Supplemental Material

A Optimization of Z and F through
Alternating Direction Method of
Multipliers

The alternating direction method of multipliers
(ADMM) has been used in areas such as machine
learning, data mining and image processing in re-
cent years (Boyd et al., 2011). This optimization
approach aims to find the optimum value for opti-
mization problems which follow the form given in
Equation 12, with more than one variable that are
linearly related:

min - f(z) +9(y) (12)

st. Az + By =c,

where f(.) and g(.) are convex functions, and
A, B and ¢ are constant matrices. ADMM
considers the augmented Lagrangian form as
L(z,y,\) = f(z) +g(y) + A" (Az + By —) +
Z||Az+ By—c||*. Xis a variable in the dual space,
and o > 0 is a penalty parameter to set the im-
portance of penalizing the constraint. At the ¢-th
iteration, ADMM alternates between minimizing
the Langrangian function L(x,y, \) with respect
to the main variables x and y (denoted z; and),
as given in Equation 13:

Tt = mgn L(% Yt—1,)\tfl)§

Ye = rrgn L(zt, y, M—1)- (13)

Then, A is updated by means of gradient ascent in

the dual space, such as in Equation 14:
At = M—1+ 0(Axs + By — ¢). (14)

The standard ADMM algorithm has a conver-
gence rate of O(1/7T), where T is the number of
iterations (He and Yuan, 2012). In past years, the
authors of (Beck and Teboulle, 2009) and (Nes-
terov, 2004) proposed methods to accelerate gra-
dient descent based methods leading to similar ac-
celerated approaches for ADMM, which results in
a faster O(1/T?) convergence rate.

The ADMM method is an appropriate choice to
find the optimum value for Z and E in Equation
8. Therefore, we can write the Langrangian form
of the problem as in Equation 15:

L(Z,)\)
= |1Z|1 + a||Ell21 + MY — (YsZ + E))
g
+5 IV = (VsZ + B)|; (15)

The A\ parameter is the Lagrangian multiplier
updated by means of gradient ascent. The penalty
parameter o is a positive parameter, which accord-
ing to fine grained validation tests, we increase by
multiplying in p = 1.1 in order to penalize the
error more for this constraint.

A

Zipy = (Y)Y - B+ 2Y])
(1 1
Zis = awgmin (2121 + 512 - 2,
A
Et_y_% =Y -Y.Z;) + p (16)
. 1
B = argmin (al[Bllas + 518 - £,)

Algorithm 4 Optimization of affinity matrix Z.
Input: label matrix Y.
Initialization: A\ =0, p = 1.1, e = 1075,
Repeat:

1: Update Z, F;

2: Update Lagrangian multiplier A;

3: Update penalty parameter: o = po;
Until convergence condition [|[Y — (Y Z+E) |0 <
€
Output: Z.

B Proof of Theorems

Proof of Theorem 4:

Proof. Acu(k|S) = ZiEV\S Wik = D jes Whii-
This function is monotone for |S| < |V/|. For
R - S, ZieV\S Wi,k < ZieV\R Wi k> and
— ZiGS Wi < — ZiER W ;- Then Acut(k S) <
Acut(k|R). O

Proof of Theorem 5:

Proof. Since the first term is a submodular term,
we only need to prove that the second penalty
term is a submodular term. Ay, (k]S) =
—AY icg(wip + wy;). Therefore, if R C S,
Apen(k|S) < Apen(k|R). The penalized max-cut
function is a submodular function and monotone
for non-large values of). 0

