

A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss

Wan-Ting Hsu
National Tsing Hua University

Chieh-Kai Lin
National Tsing Hua University

Project page

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Overview

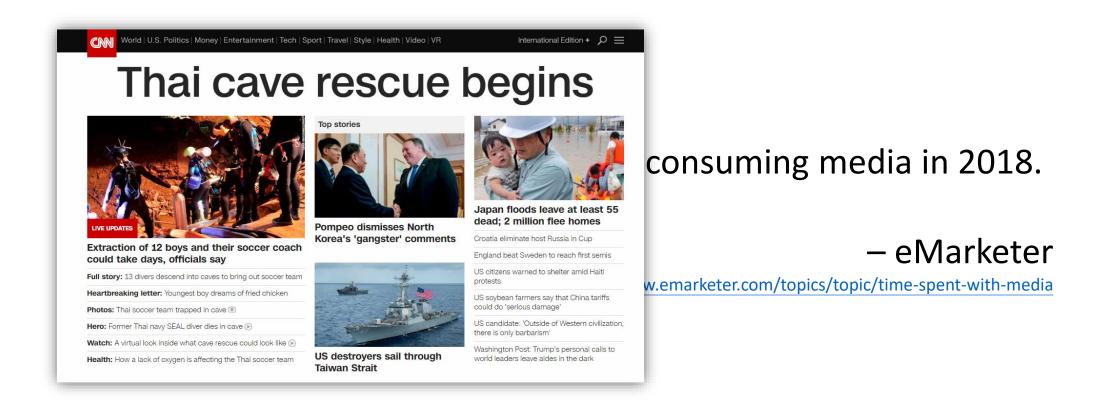
Textual Media

People spend 12 hours everyday consuming media in 2018.

– eMarketer

https://www.emarketer.com/topics/topic/time-spent-with-media

Textual Media



Textual Media

Textual Media

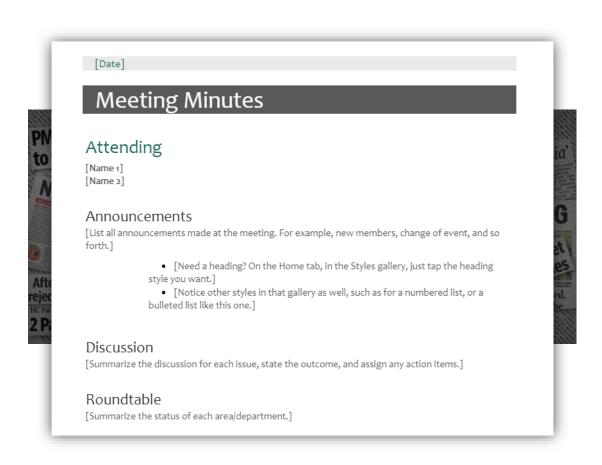
Text Summarization

 To condense a piece of text to a shorter version while maintaining the important points

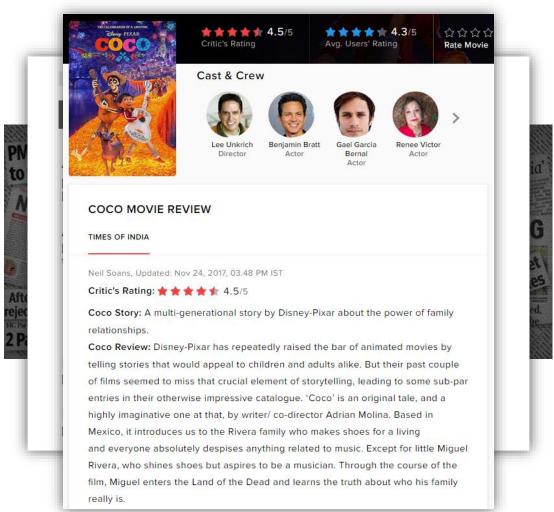
- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)

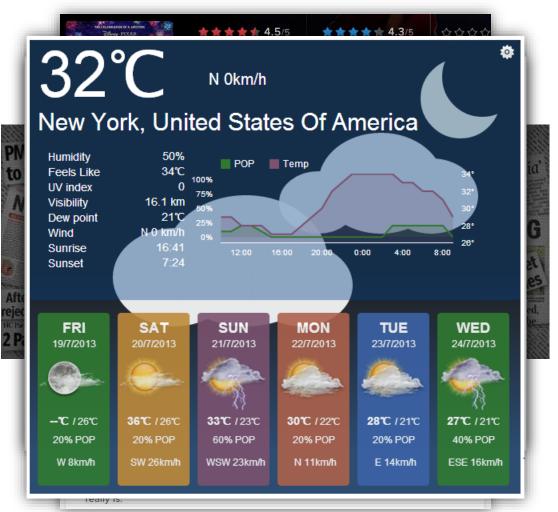
- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)



- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)



- Article headlines
- Meeting minutes
- Movie/book reviews
- Bulletins (weather forecasts/stock market reports)



Automatic Text Summarization

 To condense a piece of text to a shorter version while maintaining the important points

Extractive Summarization

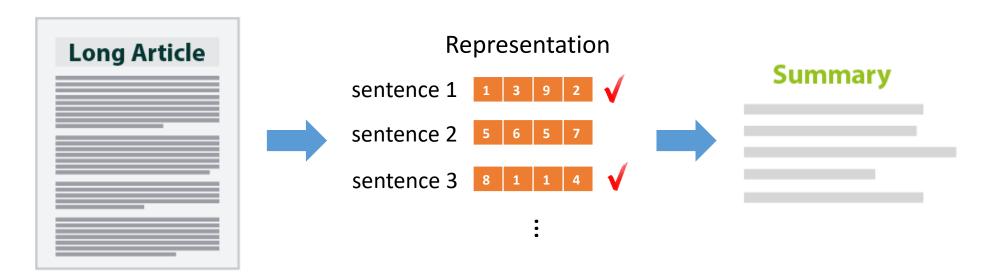
select text from the article

Abstractive Summarization

generate the summary word-by-word

Extractive Summarization

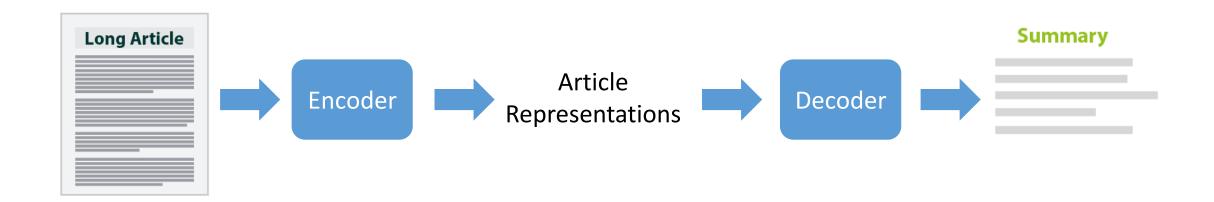
Select phrases or sentences from the source document



