
LinkNBed: Multi-Graph Representation Learning with Entity Linkage (Appendix)

A Discussion and Insights on Entity Linkage Task

Entity linkage task is novel in the space of multi-graph learning and yet has not been tackled by any
existing relational learning approaches. Hence we analyze our performance on the task in more detail
here. We acknowledge that baseline methods are not tailored to the task of entity linkage and hence their
low performance is natural. But we observe that our model performs well even in the unsupervised
scenario where essentially the linkage loss function is switched off and our model becomes a relational
learning baseline. We believe that the inductive ability of our model and shared parameterization helps to
capture knowledge across graphs and allows for better linkage performance. This outcome demonstrates
the merit in multi-graph learning for different inference tasks. Having said that, we admit that our results
are far from comparable to state-of-the-art linkage results (Das et al., 2017) and much work needs to be
done to advance representation and relational learning methods to support effective entity linkage. But we
note that our model works for multiple types of entities in a very heterogeneous environment with some
promising results which serves as an evidence to pursue this direction for entity linkage task.

We now discuss several use-case scenarios where our model did not perform well to gain in-
sights on what further steps can be pursued to improve over this initial model:

Han Solo with many attributes (False-negative example). Han Solo is a fictional character in
Star Wars and appears in both D-IMDB and D-FB records. We have a positive label for this sample but
we do not predict it correctly. Our model combines multiple components to effectively learn across
graphs. Hence we investigated all the components to check for the failures. One observation we have
is the mismatch in the amount of attributes across the two datasets. Further, this is compounded by
multi-value attributes. As described, we use paragraph2vec like model to learn attribute embeddings
where for each attribute, we aggregate over all its values. This seems to be computing embeddings
that are very noisy. As we have seen attributes are affecting the final result with high impact and
hence learning very noisy attributes is not helping. Further, the mismatch in number of types is
also an issue. Even after filtering the types, the difference is pretty large. Types are also included
as attributes and they contribute context to relation embeddings. We believe that the skew in type
difference is making the model learn bad embeddings. Specifically this happens in cases where lot
of information is available like Han Solo as it lead to the scenario of abundant noisy data. With
our investigation, we believe that contextual embeddings need further sophistication to handle such
scenarios. Further, as we already learn relation, type and attribute embeddings in addition to entity em-
beddings, aligning relations, types and attributes as integral task could also be an important future direction.

Alfred Pennyworth is never the subject of matter (False-negative example). In this case, we
observe a new pattern which was found in many other examples. While there are many triples available
for this character in D-IMDB, very few triplets are available in D-FB. This skew in availability of
data hampers the learning of deep network which ends up learning very different embeddings for two
realizations. Further, we observe another patter where Alfred Pennyworth appears only as an object in
all those few triplets of D-FB while it appears as both subject and object in D-IMDB. Accounting for
asymmetric relationships in an explicit manner may become helpful for this scenario.

Thomas Wayne is Martha Wayne! (False-positive example). This is the case of abundance of
similar contextual information as our model predicts Thomas Wayne and Martha Wayne to be same
entity. Both the characters share a lot of context and hence many triples and attributes, neighborhood
etc. are similar for of them eventually learning very similar embeddings. Further as we have seen
before, neighborhood has shown to be a weak context which seems to hamper the learning in this case.
Finally, the key insight here is to be able to attend to the very few discriminative features for the enti-
ties in both datasets (e.g. male vs female) and hence a more sophisticated attention mechanism would help.



In addition to the above specific use cases, we would like to discuss insights on following gen-
eral concepts that naturally occur when learning over multiple graphs:

• Entity Overlap Across Graphs. In terms of overlap, one needs to distinguish between *real* and
*known* overlap between entities. For the known overlap between entities, we use that knowledge
for linkage loss function Llab. But our method does not need to assume either types of overlap. In
case there is no real overlap, the model will learn embeddings as if they were on two separate graphs
and hence will only provide marginal (if any) improvement over state-of-art embedding methods
for single graphs. If there is real overlap but no known overlap (i.e., no linked entity labels), the
only change is that Equation (13) will ignore the term (1− b) · Llab. Table 3 shows that in this case
(corresponding to AUPRC (Unsupervised)), we are still able to learn similar embeddings for graph
entities corresponding to the same real-world entity.

