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Is using linguistic structures for 
sentence modelling useful? 

(e.g. syntactic trees)
Yes, it is! Let’s create 

more treebanks!

No! Annotations are expensive to make. 
Parse trees is just a linguists’ social construct. 

Just stack more layers and you will be fine!
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● RL-SPINN:                  Yogatama et al., 2016 
● Soft-CYK:                    Maillard et al., 2017 
● Gumbel Tree-LSTM:   Choi et al., 2018

Recent work has shown that: 
● Trees do not resemble any semantic or syntactic formalisms 

(Williams et al. 2018).
● Parsing strategies are not consistent across random restarts 

(Williams et al. 2018).
● These models fail to learn the simple context-free grammar 

(Nangia et al. 2018).
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Parsing as a RL problem
Parser Compositional Function
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Size of the search space is

For a sentence with 20 words, there are 1_767_263_190 possible trees.
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– nonstationary environment (i.e the same sequence of 
actions can receive different rewards) 

Syntax and semantic has to be learnt simultaneously
      model has to infer from examples that [MIN 0 1] = 0



Optimization challenges

42

Typically, the compositional function θ is learned faster than the parser φ.



Optimization challenges

43

Typically, the compositional function θ is learned faster than the parser φ.

This fast coadaptation limits the exploration of the search space to 
parsing strategies similar to those found at the beginning of the training.
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● High variance in the estimate of a parser’s gradient ∇φ 
has to be addressed.

● Learning paces of a parser θ and a compositional function φ 
have to be levelled off.



Variance reduction

45



Variance reduction

46

reward



Variance reduction

47

reward

Is this a carrot?
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the moving average of recent rewards

new reward
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self-critical training (SCT) baseline Rennie et al. (2017)

● [MIN 1 [MAX [MIN 9 [MIN 1 0 ] 2 [MED 8 4 3 ] ] [MAX 7 5 ] 6 9 ] ]
● [MAX 1 0 ]
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● High variance in the estimate of a parser’s gradient ∇φ is addressed 
by using self-critical training (SCT) baseline of Rennie et al. (2017).

● Learning paces of a parser φ and a compositional function θ is 
levelled off by controlling parser’s updates using Proximal Policy 
Optimization (PPO) of Schulman et al. (2017).
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Natural language inference (MultiNLI)
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Method Time 
complexity

Space 
complexity ListOps

RL-SPINN: Yogatama et al., 2016 O(nd2) O(nd2)

Soft-CYK: Maillard et al., 2017 O(n3d+n2d2) O(n3d)

Gumbel Tree-LSTM: Choi et al., 2018 O(n2d+nd2) O(n2d)

Ours O(Knd2) O(nd2)

Time and Space complexities

n – sentence length
d – tree-LSTM dimensionality
K – number of updates in PPO
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Conclusions
● The separation between syntax and semantics allows 

coordination between optimisation schemes for each module.
● Self-critical training mitigates credit assignment problem by 

distinguishing “hard” and “easy” to solve datapoints.
● The model can recover a simple context-free grammar of 

mathematical expressions.
● The model performs competitively on several real natural 

language tasks.

github.com/facebookresearch/latent-treelstm