- Shen, D.; Sun, J.-T.; Li, H.; Yang, Q.; and Chen, Z. 2007. Document summarization using conditional random fields. IJCAI 2007.
- Kågebäck, M., Mogren, O., Tahmasebi, N., & Dubhashi, D. Extractive Summarization using Continuous Vector Space Models. EACL 2014.
- Cheng, J., and Lapata, M. Neural summarization by extracting sentences and words. ACL 2016.
- Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017

Abstractive Summarization

Select phrases or sentences from the source document



- Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. EMNLP 2015.
- Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. Abstractive text summarization using sequence-tosequence rnns and beyond. CoNLL 2016.
- Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointergenerator networks. ACL 2017.
- Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. ICLR 2018.
- Fan, Angela, David Grangier, and Michael Auli. Controllable abstractive summarization. arXiv preprint arXiv:1711.05217 (2017).

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise
- Abstractive summary (generate word-by-word):
 - readable, concise
 - may lose or mistake some facts

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

concise

Johannes Stoetter has previously transformed his models into frogs and parrots but this chameleon may be his most impressive artwork to date.

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise
- Abstractive summary (generate word-by-word):
 - readable, concise
 - may lose or mistake some facts

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

concise

Justin Bieber

Johanne Stoetter has previously transformed his models into frogs and parrots but this chameleon may be his most impressive artwork to date.

- Extractive summary (select sentences):
 - important, correct
 - incoherent or not concise
- Abstractive summary (generate word-by-word):
 - readable, concise
 - may lose or mistake some facts
- Unified summary:
 - important, correct
 - readable, concise

not concise

Italian artist Johannes Stoetter has painted two naked women to look like a chameleon.

The 37-year-old has previously transformed his models into frogs and parrots but this may be his most intricate and impressive artwork to date.

concise

Justin Bieber

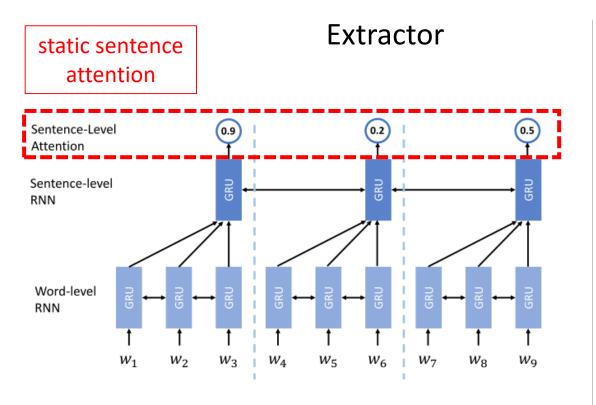
Johanne Moetter has previously transformed his models into frogs and parrots but this chameleon may be his most impressive artwork to date.

Outline

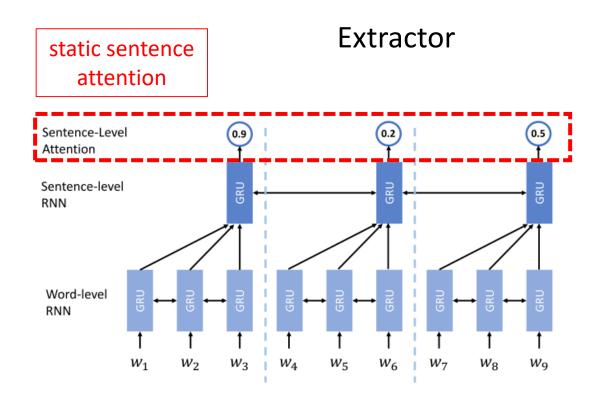
- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Extractor Sentence-Level Attention Sentence-level RNN Word-level RNN w_1

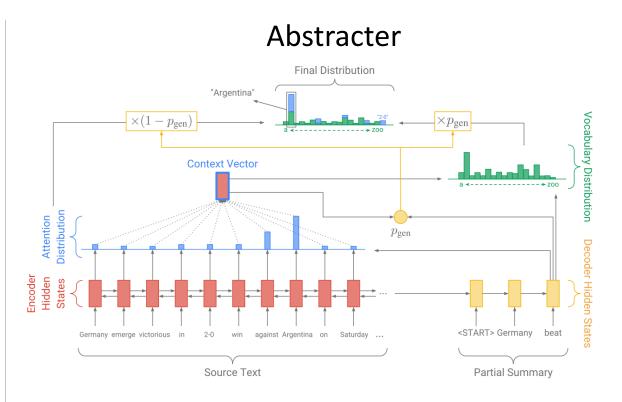
Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017



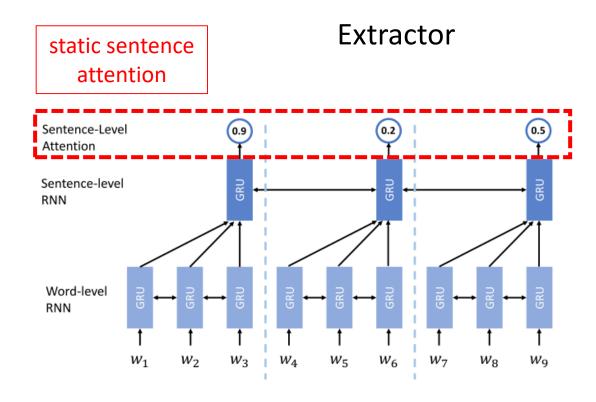
Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017



