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Abstract

Commonsense reasoning is a critical AI capa-
bility, but it is difficult to construct challenging
datasets that test common sense. Recent neu-
ral question answering systems, based on large
pre-trained models of language, have already
achieved near-human-level performance on
commonsense knowledge benchmarks. These
systems do not possess human-level common
sense, but are able to exploit limitations of the
datasets to achieve human-level scores.

We introduce the CODAH dataset, an
adversarially-constructed evaluation dataset
for testing common sense. CODAH forms a
challenging extension to the recently-proposed
SWAG dataset, which tests commonsense
knowledge using sentence-completion ques-
tions that describe situations observed in
video. To produce a more difficult dataset,
we introduce a novel procedure for question
acquisition in which workers author questions
designed to target weaknesses of state-of-
the-art neural question answering systems.
Workers are rewarded for submissions that
models fail to answer correctly both before
and after fine-tuning (in cross-validation). We
create 2.8k questions via this procedure and
evaluate the performance of multiple state-
of-the-art question answering systems on our
dataset. We observe a significant gap between
human performance, which is 95.3%, and the
performance of the best baseline accuracy of
65.3% by the OpenAI GPT model.

1 Introduction

Enabling commonsense reasoning in machines is
a longstanding challenge in AI. The rise of data-
driven methods has led to interest in developing
large datasets for commonsense reasoning over
text.

The Situations With Adversarial Generations
(SWAG) dataset (Zellers et al., 2018) introduced

a large-scale benchmark for commonsense ques-
tion answering in the form of multiple choice sen-
tence completion questions describing situations
as observed in video. However, while SWAG was
constructed to be resistant to certain baseline al-
gorithms, powerful subsequent methods were able
to perform very well on the dataset. In partic-
ular, the development of the transformer archi-
tecture (Vaswani et al., 2017) has led to power-
ful pre-trained language model representations, in-
cluding the OpenAI Transformer Language Model
(Radford et al., 2018) and the Bidirectional En-
coder Representations from Transformers (BERT)
model (Devlin et al., 2018). BERT achieved
new state-of-the-art performance on SWAG that
exceeded even that of a human expert. How-
ever, BERT does not possess human-level com-
mon sense in general, as our experiments demon-
strate. It is instead able to exploit regularities in
the SWAG dataset to score high. This motivates
the construction of additional datasets that pose
new challenges, and serve as more reliable bench-
marks for commonsense reasoning systems.

In this work, we introduce the COmmonsense
Dataset Adversarially-authored by Humans
(CODAH) for commonsense question answering
in the style of SWAG multiple choice sentence
completion. We propose a novel method for
question generation, in which human annotators
are educated on the workings of a state-of-the-art
question answering model, and are asked to
submit questions that adversarially target the
weaknesses. Annotators are rewarded for sub-
missions in which the model fails to identify
the correct sentence completion both before and
after fine-tuning on a sample of the submitted
questions, encouraging the creation of questions
that are not easily learnable.

We experimentally demonstrate that CODAH’s
generation procedure produces a dataset with a
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large gap between system performance and hu-
man expert accuracy, even when using state-of-
the-art pre-trained language models with and with-
out fine-tuning on the large SWAG dataset. Us-
ing a model initially fine-tuned on SWAG, we find
that the OpenAI GPT-1 and BERT neural ques-
tion answering models yield 65.3% and 64.5%
accuracy, respectively, on the CODAH dataset in
cross-validation. Thus, cross-validating on CO-
DAH can form a challenging additional evaluation
for SWAG-style commonsense QA systems. Hu-
man evaluators achieve 95.3% accuracy, which is
substantially higher than the 85.0% (Zellers et al.,
2018) and 87.7% (Ghaeini et al., 2018) human
performance on the SWAG and SNLI natural lan-
guage inference tasks. The high human perfor-
mance suggests that answers to the CODAH ques-
tions are in fact commonsense knowledge. Finally,
we also analyze differences in performance across
questions that target different types of common-
sense reasoning, including quantitative, negation,
and object reference, showing consistency in per-
formance for BERT and GPT on the proposed cat-
egories.

2 Related Work

Prior work in question answering has largely
focused on the development of reading
comprehension-based question answering and
resulted in the creation of several large datasets
for factoid extraction such as SQuAD (Rajpurkar
et al., 2016, 2018) and the Google Natural
Questions datasets (Kwiatkowski et al., 2019). In
these tasks, extraction of correct answers from
the provided context requires little external world
knowledge, understanding of intents, or other
commonsense knowledge.

