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Abstract

Understanding and generating spatial descrip-
tions requires knowledge about what objects
are related, their functional interactions, and
where the objects are geometrically located.
Different spatial relations have different func-
tional and geometric bias. The wide usage of
neural language models in different areas in-
cluding generation of image description moti-
vates the study of what kind of knowledge is
encoded in neural language models about in-
dividual spatial relations. With the premise
that the functional bias of relations is ex-
pressed in their word distributions, we con-
struct multi-word distributional vector repre-
sentations and show that these representations
perform well on intrinsic semantic reasoning
tasks, thus confirming our premise. A compar-
ison of our vector representations to human se-
mantic judgments indicates that different bias
(functional or geometric) is captured in differ-
ent data collection tasks which suggests that
the contribution of the two meaning modalities
is dynamic, related to the context of the task.

1 Introduction

Spatial descriptions such as “the chair is to the left
of the table” contain spatial relations “to the left
of” the semantic representations of which must
be grounded in visual representations in terms of
geometry (Harnad, 1990). The apprehension of
spatial relations in terms of scene geometry has
been investigated through acceptability scores of
human judges over possible locations of objects
(Logan and Sadler, 1996). In addition, other re-
search has pointed out that there is an interplay be-
tween geometry and object-specific function in the
apprehension of spatial relations (Coventry et al.,
2001). Therefore, spatial descriptions must be
grounded in two kinds of knowledge (Landau and
Jackendoff, 1993; Coventry et al., 2001; Coven-
try and Garrod, 2004; Landau, 2016). One kind
of knowledge is referential meaning, expressed in

the geometry of scenes (geometric knowledge or
where objects are) while the other kind of knowl-
edge is higher- level conceptual world knowl-
edge about interactions between objects which is
not directly grounded in perceivable situations but
is learned through our experience of situations
in the world (functional knowledge or what ob-
jects are related). Furthermore, Coventry et al.
(2001) argue that individual relations have a par-
ticular geometric and functional bias and “under”
and “over” are more functionally-biased than “be-
low” and “above”. For instance, when describ-
ing the relation between a person and an um-
brella in a scene with a textual context such as
“an umbrella a person”, “above” is associ-
ated with stricter geometric properties compared
to “over” which covers a more object-specific
extra-geometric sense between the target and the
landmark (i.e. covering or protecting in this case).
Of course, there will be several configurations of
objects that could be described either with “over”
or “above” which indicates that the choice of a
description is determined by the speaker, in par-
ticular what aspect of meaning they want to em-
phasise. Coventry et al. (2001) consider this bias
for prepositions that are geometrically similar and
therefore the functional knowledge is reflected in
different preferences for objects that are related.
However, such functional differences also exist
between geometrically different relations.

This poses two interesting research questions
for computational modelling of spatial language.
The first one is how both kinds of knowledge in-
teract with individual spatial relations and how
models of spatial language can be constructed and
learned within end-to-end deep learning paradigm.
Ramisa et al. (2015) compare the performance
of classifiers using different multi-modal features
(visual, geometric and textual) to predict a spa-
tial preposition. Schwering (2007) applies seman-
tic similarity metrics of spatial relations on geo-
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graphical data retrieval. Collell et al. (2018) show
that word embeddings can be used as predictive
features for common sense knowledge about loca-
tion of objects in 2D images. The second question
is related to the extraction of functional knowl-
edge for applications such as generation of spa-
tial descriptions in a robot scenario. Typically, a
robot will not be able to observe all object inter-
actions as in (Coventry et al., 2004) to learn about
the interaction of objects and choose the appro-
priate relation. Following the intuition that the
functional bias of spatial relations is reflected in
a greater selectivity for their target and landmark
objects, Dobnik and Kelleher (2013, 2014) pro-
pose that the degree of association between rela-
tions and objects in the corpus of image descrip-
tions can be used as filters for selecting the most
applicable relation for a pair of objects. They also
demonstrate that entropy-based analysis of the tar-
gets and landmarks can identify the functional and
geometric bias of spatial relations. They use de-
scriptions from a corpus of image descriptions be-
cause here the prepositions in spatial relations are
used mainly in the spatial sense. The same inves-
tigation of textual corpora such as BNC (Consor-
tium et al., 2007) does not yield such results as
there prepositions are used mainly in their non-
spatial sense.1 Similarly, Dobnik et al. (2018) in-
spect the perplexity of recurrent language models
for different descriptions containing spatial rela-
tions in the Visual Genome dataset of image cap-
tions (Krishna et al., 2017) in order to investigate
their bias for objects.

