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Introduction 

Based on the work in (Poller, 1994) and a minor 
assumption about a normal form for TAGs, we 
present a highly simplified version of the two
step parsing approach for TAGs which allows 
for a much easier analysis of run-time and space 
complexity. It also snggests how restrictions on 
the grammars might result in improvements in 
run-time complexity. 

The main advantage of a two-step parsing 
system shows in practical applications like Verb
mobil (Bub et al., 1997) where the parser 
must look at multiple hypotheses supplied by a 
speech recognizer (encoded in a word hypothe
ses lattice) and filter out illicit hypotheses as 
early as possible. The first (context-free) step 
of our parser filters out some illicit hypotheses 
fast (O(n3 )); the constructed parsing matrix is 
then reused for the second step, the complete 
(O(n6 )) TAG parse. 

Simplifying Root and Foot Nodes 

The normal form that we assume in the follow
ing is only a very minor modification and allows 
for a trivial retrieval of parses from the results 
of the normal form-based parser. 

We call a TAG clean if the root node of ev
ery elementary tree and the foot node of every 
auxiliary tree is labeled with the null-adjoining 
constraint. Obviously, every TAG can be trans
formed into a clean TAG by simply adding 
to every elementary tree an additionai node, 
immediately dominating the root node, with 
the same label as the root node and the null
adjoining constraint and also adding an addi
tional node, immediately dominated by the föot 
node, with the the same label as the foot node 
and the null-adjoining constraint (see figure 1). 
While this transformation adds new nodes to 

the derived trees, no adjunctions can take place 
at these additional nodes and they can easily 
be eliminated again from a derived tree, result
ing in the derived tree of the original grammar. 
Thus, every TAG can be transformed into an 
"almost" strongly equivalent clean TAG. 

In a clean TAG, no adjunction can take place 
at the root or foot node. This allows us to drop 
numerous special data structures and steps from 
the algorithm in (Poller, 1994), resulting in a 
much cleaner presentation. We also omit the 
treatment of linear precedence rules, which can 
easily be added. 

A Simplified Two-Step TAG parser 

An initial offline step is the extraction of the 
context-free kernel from the TAG G, a context
free grammar GK which overgenerates, i.e„ 
L(G) c L(GK)· 

The first step of the parser is a standard parse 
with the Earley-algorithm (Earley, 1970). The 
second step is the repeated elimination of ad
joined trees from the parser's matrix. Thus a 
TAG derivation is constructed inside-out1 . 

First, we describe the additional data struc
ture which is added to the items of the Earley 
parser. An item is a tuple (i, j, S -+ o: • ß), rep
resenting a derivation of ai+l ... aj from o:. In 
addition, every non-terminal node in the item 
carries a list with node numbers, taken from the 
TAG grammar G, uniquely identifying a node in 
an elementary tree of G which contributed the 
rule S -+ o:ß. Furthermore, every node num
ber in an item can store a list of pointers, called 
foot node pointers (see below). Figure 2 shows 
two elementary trees and an example item with 
node numbers. 

10r rather bottom-up in terms of the derivation tree 
of the TAG. 
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Figure 1: Transforming an auxiliary tree into 
a clean tree. 
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Figure 2: Two example trees and an item 
from the context-free kernet with node num
bers. 

Our stepwise approach to TAG-parsing is 
open to different degrees of precision for the 
context-free parsing step depending on how 
much information about the elementary TAG
trees is integrated into the context-free pars
ing step. We expect that the following alter
natives have different inftuences on the realtime 
behaviour of a practical system mainly depend
ing on the grammar's characteristics (size, am
biguitiy, ... ) . 

(1) Solely the node labels are used to gener
ate the context-free kernel. In this case the node 
numbers attached to the terminals and nonter
minals have no influence at all on the Earley 
operators. In this paper we describe this alter
native. 

