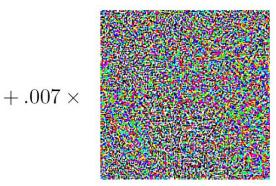
On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models Paul Michel, Xian Li, Graham Neubig, Juan Pino

Carnegie Mellon University anguage Technologies Institute

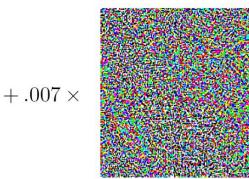
facebook Artificial Intelligence

• Apply a **small** (indistinguishable) perturbation to the **input** that elicit **large** changes in the **output**


• Apply a **small** (indistinguishable) perturbation to the **input** that elicit **large** changes in the **output**

"panda" 57.7% confidence

• Apply a **small** (indistinguishable) perturbation to the **input** that elicit **large** changes in the **output**



"panda" 57.7% confidence

"nematode" 8.2% confidence

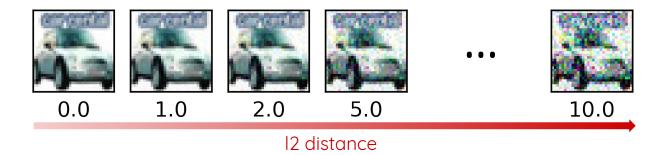
• Apply a **small** (indistinguishable) perturbation to the **input** that elicit **large** changes in the **output**

"panda" 57.7% confidence

"nematode" 8.2% confidence "gibbon" 99.3 % confidence

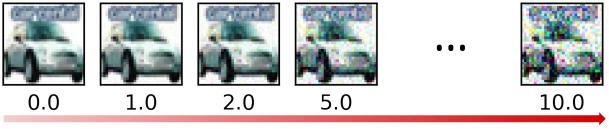
• Apply a **small** (indistinguishable) perturbation to the **input** that elicit **large** changes in the **output**

$$+.007 \times$$



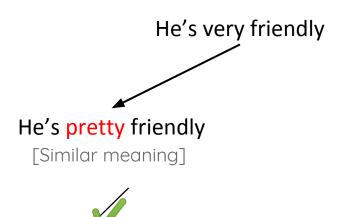
"panda" 57.7% confidence

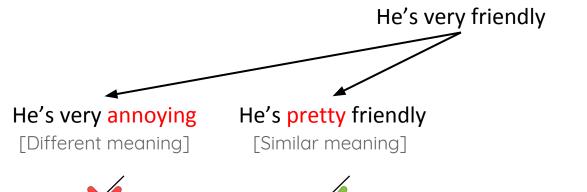
"nematode" 8.2% confidence "gibbon" 99.3 % confidence


Indistinguishable Perturbations

Small perturbations are well defined in vision
 Small 12 ~= indistinguishable to the human eye

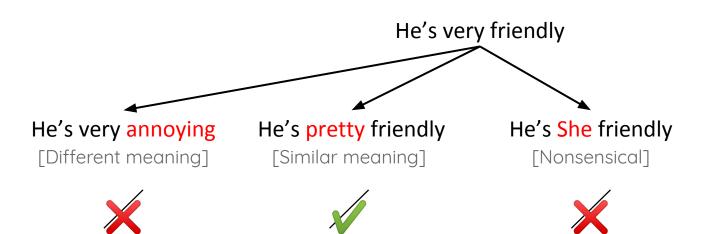
Indistinguishable Perturbations

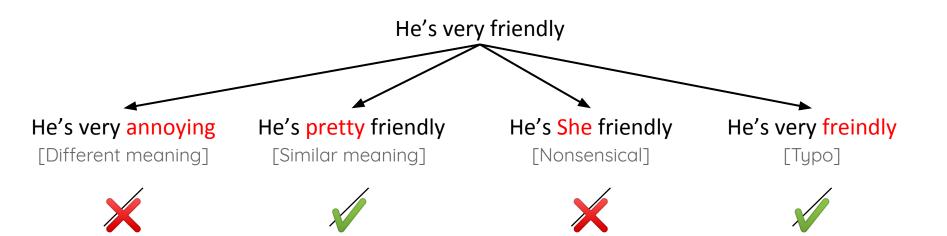

Small perturbations are well defined in vision
 Small 12 ~= indistinguishable to the human eye

