
Overview of AlethGen
Jos4 Coch

ERLI
1, place des Marseillais

F-94227 Charenton-le-pont Cedex
F R A N C E

jose.coch@erli . fr

1. Introduction
AlethGen is ERLI 's automatic multi-paragraph
text-generation toolbox. It was first specified in
1992 and the French version developed in 1993-
1994. The English version has been under
development since 1995. The Spanish version is
planned for 1997.

AlethGen has already been used for generating
texts in several applications, notably for
producing correspondence for a leading French
mail-order company (see [Coch & David 94],
[Coch, David & Magnoler 95]).

AlethGen is much more than a sentence
generator. Its main characteristics are:

• the high quality of the multi-paragraph texts
gene ra t ed , an terms of f lu id i ty ,
understandability, and personalisation, and

• the data-driven planning approach, which
allows applications to produce an extensive
set of different text structures.

AlethGen is an industrial toolbox that uses several
techniques in a hybrid way, i.e. it has several
modules which can be integrated and used in
different ways to meet different applications'
requirements. The modules are described in
Chapter 2, and the architectures in Chapter 3.

Given that AlethGen is used in commercial and
industrial projects, it is important to describe the
characteristics of the systems it has been used to
build, in terms of quality criteria and performance
(Chapter 4).

Finally, the existing projects using AlethGen are
described in Chapter 5.

2. Modules
2.1. Overview

The three main modules of AlethGen are the
Direct generator, the Text planner, and the
Linguistic realisation module.

2.2. Direct Generator (AlethGen/GD)

The main functions of the Direct generator are:

• to plan the structure of the text in a direct
mode (top-down), thanks to a conditional
script language using a traditional
(algorithmic) approach,

25

• to generate more or less fixed expressions
or non-l inguis t ic texts (i.e. tables,
addresses, lists, etc.) by manipulating
character strings, also using a traditional
conditional approach.

The Direct generator can be used without the
other modules to generate texts in an automatic
but non-linguistic way. Reiter [Reiter 95] calls
this technique "the template approach".

The content of the knowledge bases and scripts
used by the Direct generator depends on the
application.

2.3. Text Planner (AlethGen/Pla)

The function of the Text planner is to plan the text
in a data-driven mode. The input of this module is
structured data from the application. The content
and format of the input thus depend on the
application.

The Text planner uses declarative knowledge
bases containing rules written in a logical
formalism.

The output is an ordered list of Events, with
rhetoric features and rhetoric operators (the
<< surface structure >> of the text). This module is
divided in two sub-modules: the Conceptual
planner and the Rhetorical planner.

Thus, the content-determination and rhetorical
planning functions are not integrated in AlethGen,
but separated in two different sub-modules. On
one hand, Ale thGen ' s Rhetorical planner
produces surface rhetorical representation (not
intermediate, as for example in RST [Mann &
Thompson 88]). On the need for surface rhetorical
representation, see [Coch & David 94]. On the
other hand, Rhetorical planning depends on the
language, whereas Conceptual planning does not.
In this way, separation between these sub-
modules is useful for multilingual applications, in
which several Rhetorical planners (one per
language) use the output of a unique Conceptual
planner (as in the MultiMeteo project: see below).

Conceptual Planner

The Conceptual planner sub-module performs the
"from data to concepts" step. The output of the
Conceptual planner is the deep structure of the
text, where the events to be realised are selected,
linked by conceptual relations, but not yet
definitively ordered. The Conceptual planner uses

conceptual rules which depend on the application
(but not on the language).

For an overview of the Conceptual planner, see
[Coch & David 94].

Rhttorical Planner"

The sub-module that calculates the surface order
between the events is called the Rhetorical
planner. This sub-module chooses concrete
surface operators (such as "because", "thus", "if",
"then", "and", etc.), modalities ("can", "must",
counterfactuals, etc.) and order, according to
rhetorical rules. Choices depend on certain
attributes, e.g. whether or not the addressee is
aware of an event, whether or not an event is in
the addressee 's favour, etc. The Rhetorical
planner uses rhetorical rules which depend on the
language and style of the texts to be generated.

2.4. Linguistic Realisation (AlethGen/GL)

The function of the Linguistic realisation module
is to produce the output text from its surface
structure. This module can be divided into two
sub-modules: the planning of noun phrases and
anaphora, and the sentence-by-sentence linguistic
realisation proper.