(2) An other possibility is to integrate the 
node addresses from the elementary TAG trees 
into the rules of the context-free kernel2• This 
requires extensions of the Earley operators be
cause they are now controlled by the character
istics of a specific node of a Ti\G tree instead 
of just a label. In particular, the prediction of a 
nonterminal node now only produces items for 
context-free rules that are valid according to the 
TAG grammar and also don't violate any ad
junction constraint of the predicted node. This 

2Thanks to the anonymous reviewer who suggested 
this procedure. 

allows for the integration of the TAG constraint 
check into the context-free parsing step. Simi
larly, the completor also works only with valid 
derivation steps according to the TAG gram
mar. On the other hand, we cannot share node 
number alternatives in one item anymore. But 
this increases the overall number of items only 
by a constant factor. 

While the first alternative filters out only in
valid context-free derivation steps with respect 
to node labels, the second one is a stronger filter 
because it only produces items which represent 
locally valid derivation steps with respect to the 
TAG grammar but reduced to the context-free 
domain of locality. Furthermore it requires one 
item for each occurence of a context-free rule in 
different TAG trees. This is a trade off between 
the number of items to be produced in the first 
parsing step and the precision of its filtering ef
fect. 

lt is interesting to note that it is also pos
sible to derive the node number specific items 
of the second alternative from the parsing ma
trix of the first one. If the node number check 
is organized top-down starting with successful 
context-free derivations (similar to the initial
ization of the TAG parsing step below) we get a 
3-step parser functioning as a cascade of filters. 

Independent of these alternatives there is a 
special parsing strategy for lexicalized TAGs 
(Schabes et al., 1988). As each terminal is as
sociated with a set of elementary trees we can 
immediately restrict the relevant TAG trees for 
the parser to those that are associated with 
the terminals of the input string. This strat
egy can still be applied since the rules of the 
context-free kerne! can be computed in advance 
for each elementary tree separately. Once the 
relevant elementary trees are determined for an 
input string, the context-free kernel is simply 
the union of the associated context-free rules. 

For all variants of the context-free parsing 
step, the second step (the actual TAG parsing 
step) remains basically the same. 

Within the second step an initialization pro
cedure filters out irrelevant items by a top
down traversal starting from roots of success
ful context-free deri vations through the pars
ing matrix. This sets the ground for an it
erated elimination of complete, adjoined trees. 
This initialization is not strictly necessary (and 
takes O(n3 ) time), but it provides an impor
tant speed-up because now only valid context-
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free derivations are considered. Invalid context
free derivation steps are filtered out which might 
become relevant in practical systems with large 
grammars. 

Initially, all leaf nodes (including foot nodes) 
are marked, i.e. , the corresponding node num
bers in all items, are labeled ok, then these ini
tial ok's are propagated "bottom-up" along the 
context-free derivation steps if they took place 
inside the same elementary tree which can eas
ily be checked by comparing the unique node 
numbers. This ok-propagation also propagates 
relevant information about foot node positions. 

While recovering elementary trees in the pars
ing matrix, we need to keep track of possible 
foot node positions. Each node number in an 
item is associated with a set of corresponding 
f oot node pointers. A foot node pointer points to 
a particular node number in some item. Thus, 
w hen an ok is eventually propagated to a node 
number that represents the root node of an el
ementary tree, all possible positions of its foot 
node have been collected in the foot node pointer 
list. Note that there can be O(n2) foot node 
pointers for each node number, since there are 
O(n2 ) items. 

The relevant computational steps during the 
iteration are: elimination, upwards propagation, 
and horizontal propagation. Elimination of an 
adjoined tree in the Earley matrix is realized 
by propagating all ok's from immediately "be
low'' all possible foot nodes to all immediate su
pertrees of the root node3• Upwards propagation 
is the propagation of an ok from a complete4 

item to its ancestor. Hor-izontal propagation is 
the propagation of an ok to an item where the 
dot has moved one position to the right. 

In the following, all complexity statements 
are based on the limited number of items that 
are produced by the Earley algorithm, in partic
ular the number of items in a so called itemlist5. 

Each itemlist h contains at most O(k) items so 
that the number of all items produced by the 
Earley algorithm is bound by: I:~::o O(k) = 
O(n2) . Another important point for our com
plexity statements is that each individual item 
is stored exactly once by the Earley algorithm 

3Implementations of the concepts "below" and "su
pertree" arc already provided by thc Earlcy parser. 