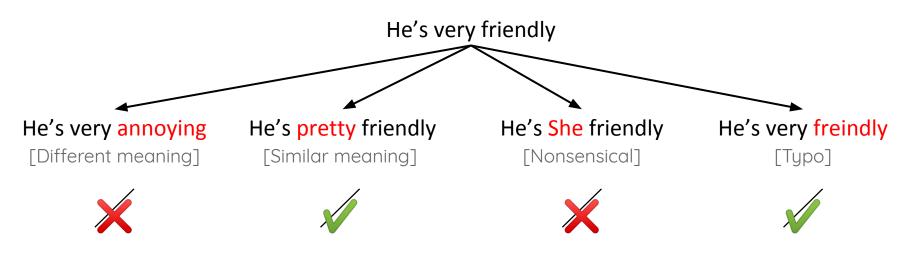


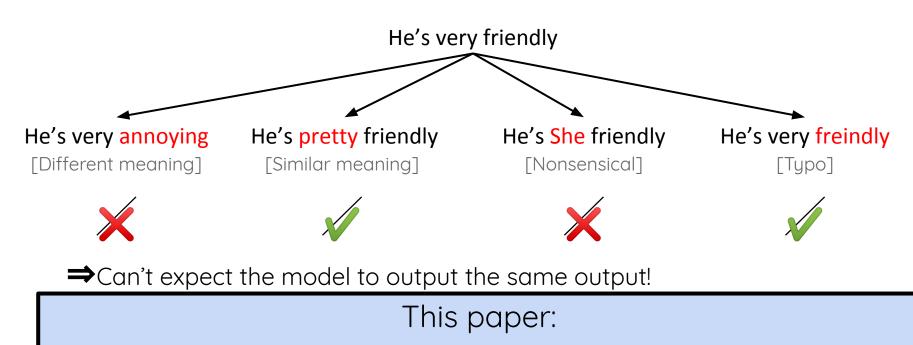
12 distance

• What about **text**?

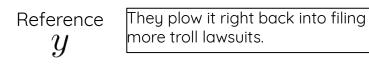

He's very friendly





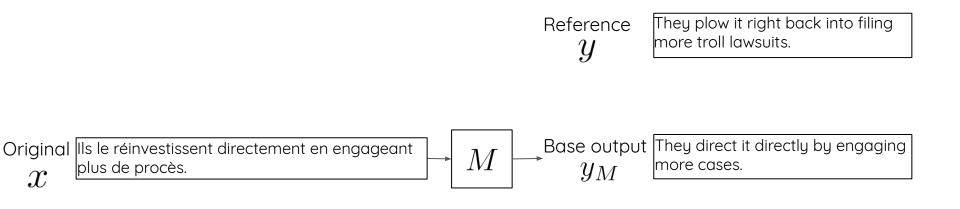


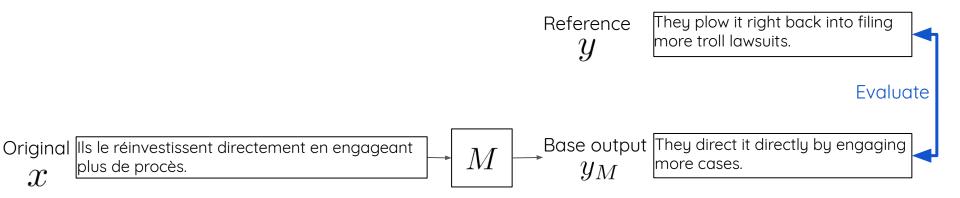
⇒Can't expect the model to output the same output!