In this paper, we follow this line of work and
(i) further investigate what semantics about spatial
relations are captured from descriptions of images
by generative recurrent neural language models,
and (ii) whether such knowledge can be extracted,
for example as vector representations, and evalu-
ated in tests. The neural embeddings are opaque
to interpretations per se. The benefit of using re-
current language models is that they allow us to
(i) deal with spatial relations as multi-word ex-
pressions and (ii) they learn their representations
within their contexts:

(a) a cat on a mat
(b) a cat on the top o f a mat
(c) a mat under a cat

1We may call this metaphoric or highly functional usage
which is completely absent of the geometric dimension.

In (a) and (b), the textual contexts are the same
“a cat a mat” but the meaning of the spatial
relations, one of which is a multi-word expression,
are slightly different. In (c) the context is made
different through word order.

The question of what knowledge (functional or
geometric) should be represented in the models
can be explained in information-theoretic terms.
The low surprisal of a textual language model on
a new text corpora is an indication that the model
has encoded the same information content as the
text. In the absence of the geometric knowledge
during the training of the model, this means that
a language model encodes the relevant functional
knowledge. We will show that the degree to which
each spatial description containing a spatial re-
lation encodes functional knowledge in different
contexts can be used as source for building distri-
butional representations. We evaluate these repre-
sentations intrinsically in reasoning tests and ex-
trinsically against human performance and human
judgment.

The contributions of this paper are:

1. It is an investigation of the semantic knowl-
edge about spatial relations learned from tex-
tual features in recurrent language models
with intrinsic and extrinsic methods of evalu-
ation on internal representations.

2. It proposes a method of inspecting contextual
performance of generative neural language
models over a wide categories of contexts.

This paper is organised as follows: in Section 2
we describe how we create distributional represen-
tations with recurrent neural language models, in
Section 3 we describe our computational imple-
mentations that build these representations, and in
Section 4 we provide their evaluation. In Section 5
we give our final remarks.

2 Neural representations of spatial
relations

Distributional semantic models produce vector
representations which capture latent meanings
hidden in association of words in documents
(Church and Hanks, 1990; Turney and Pantel,
2010). The neural word embeddings were initially
introduced as a component of neural language
models (Bengio et al., 2003). However, subse-
quently neural language models such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington



73

et al., 2014) have become used to specifically
learn word embeddings from large corpora. The
word embeddings trained by these models capture
world-knowledge regularities expressed in lan-
guage by learning from the distribution of con-
text words which can be used for analogical rea-
soning2. Moreover, sense embeddings (Neelakan-
tan et al., 2014) and contextual embeddings (Pe-
ters et al., 2018) have shown to provide fine-
grained representation which can discriminate be-
tween different word senses or contexts, for ex-
ample in substituting synonym words and multi-
words in sentences (McCarthy and Navigli, 2007).

However, meaning is also captured by genera-
tive recurrent neural language models used to gen-
erate text rather than predict word similarity. The
focus of our work is to investigate what semantics
about spatial relations is captured by these models.
Generative language models use the chain rule of
probability for step-by-step prediction of the next
word in a sequence. In these models, the probabil-
ity of a sequence of words (or sometimes charac-
ters) is defined as the multiplication of conditional
probabilities of each word given the previous con-
text in a sequence:

P(w1:T ) =
T−1

∏
t=1

P(wt+1|w1:t) (1)

where T is the length of the word sequence. The
language model estimates the probability of a se-
quence in Equation (1) by optimising parameters
of a neural network trained over sufficient data.
The internal learned parameters includes embed-
dings for each word token which can be used as
word level representations directly.

An alternative way of extracting semantic pre-
diction from a generative neural language model
which we are going to explore in this paper is
to measure the fidelity of the model’s output pre-
dictions against a new ground truth sequence of
words. This is expressed in the measure of Per-
plexity as follows:

PP(S) = (∏
s∈S

P(w1:t = s))
−1
|S| (2)

where S is a collection of ground truth sentences.
Perplexity is a measure of the difficulty of a gen-

2For example, “a is to a∗ as b is to b∗” can be queried
with simple vector arithmetic king−man+woman≈ queen.
More specifically, with a search over vocabulary with cosine
similarity: argmax

b∗∈V/{a∗,b,a}
cos(b∗,a∗−a+b)

eration task which is based on the information the-
oretic concept of entropy (Bahl et al., 1983). It is
based on cross-entropy which takes into account
the probability of a sequence of words in ground
truth sentences and the probability of a language
model generating that sequence. It is often used
for intrinsic evaluation of word- error rates in NLP
tasks (Chen et al., 1998). However, in this pa-
per we use perplexity as a measure of fit of a pre-
trained generative neural language model to a col-
lection of sentences.