Earlier work has established multiple bench-
marks for natural language inference and linguis-
tic entailment with the release SNLI (Bowman
et al., 2015) and MultiNLI datasets (Williams
et al., 2018). In these tasks, systems must iden-
tify whether a hypothesis agrees with or contra-
dicts a provided premise. In these datasets, de-
termining entailment solely relies upon the pro-
vided premise and does not require a question
answering system to utilize external knowledge.
More recently, the SWAG dataset (Zellers et al.,
2018) directly targets natural language inference
that leverages commonsense knowledge. SWAG
multiple choice completion questions are con-

structed using a video caption as the ground
truth with incorrect counterfactuals created using
adversarially-filtered generations from an LSTM
language model. State-of-the-art models for natu-
ral language inference have rapidly improved and
approach human performance, which leaves lit-
tle room for continued improvement on current
benchmarks.

Generation of adversarial examples has also
been used to increase the robustness of NLP sys-
tems as part of the Build it, Break It, The Lan-
guage Edition Workshop (Ettinger et al., 2017).
In this workshop, builders designed systems for
Sentiment Analysis and Question Answer Driven
Semantic Role Labeling tasks and were evaluated
on the accuracy of their models on adversarial
test cases designed by breakers. Whereas Build
It Break It adversarial generation required sub-
missions to match the format of a starter dataset
and offered limited adversarial access to the target
NLP systems, the CODAH construction procedure
allows for entirely new questions and provide ad-
versaries with a target model throughout the sub-
mission process, allowing workers to experiment.

3 The CODAH Dataset

Our dataset contains multiple choice sentence
completion questions in the format of the SWAG
dataset. Examples of the questions are shown in
Table 1. Each question consists of a prompt sen-
tence, the subject of the subsequent sentence, and
four candidate completions, such that exactly one
candidate completion is consistent with common
sense. This task definition allows for easy eval-
uation by many state-of-the-art models, such as
BERT and GPT-1, and enables us to utilize the
large SWAG dataset for pre-training. The full
dataset is available at https://github.com/
Websail-NU/CODAH.

3.1 Question Production

We collected questions via a Web-based system.
Participants were asked to compose a complete
question, including the prompt, subject, and the
four candidate completions. They would then be
presented with the response of a pre-trained BERT
model to their question. The pre-trained model
consisted of a BERT-base model fine-tuned on the
SWAG training set for 3 epochs with a batch size
of 8. This model achieved 80.68% accuracy on
the SWAG validation set. The ability to obtain

https://github.com/Websail-NU/CODAH
https://github.com/Websail-NU/CODAH
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Category Description Example

Idioms

Including phrases whose
meaning cannot be readily

interpreted from the meaning
of constituent parts

A man on his first date wanted to break the ice. He
drank all of his water.
threw the ice at the wall.
looked at the menu.
made a corny joke.

Negation Including negators to dictate
the meaning of the sentence

The man’s rebuttal was clearly not nonsensical. The rebuttal
has nothing to do with sense.
had some reasons associated with it.
did not make any sense.
was funny.

Polysemy
Testing the understanding of

multiple meanings of a
single word

An architect retrieves his compass. He
computes the area of a circle
explores the open sea
draws building dimensions on a canvas
uses his compass to find the north cardinal direction

Reference
Requiring understanding of
reference to one of multiple

subjects

Rose is walking the dog while Joseph cooks dinner. Rose
is following a new recipe.
enjoys the fresh air.
wags her tail with joy.
cuts tomatoes for the soup.

Quantitative
Reasoning

Involving basic arithmetic
calculations or comparisons

A woman is walking two dogs and carrying a cat on her way to
her car. She

puts all three animals in the back seat before driving off.
puts all four animals in the back seat before driving off.
puts both animals in the back seat before driving off.
puts all nine animals in the back seat before driving off.

Table 1: Question categories, descriptions, and examples

real-time feedback about the model’s answers al-
lowed participants to explore areas of weakness
and design challenging questions. All submitted
questions were added to the dataset, whether they
fooled the baseline model or not.

Annotators were provided explicit incentives to
produce questions that the model answered incor-
rectly. The vast majority of submissions were con-
tributed by university computer science students,
who were familiar with neural network question
answering systems. Students were rewarded with
extra credit points for submitting valid questions
that fooled the baseline model. Further, students
could earn an equal number of extra credit points
for questions that fooled the model when evalu-
ated in cross-validation, after fine-tuning on other
submitted questions. This protocol was designed
to encourage the creation of challenging and valid
commonsense questions that are also free from
stylistic annotation artifacts or redundancy, which
would reduce the difficulty of the questions after
fine-tuning and reduce the returns on their submis-
sions. A small portion of the dataset was submit-
ted anonymously by other individuals.

