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Abstract

Automatic Term Extraction (ATE) extracts ter-
minology from domain-specific corpora. ATE
is used in many NLP tasks, including Com-
puter Assisted Translation, where it is typi-
cally applied to individual documents rather
than the entire corpus. While corpus-level
ATE has been extensively evaluated, it is not
obvious how the results transfer to document-
level ATE. To fill this gap, we evaluate 16
state-of-the-art ATE methods on full-length
documents from three different domains, on
both corpus and document levels. Unlike ex-
isting studies, our evaluation is more realistic
as we take into account all gold terms. We
show that no single method is best in corpus-
level ATE, but C-Value and KeyConceptRela-
tendess surpass others in document-level ATE.

1 Introduction

The aim of Automatic Term Extraction (or Recog-
nition) (ATE) is to extract terms – single words
or multiword expressions (MWEs) represent-
ing domain-specific concepts – from a domain-
specific corpus. ATE is widely used in many
NLP tasks, such as information retrieval and ma-
chine translation. Moreover, Computer Assisted
Translation (CAT) tools often use ATE methods
to aid translators in finding and extracting transla-
tion equivalent terms in the target language (Costa
et al., 2016; Oliver, 2017).

While corpus-based approaches to terminology
extraction are the norm when building large-scale
termbases (Warburton, 2014), a survey we con-
ducted1 showed that translators are most often in-
terested in ATE from individual documents of var-
ious lengths, rather than entire corpora, since they
typically translate on document at a time.

1Survey results available at http://bit.ly/
2LwrTkv.

A task related to ATE is Automatic Keyword
and Keyphrase Extraction (AKE), which deals
with the extraction of single words and MWEs
from a single document. Unlike ATE, which
aims to capture domain-specific terminology, key-
words and keyphrases extracted by AKE should
capture the main topics of a document. Conse-
quently, there will only be a handful of represen-
tative keyphrases for a document (Turney, 2000).
In spite of these differences, several AKE methods
were adapted for ATE (Zhang et al., 2016).

While corpus-level ATE methods, as well as
AKE methods, have been extensively evaluated
in the literature, it is not obvious how the results
transfer to document-level ATE, which is how
ATE is typically used for CAT. In this paper, we
aim to close this gap and present an evaluation
study that considers both corpus- and document-
level ATE. We evaluate 16 state-of-the-art ATE
methods, including modified AKE methods. Fur-
thermore, addressing another deficiency in exist-
ing evaluations, we evaluate the methods using a
complete set of gold terms, making the evaluation
more realistic.

2 Related Work

Most ATE methods begin with the extraction and
filtering of candidate terms, followed by candi-
date term scoring and ranking. Because of di-
vergent candidate extraction and filtering step im-
plementations, many existing ATE evaluations are
not directly comparable. Zhang et al. (2008) were
among the first to compare several scoring and
ranking methods, using the same candidate extrac-
tion and filtering step and the UAP metric on a
custom Wikipedia corpus and GENIA (Kim et al.,
2003) corpus. In a followup work, they developed
JATE 2.0 (Zhang et al., 2016), with 10 ATE meth-
ods available out-of-the-box, that were evaluated

http://bit.ly/2LwrTkv
http://bit.ly/2LwrTkv
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on GENIA and ACL RD-TEC (Zadeh and Hand-
schuh, 2014) using the “precision at K” metric.
A similar toolkit, ATR4S (Astrakhantsev, 2018),
which implements 15 ATE methods, was evalu-
ated on even more datasets using “average preci-
sion at K”. All abovementioned studies were car-
ried out corpus-level, and rely on exact match-
ing between extracted terms and a subset of gold
terms. The latter makes such evaluations unreal-
istic because it disregards the contribution of the
candidate extraction and filtering step. The subset
is selected by considering only the gold terms that
appear in the output above the cut off of at level K,
which is used to discriminate between real terms
and non-terms. A general consensus is that there
is no single best method (Zhang et al., 2008; As-
trakhantsev, 2018; Zhang et al., 2018).

To the best of our knowledge, we are the first
to carry out a document-level ATE evaluation, and
take into account all gold terms instead of only a
subset. To this end, we use a single ATE toolkit,
to allow for a direct comparison among different
term-ranking methods, by using the same prepro-
cessing and filters. Our toolkit of choice is ATR4S,
because it has the most diverse set of methods,
many of which are state-of-the-art.

