

# Centrality-aware Product Retrieval and Ranking

Hadeel Saadany<sup>1</sup>, Swapnil Bhosale<sup>2</sup>, Samarth Agrawal<sup>3</sup>, Diptesh Kanojia<sup>2</sup>, Constantin Orăsan<sup>1</sup>, and Zhe Wu<sup>3</sup>

<sup>1</sup>Centre for Translation Studies, University of Surrey, UK <sup>2</sup>Institute for People-Centred AI, University of Surrey, UK <sup>3</sup>eBay Inc., USA

{hadeel.saadany, s.bhosale, d.kanojia, c.orasan}@surrey.ac.uk, {samagrawal,zwu1}@ebay.com



### Introduction

Enhancing product ranking and retrieval in e-commerce by optimizing existing models.
User queries carry **ambiguity** and **complexity** => mismatched intent and retrieval.







## Alphanumeric Queries

- -Queries involving product codes or model numbers, e.g., "S2716DG" for a Dell monitor where "S" and "DG" signify specific panel types.
- -Ambiguous product identifiers like "i5 pc 1tb 16gb 8gb gpu" that reference specifications but lack complete product details.
- Transformer-based models rely on extensive annotated data but *struggle to accurately capture user intent*.
- Our work proposes a **User-Intent Centrality Optimization (UCO)** to better align models with user intent in product search.

# Data & Experiment Setup

- Dataset- query-title pairs annotated for relevance score and centrality annotation.
- Pearson, Kendall and Spearman correlations between the graded relevance score and the binary centrality score are 0.78, 0.73 and 0.77, respectively.
- Relevance scores are assigned on a 1-5 PEGFB scale
- -1 indicates a Bad match while 5 indicates Perfect match (ideal query-title alignment).
- Centrality is annotated as a binary score (1 for central, 0 for non-central) to determine how closely a title aligns with the query intent.



The ablation study demonstrates that combining both loss functions, MNRL and OCL, enhances the model's performance, as the dual-loss approach improves ranking quality.
 – Employed individually, MNRL seems to outperform OCL in both metrics.

| Loss Function          | NDCG@5 | MRR@10 |
|------------------------|--------|--------|
| MNRL                   | 0.7139 | 0.7899 |
| OCL                    | 0.5497 | 0.6559 |
| MNRL + OCL (Dual-Loss) | 0.7488 | 0.8189 |

## • Fine-tuning process:

- UCO fine-tunes the model on **binary classification task for centrality**.
- Dual loss ensures a balance between relevance (matching the query intent) and centrality (most typical product titles).

## Results

• UCO helps distinguish between titles semantically relevant but non-central and central to user intent, mitigating challenges posed by ambiguous/alphanumeric queries.

| Encoder UCO | Precision@ $k$ ( $\uparrow$ ) |   |    | Re | call@k | $(\uparrow)$ | N | MRR (↑) |    |     |
|-------------|-------------------------------|---|----|----|--------|--------------|---|---------|----|-----|
|             | 3                             | 5 | 10 | 3  | 5      | 10           | 3 | 5       | 10 | @10 |

 $\cap \cap$  toot

- We curated evaluation splits from existing data for four query subsets.
- -CQ (Common Queries): Consists of general product queries.
- CQ-Balanced: Balanced split with an equal positive and negative query-title pairs.
- CQ-Common-String: Contains queries with exact matches in both relevant and irrelevant titles, challenging semantic differentiation.





(a) The sub-string "Barbie Model" is a part of both positive and negative product titles.

(b) The sub-string "3D Printer" is a part of both positive and negative product titles.

-CQ-Alphanumeric: Focuses on alphanumeric queries, such as product codes or model numbers, where minor changes can significantly impact retrieval accuracy.

| <b>Evaluation Split</b> | <b>Corpus Size</b> | <b>Dev Queries</b> | <b>Test Queries</b> |
|-------------------------|--------------------|--------------------|---------------------|
| CQ                      | 187,469            | 5,776              | 17,325              |
| CQ-Balanced             | 46,561             | 5,776              | 17,325              |
| CQ-Common-String        | 12,508             | 2,117              | 6,351               |
| CQ-Alphanumeric         | 162, 115           | 4,111              | 12,333              |

• **eBERT** and **eBERT-siamese** models are used as encoder backbones, pre-trained on eBay's item data combined with general domain text.