Planning of noun phrases

The output of the previous stage (the surface
structure of the text) may contain repetitions of
objects. It would, of course, be unacceptable to
repeat noun phrases referring to the same object
without any control.

Introducing an object in a text may also require a
definite description or simply a definite article.
These problems are solved by the noun-phrase

I Reading of me I
input

I Application Style I
Structure Scripts

Direct Generator

Semi-fixed [
text scripts

Structured
internal d am

I Text Deep
Structure

I Text Surface
Structure

I Annotated Text
Surface Structu re

--7
Semi-fixed, fixed
expressions; non-
linguistic text

planning sub-module. For a description of this
submodule, see [Coch & Wonsever 95].

Sentence-by-sentence Linguistic Realisation

This sub-module is inspired mainly by the
Meaning-Text Theory (as developed for example
in [Mel'~uk 88]).

The AlethGen Generation Grammar is composed
of several sets of rules, defining the transition
between the different levels of representation:
Events -> Semantic -> Deep Syntactic -> Surface
Syntac t ic -> Morpho logy . In te rmedia te
representations and transition rules are written in
a very general formalism, such as feature
structures.

The introduction of the Events level, which does
not exist in the Meaning-Text Theory, was
suggested by other projects, and is required for
making a true dis t inct ion be tween the
representation resulting from the application and
linguistic semantics, thus ensuring the tool's
portability. This distinction is also desirable for
multilingual processing.

There is a general version of the Grammar, but it
needs to be adapted to each new application.

3. Architectures
3.1. Full-Hybrid Configuration

The following is a (simplified) view of the
integration of all AlethGen modules in the
standard generation process.

Conceptual I
Plan ner

Rhe~r~al
Planner

Text Planner

\
I Fully linguistic

text

/
[OutputText]

Nou n-phrase
and Anaphora
Plan n in g

Linguistic
Realisation

AI ethGen/GL

26

Thus, according to [Reiter 95] this architecture
can be defined as "hybrid", because it uses both
linguist:c and template techniques. However.
this " full-hybrid " architecture of AlethGen
modules seems to be more powerful than those
studied by Reiter, because here it is possible ~o
work with both high-level conceptual and
direct planning, and with both linguistic and
template realisation, depending on the type of
text (or part of text) to be generated.

This architecture is used by La Redoute's pilot
mail-generation system (see below).

3.2. "Template" Configuration

Reading of the
input

internal data

Application Style I
Structure Sc rip ~

Direct Generator

Semi-fixed I
text scripts

Semi-fixed, fixed I
ex pression s: non -
linguistic text

I Ou utText I
The advantage of this architecture is that it
seems to be easier, cheaper, and quicker when
developing a generation system. On the other
hand, its main drawbacks (as pointed out by
[Rei ter95]) are in its adaptability, upgra-
dability and maintainability when the possible
realisations of the sentences vary greatly from a
linguistic point of view. For these reasons, the
Template architecture is useful for building
~< one-shot ,, prototypes.

This particular AlethGen architecture was used
to develop a prototype weather-forecast
generator in French for Mdtdo France (see
below).

4. Characteristics of AlethGen
4.1. Quality

Obviously, the quality of the texts produced
using AlethGen does not depend only on the
characteristics of AlethGen, but also on the

way in which the tool is used for building an
application, and, above all, on how precisely
quality criteria and methods of evaluating them
are defined.

A good example of this are the quality results
of the mail-generation system built for La
Redoute (see below).

A set of formal and user-oriented quality tests
were planned and quality criteria defined
during the first phase of the project. Examples
of quality criteria are correct spelling, good
grammar , u n d e r s t a n d a b i l i t y , f lu id i ty ,
appropriateness of tone, personalisation,
absence of repetition, precision of terminology
used, etc (for details, see [Coch 96]).

The evaluation was carried out by an
independent jury (representative of end users),
which studied the quality of the various types
of letter, including:

• those written by a semi-automatic fill-in-
the-blanks system ("SA"), currently in
use,

• those generated automatically by the
pilot system based on AlethGen, and

• those written manually in an "ideal" way,
by an excellent writer, without time
constraints.

A report was drawn up on each letter, with
values for assessment on quality criteria
defined by La Redoute.

The results of the validation test show that:

• the , Ideal - letters are the best (this is
not surprising!). However, the difference
between << Ideal >> human letters and
AlethGen's letters is not that great;

• the quality of the letters generated by the
pilot system using AlethGen is greater
than that of the semi-automatic system,
for all quality criteria (and especially for
personalisation, absence of repetition,
and precision of the terminology used).