3 Term Extraction Methods

ATE methods may be roughly grouped by the type
of information used for scoring the term candi-
dates (Astrakhantsev, 2018). Due to the sheer
number of ATE methods, we only describe the
main principle behind each group and list the main
methods. In the evaluation, we consider a total of
16 methods from ATR4S, covering all groups.

Frequency. Most methods rests on the assump-
tion that a higher term candidate frequency im-
plies a higher likelihood that a candidate is an
actual term. Among these are AverageTermFre-
quency (Zhang et al., 2016), ResidualIDF (Zhang
et al., 2016) (adapted from AKE), TotalTF-IDF
(Evans and Lefferts, 1995), C-Value (Frantzi et al.,
2000), Basic (Buitelaar et al., 2013), ComboBasic
(Astrakhantsev et al., 2015). Two notable ATE-
adapted AKE methods, not provided in ATR4S,
are Chi-Square (Matsuo and Ishizuka, 2004) and
Rapid Keyword Extraction (Rose et al., 2010).

Context. A handful of methods adopt the dis-
tributional hypothesis (Harris, 1954) and consider
the context in which the term candidate appears,

such as DomainCoherence (Buitelaar et al., 2013)
and NC-Value (Frantzi et al., 2000).

Reference corpora. Several methods compare
the domain corpus and reference corpus term fre-
quencies, assuming that the difference between
them can be used to distinguish terms from non-
terms. Domain pertinence (DomPertinence) (Mei-
jer et al., 2014) is the simplest one, while Rele-
vance (Peñas et al., 2001) and Weirdness (Ahmad
et al., 1999) can be considered its modifications.

Topic modeling. Topic information can also be
used instead of term frequency information, as in
NovelTM (Li et al., 2013).

Wikipedia. Several methods use Wikipedia in-
stead of term frequency to distinguish between
candidate and actual terms, such as LinkProba-
bility (Astrakhantsev, 2014) and KeyConceptRe-
latedness (Astrakhantsev, 2014). In addition to
Wikipedia, KeyConceptRelatedness also relies on
keyphrase extraction and semantic relatedness.

Re-ranking. Methods from this group use other
ATE methods as features, and attempt to learn
the importance of each feature in an unsuper-
vised or supervised setting. Glossary Extrac-
tion (Park et al., 2002) extends Weirdness, while
Term Extraction (Sclano and Velardi, 2007) fur-
ther extends Glossary Extraction. SemRe-Rank
(Zhang et al., 2018) is a generic approach that in-
corporates semantic relatedness to re-rank terms.
Both da Silva Conrado et al. (2013) and Yuan
et al. (2017) use a variety of features in a su-
pervised binary term classifier. A weakly super-
vised bootstrapping approach called fault tolerant
learning (Yang et al., 2010) has been extended for
deep learning (Wang et al., 2016). The following
methods are the only ones from this group avail-
able in ATR4S and therefore the only ones evalu-
ated: PostRankDC (Buitelaar et al., 2013) com-
bines DomainCoherence with Basic, while both
PU-ATR (supervised) (Astrakhantsev, 2014) and
Voting (unsupervised) (Zhang et al., 2008) use
the same five features as implemented in ATR4S.
In our study, we distinguish between the original
Voting5 and its variant, Voting3, in which the two
Wikipedia-based features are removed to gauge
their impact.
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Dataset # Docs # Terms % MWEs Avg terms/doc

Patents 16 1585 86 151
TTCm 37 160 55 51
TTCw 102 190 72 33

Table 1: Full-length document datasets statistics

4 Evaluation

Datasets. There exists a number of ATE datasets
compiled using various criteria, comprised of ab-
stracts or full-length documents. As our focus
is document-level ATE, our criteria were that the
dataset has to consist of full-length documents and
be manually annotated. This ruled out the two
most popular datasets used in most of previous
works, GENIA and ACL RD-TEC, as the former
consists of abstracts only and the latter is not man-
ually annotated. Instead, we were able to find
only three datasets that meet both of our require-
ments. One is the Patents dataset (Judea et al.,
2014), which has the least number of documents,
but most terms. It consists of electrical engineer-
ing patents manually annotated by three annota-
tors. The other two datasets were created under the
TTC project.2 Both TTC-wind (TTCw) and TTC-
mobile (TTCm) were compiled by crawling the
Web, and then manually filtered. These datasets
are listed in Table 1. They all cover different do-
mains and have a different number of documents
and terms per document. Since most of the gold
terms in all three datasets are MWEs, there could
be a slight bias toward methods designed to extract
only the MWEs, such as Basic or ComboBasic.