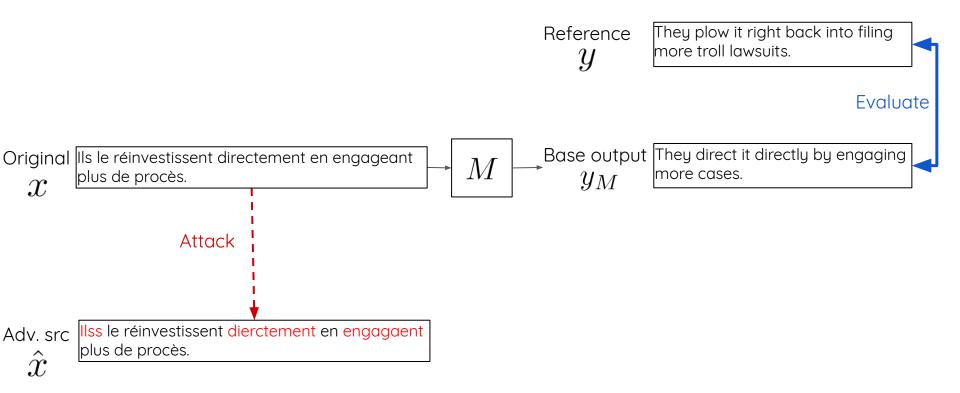

Why and How you should evaluate adversarial perturbations

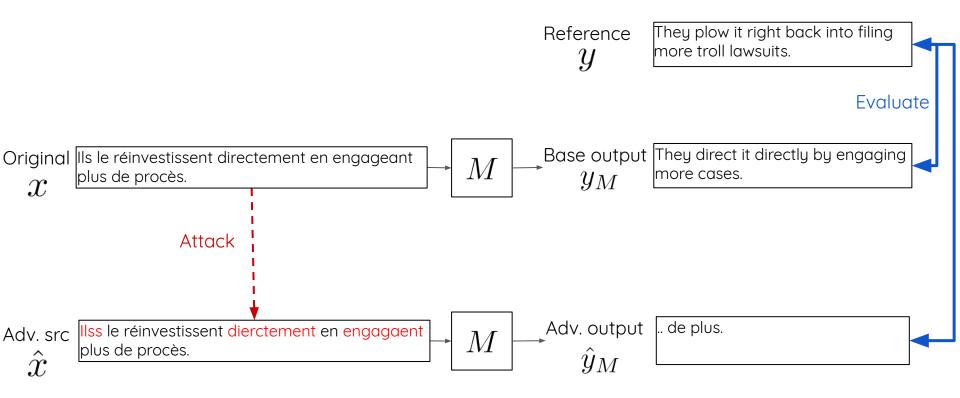
A Framework for Evaluating Adversarial Attacks

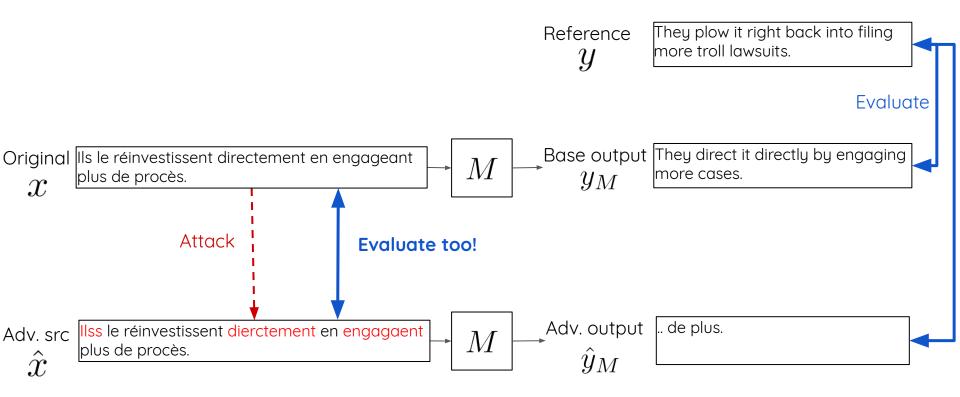
Reference y


They plow it right back into filing more troll lawsuits.


	Ils le réinvestissent directement en engageant
x	plus de procès.
\boldsymbol{J}	


M


Original IIs le réinvestissent directement en engageant plus de procès. ${\mathcal X}$



Source Side Evaluation

• Evaluate **meaning preservation** on the source side

$$s_{src}(x, \hat{x})$$

• Where s_{src} is a **similarity metric** such that

 $S_{src}($ He's very friendly , He's pretty friendly $) > S_{src}($ He's very friendly , He's very annoying) $S_{src}($ He's very friendly , He's pretty friendly $) > S_{src}($ He's very friendly , He's She friendly)

• Given s_{tgt} , a similarity metric on the target side

- Given s_{tgt} , a similarity metric on the target side
- Evaluate relative meaning destruction on the target side

$$d_{tgt}(y, y_M, \hat{y}_M) = \begin{cases} \frac{s_{tgt}(y, y_M) - s_{tgt}(y, \hat{y}_M)}{s_{tgt}(y, y_M)} \end{cases}$$

- Given s_{tgt} , a similarity metric on the target side
- Evaluate relative meaning destruction on the target side

$$d_{tgt}(y, y_M, \hat{y}_M) = \begin{cases} s_{tgt}(y, y_M) - s_{tgt}(y, \hat{y}_M) \\ s_{tgt}(y, y_M) \end{cases}$$

- Given s_{tgt} , a similarity metric on the target side
- Evaluate relative meaning destruction on the target side

$$d_{tgt}(y, y_M, \hat{y}_M) = \begin{cases} \frac{s_{tgt}(y, y_M) - s_{tgt}(y, \hat{y}_M)}{s_{tgt}(y, y_M)} \end{cases}$$

- Given s_{tgt} , a similarity metric on the target side
- Evaluate relative meaning destruction on the target side

$$d_{tgt}(y, y_M, \hat{y}_M) = \begin{cases} 0 \text{ if } s_{tgt}(y, \hat{y}_M) \ge s_{tgt}(y, y_M) \\ \frac{s_{tgt}(y, y_M) - s_{tgt}(y, \hat{y}_M)}{s_{tgt}(y, y_M)} \end{cases}$$