Our proposal is as follows. We start with the
hypothesis that in spatial descriptions some spa-
tial relations (those that we call functional) are
more predictable from the associated word con-
texts of targets and landmarks than their ground-
ing in the visual features. Hence, this will be
reflected in a perplexity of a (text-based) gener-
ative language model trained on spatial descrip-
tions. Descriptions with functionally-biased spa-
tial relations will be easier to predict by this lan-
guage model than geometrically-biased spatial de-
scriptions and will therefore have lower perplexity.
If two sequences of words where only the spatial
relations differ (but target and landmark contexts
as well as other words are the same) have similar
perplexity, it means that such spatial relations have
similar selectional requirements and are therefore
similar in terms of functional and geometric bias.
We can exploit this to create vector representations
for spatial relations as follows. Using a dictionary
of spatial relations, we extract collections of sen-
tences containing a particular spatial relation from
a held-out dataset not used in training of the lan-
guage model. The collection of sentences with
a particular spatial relation are our context tem-
plates. More specifically, for our list of spatial re-
lations {r1,r2, ...,rk}, we replace the original re-
lation ri with a target relation r j in its collection
of sentences, e.g. we replace to the right of i with
in front of j. The outcome is a collection of artifi-
cial sentences Si→ j that are identical to the human-
generated sentences except that they contain a sub-
stituted spatial relation. The perplexity of the lan-
guage model on these sentences represents the as-
sociation between the original spatial relation and
the context in which this has been projected:

PP(Si→ j) = PPi, j = P(reli,crel j)
1
−N′ (3)

where crel j is the context of reli, and PPi, j is the
perplexity of the neural language model on the
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sentence collection where relation reli is artifi-
cially placed in the contexts of relation rel j. If reli
and rel j are associated with similar contexts, then
we expect low perplexity for Si→ j, otherwise the
perplexity will be high. Finally, the perplexity of
reli against each collection crel j is computed and
normalised within each collection (Equation 4)
and the resulting vector per reli over all contexts
is represented as a unit vector (Equation 5).

mi, j =
PPi, j

∑
k
i′=1 PPi′, j

(4)

v̂i =
vi

||vi||
vi = (mi,1, ...,mi,k)

T (5)

where v̂i is the vector representation of the rela-
tion reli. These vectors create a matrix. In a par-
ticular cell of some row and some column, high
perplexity means that the spatial relation in that
row is less swappable with the context in the col-
umn, while a low perplexity means that the spa-
tial relation is highly swappable with that context.
This provides a measure similar to mutual infor-
mation (PPMI) in traditional distributional vectors
(Church and Hanks, 1990).

In conclusion, representing multi-word spatial
relations in a perplexity matrix of different con-
texts allows us to capture their semantics based
on the predictions and the discriminatory power
of the language model. If all spatial relations
are equally predictable from the language model
such vector representations will be identical and
vector space norms will not be able to discrimi-
nate between different spatial relations. In the fol-
lowing sections we report on the practical details
how we build the matrix (Section 3) and evalu-
ate it on some typical semantic tasks (Section 4).
The implementation and evaluation code: https:
//github.com/GU-CLASP/what_nlm_srels

3 Dataset and models

3.1 Corpus and pre-processing

We use Visual Genome region description cor-
pus (Krishna et al., 2017). This corpus contains
5.4 million descriptions of 108 thousand images,
collected from different annotators who described
specific regions of each image. As stated earlier,
the reason why we use a dataset of image descrip-
tions is because we want to have spatial usages
of prepositions. Other image captioning datasets
such as MSCOCO (Lin et al., 2014) and Flickr30k

(Plummer et al., 2015) could also be used. How-
ever, our investigation has shown that since the
task in these datasets in not to describe directly the
relation between selected regions, common geo-
metric spatial relations are almost missing in them:
there are less then 30 examples for “left of ” and
“right of ” in these datasets.

