

Course-Correction: Safety Alignment Using Synthetic Preferences

Rongwu Xu^{*1}, Yishuo Cai^{*2}, Zhenhong Zhou³, Renjie Gu², Haiqin Weng⁴, Yan Liu⁴, Tianwei Zhang⁵, Wei Xu¹, Han Qiu^{1†}

> ¹Tsinghua University ²Central South University ³Alibaba Group ⁴Ant Group ⁵Nanyang Technological University

[†]Corresponding Author *Equal Contribution

Background

An intriguing phenomenon

the model can steer away (i.e., halt) from generating harmful content autonomously

An illustrative example of course-correction

How to evaluate the course-correction capabilities of LLMs?

Evaluating Course-Correction Ability

To observe potential coursecorrection behavior

- prefill the input with IHR, which is the prefix derived from the corresponding FHR
- Use special tokens to mark that **IHR** is generated by the model itself

Sampling multiple decoding paths based on the input prompt of HR||IHR

measure the proportion of paths that exhibit corrective behavior.

Evaluating Course-Correction Ability

Corr@k and $Corr_{mean}$

Evaluation with C^2-EVAL

Model	Size	Safety	Corr@10	Corr _{mean}
LLAMA2-CHAT	7B	√ RLHF	66.60	61.63
VICUNA V1.5	7B	×	15.95	15.14
Phi-3 Small	7 B	√ RLHF	95.40	89.15
Zephyr-7B- β	7B	√ DPO	31.00	21.40
LLAMA3-INST.	8B	√ RLHF	96.35	96.31
CHATGLM4	9B	√ RLHF	55.55	38.91
	0.5B	√ RLHF	21.00	10.26
OWEN2	1.5B	√ RLHF	12.60	13.02
QWEN2	7B	√ RLHF	85.40	85.47
	72B	√ RLHF	17.40	18.15

- Performance disparity in LLMs
- Larger models do not necessarily perform better (e.g. Qwen 7B performs best in the same family)
- Generally, the longer the length of the initial harmful content that has been generated, the harder it is for the model to course-correct, However, there are **multiple exceptions** (e.g., Llama2-Chat)

C^2 -SYN : A Synthetic Dataset for Preference Learning

Value Principles

• Course-correction is better than not. Responses that demonstrate a

clear effort to correct mistakes are valued higher than those that do not.

• Earlier correction is preferred over later correction. Responses that correct harmful behaviors earlier in the response are preferred over delayed corrections, reflecting the importance of prompt intervention in maintaining the safety of interactions.

Algorithm 1: Generating synthetic data with preferences **Input:** $\mathcal{D} = \{(\text{HR}, \text{FHR})\}_{i=1}^{50,000}$ Output: A pairwise preference dataset C²-SYN $S = \{(\mathbf{HR}, R^+, R^-)\}_{i=1}^{750,000}$ $S = \emptyset$ 2 for (HR, FHR) in \mathcal{D} do #Get the list of punctuations $p \leftarrow getPunc(FHR, PunctuationSet)$ 3 #Generate 4 synthetic responses for i in 1, 2, 3, 4 do 4 #[]:Ceil,||:Floor $op \leftarrow rand(\{[], ||\})$ 5 #Calculate the index of punctuation to truncate FHR $idx \leftarrow indexOf(p_{op(\frac{i \cdot |p|}{\epsilon})})$ 6 $IHR_i \leftarrow FHR_{\leq idx}$ 7 $T_i \leftarrow rand(TriggerSet)$ 8 #Generate the course-corrected response using an aligned LLM $CR_i \sim \mathcal{M}_{aligned}(HR \| concat(IHR_i, T_i))$ 9 $SYN_i \leftarrow concat(IHR_i, T_i, CR_i)$ 10 $SR \leftarrow \mathcal{M}_{aligned}(HR||)$ 11 $\pi \leftarrow SR \succ SYN_1 \succ SYN_2 \succ SYN_3 \succ$ 12 $SYN_4 \succ FHR$ #Generate all pairwise preferences for $(R^+, R^-) \in \{(\pi_i, \pi_j) \mid 1 \le i < j \le 6\}$ 13 do $S.append((HR, R^+, R^-))$ 14 15 return S

C²-SYN : A Synthetic Dataset for Preference Learning

We experiment using **C²-SYN** to provoke course-correction capabilities to 2 LLMs, and design our experiments to address the following four key research questions

RQ1: Does preference learning improve LLMs' ability to course-correct?

RQ2: Does learning to course-correct degrade overall performance?

RQ3: Does learning to course-correct enhance LLMs' resilience to jailbreak attacks?

RQ4: How well does C 2 -SYN transfer to improve out-of-distribution (OOD) LLMs?

RQ1: Does preference learning improve LLMs' ability to course-correct?

Model	C ² -EVAL		Safe	Jailbreak Attack (ASR \downarrow)				
	Corr@10	Corr _{mean}	TruthfulQA (↑)	ToxiGen (↓)	GCG	PAIR	AutoDAN	CipherChat
LLAMA-CHAT 7B	66.60	61.63	48.60	51.27	70.95	10.00	54.00	75.00
+ DPO w. C^2 -Syn	90.85	83.49	49.06	48.08	38.57	8.00	52.00	50.00
Δ	+24.25	+21.86	+0.46	-3.19	-32.38	-2.00	-2.00	-25.00
QWEN2 7B	85.40	85.47	62.35	52.97	66.67	26.00	98.00	50.00
+ DPO w. C^2 -Syn	89.42	86.90	62.65	52.77	46.00	25.00	97.00	25.00
Δ	+4.02	+1.43	+0.30	-0.20	-20.67	-1.00	-1.00	-25.00

Table 3: Safety-related evaluation results of the trained LLMs. ASR denotes the attack success rate.