- Given s_{tgt} , a similarity metric on the target side
- Evaluate relative meaning destruction on the target side

$$d_{tgt}(y, y_M, \hat{y}_M) = \begin{cases} 0 \text{ if } s_{tgt}(y, \hat{y}_M) \ge s_{tgt}(y, y_M) \\ \frac{s_{tgt}(y, y_M) - s_{tgt}(y, \hat{y}_M)}{s_{tgt}(y, y_M)} \end{cases}$$

- Given s_{tgt} , a similarity metric on the target side
- Evaluate relative meaning destruction on the target side

$$d_{tgt}(y, y_M, \hat{y}_M) = \begin{cases} 0 \text{ if } s_{tgt}(y, \hat{y}_M) \ge s_{tgt}(y, y_M) \\ \frac{s_{tgt}(y, y_M) - s_{tgt}(y, \hat{y}_M)}{s_{tgt}(y, y_M)} \text{ otherwise} \end{cases}$$

• Ensure that:

$1 - s_{src}(x, \hat{x}) < d_{tgt}(y, y_M, \hat{y}_M)$

• Ensure that:

$$1 - s_{src}(x, \hat{x}) < d_{tgt}(y, y_M, \hat{y}_M)$$

Source meaning destruction

• Ensure that:

$$1 - s_{src}(x, \hat{x}) < d_{tgt}(y, y_M, \hat{y}_M)$$

Source meaning destruction

Target meaning destruction

• Ensure that:

$$\begin{array}{ll} 1 - s_{src}(x, \hat{x}) < d_{tgt}(y, y_M, \hat{y}_M) \\ \text{Source meaning destruction} & \text{Target meaning destruction} \end{array}$$

• Destroy the meaning on the target side more than on the source side

Which similarity metric to use?

Human evaluation

• 6 point scale, details in paper

"How would you rate the similarity between the meaning of these two sentences?"

- The meaning is completely different or one of the sentences 0. is meaningless

- 1. 2. 3. 4.
- Meaning is essentially the same but some expressions are unnatural
- 5. Meaning is essentially equal and the two sentences are well-formed [Language]

Which similarity metric to use?

Human evaluation 6 point scale, details in paper

• BLEU [Papineni et al., 2002]

• Geometric mean of n-gram precision + length penalty

"How would you rate the similarity between the meaning of these two sentences?"

- 0. The meaning is completely different or one of the sentences is meaningless
- 1. The topic is the same but the meaning is different
- . Some key information is different
- 3. The key information is the same but the details differ
- Meaning is essentially the same but some expressions are unnatural
 Meaning is essentially equal and the two sentences are
 - Meaning is essentially equal and the two sentences are well-formed [Language]

Which similarity metric to use?

Human evaluation 6 point scale, details in paper

• BLEU [Papineni et al., 2002]

• Geometric mean of n-gram precision + length penalty

"How would you rate the similarity between the meaning of these two sentences?"

- 0. The meaning is completely different or one of the sentences is meaningless
- The topic is the same but the meaning is different
- . Some key information is different
- 5. The key information is the same but the details differ
- Meaning is essentially the same but some expressions are unnatural
- Meaning is essentially equal and the two sentences are well-formed [Language]

• METEOR [Banerjee and Lavie, 2005]

• Word matching taking into account stemming, synonyms, paraphrases...

Which similarity metric to use?

Human evaluation
 6 point scale, details in paper

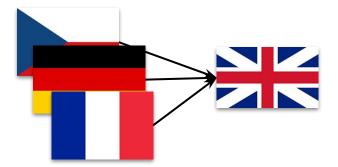
• BLEU [Papineni et al., 2002]

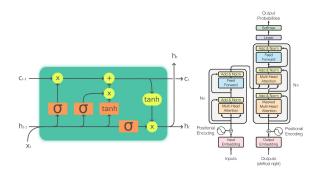
• Geometric mean of n-gram precision + length penalty

- "How would you rate the similarity between the meaning of these two sentences?"
- 0. The meaning is completely different or one of the sentences is meaningless
- The topic is the same but the meaning is different
- . Some key information is different
- 5. The key information is the same but the details differ
- Meaning is essentially the same but some expressions are unnatural
- Meaning is essentially equal and the two sentences are well-formed [Language]

- METEOR [Banerjee and Lavie, 2005]
 - Word matching taking into account stemming, synonyms, paraphrases...
- ChrF [Popović, 2015]
 Character n-gram F-score