After word tokenisation with the space operator,
we apply pre-processing which removes repeated
descriptions per-image and also descriptions that
include uncommon words with frequency less than
1003 Then we split the sentences into 90%-10%
portions. The 90% is used for training the lan-
guage model (Section 3.2), and 10% is used for
generating the perplexity vectors by extracting
sentences with spatial relations that represent our
context bins (Section 3.3). The context bins are
used for generating artificial descriptions Si→ j on
which the language model is evaluated for per-
plexity.

3.2 Language model and GloVe embeddings

We train a generative neural language model on
the 90% of the extracted corpus (Section 3.1)
which amounts to 4,537,836 descriptions of max-
imum length of 29 and 4,985 words in the vocab-
ulary. We implement a recurrent language model
with LSTM (Hochreiter and Schmidhuber, 1997)
and a word embeddings layer similar to Gal and
Ghahramani (2016) in Keras (Chollet et al., 2015)
with TensorFlow (Abadi et al., 2015) as back-end.
The Adam optimiser (Kingma and Ba, 2014) is
used for fitting the parameters. The model is set
up with 300 dimensions both for the embedding-
and the LSTM units. It is trained for 20 epochs
with a batch size of 1024.

In addition to the generative LSTM language
model, we also train on the same corpus GloVe
(VG) embeddings with 300 dimensions and a
context-window of 5 words. Finally, we also use
pre-trained GloVe embeddings on the Common
Crawl (CC) dataset with 42B tokens4.

3The pre-processing leaves 5,042,039 descriptions in the
corpus with maximum 31 tokens per sentence. The relatively
high threshold of 100 tokens is chosen to insure sufficient
support in the 10% of held-out data for bucketing. We did
not use OOV tokens because the goal of the evaluation is to
capture object-specific properties about spatial relations and
OOV tokens would interfere with this.

4http://nlp.stanford.edu/data/glove.42B.
300d.zip

https://github.com/GU-CLASP/what_nlm_srels
https://github.com/GU-CLASP/what_nlm_srels
http://nlp.stanford.edu/data/glove.42B.300d.zip
http://nlp.stanford.edu/data/glove.42B.300d.zip
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rel_i = "on the left of"

Figure 1: Generating perplexity-based vectors for each
spatial relation.

3.3 Perplexity vectors

Based on the lists of spatial prepositions in (Lan-
dau, 1996) and (Herskovits, 1986), we have cre-
ated a dictionary of spatial relations which include
single word relations as well as all of their possible
multi-word variants. This dictionary was applied
on the 10% held-out dataset where we found 67
single- and multi-word spatial relation types in to-
tal. As their frequency may have fallen below 100
words due to the dataset split, we further remove
all relations below this threshold which gives us
57 relations. We also create another list of re-
lations where composite variants such as “to the
left of” and “on the left of” are grouped together
as “left” which contains 44 broad relations. We
group the sentences by the relation they are con-
taining to our context bins using simple pattern
matching on strings. Table 1 contains some ex-
amples of our context bins. The bins are used for
artificial sentence generation as explained in the
previous section.

Relation (reli) Context bin (creli)
above scissors the pen

tall building the bridge
· · ·

below pen is scissors
bench the green trees
· · ·

next to a ball-pen the scissors
car the water
· · ·

Table 1: Examples of context bins based on extracted
descriptions from Visual Genome. The images that be-
long to these descriptions are shown in Appendix B.

For each of the 67 spatial relations extracted
from the larger corpus, there are 57 collections of

sentences (=the number of relations in the smaller
corpus). Hence, there are 3,819(= 67× 57) pos-
sible projections Si→ j, where a relation i is placed
in the context j, including the case where there
is no swapping of relations when j = i. The pro-
cess is shown in Figure 1. The vector of resulting
perplexities in different contexts is normalised ac-
cording to Equation 5 which gives us perplexity
vectors (P-vectors) as shown in Figure 2.
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Figure 2: A matrix of perplexity vectors for 28 spatial
relations and 26 contexts. For the full 67× 57 matrix
see Appendix C. The rows represent spatial relations
and columns represent the normalised average perplex-
ity of a language model when this relation is swapped
in that context.

In addition to the P-vectors we also create repre-
sentations learned by the word embedding layer in
the generative language model that we train. For
each of the 44 broad single-word spatial relations
we extract a 300-dimensional embedding vector
from the pre-trained recurrent language model
(LM-vectors). In order to produce LM-vectors for
the multi-word spatial relations, we simply sum
the embeddings of the individual words. For ex-
ample the embedding vector for “to the left of” is
vto + vthe + vle f t + vo f . The same method is also
used for the GloVe embeddings.