Extraction setup. ATR4S collects n-grams up
to a specified size (4 by default), which are fil-
tered through the stop words, noise words, and
POS-pattern filters (cf. Astrakhantsev (2018) for
details). The collected term candidates are then
scored and ranked using one of the 16 methods. In
order to evaluate each method’s output, we lem-
matize each term candidate and repeat the same
procedure for each gold term. We use the same
default settings for both extraction levels.3

Metrics. Following Zhang et al. (2018), we dif-
ferentiate between two types of true positives: (1)
Actual True Positives (ATP), which are all the
terms contained in the gold set, and (2) Recover-

2http://www.ttc-project.eu/
3https://github.com/ispras/atr4s/tree/

master/configs

able True Positives (RTP), which are the intersec-
tion of the extracted candidate terms after filter-
ing and the gold set terms. To separate real terms
from non-terms based on their scores, a cutoff at
rank K has to be set. Setting K equal to |RTP| is
the default choice in the majority of previous work
(Zhang et al., 2016; Astrakhantsev, 2018; Zhang
et al., 2018), but any such metric can easily be-
come too optimistic because |RTP| ≤ |ATP|, i.e.,
evaluation becomes oblivious to the candidate ex-
traction and filtering step.

To obtain a more realistic score, we calculate
ATP for both the corpus- and document-level ATE.
In the former, ATP is equal to the entire gold set,
while in the latter we build the gold set of each
document by checking if the lemma of any term
from the gold set is a substring of the entire lem-
matized document. Following Zhang et al. (2018),
we use two measures to evaluate the ATR4S out-
put: F1 score and average precision (AvP), at lev-
els |RTP| and |ATP|. We define (retrievedi)Ki=1 as
the list of ranked extracted terms, up to rank K.
The rank-insensitive F1 score is calculated as the
harmonic mean of P@K and R@K:

P@K =
|(retrievedi)Ki=1 ∩ {relevant}|

|(retrievedi)Ki=1|
(1)

R@K =
|(retrievedi)Ki=1 ∩ {relevant}|

|{relevant}|
(2)

F1@K = 2 · P@K · R@K
P@K + R@K

(3)

To evaluate the ranking performance of an ATE
method, we use AvP@K, a standard ATE metric:

AvP@K =
1

K

K∑
k=1

P@k (4)

5 Results

Corpus-level extraction. As mentioned above,
in corpus-level ATE, the input is a collection of
documents. All methods from Section 3 were de-
veloped with the aim of extracting terms from a
domain-specific corpus. The F1 and AvP scores
for this level are shown in the left half of Table 2.

C-Value most often performs best, compared to
both frequency-based and all other methods, and
thus may be considered a strong baseline. Voting3
has negligibly lower scores than its more feature-
rich variant, Voting5. LinkProbability, relying on
a normalized frequency of a term being a hyper-
link in Wikipedia pages, most often has the low-
est score. Our results corroborate earlier findings

http://www.ttc-project.eu/
https://github.com/ispras/atr4s/tree/master/configs
https://github.com/ispras/atr4s/tree/master/configs
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Corpus-level ATE Document-level ATE

Patents TTCm TTCw Patents TTCm TTCw

ATP RTP ATP RTP ATP RTP ATP RTP ATP RTP ATP RTP

F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP F1 AvP

AvgTermFreq .36 .46 .29 .53 .15 .16 .11 .17 .06 .10 .07 .11 .34 .44 .26 .53 .19 .21 .11 .22 .22 .36 .20 .50
ResidualIDF .36 .45 .27 .51 .04 .07 .03 .11 .02 .02 .00 .00 .34 .43 .26 .51 .19 .21 .11 .22 .22 .33 .19 .41
TotalTF-IDF .35 .45 .28 .53 .27 .34 .28 .34 .15 .18 .13 .20 .27 .26 .16 .28 .09 .11 .05 .11 .10 .15 .07 .24
C-Value .42 .55 .33 .63 .35 .39 .33 .40 .26 .42 .23 .51 .38 .53 .32 .65 .14 .20 .09 .29 .23 .36 .20 .50
Basic .37 .47 .29 .53 .20 .33 .21 .35 .26 .46 .27 .59 .36 .47 .30 .57 .14 .19 .09 .25 .24 .35 .20 .47
ComboBasic .37 .47 .30 .53 .20 .33 .21 .35 .26 .45 .27 .59 .36 .47 .30 .56 .14 .18 .08 .24 .23 .34 .19 .46