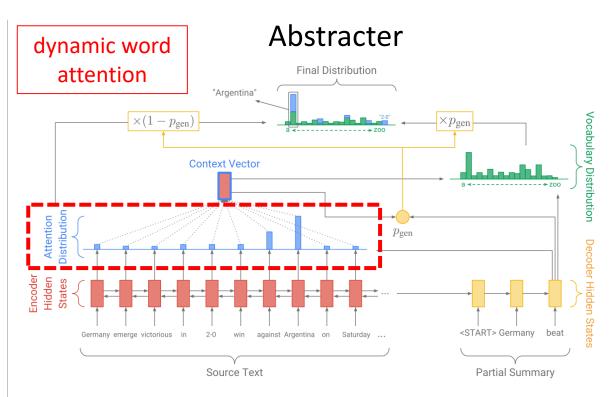
Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017



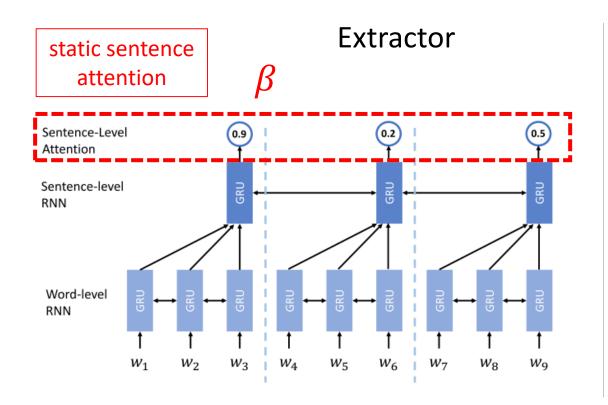
Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. ACL 2017

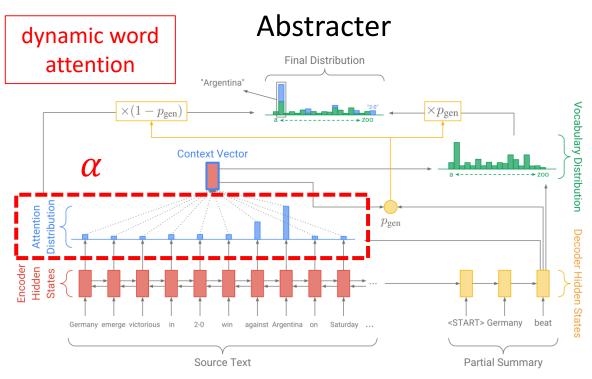


Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network based sequence model for extractive summarization of documents. AAAI 2017



Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. ACL 2017

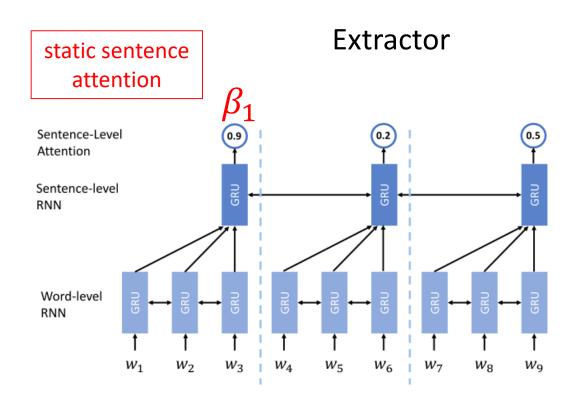


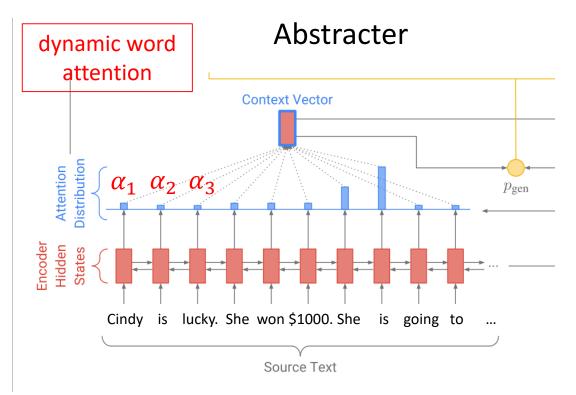


$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

m: word index

n: sentence index

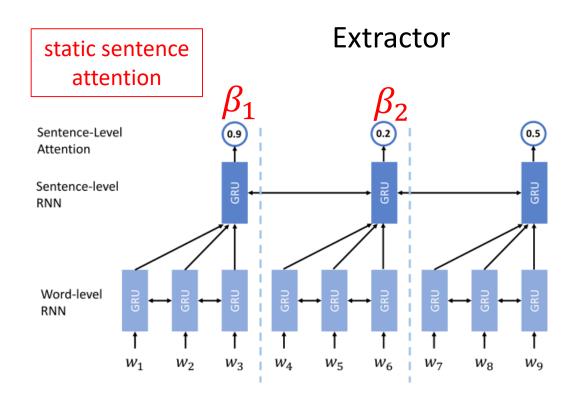


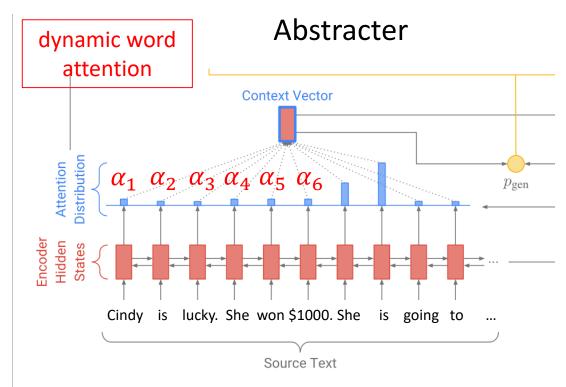


$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

m: word index

n: sentence index

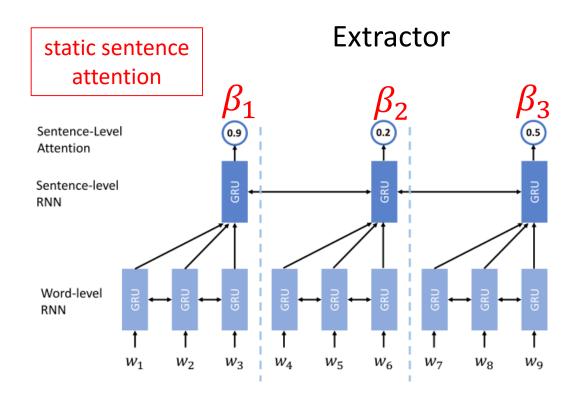


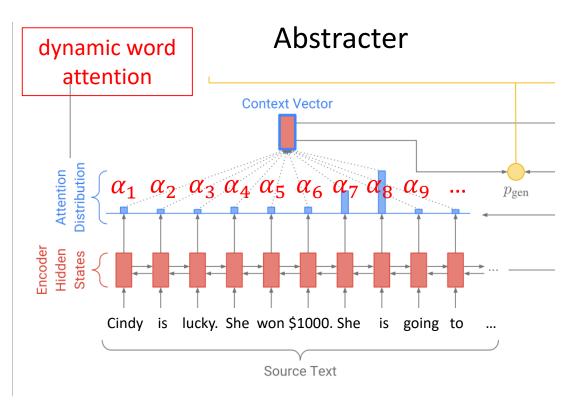


$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

m: word index

n: sentence index





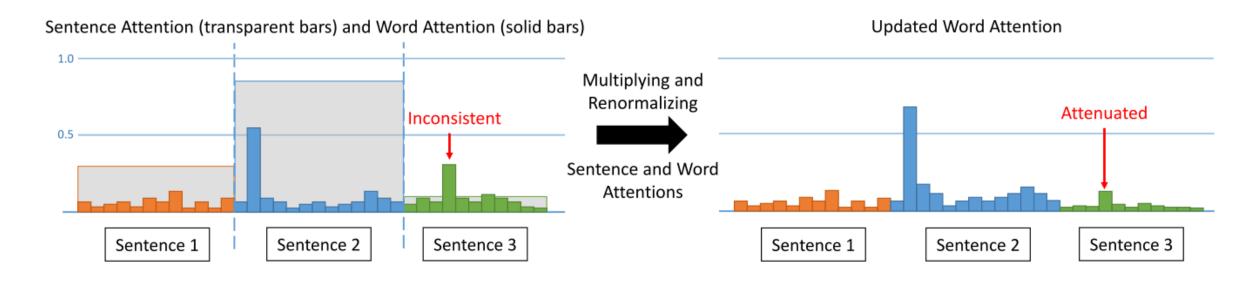
$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

m: word index

n: sentence index

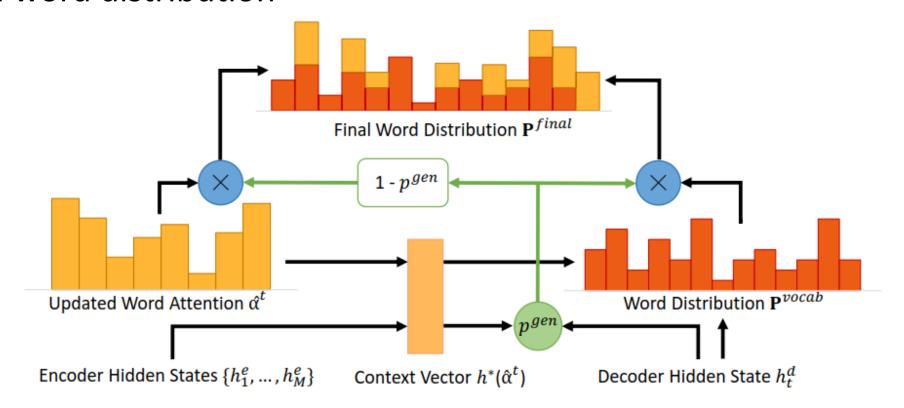
$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

 Our unified model combines sentence-level and word-level attentions to take advantage of both extractive and abstractive summarization approaches.



$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

 Updated word attention is used for calculating the context vector and final word distribution



Encourage Consistency

 We propose a novel inconsistency loss function to ensure our unified model to be mutually beneficial to both extractive and abstractive summarization.

multiplied attention of

$$L_{inc} = -\frac{1}{T} \sum_{t=1}^{T} \log(\frac{1}{|\mathcal{K}|} \sum_{m \in \mathcal{K}} \alpha_m^t \times \beta_{n(m)})$$
 maximize

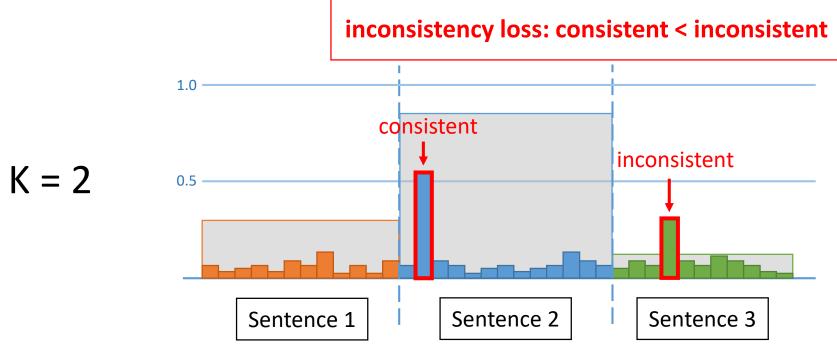
where K is the set of top K attended words

Encourage Consistency

$$L_{inc} = -\frac{1}{T} \sum_{t=1}^{T} \log(\frac{1}{|\mathcal{K}|} \sum_{m \in \mathcal{K}} \alpha_m^t \times \beta_{n(m)})$$

• encourage consistency of the top K attended words at each decoder

time step.



Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Training Procedures

Extractive Summarization

select sentences from the article

Abstractive Summarization

generate the summary word-by-word

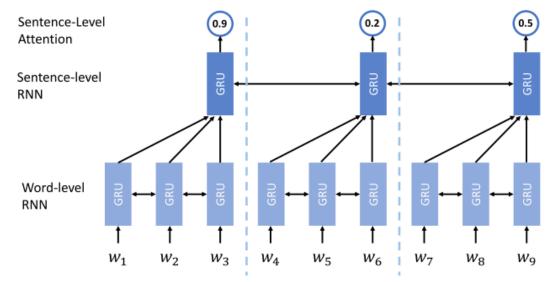
Training Procedures

- 3 types of loss functions:
 - 1. extractor loss
 - 2. abstracter loss+ coverage loss
 - 3. inconsistency loss

• 3 types of loss functions:

extractor loss

- 2. abstracter loss+ coverage loss
- 3. inconsistency loss



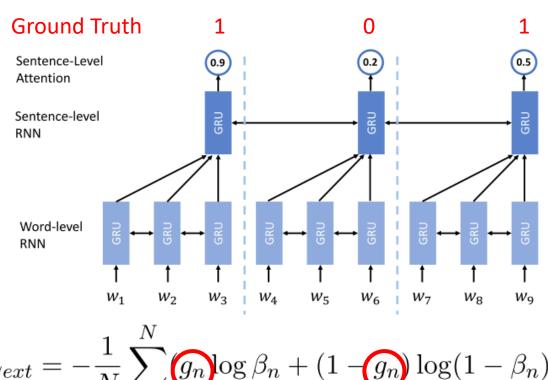
$$L_{ext} = -\frac{1}{N} \sum_{n=1}^{N} (g_n \log \beta_n + (1 - g_n) \log(1 - \beta_n))$$

where $g_n \in \{0, 1\}$ is the ground-truth label for the n^{th} sentence and N is the number of sentences.

• 3 types of loss functions:

extractor loss

- abstracter loss + coverage loss
- inconsistency loss



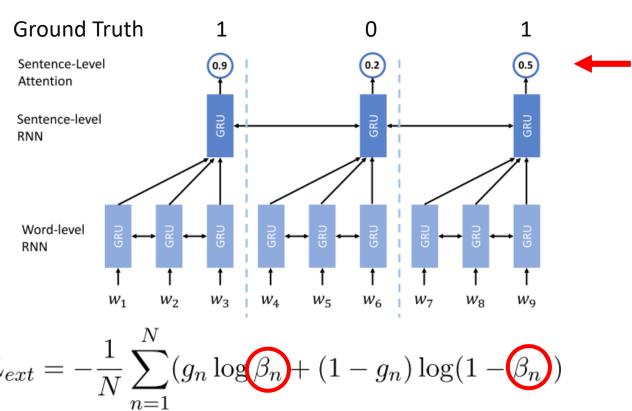
$$L_{ext} = -\frac{1}{N} \sum_{n=1}^{N} g_n \log \beta_n + (1 - g_n) \log(1 - \beta_n)$$

where $g_n \in \{0, 1\}$ is the ground-truth label for the n^{th} sentence and N is the number of sentences.

• 3 types of loss functions:

extractor loss

- abstracter loss + coverage loss
- inconsistency loss

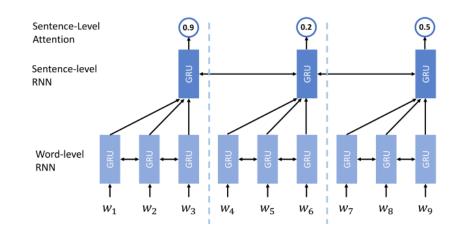


$$L_{ext} = -\frac{1}{N} \sum_{n=1}^{N} (g_n \log \beta_n) + (1 - g_n) \log(1 - \beta_n)$$

where $g_n \in \{0, 1\}$ is the ground-truth label for the n^{th} sentence and N is the number of sentences.

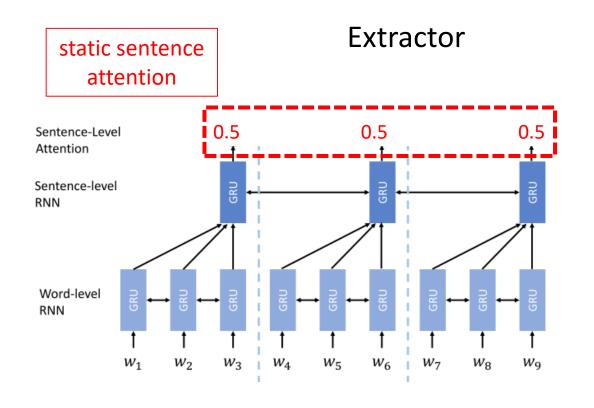
Extractor Target

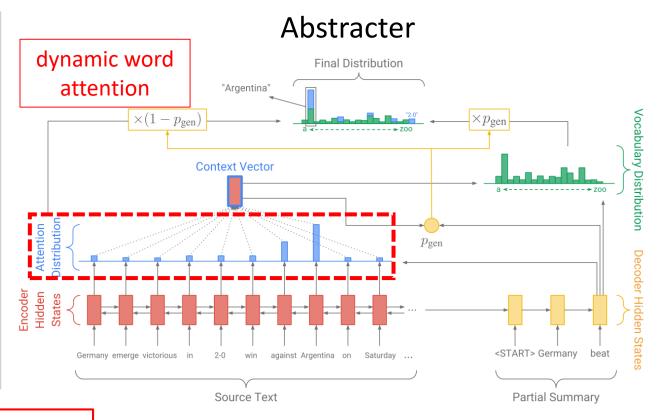
• To extract sentences with high informativity: the extracted sentences should contain information that is needed to generate an abstractive summary as much as possible.



- Ground-truth labels:
 - 1. Measure the informativity of each sentence in the article by computing the ROUGE-L recall score between the sentence and the reference abstractive summary.
 - 2. Select the sentence in the order of high to low informativity and add one sentence at a time if the new sentence can increase the informativity of all the selected sentences.