3.4 Human judgments

In order to evaluate our word representations we
compare them to three sources of human judg-
ments. The first one are judgments about the
the fit of each spatial relation over different ge-
ometric locations of a target object in relation to
a landmark which can be represented as spatial
templates (Logan and Sadler, 1996). The second
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are 88,000 word association judgments by English
speakers from (De Deyne et al., 2018). In each in-
stance participants were presented a stimulus word
and were asked to provide 3 other words. The
dataset contains 4 million responses on 12,000
cues. Based on the collective performance of an-
notators, the dataset provides association strengths
between words (which contain any kind of words,
not just spatial words) as a measure of their se-
mantic relatedness. Finally, we collected a new
dataset of word similarity judgments using Ama-
zon Mechanical Turk. Here, the participants were
presented with a pair of spatial relations at a time.
Their task was to use a slider bar with a numer-
ical indicator to express how similar the pair of
words are. The experiment is similar to the one de-
scribed in (Logan and Sadler, 1996) except that in
our case participants only saw one pair of relations
at a time rather than the entire list. The shared vo-
cabulary between these three datasets covers left,
right, above, over, below, under, near, next, away.

4 Evaluation

As stated in Section 2 the P-vectors we have built
are intended to capture the discriminatory power
of a generative language model to encode and
discriminate different spatial relations, their func-
tional bias. In this section we evaluate the P-
vectors on several common intrinsic and extrinsic
tests for vectors. If successful, this demonstrates
that such knowledge has indeed been captured by
the language model. We evaluate both single- and
multi-word relations.

4.1 Clustering
Method Figure 2 and its complete version in
Appendix C show that different spatial relations
have different context fingerprints. To find sim-
ilar relations in this matrix we can use K-means
clustering. K-mean is a non-convex problem: dif-
ferent random initialisation may lead to different
local minima. We apply the clustering on 67 P-
vectors for multi-word spatial relations and qual-
itatively examine them for various sizes k. The
optimal number of clusters is not so relevant here,
only that for each k we get reasonable associations
that follow our semantic intuitions.

Results As shown in Table 2, with k = 30, the
clustering of perplexity vectors shows acceptable
semantics of each cluster. There are clusters with
synonymous terms such as (15. above, over) or

1. to
2. on
3. away
4. here
5. into
6. from
7. during
8. back of
9. through

10. alongside
11. along side
12. underneath
13. in; against
14. in front of
15. above; over
16. to the side
17. onto; toward

18. up; down; off
19. with; without
20. together; out
21. outside; inside
22. near; beside; by
23. top; front; bottom
24. in between; between
25. along; at; across; around
26. beneath; below; under; behind
27. right; back; left; side; there
28. to the left of; to the right of; next to
29. in back of; in the back of; on the

back of; at the top of
30. on the top of; on side of; on the bot-

tom of; on left side of; on top of; on
the front of; on back of; on the side
of; on front of; on bottom of

Table 2: K-means clusters of spatial relations based on
their P-vectors.
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Figure 3: The P-vectors of two clusters.

(26. below, under). Some clusters have variants of
multi-word antonymous such as (30. on the top of,
on the bottom of ). Other clusters have a mixture
of such relations, e.g. (27. right, back, left, side,
and there).

Discussion The inspection of the perplexities of
two of these clusters in Figure 3 shows that the
language model has learned different selectional
properties of spatial relations: above and over are
generally more selective of their own contexts,
while to the left of and to the right of show a
higher degree of confusion with a variety of the
P-vector contexts. High degree of confusion in
left and right is consistent with the observation
in (Dobnik and Kelleher, 2013) that these rela-
tions are less dependent on the functional relation
between particular objects and therefore have a
higher geometric bias. On the other hand, above
and over seem to be more selective of their con-
texts. The functional distinction between above
and over is mildly visible: the shades of blue in
above are slightly darker than over.

4.2 Analogical reasoning with relations
The intrinsic properties of vector representations
(the degree to which they capture functional asso-
ciations between relations and their objects) can
be tested with their performance in analogical rea-
soning tasks. We compare the performance of
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Single word Multi-words
GloVe (CC) 0.56 0.36
GloVe (VG) 0.43 0.29
LM 0.86 0.45
P-vectors 0.62 0.47
Random 0.11 0.05

Table 3: The accuracies of different representations on
the word analogy test.

the P-vectors (Section 3.3), the embeddings of the
language model used to create the P-vectors and
GloVe embeddings (Section 3.2) in two analogical
tasks which require both geometric and functional
reasoning.