| BERT             | No               | 16.20 | 13.03 | 8.93 | 11.31 | 14.41 | 18.83    | 0.1912 | 0.1818 | 0.1833                  | 0.2771 |
|------------------|------------------|-------|-------|------|-------|-------|----------|--------|--------|-------------------------|--------|
| eBERT            | No<br><b>Yes</b> |       |       |      |       |       |          |        |        | 0.2430<br><b>0.7672</b> |        |
| eBERT<br>(siam)  | No<br><b>Yes</b> |       |       |      |       |       |          |        |        | 0.6704<br><b>0.7886</b> |        |
| CQ-balanced test |                  |       |       |      |       |       |          |        |        |                         |        |
| RERT             | No               | 7 1 2 | 1 01  | 2.05 | 21 26 | 21 50 | <u> </u> | 0 1001 | 0 1061 | 0 2115                  | 0 1962 |

| BERT   | No         | 7.13         | 4.94         | 2.95        | 21.26        | 24.58        | 29.33        | 0.1824        | 0.1961        | 0.2115        | 0.1862        |
|--------|------------|--------------|--------------|-------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|
| eBERT  | No         | 9.72         | 6.94         | 4.22        | 29.02        | 34.58        | 42.07        | 0.2428        | 0.2657        | 0.2899        | 0.2495        |
|        | <b>Yes</b> | <b>28.57</b> | <b>18.15</b> | <b>9.50</b> | <b>85.40</b> | <b>90.42</b> | <b>94.62</b> | <b>0.7851</b> | <b>0.8059</b> | <b>0.8197</b> | <b>0.7789</b> |
| eBERT  | No         | 25.99        | 16.68        | 8.89        | 77.66        | 83.08        | 88.59        | 0.6888        | 0.7112        | 0.7291        | 0.6784        |
| (siam) | <b>Yes</b> | <b>29.19</b> | <b>18.39</b> | <b>9.58</b> | <b>87.26</b> | <b>91.58</b> | <b>95.43</b> | <b>0.8046</b> | <b>0.8225</b> | <b>0.8351</b> | <b>0.7965</b> |

#### CQ-common-str test

| BERT            | No               | 9.41                  | 6.31                 | 3.65                | 28.15                 | 31.47                 | 36.35                 | 0.2532                  | 0.2669                  | 0.2828                  | 0.2579                  |
|-----------------|------------------|-----------------------|----------------------|---------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| eBERT           | No<br><b>Yes</b> | 12.62<br><b>32.03</b> | 8.64<br><b>19.58</b> | 5.00<br><b>9.92</b> | 37.79<br><b>95.84</b> | 43.10<br><b>97.65</b> | 49.92<br><b>98.87</b> | 0.3272<br><b>0.9091</b> | 0.3491<br><b>0.9166</b> | 0.3714<br><b>0.9206</b> | 0.3315<br><b>0.8979</b> |
| eBERT<br>(siam) |                  |                       |                      |                     |                       |                       |                       |                         |                         | 0.8456<br><b>0.9226</b> |                         |

#### CQ-alphanum test

| BERT   | No         | 20.54        | 16.65        | 11.47        | 13.45        | 17.32        | 22.82        | 0.2333        | 0.2176        | 0.2226        | 0.3350        |
|--------|------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|
| eBERT  | No         | 23.35        | 19.54        | 13.77        | 15.53        | 20.76        | 27.85        | 0.2630        | 0.2516        | 0.2617        | 0.3739        |
|        | <b>Yes</b> | <b>64.58</b> | <b>57.27</b> | <b>40.35</b> | <b>44.05</b> | <b>59.97</b> | <b>77.00</b> | <b>0.7119</b> | <b>0.7094</b> | <b>0.7344</b> | <b>0.8018</b> |
| eBERT  | No         | 60.67        | 54.10        | 38.54        | 41.32        | 57.10        | 74.20        | 0.6652        | 0.6654        | 0.6951        | 0.7618        |
| (siam) | <b>Yes</b> | <b>67.10</b> | <b>59.70</b> | <b>41.81</b> | <b>46.07</b> | <b>62.72</b> | <b>79.76</b> | <b>0.7375</b> | <b>0.7371</b> | <b>0.7609</b> | <b>0.8171</b> |

• Fine tuned for a maximum of 10 epochs, with a Batch size of 32 using AdamW (learning rate  $\rightarrow 2e - 05$ , weight decay  $\rightarrow 0.01$ , with cosine similarity as evaluation function.

• Ranking evaluation metrics include **Precision@k**, **Recall@k**, **NDCG@k**, and **Mean Re-ciprocal Rank (MRR)** to measure the quality and ranking accuracy.

## **User-Intent Centrality Optimization (UCO) Approach**

- The proposed User-Intent Centrality Optimization (UCO) enhances product title ranking by aligning retrieval with buyer intent.
- UCO uses a **Dual Loss-based Optimization** to manage hard negatives in query-title pairs (as shown in figure):
- Multiple Negative Ranking Loss (MNRL): Increases the distance between positive and negative pairs in the model's embedding space.
- -Online Contrastive Loss (OCL): Optimizes for hard positives (distant in embedding space) and hard negatives (closer to positive pairs).

### Conclusion

- Our proposed UCO method effectively improves product search relevance by aligning model rankings with user intent, showing consistent performance gains across evaluation metrics.
- UCO's dual-loss approach optimizes the embedding space to better handle challenges, such as ambiguous and alphanumeric queries, ensuring that results align more closely with user expectations.
- Future work will explore explainable product retrieval for complex queries and leveraging GenAl to expand challenging query structures and align them with user intent.