• Disproportionate Evidence for entities across graphs. While higher proportion of occurrences
help to provide more evidence for training an entity embedding, the overall quality of embedding
will also be affected by all other contexts and hence we expect to have varied entity-specific behavior
when they occur in different proportions across two graphs

• Ambiguity vs. Accuracy. The effect of ambiguity on accuracy is dependent on the type of semantic
differences. For example, it is observed that similar entities with major difference in attributes across
graphs hurts the accuracy while the impact is not so prominent for similar entities when only their
neighborhood is different.

B Implementation Details

B.1 Additional Dataset Details

We perform light pre-processing on the dataset to remove self-loops from triples, clean the attributes
to remove garbage characters and collapse CVT (Compound Value Types) entities into single triplets.
Further we observe that there is big skew in the number of types between D-IMDB and D-FB. D-FB
contains many non-informative type information such as #base.∗. We remove all such non-informative
types from both datasets which retains 41 types in D-IMDB and 324 types in D-FB. This filtering does
not reduce the number of entities or triples by significant number (less than 1000 entities filtered)

For comparing at scale with baselines, we further reduce dataset using similar techniques adopted in
producing widely accepted FB-15K or FB-237K. Specifically, we filter relational triples such that both
entities in a triple contained in our dataset must appear in more than k triples. We use k = 50 for D-FB
and k = 100 for D-IMDB as D-IMDB has orders of magnitude more triples compared to D-FB in our
curated datasets. We still maintain the overall ratio of the number of triples between the two datasets.

Positive and Negative Labels. We obtain 500662 positive labels using the existing links between the
two datasets. Note that any entity can have only one positive label. We also generate 20 negative labels
for each entity using the following method: (i) randomly select 10 entities from the other graph such that
both entities belong to the same type and there exist no positive label between entities (ii) randomly select
10 entities from the other graph such that both entities belong to different types.

B.2 Training Configurations

We performed hyper-parameter grid search to obtain the best performance of our method and finally used
the following configuration to obtain the reported results:
– Entity Embedding Size: 256, Relation Embedding Size=64, Attribute Embedding Size = 16, Type
Embedding Size = 16, Attribute Value Embedding Size = 512. We tried multiple batch sizes with very
minor difference in performance and finally used size of 2000. For hidden units per layer, we use size =
64. We used C = 50 negative samples and Z = 20 negative labels. The learning rate was initialized as
0.01 and then decayed over epochs. We ran our experiments for 5 epochs after which the training starts to
convert as the dataset is very large. We use loss weights b as 0.6 and margin as 1. Further, we use K = 50



random walks of length l = 3 for each entity We used a train/test split of 60%/40% for both the triples
set and labels set. For baselines, we used the implementations provided by the respective authors and
performed grid search for all methods according to their requirements.

C Contextual Information Formulations

Here we describe exact formulation of each context that we used in our work.

Neighborhood Context: Given a triplet (es, r, eo), the neighborhood context for an entity es

will be all the nodes at 1-hop distance from es other than the node eo. This will capture the effect of other
nodes in the graph surrounding es that drives es to participate in fact (es, r, eo). Concretely, we define the
neighborhood context of es as follows:

Nc(e
s) =

1

ne′

∑
e′∈N (es)
e′ 6=eo

ve′ (1)

where N (es) is the set of all entities in neighborhood of es other than eo. We collect the neighborhood
set for each entity as a pre-processing step using a random walk method. Specifically, given a node e, we
run k rounds of random-walks of length l and create the neighborhood set N (e) by adding all unique
nodes visited across these walks.

Please note that we can also use max function in (1) instead of sum. Nc(e
s) ∈ Rd and the

context can be similarly computed for object entity.

Attribute Context. For an entity es, the corresponding attribute context is defined as

Ac(e
s) =

1

na

na∑
i=1

ae
s

i (2)

where na is the number of attributes. ae
s

i is the embedding for attribute i. Ac(e
s) ∈ Ry.

Type Context. We use type context mainly for relationships i.e. for a given relationship r, this
context aims at capturing the effect of type of entities that have participated in this relationship. For a
given triplet (es, r, eo), we define type context for relationship r as:

Tc(r) =
1

nr
t

nr
t∑

i=1

vt′
i (3)

where, nr
t is the total number of types of entities that has participated in relationship r and vt′

i is the
type embedding that corresponds to type t. Tc(r) ∈ Rq.