[Proposed | PD-sparse | LEML [CPLST] CS [ML-CSSP
Bibtex
nDCG@1 64.56+0.79 | 61.2940.65 | 62.54+0.52 | 62.38+0.63 | 58.8740.61 44.98+1.15
nDCG@3 | 60.11+£0.53 | 55.83+0.57 | 58224042 | 57.63+0.56 | 52.1940.56 | 44.67+1.01
nDCG@5 | 62.18+0.49 | 57.35+0.49 | 60.53+0.38 | 59.71+0.42 | 53.254+0.54 | 47.97+0.98
Delicious
nDCG@1 | 65.73+£0.39 | 51.824+1.40 | 65.67+0.73 | 65.3/+0.88 | 61.364+0.38 | 63.04+1.29
nDCG@3 | 60.51+£0.39 | 46.00+1.12 | 61.77+0.50 | 61.16+£0.45 | 57.664+0.34 | 57.91+£1.15
nDCG@5 | 57.12+0.35 | 42.02+1.01 58.47+0.47 | 57.80+0.49 | 54.44+0.32 | 53.36+0.94
Mediamill
nDCG@1 84.25+0.27 | 81.86+4.08 | 84.01£0.31 83.35+0.33 | 83.82£5.92 | 78.95+0.23
nDCG@3 75.331+0.26 70.214+2.37 75.23+0.25 74.214+0.24 75.29+4.99 68.9740.28
nDCG@5 | 72.03+0.21 | 63.71+1.73 | 71.96+0.18 | 70.55+0.17 | 71.924+4.03 | 62.88+0.26
Eurlex
nDCG@1 | 81.04+0.80 | 76.43+1.04 | 63.40+£1.58 | 72.2840.99 | 58.524+1.06 | 62.09+2.12
nDCG@3 | 71.29+0.86 | 64.314+0.72 | 53.56+1.47 | 61.64+1.02 | 48.674+0.75 | 51.63+1.31
nDCG@5 | 65.64+0.84 | 58.784+0.70 | 48.47+1.24 | 5592+0.97 | 40.794+0.65 | 47.11+£1.10
Wikil0-31k

nDCG@1 86.05 82.14 73.47 - - -
nDCG@3 79.11 72.63 64.92 - - -
nDCG@5 72.26 64.33 58.69 - - -

Table 5: nDCG @k on the small-scale datasets with k=100. Best in bold and not significantly different to best at

p=0.05 in italics

C nDCG Results

The most well-known and frequently used mea-
sures for the large-scale multi-label learning prob-
lem are the precision-at-k and the normalized dis-
counted cumulative gain-at-k (nDCG-at-k), which
represent the accuracy over the highly ranked pre-
dictions. Precision-at-k results are reported in the
main text, nDCG results are reported here.

The normalized discounted cumulative gain-at-
k (nDCG-at-k), which represent the accuracy over
the highly ranked predictions, is shown in Tables
5 and 6. Precision-at-k results are reported in the
main text, nDCG results are reported here.

P@k::% Z yi.

leranky (§)
Y1
DCG@k:= Y ——.
leranky (§) IOg(l + 1)
nDCGQf := DCGak

Zmin(k’vl\ﬂlo) I
lf

log(l+1)

7)

(13)

(19)

[Proposed | SLEEC [FastXML

Bibtex
nDCG@1 64.56 65.08 63.42
nDCG@3 60.11 60.47 59.51
nDCG@5 62.18 62.64 61.70
Delicious
nDCG@1 65.13 67.59 69.61
nDCG@3 60.51 62.87 65.47
nDCG@5 57.12 59.28 61.90
Mediamill
nDCG@1 84.25 87.82 84.22
nDCG@3 75.33 81.50 75.41
nDCG@5 72.03 79.22 72.37
Eurlex
nDCG@1 81.04 79.26 71.36
nDCG@3 71.29 68.13 62.87
nDCG@5 65.64 61.60 58.06
Wikil0-31k
nDCG@1 86.05 85.88 84.31
nDCG@3 79.11 72.98 75.35
nDCG@5 72.26 62.70 63.36

Table 6: nDCG@k on the ensemble-based nonlinear
models. Best in bold and not significantly different to
best in italics.

[fpen [fscore [fpen"l‘afscore [+Outliers

Bibtex
nDCG@1 60.98 63.27 63.29 64.55
nDCG@3 54.15 57.16 57.49 60.11
nDCG@5 56.45 58.86 59.66 62.18
Mediamill
nDCG@1 81.12 81.83 84.25 84.25
nDCG@3 71.03 73.76 75.12 75.33
nDCG@5 68.65 70.40 71.79 72.03
Delicious
nDCG@1 62.71 62.71 64.33 65.14
nDCG@3 58.31 58.31 59.71 60.54
nDCG@5 55.04 55.04 56.16 57.15
Eurlex
nDCG@1 56.60 3.84 56.60 81.04
nDCG@3 42.07 3.27 42.07 71.29
nDCG@5 36.61 3.27 36.61 65.64

Table 7: Ablation Study