Relevance .39 .47 .29 .54 .18 .34 .15 .56 .13 .23 .11 .35 .37 .44 .25 .52 .10 .18 .07 .35 .10 .10 .06 .14
DomPertinence .39 .47 .29 .54 .18 .32 .16 .52 .12 .19 .09 .28 .37 .44 .25 .52 .10 .18 .07 .35 .10 .10 .06 .14
Weirdness .36 .42 .27 .46 .29 .30 .29 .30 .13 .23 .13 .29 .35 .46 .27 .55 .20 .23 .12 .25 .24 .37 .21 .52

NovelTM .39 .51 .31 .58 .11 .17 .11 .19 .08 .03 .01 .00 .36 .50 .30 .61 .15 .20 .09 .26 .25 .39 .23 .50

LinkProbability .30 .40 .24 .50 .03 .01 .02 .00 .02 .00 .00 .00 .31 .41 .26 .50 .22 .23 .12 .23 .25 .30 .19 .32
KeyConceptRel .28 .40 .21 .53 .27 .39 .25 .43 .21 .38 .23 .51 .30 .45 .26 .58 .23 .29 .16 .33 .31 .46 .28 .60

PostRankDC .35 .44 .27 .49 .26 .31 .25 .32 .15 .33 .16 .44 .35 .46 .28 .55 .16 .19 .09 .22 .23 .34 .19 .47
PU-ATR .39 .54 .34 .65 .27 .39 .23 .46 .28 .44 .26 .55 .37 .49 .31 .58 .15 .19 .09 .25 .23 .35 .19 .46
Voting5 .40 .53 .32 .62 .26 .34 .24 .35 .24 .31 .20 .35 .37 .52 .32 .64 .18 .25 .13 .33 .24 .36 .20 .49
Voting3 .39 .50 .31 .58 .29 .37 .27 .38 .21 .31 .19 .36 .35 .49 .30 .60 .13 .21 .10 .31 .19 .28 .15 .39

Table 2: Scores for corpus-level ATE (left half) and mean scores for document-level ATE (right half).

(Astrakhantsev, 2018; Zhang et al., 2018) that no
single ATE method is consistently the best in a
corpus-level setting. A notable trend is that most
methods have higher F1 scores in the ATP case and
lower AvP scores in the RTP case. Both can be
explained by noting that |ATP| ≥ |RTP| and F1 is
not rank-sensitive, while AvP is. I.e., the larger the
gold term set (ATP), the more likely an actual term
will be above the fixed cut-off level K = ATP,
while the smaller the gold term set is (RTP), the
more likely an actual term will be highly ranked,
as there are less terms to rank.

Document-level extraction. In document-level
extraction, the input to ATE is a single docu-
ment. Document-level scores are shown in the
right half of Table 2. C-Value is not the over-
all best frequency-based method, as it was on the
corpus-level. However, it outperforms all other
methods in a highly technical domain (Patents
dataset), for which it was originally developed.
A clear overall winner is KeyConceptRelatedness.
Its good performance may be attributed to its hy-
brid nature: using semantic relatedness between
keyphrases and candidate terms. Voting with
Wikipedia-based features is better overall than the
variant without them, especially when considering
the more optimistic RTP metrics. TotalTF-IDF is
by definition ill-equipped for document-level ATE
(log term becomes zero), which is why it is the
worst performing method.

Patents TTCm TTCw

AvgTermFreq −.35 −.06 −.42
ResidualIDF −.33 −.03 −.55
TotalTF-IDF −.38 −.12 −.33
C-Value .01 −.11 −.25
Basic −.09 −.25 −.34
ComboBasic −.06 −.24 −.32

Relevance −.06 −.19 −.23
DomPertinence −.06 −.19 −.23
Weirdness −.39 −.08 −.43

NovelTM −.21 −.19 −.35

LinkProbability −.03 −.46 −.56
KeyConceptRel −.44 −.26 −.25

PostRankDC −.17 .02 −.25
PU-ATR .15 −.17 −.29
Voting5 −.09 −.26 −.25
Voting3 −.06 −.09 −.09

Table 3: Correlation between ATP AvP and document
length for document-level ATE.