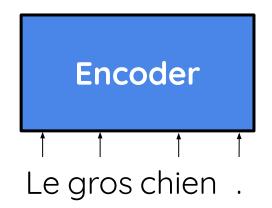
Experimental Setting

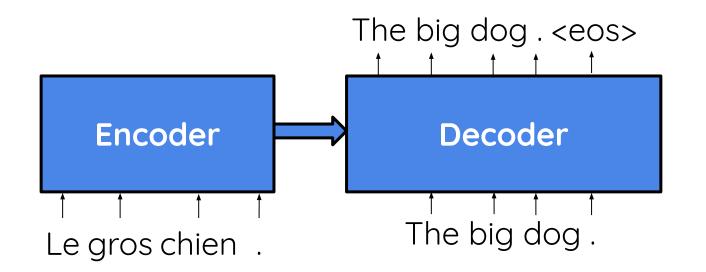

Data and Models

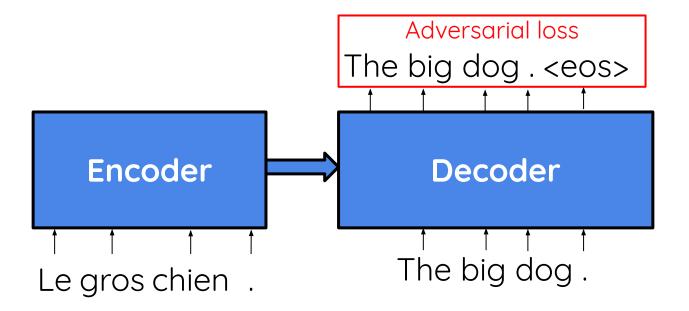

• Data

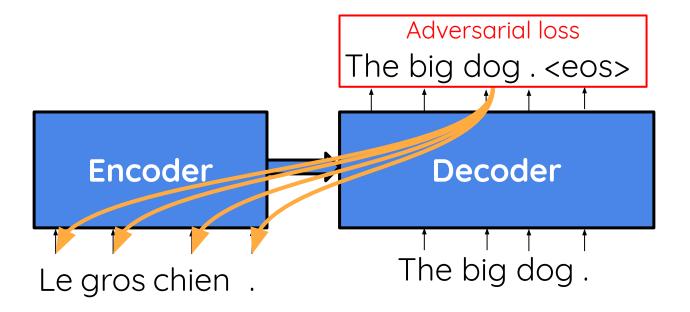
- o IWSLT 2016 dataset
- $\circ~\{\mbox{Czech, German, French}\} \rightarrow \mbox{English}$

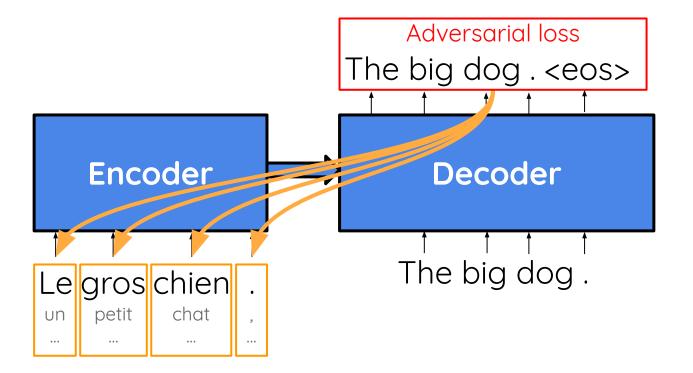
• Models


- $\circ~$ LSTM based model
- Transformer based model
- $\circ~$ Both word and sub-word based models






• Idea: Back propagate through the model to score possible substitutions


Le gros chien .

Constrained Adversarial Attacks

Constrained Adversarial Attacks: kNN

• Only replace words with 10 nearest neighbors in embedding space

Example from our fr \rightarrow en Transformer source embeddings

∘ grand	(tall SING+MASC)
∎ grands	(tall PL+MASC)
∎ grande	(tall SING+FEM)
∎ grandes	(tall PL+FEM)
∎ gros	(fat SING+MASC)
∎ grosse	(fat SING+FEM)
• math	(math)
maths	(maths)
mathématique	(mathematic)
mathématiques	(mathematics)
 objective 	(objective [ADJ] SING+FEM)

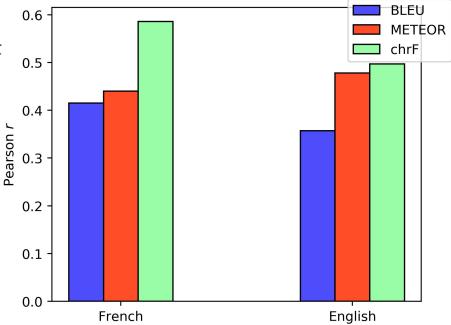
Constrained Adversarial Attacks: CharSwap

• Only swap word internal characters to get OOVs

```
    grand → grħad
    adversarial → advfesarial
    [...]
```

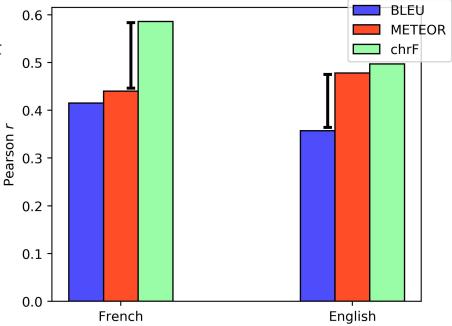
• If that's impossible, repeat the last character