We received a total of 4,149 raw questions,
which were read and cleaned by four annotators
(the authors). During cleaning, the answer choice
order was shuffled and model’s output answer

were hidden from the annotator. We removed sub-
missions with multiple or no distinctive common-
sense answers, spelling or grammatical errors, in-
correct answers, as well as duplicate submissions.
The remaining questions were judged natural and
easily answerable from common sense with min-
imal ambiguity and dispute. The cleaning opera-
tion produced our current 2,801-question dataset.

Our 2,801-question dataset contains submis-
sions from 116 named participants. The median,
mean and standard deviation of the number of
valid questions submitted by named individuals
are 20.00, 21.38, and 13.86. The most prolific con-
tributor submitted 86 questions. Anonymous par-
ticipants contributed 321 questions, which is 11%
of the final dataset.

4 Experiments

We evaluate the dataset on state-of-the-art neu-
ral question answering systems built on the BERT
and GPT-1 architecture and provide multiple base-
lines. The models and experiment setups are
discussed below. We also analyze the questions
to identify distinctive categories of commonsense
reasoning that provide a finer-grained understand-
ing of model performances. In addition, the ab-
lation experiments on dataset size and the use of
fine-tuning on SWAG data allow us to further un-
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derstand the impact of the relatively small size of
CODAH.

4.1 Question Categorization

One of our goals is to analyze how system and
human performance varies across questions in
CODAH that employ different types of common
sense. Therefore, we identified a small number of
unambiguous categories of common sense, such
as questions involving quantitative reasoning or
negation. These categories only apply to a portion
of the questions in our dataset, but have the ad-
vantage of being unambiguous and in many cases
predictive of low system performance. In earlier
attempts to devise categories to cover all ques-
tions, similar to analysis performed for textual en-
tailment (LoBue and Yates, 2011), we found the
inter-annotator agreement on such complete cat-
egorizations to be substantially lower (at <0.4),
even after iterating on category definitions.

We manually inspected all questions in our
dataset and annotated each with one or more cate-
gory labels, representing all types of reasoning re-
quired to identify the correct answer and eliminate
incorrect ones. The descriptions and examples of
these categories are found in Table 1. Four human
annotators (the authors) categorized the questions,
and we calculated a Feiss’ Kappa score of 0.63 be-
tween the annotators over an additional 50 ques-
tions. Table 2 shows the distribution of labels over
the entire dataset.

Category Count Percentage
Idioms 249 8.8
Reference 133 4.8
Polysemy 108 3.9
Negation 116 4.1
Quantitative 87 3.1
Other 2108 75.3
Total 2801

Table 2: Distribution of question categories.

4.2 Models

4.2.1 BERT
We evaluate a pre-trained BERT-Large imple-
mented in PyTorch on the CODAH dataset. This
model consists of a 24-layer network, with 1,024
hidden units per layer, 16-heads and a total of
340M parameters. For fine-tuning, settings were
determined as described in Devlin et al. (2018): a
batch size of 16, learning rate of 2e-5, and linear

learning rate decay over 3 epochs (with a learning
rate warmup over the first 10% of training).

4.2.2 OpenAI GPT-1
We also evaluate a pre-trained GPT model im-
plemented in PyTorch. As described in Radford
et al. (2018), this model consists of a 12-layer
decoder transformer with 12 attention heads and
3,072-dimensional hidden states. Our fine-tuning
configuration is the same as described in the orig-
inal paper: a batch size of 32, learning rate of
6.25e-5, linear learning rate decay over 3 epochs
(with warmup over 0.2% of training), and λ of
0.5 (where λ is a tuning coefficient that balances
language-modeling loss and multiple-choice loss).

4.3 Model Evaluation

We evaluate the models on several different train
and test configurations described below. The CO-
DAH dataset is evaluated in 5-fold stratified cross-
validation which balances the distribution of ques-
tion categories in each fold.

• CODAH: Cross-validation fine-tuning on the
CODAH dataset. The CODAH 80% experi-
ment represents the standard cross-validation
setting on the full dataset, training on 80% of
the data in each fold and evaluating on the re-
maining 20%. The 60%, 40% and 20% abla-
tion experiments are trained on a smaller por-
tion of the CODAH dataset for each fold, but
are evaluated in on the same test set which
consists of 20% of the full dataset. The ques-
tion categories are balanced in both training
set and test set. This makes the results from
the experiments more comparable with each
other. Three trials are conducted for all set-
tings; the mean and standard deviation of the
model accuracy are reported in Table 3.