Combined Attention





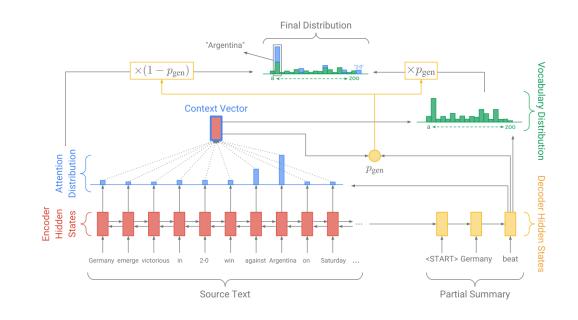
$$\hat{\alpha}_m^t = \frac{\alpha_m^t \times \beta_{n(m)}}{\sum_m \alpha_m^t \times \beta_{n(m)}}.$$

m: word index

n: sentence index

t: generated word index

- 3 types of loss functions:
 - extractor loss
 - 2. abstracter loss+ coverage loss
 - 3. inconsistency loss



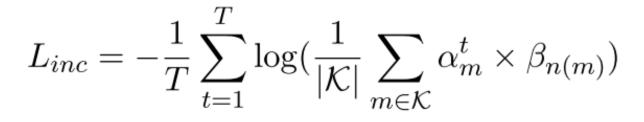
$$L_{abs} = -\frac{1}{T} \sum_{t=1}^{T} \log P_{\hat{y}^t}^{final}$$

$$L_{cov} = \frac{1}{T} \sum_{t=1}^{T} \sum_{m=1}^{M} \min(\hat{\alpha}_m^t, c_m^t) \qquad \mathbf{c}^t = \sum_{t'=1}^{t-1} \hat{\boldsymbol{\alpha}}^{t'}$$

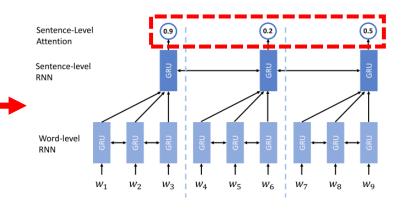
Abigail See, Peter J Liu, and Christopher D Manning.

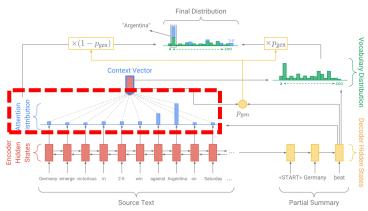
Get to the point: Summarization with pointer-generator networks. ACL 2017

- 3 types of loss functions:
 - 1. extractor loss
 - 2. abstracter loss+ coverage loss
 - 3. inconsistency loss



where K is the set of top K attended words



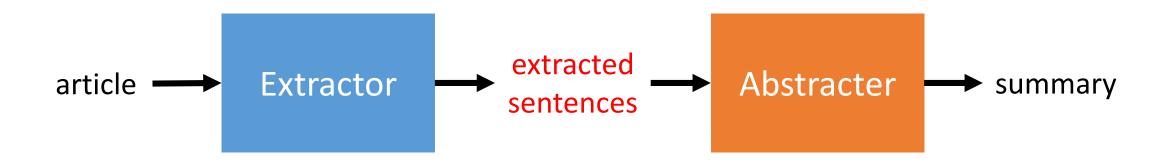


- 1. Two-stages training
- 2. End-to-end training without inconsistency loss

3. End-to-end training with inconsistency loss

1. Two-stages training

- The extractor is used as a classifier to select sentences with high informativity and output only those sentences. = Hard attention on the original article.
- simply combine the extractor and abstracter by feeding the extracted sentences to the abstracter.



2. End-to-end training without inconsistency loss

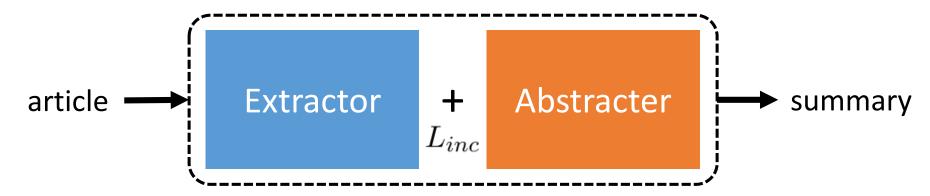
- the sentence-level attention is soft attention and will be combined with the word-level attention
- minimize extractor loss and abstracter loss

$$L_{e2e} = \lambda L_{ext} + L_{abs} + L_{cov}$$

3. End-to-end training with inconsistency loss

- the sentence-level attention is soft attention and will be combined with the word-level attention
- minimize extractor loss, abstracter loss and inconsistency loss:

$$L_{e2e} = \lambda L_{ext} + L_{abs} + L_{cov} + L_{inc}$$



Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Dataset – CNN/DailyMail Dataset

Article \approx 766 words Summary \approx 53 words

	Train	Validation	Test
Article-summary pairs	287,113	13,368	11,490

45 CONGRESS

SECURITY

THE NINE

TRUMPMERICA

STATE

STORY HIGHLIGHTS

Bannon was expected to return at 2 p.m. ET Thursday

The postponement follows an exchange of terse letters by the House panel and Bannon's attorney

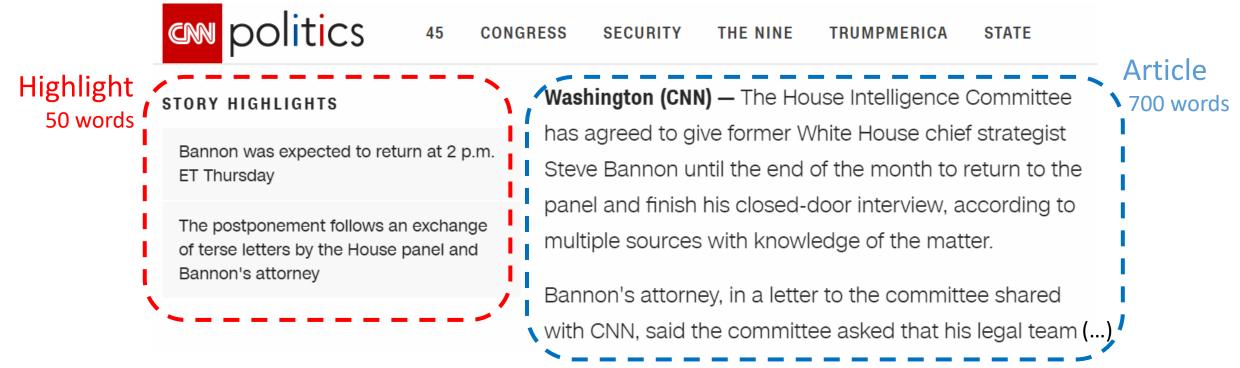
Washington (CNN) — The House Intelligence Committee has agreed to give former White House chief strategist Steve Bannon until the end of the month to return to the panel and finish his closed-door interview, according to multiple sources with knowledge of the matter.

