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„You shall know the meaning of the word 

by the company it keeps”

„Words that occur in similar contexts tend to have 
similar meanings”

Harris, 1954

2



Words co-occur in text due to
 Paradigmatic relations (e.g., synonymy, hypernymy), but also due to

 Syntagmatic relations (e.g., selectional preferences)

Distributional vectors conflate all types of association
 driver and car are not paradigmatically related

 Not synonyms, not antonyms, not hypernyms, not co-hyponyms, etc.

 But both words will co-occur frequently with

 driving, accident, wheel, vehicle, road, trip, race, etc. 
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Key idea: refine vectors using external resources

Specializing vectors for semantic similarity

1. Joint specialization models

 Integrate external constraints into the learning objective

 E.g., Yu & Dredze, ’14; Kiela et al., ’15; Osborne et al., ’16; Nguyen et al., ’17

2. Retrofitting models

 Modify the pre-trained word embeddings using lexical constraints

 E.g., Faruqui et al., ’15; Wieting et al., ’15; Mrkšić et al., ’16; Mrkšić et al., ’17
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 Joint specialization models
 (+) Specialize the entire vocabulary (of the corpus)

 (–) Tailored for a specific embedding model

Retrofitting models
 (–) Specialize only the vectors of words found in external constraints

 (+) Applicable to any pre-trained embedding space

 (+) Much better performance than joint models (Mrkšić et al., 2016)
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Best of both worlds
 Performance and flexibility of retrofitting models, while

 Specializing entire embedding spaces (vectors of all words)

Simple idea
 Learn an explicit retrofitting/specialization function

 Using external lexical constraints as training examples 
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Constraints (synonyms and antonyms) used as training examples 
for learning the explicit specialization function
 Non-linear: Deep Feed-Forward Network (DFFN)
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Specialization function: x’ = f(x)

Distance function: g(x1, x2)

Assumptions
1. (wi, wj, syn) – embeddings as close as possible after specialization

g(xi’, xj’) = gmin

2. (wi, wj, ant) – embeddings as far as possible after specialization

g(xi’, xj’) = gmax

3. (wi, wj) – the non-costraint words stay at the same distance 

g(xi’, xj’) = g(xi, xj)
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Micro-batches – each constraint (wi, wj, r) paired with
 K pairs {(wi, wm

k)}k – wm
k most similar to wi in distributional space

 K pairs {(wj, wn
k)}k – wn

k most similar to wj in distributional space

 Total: 2K+1 word pairs
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Contrastive Objective (CNT)

Regularization
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 Distance function g: cosine distance

 DFFN activation function: hyperbolic tangent

 Constraints from previous work (Zhang et al, ’14; Ono et al., ‘15)
 1M synonymy constraints

 380K antonymy constraints

 But only 57K unique words in these constraints!

 10% of micro-batches used for model validation
 H (hidden layers) = 5, dh (layer size) = 1000,  λ = 0.3 

 K = 4 (micro-batch size = 9), batches of 100 micro-batches

 ADAM optimization (Kingma & Ba, 2015)
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SimLex-999 (Hill et al., 2014), SimVerb-3500 (Gerz et al., 2016)

 Important aspect: percentage of test words covered by constraints

Comparison with Attract-Repel (Mrkšić et al., 2017)
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 Intrinsic evaluation depicts two extreme settings

Lexical overlap setting 
 Synonymy and antonymy constraints contain 99% of SL and SV words

 Performance is an optimistic estimate or true performance

Lexically disjoint setting
 Constraints contain 0% of SL and SV words

 Performance is a pessimistic estimate of true performance

Realistic setting: downstream tasks
 Coverage of test set words by constraints between 0% and 100%
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 Dialog state tracking (DST) – first component of a dialog system
 Neural Belief Tracker (NBT) (Mrkšić et al., ’17)

 Makes inferences purely based on an embedding space

 57% of words in NBT test set (Wen et al., ‘17) covered by specialization constraints

 Lexical simplification (LS) – complex words to simpler synonyms
 Light-LS (Glavaš & Štajner, ‘15) – decisions purely based on an embedding space

 59% of LS dataset words (Horn et al., 14) found in specialization constraints

 Crucial to distinguish similarity from relatedness
 DST: „cheap pub in the east” vs. „expensive restaurant in the west”

 LS: „Ferrari’s pilot Sebastian Vettel won the race.”, ”driver” vs. ”airplane”
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Lexical simplification (LS) and Dialog state tracking (DST)
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Lexico-semantic resources such as WordNet needed to collect 
synonymy and antonymy constraints

Idea: use shared bilingual embedding spaces to transfer the 
specialization to another language

Most models learn a (simple) linear mapping
 Using word alignments (Mikolov et al., 2013; Smith et al., 2017)

 Without word alignments (Lample et al., 2018; Artetxe et al., 2018) 
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*Image taken from 
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Transfer to three languages: DE, IT, and HR
 Different levels of proximity to English

 Variants of SimLex-999 exist for each of these three languages
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Retrofitting models specialize (i.e., fine-tune) distributional 
vectors for semantic similarity
 Shortcoming: specialize only vectors of words seen in external constraints 

Explicit retrofitting
 Learning the specialization function using constrains as training examples

 Able to specialize distributional vectors of all words

 Good intrinsic (SL, SV) and downstream (DST, LS) performance

Cross-lingual specialization transfer possible for languages 
without lexico-semantic resources
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Code & data
 https://github.com/codogogo/explirefit

Contact
 goran@informatik.uni-mannheim.de

 iv250@hermes.cam.ac.uk
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