For the ATP case, we statistically compared4 C-
value, KeyConceptRelatedness, and AvgTermFre-
quency (baseline) methods, for both F1 and AvP,
on all three datasets. The comparison confirmed
that C-value significantly outperform other two
methods on Patents dataset and that KeyConcep-
tRelatedness significantly outperforms other two
methods on TTCm and TTCw dataset, and this
holds for both metrics.

4We used the non-parametric Friedman ANOVA for de-
pendent samples with post-hoc comparison using Wilcoxon
matched paired test and Bonferroni-corrected paired t-test,
depending on whether normality assumption was met.
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Patents TTCm TTCw

% MWEs Recall % MWEs Recall % MWEs Recall

C-Value 53 .41 77 .30 78 .30
KeyConceptRel 21 .18 31 .28 35 .32

Table 4: Percentage of MWEs and recall for
document-level ATE

Given the difference in performance between
corpus-level and document-level ATE, document
length is another practical consideration when
choosing the appropriate ATE method. We calcu-
lated the Pearson correlation coefficient between
the document lengths and ATP AvP scores for
document-level ATE, shown in table 3. Cor-
relation coefficients for individual methods vary
across datasets – predominantly, as the document
length increases, the ATP AvP score decreases, or
there is almost no correlation.

Additionally, we analysed the recall of top-
performing document-level ATE methods with re-
gards to MWEs, depending on their share in the
gold terms for a given document. The percent-
age of MWEs in gold terms per dataset is given in
Table 1. Table 4 shows the percentage of MWEs
in the output of a given ATE method at ATP cut-
off, averaged over all documents of a particular
dataset, as well as the per-document recall for
MWEs, averaged over all documents. The per-
formance varies across datasets, but C-Value – a
frequency-based method – modestly outperforms
KeyConceptRelatedness in identifying multiword
terms.

Taken together, our results clearly show that
corpus-level performances do not linearly transfer
to document-level performances, the case in point
being the KeyConceptRelatedness ATE method.

6 Conclusion

Motivated by the use of ATE in Computer Aided
Translation, we evaluated 16 ATE methods in a
novel setting: apart from using a corpus as a
source of terms, we also consider using individ-
ual documents only. Unlike previous ATE work,
we use metrics that distinguish between actual and
recoverable true positives. Our findings confirm
that no single ATE method is consistently the best
in corpus-level ATE. We show that for document-
level ATE most of the methods perform compa-
rable, with two exceptions: (1) C-Value performs
exceptionally well in highly technical domains,

and (2) KeyConceptRelatedness outperforms all
other methods on two other domains. We thus
recommend using C-Value for corpus-level ATE
or document-level ATE in a highly technical do-
main, and KeyConceptRelatedness for document-
level ATE in non-technical domains.

Our work opens up a new line of research,
namely an investigation into ATE methods more
suitable for single-document input, possibly em-
ploying related AKE methods. Another research
topic is single-document bilingual ATE.
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2014. Unsupervised Training Set Generation for
Automatic Acquisition of Technical Terminology in
Patents. In Proceedings of COLING 2014, the 25th
international conference on computational linguis-
tics: Technical Papers, pages 290–300.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Junichi
Tsujii. 2003. GENIA corpus – a semantically an-
notated corpus for bio-textmining. Bioinformatics,
19(suppl 1):i180–i182.

Sujian Li, Jiwei Li, Tao Song, Wenjie Li, and Baobao
Chang. 2013. A novel topic model for automatic
term extraction. In Proceedings of the 36th interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 885–888.
ACM.

Yutaka Matsuo and Mitsuru Ishizuka. 2004. Keyword
Extraction from a Single Document using Word Co-
occurrence Statistical Information. International
Journal on Artificial Intelligence Tools, 13(01):157–
169.

Kevin Meijer, Flavius Frasincar, and Frederik Hogen-
boom. 2014. A semantic approach for extracting do-
main taxonomies from text. Decision Support Sys-
tems, 62:78–93.

Antoni Oliver. 2017. A system for terminology extrac-
tion and translation equivalent detection in real time.
Machine Translation, 31(3):147–161.

Youngja Park, Roy J. Byrd, and Branimir K. Bogu-
raev. 2002. Automatic Glossary Extraction: Be-
yond Terminology Identification. In COLING 2002:
The 19th International Conference on Computa-
tional Linguistics.
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