Model	MMLU	Hellaswag	Natural Questions	GSM8K	HumanEval	C-Eval
Llama-Chat 7B	42.93	77.00	20.94	22.97	9.15	33.21
+ DPO w. C ² -Syn	43.62	77.00	20.94	21.83	9.20	32.94
QWEN2 7B	70.32	82.00	21.50	74.07	40.24	73.25
+ DPO w. C ² -Syn	70.26	82.00	20.64	73.54	41.46	73.40

RQ2: Does learning to course-correct degrade overall performance?

Model	C ² -EVAL		Safe	Jailbreak Attack (ASR \downarrow)				
	Corr@10	Corr _{mean}	TruthfulQA (↑)	ToxiGen (\downarrow)	GCG	PAIR	AutoDAN	CipherChat
LLAMA-CHAT 7B + DPO w. C^2 -Syn Δ	66.60 90.85 +24.25	61.63 83.49 +21.86	48.60 49.06 +0.46	51.27 48.08 -3.19	70.95 38.57 -32.38	10.00 8.00 -2.00	52.00	75.00 50.00 -25.00
QWEN2 7B + DPO w. C^2 -Syn Δ	85.40 89.42 +4.02	85.47 86.90 +1.43	62.35 62.65 +0.30	52.97 52.77 -0.20		26.00 25.00 -1.00	97.00	50.00 25.00 -25.00

Table 3: Safety-related evaluation results of the trained LLMs. ASR denotes the attack success rate.

Model	MMLU	Hellaswag	Natural Questions	GSM8K	HumanEval	C-Eval
LLAMA-CHAT 7B	42.93	77.00	20.94	22.97	9.15	33.21
+ DPO w. C ² -Syn	43.62	77.00	20.94	21.83	9.20	32.94
QWEN2 7B	70.32	82.00	21.50	74.07	40.24	73.25
+ DPO w. C ² -Syn	70.26	82.00	20.64	73.54	41.46	73.40

RQ3: Does learning to course-correct enhance LLMs' resilience to

jailbreak attacks?

Model	C^2 -EVAL		Safe	Jailbreak Attack (ASR ↓)				
	Corr@10	Corr _{mean}	TruthfulQA (†)	ToxiGen (↓)	GCG	PAIR	AutoDAN	CipherChat
Llama-Chat 7B + DPO w. C ² -Syn Δ	66.60 90.85 +24.25	61.63 83.49 +21.86	48.60 49.06 +0.46	51.27 48.08 -3.19	70.95 38.57 -32.38		54.00 52.00 -2.00	75.00 50.00 -25.00
Qwen2 7B + DPO w. C ² -Syn	85.40 89.42 +4.02	85.47 86.90 +1.43	62.35 62.65 +0.30	52.97 52.77 -0.20		26.00 25.00	97.00	50.00 25.00 -25.00

Table 3: Safety-related evaluation results of the trained LLMs. ASR denotes the attack success rate.

Model	MMLU	Hellaswag	Natural Questions	GSM8K	HumanEval	C-Eval
Llama-Chat 7B	42.93	77.00	20.94	22.97	9.15	33.21
+ DPO w. C ² -Syn	43.62	77.00	20.94	21.83	9.20	32.94
QWEN2 7B	70.32	82.00	21.50	74.07	40.24	73.25
+ DPO w. C ² -Syn	70.26	82.00	20.64	73.54	41.46	73.40

RQ4: How well does C 2 -SYN transfer to improve out-of-distribution

(OOD) LLMs?

Model	C ² -EVAL		Safe	Jailbreak Attack (ASR \downarrow)				
	Corr@10	Corr _{mean}	TruthfulQA (†)	ToxiGen (↓)	GCG	PAIR	AutoDAN	CipherChat
LLAMA-CHAT 7B	66.60	61.63	48.60	51.27	70.95	10.00	54.00	75.00
+ DPO w. C^2 -Syn	90.85	83.49	49.06	48.08	38.57	8.00	52.00	50.00
Δ	+24.25	+21.86	+0.46	-3.19	-32.38	-2.00	-2.00	-25.00
QWEN2 7B	85.40	85.47	62.35	52.97	66.67	25.00	98.00	50.00
+ DPO w. C^2 -Syn	89.42	86.90	62.65	52.77	46.00		97.00	25.00
Δ	+4.02	+1.43	+0.30	-0.20	-20.67		-1.00	-25.00

Table 3: Safety-related evaluation results of the trained LLMs. ASR denotes the attack success rate.

Model	MMLU	Hellaswag	Natural Questions	GSM8K	HumanEval	C-Eval
LLAMA-CHAT 7B	42.93	77.00	20.94	22.97	9.15	33.21
+ DPO w. C ² -Syn	43.62	77.00	20.94	21.83	9.20	32.94
QWEN2 7B	70.32	82.00	21.50	74.07	40.24	73.25
+ DPO w. C ² -Syn	70.26	82.00	20.64	73.54	41.46	73.40

Figure 5: Summed probability of safety tokens at the *first* decoding position after an **IHR** of length k.

Conclusion

Contributions:

We systematically investigate the problem of course-correction in the context of harmful content generation within LLMs:

- We develop C²-EVAL and evaluate ten prevalent LLMs
- We construct **C²-SYN** and use DPO on two LLMs
- Results demonstrate that preference learning with our synthetic data can improve two models' overall safety without harming general performance.

Limitations

- Dataset Bias
- Evaluation Method
- Training Algorithm Selection
- Model Selection

THANK YOU