
Two-step TAG Parsing Revisited

Peter Poller, Tilman Becker
DFKI GmbH, Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

{poller,becker}©dfki.de

Introduction

Based on the work in (Poller, 1994) and a minor
assumption about a normal form for TAGs, we
present a highly simplified version of the two
step parsing approach for TAGs which allows
for a much easier analysis of run-time and space
complexity. It also snggests how restrictions on
the grammars might result in improvements in
run-time complexity.

The main advantage of a two-step parsing
system shows in practical applications like Verb
mobil (Bub et al., 1997) where the parser
must look at multiple hypotheses supplied by a
speech recognizer (encoded in a word hypothe
ses lattice) and filter out illicit hypotheses as
early as possible. The first (context-free) step
of our parser filters out some illicit hypotheses
fast (O(n3)); the constructed parsing matrix is
then reused for the second step, the complete
(O(n6)) TAG parse.

Simplifying Root and Foot Nodes

The normal form that we assume in the follow
ing is only a very minor modification and allows
for a trivial retrieval of parses from the results
of the normal form-based parser.

We call a TAG clean if the root node of ev
ery elementary tree and the foot node of every
auxiliary tree is labeled with the null-adjoining
constraint. Obviously, every TAG can be trans
formed into a clean TAG by simply adding
to every elementary tree an additionai node,
immediately dominating the root node, with
the same label as the root node and the null
adjoining constraint and also adding an addi
tional node, immediately dominated by the föot
node, with the the same label as the foot node
and the null-adjoining constraint (see figure 1).
While this transformation adds new nodes to

the derived trees, no adjunctions can take place
at these additional nodes and they can easily
be eliminated again from a derived tree, result
ing in the derived tree of the original grammar.
Thus, every TAG can be transformed into an
"almost" strongly equivalent clean TAG.

In a clean TAG, no adjunction can take place
at the root or foot node. This allows us to drop
numerous special data structures and steps from
the algorithm in (Poller, 1994), resulting in a
much cleaner presentation. We also omit the
treatment of linear precedence rules, which can
easily be added.

A Simplified Two-Step TAG parser

An initial offline step is the extraction of the
context-free kernel from the TAG G, a context
free grammar GK which overgenerates, i.e„
L(G) c L(GK)·

The first step of the parser is a standard parse
with the Earley-algorithm (Earley, 1970). The
second step is the repeated elimination of ad
joined trees from the parser's matrix. Thus a
TAG derivation is constructed inside-out1 .

First, we describe the additional data struc
ture which is added to the items of the Earley
parser. An item is a tuple (i, j, S -+ o: • ß), rep
resenting a derivation of ai+l ... aj from o:. In
addition, every non-terminal node in the item
carries a list with node numbers, taken from the
TAG grammar G, uniquely identifying a node in
an elementary tree of G which contributed the
rule S -+ o:ß. Furthermore, every node num
ber in an item can store a list of pointers, called
foot node pointers (see below). Figure 2 shows
two elementary trees and an example item with
node numbers.

10r rather bottom-up in terms of the derivation tree
of the TAG.

143

NA
A
1

L:~ ~ L:~
INA
A

Figure 1: Transforming an auxiliary tree into
a clean tree.

1ree 7: lree 12:
sNA sNA
17.t 112.t

s s
r(~
s s s s
17.1.1 17.1.2 112.1.l 112.1.2

SNA 8 8 SNA
7.1.1.1 7.1.2.1 12.1.1.1 12.1.2.1

Figure 2: Two example trees and an item
from the context-free kernet with node num
bers.

Our stepwise approach to TAG-parsing is
open to different degrees of precision for the
context-free parsing step depending on how
much information about the elementary TAG
trees is integrated into the context-free pars
ing step. We expect that the following alter
natives have different inftuences on the realtime
behaviour of a practical system mainly depend
ing on the grammar's characteristics (size, am
biguitiy, ...) .

(1) Solely the node labels are used to gener
ate the context-free kernel. In this case the node
numbers attached to the terminals and nonter
minals have no influence at all on the Earley
operators. In this paper we describe this alter
native.

(2) An other possibility is to integrate the
node addresses from the elementary TAG trees
into the rules of the context-free kernel2• This
requires extensions of the Earley operators be
cause they are now controlled by the character
istics of a specific node of a Ti\G tree instead
of just a label. In particular, the prediction of a
nonterminal node now only produces items for
context-free rules that are valid according to the
TAG grammar and also don't violate any ad
junction constraint of the predicted node. This

2Thanks to the anonymous reviewer who suggested
this procedure.

allows for the integration of the TAG constraint
check into the context-free parsing step. Simi
larly, the completor also works only with valid
derivation steps according to the TAG gram
mar. On the other hand, we cannot share node
number alternatives in one item anymore. But
this increases the overall number of items only
by a constant factor.