Bannon's attorney, in a letter to the committee shared with CNN, said the committee asked that his legal team (...)

Dataset – CNN/DailyMail Dataset

Article \approx 766 words Summary \approx 53 words

	Train	Validation	Test
Article-summary pairs	287,113	13,368	11,490



Results – Abstractive Summarization

	Method	ROUGE-1	ROUGE-2	ROUGE-L
	HierAttn (Nallapati et al., 2016b)*	32.75	12.21	29.01
	DeepRL (Paulus et al., 2017)*	39.87	15.82	36.90
\longrightarrow	pointer-generator (See et al., 2017)	39.53	17.28	36.38
→	GAN (Liu et al., 2017)	39.92	17.65	36.71
	two-stage (ours)	39.97	17.43	36.34
	end2end w/o inconsistency loss (ours)	40.19	17.67	36.68
	end2end w/ inconsistency loss (ours)	40.68	17.97	37.13
•	lead-3 (See et al., 2017)	40.34	17.70	36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores have a 95% confidence interval with at most ± 0.24 . '*' indicates the model is trained and evaluated on the anonymized dataset and thus is not strictly comparable with ours.

Results – Abstractive Summarization

Method	,	ROUGE-1	ROUGE-2	ROUGE-L
HierAttn (Nallapati et al., 2016b)	k	32.75	12.21	29.01
DeepRL (Paulus et al., 2017)*		39.87	15.82	36.90
pointer-generator (See et al., 2017	')	39.53	17.28	36.38
GAN (Liu et al., 2017)		39.92	17.65	36.71
two-stage (ours)		39.97	17.43	36.34
end2end w/o inconsistency loss (c	ours)	40.19	17.67	36.68
end2end w/ inconsistency loss (or	ırs)	40.68	17.97	37.13
lead-3 (See et al., 2017)		40.34	17.70	36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores have a 95% confidence interval with at most ± 0.24 . '*' indicates the model is trained and evaluated on the anonymized dataset and thus is not strictly comparable with ours.

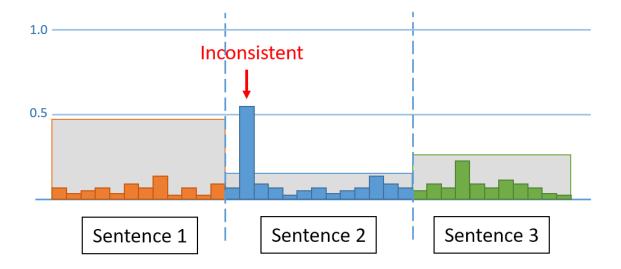
Results – Abstractive Summarization

Method	ROUGE-1	ROUGE-2	ROUGE-L
HierAttn (Nallapati et al., 2016b)*	32.75	12.21	29.01
DeepRL (Paulus et al., 2017)*	39.87	15.82	36.90
pointer-generator (See et al., 2017)	39.53	17.28	36.38
GAN (Liu et al., 2017)	39.92	17.65	36.71
two-stage (ours)	39.97	17.43	36.34
end2end w/o inconsistency loss (ours)	40.19	17.67	36.68
end2end w/ inconsistency loss (ours)	40.68	17.97	37.13
lead-3 (See et al., 2017)	40.34	17.70	36.57

Table 2: ROUGE F-1 scores of the generated abstractive summaries on the CNN/Daily Mail test set. Our two-stages model outperforms pointer-generator model on ROUGE-1 and ROUGE-2. In addition, our model trained end-to-end with inconsistency loss exceeds the lead-3 baseline. All our ROUGE scores have a 95% confidence interval with at most ± 0.24 . '*' indicates the model is trained and evaluated on the anonymized dataset and thus is not strictly comparable with ours.

inconsistency step t_{inc} :

$$\beta_{n(\operatorname{argmax}(\boldsymbol{\alpha}^t))} < \operatorname{mean}(\boldsymbol{\beta})$$



sentence attention and word attention in time step t

inconsistency rate:

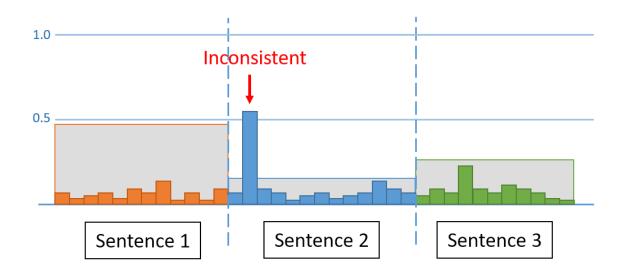
$$R_{inc} = \frac{\text{Count}(t_{inc})}{T}$$

Method	avg. R_{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-end trained model with and without inconsistency loss.

inconsistency step t_{inc} :

$$\beta_{n(\operatorname{argmax}(\boldsymbol{\alpha}^t))} < \operatorname{mean}(\boldsymbol{\beta})$$