These results are illustrated in the following
graph (marks out of 20):

18
17
16
15
14
13
12
11
10

9
8

[] Semi -automatic
[] A I ethGen
• I deal

27

4.2. Performances

The systems built with AlethGen generate a
whole text on a complex problem (15-20
sentences) in less than 2 seconds. Sometimes
(as in the mail-generation project for La
Redoute: see below) one or two minutes are
needed for user-interface dialog.

As regards productivity gains, performance
levels are to be compared with more than 5
minutes for the other approaches, and
sometimes several tens of minutes for human
writing.

4.3. Technical characteristics

The system was written in C++ under Unix and
runs on Unix stations. The Direct generator
module also runs on PC/Windows.

5. Applications
5.1. Mail generation for La Redoute

La Redoute is the leading mail-order firm in
France. It receives several thousand request
letters, faxes, or telephone calls each day. La
Redoute and ERLI developed a real-situation
pilot system for automatically replying to these
requests. This system (for details on this
project, see [Coch, David & Magnoler 1995])
builds a text (i.e. a letter) from data entered by
the human operator processing the request, a
customer database, and knowledge bases. The
overall system is composed of two main
modules: the Decision module and the
Generation module.

The Decision module allows the writer (reading
the request letter) to identify the author and
subject of the request letter, ask him/her for
relevant information, and suggests a decision.
After validation, it communicates the relevant
information to the Generation module, which
automatically produces the reply letter in an
SGML format. This last module was built using
AlethGen tools in a full-hybrid architecture.

5.2. Weather-forecast production prototype

ERLI developed a <~ one-shot 7> weather-
forecast generation prototype in French for
M6t6o France. Weather forecasts are currently
generated in a general-public style only, with a
geographica l ly and seasonal ly limited
vocabula ry . The pro to type runs on
PC/Windows and is integrated in a text
processor (Word 6.0).

5.3. English generation for a translation tool

One of the objectives of the EUREKA GRAAL
project is to construct a machine-translation
engine. It uses the AlethGen's Linguistic
realisation module, which can be used as a
module for deep generation or surface

generation from machine-translation transfer
input.

5.4. MultiMeteo: multilingaal generation

The goal of the MultiMeteo project is to build
an automatic multilingual generation system to
be used by Meteo France, Instituto Nacional de
Meteorologfa and other European Weather
Offices, for producing weather forecasts from
structured data. This system will allow each
European forecaster to produce texts in
English, French, German, and Spanish
automatically.

MultiMeteo is a 3-year project funded partially
by the Language Engineering programme of
the European Commission.

In each country, the MultiMeteo software will
be installed and tested at 4 or 5 geographical
sites, representative of different meteorological
characteristics (south, north, plain, mountain,
sea, etc.). In each site, 4 or 5 different styles of
forecast will be developed (local general-
public, regional general-public, mountain
sports, sea-side sports, agriculture, aviation,
etc.).

REFERENCES

[Coch & David 94]. Coch, J.; David, R.:
"Representing knowledge for planning
multisentential text", in Proceedings of the 4th
Conference on Applied Natural Language
Processing. Stuttgart, Germany, 1994.

[Coch, David & Magnoler 95]. Coch, J.; David,
R.; Magnoler, J.: "Quality test for a mail
generation system", in Proceedings of"
Linguistic Engineering 95, Montpellier, France
1995.

[Coch & Wonsever 95]. Coch, J.; Wonsever D.:
"Improvement of an Algorithm for Planning
and Generating Anaphora", in Proceedings of
Deixis 95, Nancy, France 1995..

[Coch 96]. Coch, J.: "Evaluating and
comparing three text-production techniques", in
Proceedings of the 16th Conference of
Computational Linguistics, Coling 96,
Copenhagen, Danmark 1996.

[Mann & Thompson 88]. Mann W. C.,
Thompson S. A. : "Rhetorical Structure Theory:
Towards a functional theory of text
organization", in Text 8(3), 1988.

[Mel'cuk 88]. Mel'cuk I.: "Dependency Syntax:
Theory and Practice", State University of New
York Press, Albany, NY, USA 1988.

[Reiter 95]. Reiter, E.: "NLG vs. Templates" in
Proceedings of the 1995 European Natural
Language Generation Workshop, Holland,
1995.

28