While the first alternative filters out only in
valid context-free derivation steps with respect
to node labels, the second one is a stronger filter
because it only produces items which represent
locally valid derivation steps with respect to the
TAG grammar but reduced to the context-free
domain of locality. Furthermore it requires one
item for each occurence of a context-free rule in
different TAG trees. This is a trade off between
the number of items to be produced in the first
parsing step and the precision of its filtering ef
fect.

lt is interesting to note that it is also pos
sible to derive the node number specific items
of the second alternative from the parsing ma
trix of the first one. If the node number check
is organized top-down starting with successful
context-free derivations (similar to the initial
ization of the TAG parsing step below) we get a
3-step parser functioning as a cascade of filters.

Independent of these alternatives there is a
special parsing strategy for lexicalized TAGs
(Schabes et al., 1988). As each terminal is as
sociated with a set of elementary trees we can
immediately restrict the relevant TAG trees for
the parser to those that are associated with
the terminals of the input string. This strat
egy can still be applied since the rules of the
context-free kerne! can be computed in advance
for each elementary tree separately. Once the
relevant elementary trees are determined for an
input string, the context-free kernel is simply
the union of the associated context-free rules.

For all variants of the context-free parsing
step, the second step (the actual TAG parsing
step) remains basically the same.

Within the second step an initialization pro
cedure filters out irrelevant items by a top
down traversal starting from roots of success
ful context-free deri vations through the pars
ing matrix. This sets the ground for an it
erated elimination of complete, adjoined trees.
This initialization is not strictly necessary (and
takes O(n3) time), but it provides an impor
tant speed-up because now only valid context-

144

free derivations are considered. Invalid context
free derivation steps are filtered out which might
become relevant in practical systems with large
grammars.

Initially, all leaf nodes (including foot nodes)
are marked, i.e. , the corresponding node num
bers in all items, are labeled ok, then these ini
tial ok's are propagated "bottom-up" along the
context-free derivation steps if they took place
inside the same elementary tree which can eas
ily be checked by comparing the unique node
numbers. This ok-propagation also propagates
relevant information about foot node positions.

While recovering elementary trees in the pars
ing matrix, we need to keep track of possible
foot node positions. Each node number in an
item is associated with a set of corresponding
f oot node pointers. A foot node pointer points to
a particular node number in some item. Thus,
w hen an ok is eventually propagated to a node
number that represents the root node of an el
ementary tree, all possible positions of its foot
node have been collected in the foot node pointer
list. Note that there can be O(n2) foot node
pointers for each node number, since there are
O(n2) items.

The relevant computational steps during the
iteration are: elimination, upwards propagation,
and horizontal propagation. Elimination of an
adjoined tree in the Earley matrix is realized
by propagating all ok's from immediately "be
low'' all possible foot nodes to all immediate su
pertrees of the root node3• Upwards propagation
is the propagation of an ok from a complete4

item to its ancestor. Hor-izontal propagation is
the propagation of an ok to an item where the
dot has moved one position to the right.

In the following, all complexity statements
are based on the limited number of items that
are produced by the Earley algorithm, in partic
ular the number of items in a so called itemlist5.

Each itemlist h contains at most O(k) items so
that the number of all items produced by the
Earley algorithm is bound by: I:~::o O(k) =
O(n2) . Another important point for our com
plexity statements is that each individual item
is stored exactly once by the Earley algorithm

3Implementations of the concepts "below" and "su
pertree" arc already provided by thc Earlcy parser.

4 A complete item has the dot at the rightmost
position. .

5 An itemlist h is defined as the set of all items
(i , j, S -1 o • ß) where k = j.

(even though it might be derived by more than
one operation), which means that there are no
two identical items.

We can now present a sketch of the algorithm:
for j from 0 to n

for i from j downto 0
foreach i tem (i, j, A-+ a • ß)

There are only three cases for a node number
N of A labeled ok of an item (i, j, A -+ a • ß):

1. ß = €:

1.1 N is the root of an auxiliary tree:
perform an elimination of all en
codings of this tree,

This can be clone in O(n4) time.
1.2 N is an inner node of an elemen

tary tree: perform an upwards
propagation.