• SWAG+CODAH: Fine-tuned on SWAG
first, then fine-tuned again in cross-validation
on CODAH. Ablation experiments are con-
ducted in the same way as in the CODAH-
only setting above, with the same dataset
splits for training. The mean and standard de-
viation of the three trials are reported in Table
3.

• SWAG only: Fine-tuned on SWAG and eval-
uated on CODAH. Only one trial is con-
ducted.
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• Answer only: Cross-validation fine-tuning
on the full CODAH dataset with the ques-
tions left blank (in both training and testing).
Only one trial is conducted.

Results for the above configurations are shown
in Table 3. As a baseline, we evaluate both models
on the full SWAG training and validation sets, pro-
viding an accuracy of 83.7% on BERT and 80.2%
on GPT. To adjust for the difference in size be-
tween our dataset and SWAG, we also train the
models on a sample of 2,241 SWAG questions
(the size of the training set in each of CODAH’s
cross-validation folds) and evaluate them on the
full SWAG validation set. This produces an accu-
racy of 28.7% for BERT and 63.6% for GPT.

Experiment BERT % GPT-1 %
CODAH 80% 49.6 (5.21) 62.4 (0.66)
CODAH 60% 42.8 (13.6) 60.8 (0.50)
CODAH 40% 42.3 (2.23) 57.1 (0.48)
CODAH 20% 39.6 (7.19) 49.5 (0.59)
SWAG+CODAH 80% 64.5 (3.46) 65.3 (0.55)
SWAG+CODAH 60% 67.3 (0.62) 63.6 (0.85)
SWAG+CODAH 40% 64.8 (0.62) 60.6 (0.37)
SWAG+CODAH 20% 60.3 (2.98) 56.3 (0.51)
SWAG only 42.1 38.1
CODAH (Answer only) 28.4 53.9

Table 3: Accuracy of BERT and GPT on different
training settings when tested on CODAH. Numbers in
parentheses represent the standard deviation.

4.4 Human Evaluation

For each category, we measure the accuracy
of the BERT and GPT models trained on
SWAG+CODAH. We also measure human accu-
racy as a baseline. Human accuracy was calcu-
lated as the mean accuracy of three human an-
notators, covering 707 dataset questions in total.
Human annotators answered 95.3% of questions
correctly, presenting a 7-fold reduction in error
compared to the fine-turned BERT model. Inter-
annotator agreement was computed over a set of
50 additional questions with a pairwise average
Cohen-Kappa score of 0.89, which is interpreted
as almost perfect agreement by some guidelines.
Table 4 displays the accuracy of the human anno-
tators and neural networks on each category.

5 Discussion

Based on our experiments, we find that model
performance on CODAH is substantially lower

Category Human % BERT % GPT-1 %
Idioms 97.5 69.5 (4.44) 72.6 (1.33)
Reference 100 63.1 (4.08) 71.0 (2.04)
Polysemy 91.7 62.9 (4.93) 55.2 (3.40)
Negation 100 60.0 (5.37) 60.5 (2.14)
Quantitative 97.6 51.5 (1.82) 49.5 (3.80)
Other 94.9 64.9 (4.33) 65.7 (0.54)
Total 95.3 64.5 (3.46) 65.3 (0.55)

Table 4: Class-wise and overall accuracy of human
annotators and neural network models, sorted by BERT
performance on the proposed categories. Numbers in
parentheses represent the standard deviation.

than those seen on SWAG, which has seen mod-
els achieve over 85% accuracy. We observed a
decrease of 19.2% on BERT and 14.9% on the
OpenAI GPT-1 models between the accuracy on
SWAG and the accuracy on our SWAG+CODAH
setting. This is especially significant since human
error on CODAH is 4.7%—less than a third of the
15% expert error on the SWAG dataset. This sug-
gests that CODAH is challenging to our QA sys-
tems because of the difficult commonsense reason-
ing involved, and not because of ambiguity or in-
tractability in the dataset.

5.1 Question Categories

The logic categories including Quantitative and
Negation are especially difficult for our models,
seeing some of the lowest accuracies from both
models, in contrast to the 99.0% weighted aver-
age human accuracy on these categories. Surpris-
ingly, both models performed very well on the Id-
ioms category, suggesting that our neural systems
may be capable of learning idioms just like other
semantic knowledge. Further identification of ad-
ditional distinctive and interesting categories that
cover the entire dataset may prove very useful in
directing our efforts towards aspects of our com-
monsense QA systems that require the most atten-
tion.

5.2 Annotation Artifacts

Annotation artifacts are known to exist in many
datasets and may be exploited by supervised mod-
els to achieve inflated performances (Gururangan
et al., 2018). In CODAH, we did not explicitly fil-
ter questions with artifacts or try to detect them.
We instead incentivize the question authors, who
have some knowledge of how the learners work, to
avoid introducing noticeable artifacts in their sub-
missions, as explained in Section 3.1. Our results
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show that artifacts do not provide sufficient signal
for state-of-the-art neural models to come close to
human-level accuracy on our data.