 \circ he \rightarrow he**eeeee**


 \Rightarrow Realistic typos

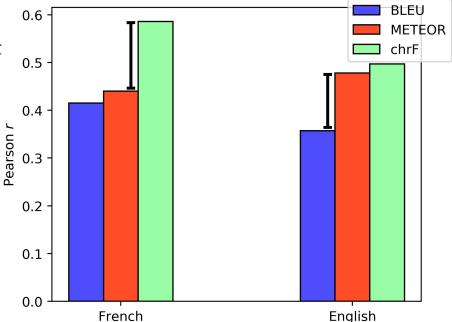
Constrained Adversarial Attacks

Original	Pourquoi faire cela ?
English gloss	Why do this?
Unconstrained	construisant (English: building) faire cela ?
kNN	interrogez (English: to question VB.2nd.PL) faire cela ?
CharSwap	Puorquoi (typo) faire cela ?
Original	Si seulement je pouvais me muscler aussi rapidement.
English gloss	If only I could build my muscle this fast.
Unconstrained	Si seulement je pouvais me muscler etc rapidement.
kNN	Si seulement je pouvais me muscler plsu (typo for "more") rapidement.
CharSwap	Si seulement je pouvais me muscler asusi (typo) rapidement.

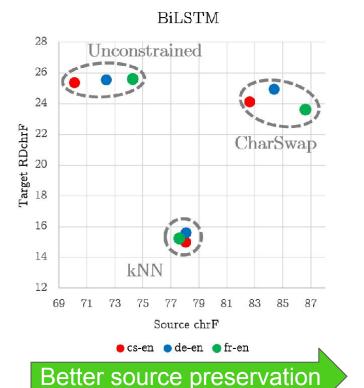

Choosing an Similarity Metric

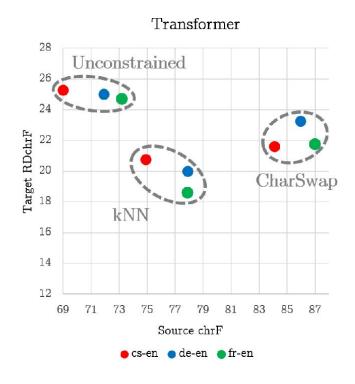
- Human vs automatic (pearson r):
 Humans score original/adversarial input
 - Humans score original/adversarial output
 - Compare scores to automatic metric with Pearson correlation

Choosing an Similarity Metric


- Human vs automatic (pearson r):
 - Humans score original/adversarial input
 - Humans score original/adversarial output
 - Compare scores to automatic metric with Pearson correlation

Choosing an Similarity Metric


- Human vs automatic (pearson r):


 Humans score original/adversarial input
 Humans score original/adversarial output
 Compare scores to automatic metric with Pearson correlation
- chrF better
 - $\Rightarrow s_{src} = s_{tgt} := chrF$
 - ⇒ d_{tgt} := RDchrF (Relative Decrease in chrF)

Effect of Constraints on Evaluation

Effect of Constraints on Adversarial Training

Effect of Constraints on Adversarial Training

Adversarial training ≈ training with adversarial examples

$$\mathcal{L}'(x,y) = (1-\alpha) \underbrace{NLL(x,y)}_{\mbox{Standard}} + \alpha \underbrace{NLL(\hat{x},y)}_{\mbox{Adversarial}} \\ \begin{array}{c} \mbox{input} \end{array}$$

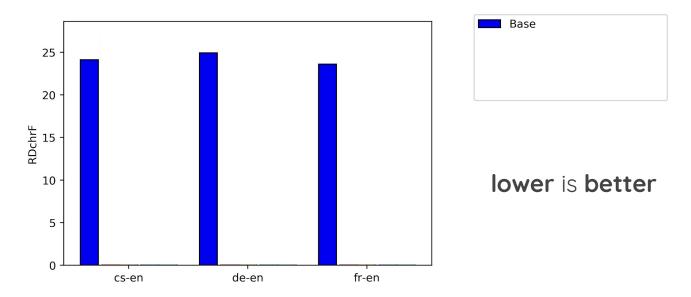
 $\circ \alpha$ = 0: Standard training

 $\circ \alpha$ = 1: Training only on adversarial examples

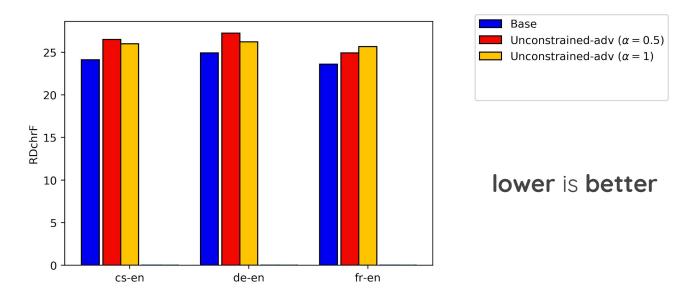
Effect of Constraints on Adversarial Training

