propbank [3] and
Finnish PropBank O
word char char-trigram gold morph. tags SO the answers are... \
F1 F1 IOW%| F1 IOW% | F1 IOW% h | |
FINNISH 28691 | 6724 3746 | 6778 3858 | 7115 | 4547 For in-domain data, CLMs can not yet match the performance of MLMs, but surpass
| | | | | ' ' WLMs by a large margin
TURKISH 44 .82 55.89 2468 | 56.60 | 26.28 | 59.38 32.48
SPANISH 230 | 6700 561 | 6843 642 | 6039 | 700 @ !ts shortcomings depend on the language type. The hard cases are: Derivational
CATAL AN o545 | 7056 782 | 7134 000 | 7324 | 1190 morphology and contextual ambiguity for agglutinative languages; and tokens with
rEch 63'58 74'04 16 is 74'98 17‘ o 80'66 26'87 | many morphological tags in fusional languages.
' | | | | ' ; They perform better on out-of-domain data; when there is only access to predicted tags;
GERMAN 54.78 63.71 | 16.29 | 65.56 | 19.68 | 69.35 26.58 y y
aLIS 110 and when a large enough training set is available. Targeted scores for long range
ENGLISH . 81.61 052 | 80.65 | -0.67 - - J : L
ependencies are similar.
Table 1: Argument labeling F1 scores for each subword unit and language.”

The best model was the morphology-level model in all languages, BUT... case of small training data size.

\‘ They don't benefit as much from increasing of the model size and perform worse in /
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*These are the results on test set. Please see the paper for development data results.