5.3 Answer-Only Baseline
In the answer-only experiment (where questions
are omitted during training and testing), we found
that BERT achieves 28.4% accuracy, only slightly
above random, whereas GPT-1 achieves 53.9% ac-
curacy, which is the equivalent of narrowing four
random options down to two. By comparing this
to the CODAH experiment setting, we can inter-
pret these results as an indication of the extent to
which the signal was in the answers. While this
could be due to artifacts, such as the right answer
commonly being of a certain length, we also ob-
served that in many cases, distinguishing between
reasonable and ridiculous answers (without seeing
the premise) is a part of commonsense reasoning.
For example, a commonsense reasoner would be
able to rule out the choice “picks up his phone
and calls his mom to tell her he doesn’t have his
phone” without seeing the premise, as a contradic-
tion is contained in the answer. Similarly, “kicks
a field goal, celebrates by transforming into a fish,
and then quits football” is unlikely to be veracious
regardless of the hidden subject.

5.4 Dataset Size
Our experiments show that CODAH forms a chal-
lenging extension to the existing SWAG dataset.
Even when we train a system to perform near
human-level on SWAG, and then fine-tune on CO-
DAH, the system still struggles to answer CO-
DAH questions correctly. However, CODAH is
also smaller than SWAG. Our results do not sug-
gest that CODAH questions are more difficult
than SWAG questions if dataset size is equalized.
When we restrict to a subset of SWAG of the same
number of questions as CODAH, we find that
SWAG has comparable accuracy for GPT (63.6%
on reduced-size SWAG vs 62.4% for CODAH)
and much lower accuracy for BERT (28.7% vs
49.6%). This shows that CODAH questions are
distinct from and complementary to SWAG ques-
tions, but taken in isolation are not necessarily
more challenging.

Our results suggest two recommendations for
dataset construction which we hope to evaluate
in future work. The first is, rather than using a
single protocol to collect one monolithic dataset,
the community may be able to obtain more chal-

lenging data by aggregating a variety of distinct,
independently-gathered datasets that follow a sim-
ilar format. For example, pre-training on SWAG
and evaluating on CODAH forms a more challeng-
ing benchmark than training and testing on SWAG
alone. Secondly, if we wish to use our adversar-
ial collection approach to grow CODAH to tens of
thousands of examples, we should update our sys-
tem as new data arrives, so that contributors are
able to tune their questions to remain difficult for
the strongest, most up-to-date version of the sys-
tem. Under such a data collection scheme, we may
need to increase the reward for fooling the model
in cross-validation compared to that for fooling the
current model (whereas, these two rewards were
equal in CODAH), in order to disincentivize ad-
versarial attacks that manipulate the current model
to make it easy to fool on subsequent questions.

Our experiments on different sizes of CO-
DAH produce very different results for BERT
and GPT. Unsurprisingly, GPT performance im-
proves with more data on both the CODAH-only
and SWAG+CODAH experiments, with the rate
of improvement slowing down as data size in-
creases. However, the BERT results are more chal-
lenging to interpret. On the CODAH-only set-
ting, BERT appears to improve with data size, but
the extremely high variance prevents us from be-
ing certain of any trend in BERT’s performance
on this setting. The variance is lower in the
SWAG+CODAH setting and accuracy increases
as data size goes from 20% to 60%, but ac-
curacy decreases between SWAG+CODAH-60%
and SWAG+CODAH-80% settings (although the
SWAG+CODAH-80% setting has high variance
and the true mean may be higher). The incon-
sistency in improvement with more CODAH data
after training on SWAG+CODAH-60% for BERT
and the reduced rate of performance gain for GPT
suggest that it is unclear whether the performance
of all models will improve dramatically with an
even larger CODAH dataset size.

6 Conclusion

We present CODAH, a commonsense question an-
swering dataset that is adversarially-constructed
by allowing humans to view feedback from a
pre-trained model and use this information to de-
sign challenging commonsense questions. Our
experimental results show that CODAH ques-
tions present a complementary extension of the
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SWAG dataset, testing additional modes of com-
mon sense.

We identify specific categories of commonsense
questions to determine types of reasoning that are
more challenging for existing models. In partic-
ular, we note that Quantitative questions have low
accuracy for both BERT and GPT. A more detailed
analysis into why models struggle to reason about
numbers as well as development of more detailed
categories of commonsense reasoning are items
for future work.
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