● Adversarial training ≈ training with adversarial examples

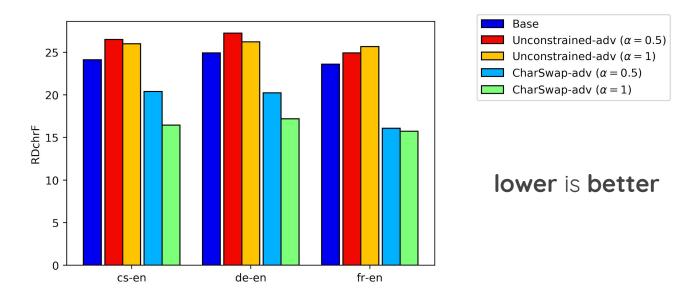
$$\mathcal{L}'(x,y) = (1-\alpha) \underbrace{NLL(x,y)}_{\text{Standard}} + \alpha \underbrace{NLL(\hat{x},y)}_{\text{Adversarial}} \\ \begin{array}{c} \text{input} \end{array}$$

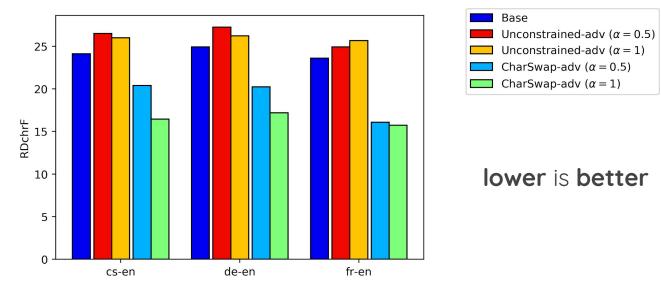

α = 0: Standard training
 α = 1: Training only on adversarial examples

• Training with **Unconstrained** attacks vs **CharSwap** attacks

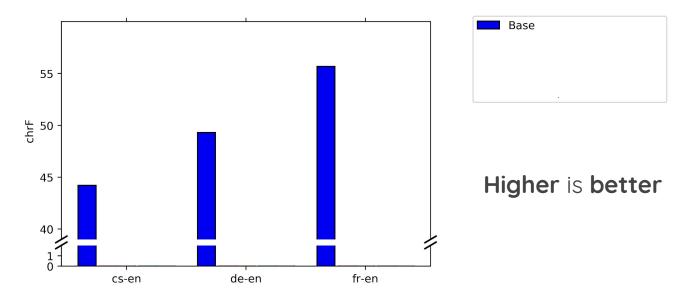

• Evaluate on

- robustness to **CharSwap** attacks
- Accuracy on **non-adversarial** data

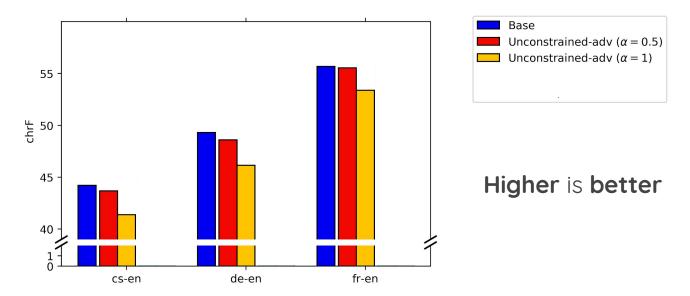

• Robustness to CharSwap attacks on the validation set


• Robustness to CharSwap attacks on the validation set

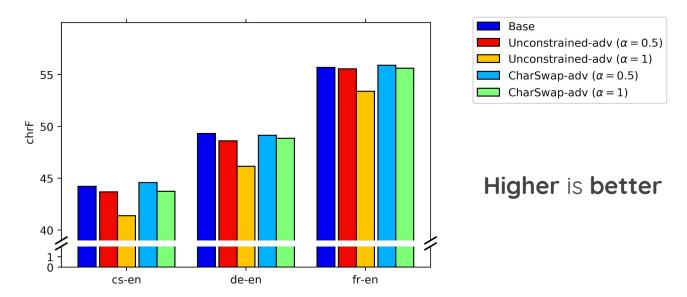
• Robustness to CharSwap attacks on the validation set