This can be clone in O(n3) time.
2. ß-1- €:

perform a hor-izontal propagation.
This can require O(n3) time.

end foreach; end for j; end for i;
The most expensive step is elimination (step

1.1). For each root node of an adjoined tree
to be eliminated there can be O(n2) foot node
pointers because there are at most O(n2) items
to which they can point to. They result in
O(n2) positions from which this tree can be
eliminated, i.e., ok's at these positions and their
foot node pointer lists must be propagated. Col
lecting all these foot node pointers lists (of size
O(n2) each) from each of the O(n2) positions
results in O(n4) time complexity (see figure 3).
lt is important to note that this computational
step cannot produce more than O(n2) new foot
node pointers at the current root node although
their computation costs O(n4) . Therefore the
fact that each node has at most O(n2) foot node
pointers is an invariant of the iterative elimina
tion.

The complexity of step 1.2 (upwards propaga
tion) is also based on the limited number·of foot
node pointers. Since the ok of a node is propa
gated to its "context-free11 ancestors and all pos
sible ancestors are contained in the same item
list, the compiexity is iimited by the 0(n 2) foot
node pointers and the O(n) items ("supertree"
in figure 4) to which they have tobe propagated
to, which results in O(n3) time complexity.

Finally, step 2 (horizontal propagation) can
also be done in O(n3) time. Again, 0(112) fnot.
node pointers of an ok have to be propagated to
all items where the dot has moved one position

145

(mj,A-> a.)

(k,1,A->llC.)

m

rfl foot node polnters

A)sub
A .

/'\~oot 'node pointers

D C

6
k l

Figure 3: Complex elimination of a completely
recognized auxiliary tree.

(kj,A->llC.F) A

~
B

(iJ,C->DE.)

Figure 4: Simple propagation of ok to the an
cestor node, i.e., the corresponding iterns.

to the right. Since there are no identical iterns
there can be at rnost O(n) iterns (one item from
each itemlist; see figure 5)6 .

(i,j, S -t a • Xß) n~t (i,j + k, S -t aX • ß)

Figure 5: Horizontal propagation of ok to the
next item.

The overall time complexity of the parsing al
gorithm is O(n6) since there are O(n2) items for
which elimination (O(n4)) must be performed.

Obviously, the two-step parsing algorithm
does not .have the correct prefix property
(Nederhof, 1997) as it requires the entire sen
tence tobe analyzed by the Earley parser before
the second (TAG parsing) step begins. How
ever, the Earley step itself has the correct prefix
property wrt. the context-free kernel and also
the discussion in (Poller, 1994) of a completely
incrernental setup also applies to the sirnplified
two-step TAG parsing algorithm presented here.

. · 6The concepts "next" and "previous" explicitly rep
resent links between ite'ms coming from dot movements
by the Earley parser.

Current Work

Although our parser does not have the correct
prefix property it can run incrementally as de
scribed in (Poller, 1994) namely by running the
TAG parsing step in parallel to the construction
of the context-free parsing matrix. Although
this may require additional computational steps
on unsuccessful context-free derivation steps,
the effects on the realtime behavior of a practi
cal systern again depend on grammar character
istics. So it would be very helpful to find some
kind of "grammar classification" with respect to
their Hparser suitabilityn in practical implemen
tations answering the question "Which TAG
parser is best suitable for my current task?".

The analysis of the elimination step shows
clearly that the time complexity of our TAG
parser stems from the number of possible foot
node positions. We are currently investigating
whether certain restrictions on TAG grammars
can lower this number. E.g., this is obviously
the case for unambiguous grammars.

References

Thomas Bub, Wolfgang Wahlster, and Alex Waibel.
1997. Verbmobil: The combination of deep and
shallow processing for spontaneous speech trans
lation. In Proceedings of ICASSP-97, pages 71-
74, Munich.

J. Earley. 1970. An efficient context-free parsing al
gorithm. Communications of the ACM, 13(2):94-
102.

M. J. Nederhof. 1997. Solving the correct-prefix
property for TAGs. In T. Becker and H.-U.
Krieger, editors, Proceedings of the Fifth Meet
ing on Mathematics of Language {MOL5}, num
ber D-97·02, pages 124-130, Saarbrücken, Au
gust. DFKI GmbH.

Peter Poller. 1994. lncremental parsing with
LD /TLP-TAGs. Computational Intelligence,
10(4) :549-562, November.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with 'iexicaiized' gram
mars: Application to Tree Adjoining Grammars.
pages 578- 583, Budapest, August.

146