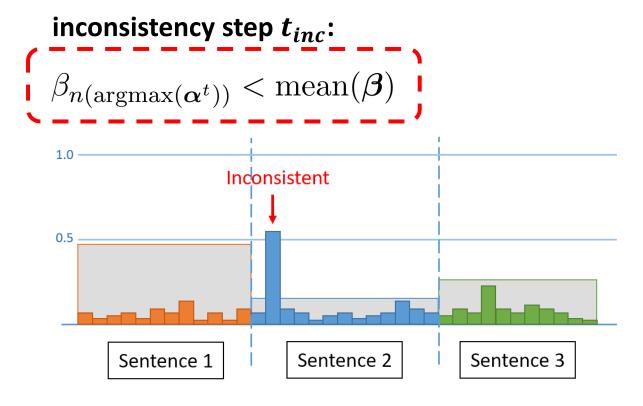
sentence attention and word attention in time step t

inconsistency rate:

$$R_{inc} = \frac{\text{Count}(t_{inc})}{T}$$

Method	avg. R_{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-end trained model with and without inconsistency loss.



sentence attention and word attention in time step t

inconsistency rate:

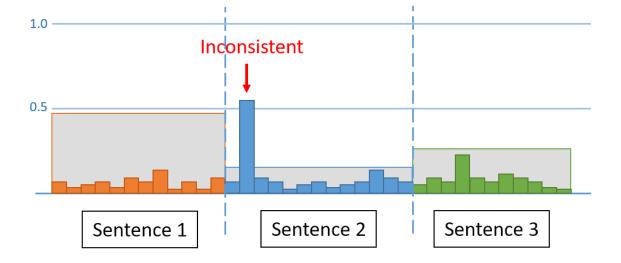
$$R_{inc} = \frac{\text{Count}(t_{inc})}{T}$$

Method	avg. R_{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-end trained model with and without inconsistency loss.

inconsistency step t_{inc} :

$$\beta_{n(\operatorname{argmax}(\boldsymbol{\alpha}^t))} < \operatorname{mean}(\boldsymbol{\beta})$$



sentence attention and word attention in time step t

inconsistency rate:

$$R_{inc} = \frac{\text{Count}(t_{inc})}{T}$$

Method	avg. R_{inc}
w/o incon. loss	0.198
w/ incon. loss	0.042

Table 3: Inconsistency rate of our end-to-end trained model with and without inconsistency loss.

Results – Human Evaluation on MTurk

• Informativity:

how well does the summary capture the important parts of the article?

Conciseness:

is the summary clear enough to explain everything without being redundant?

Readability:

how well-written (fluent and grammatical) the summary is?

	s	ummar	y 1				Summary 2 Summary 3					3					
Henrik Larsso kit man in goa clean sheet as manager Hen that I never co	I. The e s Helsin rik Lars	emerger borg dr son sai	ncy stop ew 0-0. d : ' it wa	per kep Helsint as a sce	t a org	Daniel Anders man, kept a c played in seas Larsson's first injured. The fo Sweden back	lean sh son ope -choice ormer g	eet. Thener ag goalke oalkee	e emerg ainst Ka eepers v	jency sto Imar. He vere bot	opper enrik h out	Henrik Larsson was forced to play Daniel Andersson with goalkeepers Par Hansson at Matt Pyzdrowski out injured. The emergency stopper kept a clean sheet as Helsinborg dre against Kalmar in the Ilsvenskan season ope Helsinborg manager Henrik Larsson was for play 42-year-old kit man Daniel Andersson in				rew 0-0 pener. proced to	
	110	2	3	4	5 IG		110	2	3	4	5 🖒		110	2	3	4	5 IG
Informativity	0	0	0	0	0	Informativity	0	0	0	0	0	Informativity	0	0	0	0	0
Conciseness	0	0	0	0	0	Conciseness	0	0	0	0	0	Conciseness	0	0	0	0	0
Readability	0	0	0	0	0	Readability	0	0	0	0	0	Readability	0	0	0	0	0
	S	ummar	y 4				S	umma	ry 5				S	ummai	у 6		
Helsinborg ma play his 42-ye The former Ce option but to p goalkeepers F injured. Ander club between	ar-old k eltic and olay Dar Par Han esson m 2004 ar	tit man d Barce niel And sson ar nade 13 nd 2009	in goal o lona stri lersson nd Matt 0 appea) and als	on satur ker had with Pyzdrov rances	day. no vski out for the	Henrik Larsso kit man in goa had no option Helsinborg ma with goalkeep Pyzdrowski ou	II. The (but to panager ers Par	Celtic a play Da Henrik Hanss	nd Baro aniel An Larssor	elona st dersson. i was to	riker	A new survey injured while of 68% say they Two in five sai five had cut th	doing D or their id they	IY. Poll partne injured	of 2,00 r have	0 peopl ended ι	e found ip hurt.
season with S							. 10	2	3	4	516		110	2	3	4	5 16
season with S	116	2	3	4	513		110	2	0	-	010			-	_	7	310
	110	2	3	4	5 10	Informativity	0	0	0	0	0	Informativity	0	0	0	0	0
Informativity Conciseness		_	_			Informativity Conciseness						Informativity Conciseness			_		

Results – Human Evaluation

- Informativity: how well does the summary capture the important parts of the article?
- Conciseness: is the summary clear enough to explain everything without being redundant?
- Readability: how well-written (fluent and grammatical) the summary is?

Method	informativity	conciseness	readability
DeepRL (Paulus et al., 2017)	3.23	2.97	2.85
pointer-generator (See et al., 2017)	3.18	3.36	3.47
GAN (Liu et al., 2017)	3.22	3.52	3.51
Ours	3.58	3.40	3.70
reference	3.43	3.61	3.62

Table 3: Comparing human evaluation results with state-of-the-art methods.

Outline

- Motivation
- Our Method
- Training Procedures
- Experiments and Results
- Conclusion

Conclusion and Future work

Conclusion

- We propose a unified model combining the strength of extractive and abstractive summarization.
- A novel inconsistency loss function is introduced to penalize the inconsistency between two levels of attentions. The inconsistency loss enables extractive and abstractive summarization to be mutually beneficial.
- By end-to-end training of our model, we achieve the best ROUGE scores while being the most informative and readable summarization on the CNN/Daily Mail dataset in a solid human evaluation.

Acknowledgements

Min Sun
Wen-Ting Tsu
Chieh-Kai Lin
Ming-Ying Lee

Kerui Min Jing Tang

Q & A

Project page

- Code
- Test output
- Supplementary material

https://hsuwanting.github.io/unified_summ/