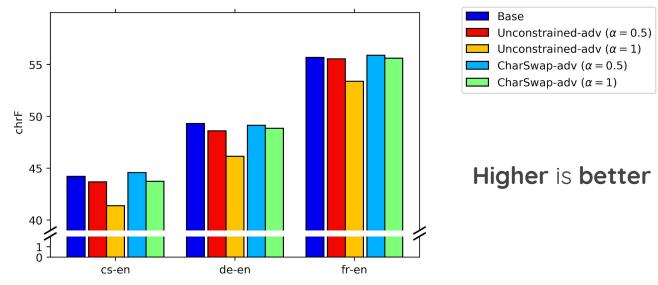


• Robustness to CharSwap attacks on the validation set



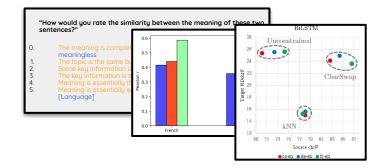
Adversarial training ⇒ better robustness


• Target chrF on the original test set


• Target chrF on the original test set

• Target chrF on the original test set

• Target chrF on the original test set

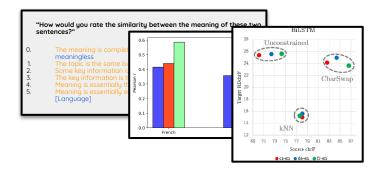


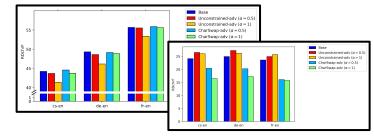
Unconstrained attacks ⇒ hurts accuracy

Takeway

• When doing adversarial **attacks**

• Evaluate meaning preservation on the source side

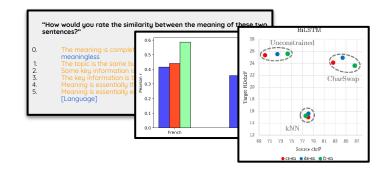


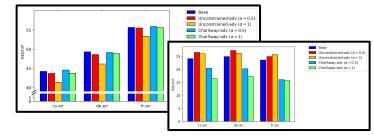

Takeway

• When doing adversarial **attacks**

• Evaluate meaning preservation on the source side

When doing adversarial training
 Consider adding constraints to your attacks


Takeway


• When doing adversarial **attacks**

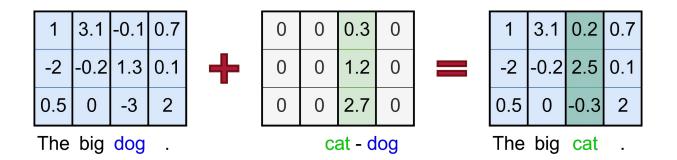
• Evaluate meaning preservation on the source side

When doing adversarial training
 Consider adding constraints to your attacks

- Not only true for seq2seq!
 - \circ Easily transposed to classification, etc.. \circ Just adapt s_{src} and s_{tqt} accordingly

TEAPOT

- Tool implementing our evaluation framework
- pip install teapot-nlp
- <u>github.com/pmichel31415/teapot-nlp</u>


teapot \

- --src examples/MT/src.fr \
- --adv-src examples/MT/adv.charswap.fr \
- --out examples/MT/base.en \
- --adv-out examples/MT/adv.charswap.en \
- --ref examples/MT/ref.en

will output:

● Idea: Word substitution ⇔ Adding word vector difference

• Use the 1st order approximation to maximize the loss

$$\operatorname{argmax}_{w} \mathcal{L}(x_{i} = v_{w}) - \mathcal{L}(x_{i} = v_{\operatorname{dog}}) \approx \nabla_{x_{i}} \mathcal{L}^{\mathsf{T}}[v_{w} - v_{\operatorname{dog}}]$$

Human Evaluation: the Gold Standard

Check for **semantic similarity** and **fluency**

"How would you rate the similarity between the meaning of these two sentences?"

- 0. The meaning is completely different or one of the sentences is meaningless
- 1. The topic is the same but the meaning is different
- 2. Some key information is different
- 3. The key information is the same but the details differ
- 4. Meaning is essentially the same but some expressions are unnatural
- 5. Meaning is essentially equal and the two sentences are well-formed [Language]

Example of a Successful Attack

(source chrF = **80.89**, target RDchrF = **84.06**)

Original	Ils le réinvestissent directement en engageant plus de procès.
Adv. src.	Ilss le réinvestissent dierctement en engagaent plus de procès.
Ref.	They plow it right back into filing more troll lawsuits.
Base output	They direct it directly by engaging more cases.
Adv. output	de plus.

Example of an Unsuccessful Attack

(source chrF = **54.46**, target RDchrF = **0.00**)

Original	C'était en Juillet 1969.
Adv. src.	C'étiat en Jiullet 1969.
Ref.	This is from July, 1969.
Base output	This was in July 1969.
Adv. output	This is. in 1969.