4 A complete item has the dot at the rightmost 
position. . 

5 An itemlist h is defined as the set of all items 
(i , j, S -1 o • ß) where k = j. 

( even though it might be derived by more than 
one operation), which means that there are no 
two identical items. 

We can now present a sketch of the algorithm: 
for j from 0 to n 

for i from j downto 0 
foreach i tem (i, j, A-+ a • ß) 

There are only three cases for a node number 
N of A labeled ok of an item (i, j, A -+ a • ß): 

1. ß = €: 

1.1 N is the root of an auxiliary tree: 
perform an elimination of all en
codings of this tree, 

This can be clone in O(n4) time. 
1.2 N is an inner node of an elemen

tary tree: perform an upwards 
propagation. 

This can be clone in O(n3 ) time. 
2. ß-1- €: 

perform a hor-izontal propagation. 
This can require O(n3) time. 

end foreach; end for j; end for i; 
The most expensive step is elimination (step 

1.1). For each root node of an adjoined tree 
to be eliminated there can be O(n2) foot node 
pointers because there are at most O(n2 ) items 
to which they can point to. They result in 
O(n2 ) positions from which this tree can be 
eliminated, i.e., ok's at these positions and their 
foot node pointer lists must be propagated. Col
lecting all these foot node pointers lists ( of size 
O(n2) each) from each of the O(n2) positions 
results in O(n4) time complexity (see figure 3). 
lt is important to note that this computational 
step cannot produce more than O(n2 ) new foot 
node pointers at the current root node although 
their computation costs O(n4 ) . Therefore the 
fact that each node has at most O(n2) foot node 
pointers is an invariant of the iterative elimina
tion. 

The complexity of step 1.2 ( upwards propaga
tion) is also based on the limited number·of foot 
node pointers. Since the ok of a node is propa
gated to its "context-free11 ancestors and all pos
sible ancestors are contained in the same item
list, the compiexity is iimited by the 0( n 2) foot 
node pointers and the O(n) items ("supertree" 
in figure 4) to which they have tobe propagated 
to, which results in O(n3) time complexity. 

Finally, step 2 (horizontal propagation) can 
also be done in O(n3) time. Again, 0(112) fnot. 
node pointers of an ok have to be propagated to 
all items where the dot has moved one position 
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Figure 3: Complex elimination of a completely 
recognized auxiliary tree. 
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Figure 4: Simple propagation of ok to the an
cestor node, i.e., the corresponding iterns. 

to the right. Since there are no identical iterns 
there can be at rnost O(n) iterns (one item from 
each itemlist; see figure 5)6 . 
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Figure 5: Horizontal propagation of ok to the 
next item. 

The overall time complexity of the parsing al
gorithm is O(n6) since there are O(n2) items for 
which elimination (O(n4)) must be performed. 

Obviously, the two-step parsing algorithm 
does not .have the correct prefix property 
(Nederhof, 1997) as it requires the entire sen
tence tobe analyzed by the Earley parser before 
the second (TAG parsing) step begins. How
ever, the Earley step itself has the correct prefix 
property wrt. the context-free kernel and also 
the discussion in (Poller, 1994) of a completely 
incrernental setup also applies to the sirnplified 
two-step TAG parsing algorithm presented here. 

. · 6The concepts "next" and "previous" explicitly rep
resent links between ite'ms coming from dot movements 
by the Earley parser. 

Current Work 

Although our parser does not have the correct
prefix property it can run incrementally as de
scribed in (Poller, 1994) namely by running the 
TAG parsing step in parallel to the construction 
of the context-free parsing matrix. Although 
this may require additional computational steps 
on unsuccessful context-free derivation steps, 
the effects on the realtime behavior of a practi
cal systern again depend on grammar character
istics. So it would be very helpful to find some 
kind of "grammar classification" with respect to 
their Hparser suitabilityn in practical implemen
tations answering the question "Which TAG 
parser is best suitable for my current task?". 

The analysis of the elimination step shows 
clearly that the time complexity of our TAG 
parser stems from the number of possible foot 
node positions. We are currently investigating 
whether certain restrictions on TAG grammars 
can lower this number. E.g., this is obviously 
the case for unambiguous grammars. 
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