4.2.1 Predicting analogical words
Method The task is similar to the analogy test
(Mikolov et al., 2013; Levy et al., 2015) where two
pairs of words are compared in terms of some rela-
tion “a is to a′ as b is to b′”. We manually grouped
spatial relations that are opposite in one geomet-
ric dimension to 6 groups. These are: Group 1:
left, right; Group 2: above, below; Group 3: front,
back; Group 4: with, without; Group 5: in, out;
and Group 6: up, down. We generate all possible
permutations of these words for the analogical rea-
soning task which gives us 120 permutations. We
expand these combinations to include multi-word
variants. This dataset has 85,744 possible analogi-
cal questions such as (above :: below, to the left of
:: ?). We accept all variants of a particular relation
(e.g. to the right side of and to the right of ) as the
correct answer.

Results As shown in in Table 3, on the single-
word test suite, the LM-embeddings perform bet-
ter than other models. On multi-word test suite
the P-vectors perform slightly better. On both test
suites, GloVe trained on Common Crawl performs
better than GloVe trained on Visual Genome.
However, its performance on multi-word relations
is considerably lower. We simulated random an-
swers as a baseline to estimate the difficulty of
the task. Although the multi-word test suite has
∼ 700 times more questions than the test suite with
single-word relations, it is only approximately 2-
times more difficult to predict the correct answer
in the multi-word dataset compared to the single-
word dataset.

Discussion The perplexity of the language
model on complete context phrases (Multi-words)
is as good indicator of semantic relatedness as
the word embeddings of the underlying language

model and much better than GloVe embeddings.
The good performance of the P-vectors explains
the errors of the language model in generating
spatial descriptions. The confusion between in
front of and on the back of is similar to the con-
fusion between to the left of and to the right
of in terms of their distribution over functional
contexts. Hence, a similar lack of strong func-
tional associations allows the vectors to make in-
ference about geometrically related word-pairs.
This indicates that functional and geometric bias
of words are complementary. There are two
possible explanations why P-vectors perform bet-
ter than LM-embeddings on multi-word vectors:
(i) low-dimensions of P-vectors (57D) intensify
the contribution of spatial contexts for analogi-
cal reasoning compared to high-dimensional LM-
embeddings (300D); (ii) summing the vectors of
the LM-embeddings for multi-words reduces their
discriminatory effect.

4.2.2 Odd-one-out

Method Based on the semantic relatedness of
words, the goal of this task is to find the odd mem-
ber of the three. The ground truth for this test are
the following five categories of spatial relations,
again primarily based on geometric criteria: X-
axis: left, right; Y-axis: above, over, under, below;
Z-axis: front, back; Containment: in, out; and
Proximity: near, away. Only the Y-axis contains
words that are geometrically similar but function-
ally different, e.g. above/over. In total there are
528 possible instances with 3,456 multi-word vari-
ations. The difficulty of the task is the same for
both single- and multi-word expressions as the
choice is always between three words. Hence, the
random baseline is 0.33.

Results Table 4 shows the accuracy in predict-
ing the odd relation out of the three. We also
add a comparison to fully geometric representa-
tions captured by spatial templates (Logan and
Sadler, 1996). Ghanimifard and Dobnik (2017)
show that spatial templates can be compared with
Spearman’s rank correlation coefficient ρX ,Y and
therefore we also include this similarity measure.
Since our groups of relations contain those that are
geometric opposites in each dimension, we take
the absolute value of |ρX ,Y |. Spatial templates are
not able to recognise relatedness without the right
distance measure, |ρX ,Y |. LM-embeddings per-
form better than other vectors in both tests, but
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Single word Multi-words
1− cos |ρ| 1− cos |ρ|

GloVe (CC) 0.62 0.68 0.52 0.58
GloVe (VG) 0.61 0.61 0.58 0.59

LM 0.87 0.90 0.82 0.88
P-vectors 0.72 0.70 0.64 0.52

Sp Templates 0.22 1.0 - -

Table 4: The accuracies in odd-one-out tests.

P-vectors follow closely. All models have a low
performance on the multi-word test suite. When
using |ρX ,Y | all vectors other than P-vectors pro-
duce better results. While we do not have an ex-
planation for this, it is interesting to observe that
|ρX ,Y | is a better measure of similarity than cosine.

Discussion The results demonstrate that using
functional representations based on associations of
words can predict considerable information about
geometric distinctions between relations, e.g. dis-
tinguishing to the right of and above, and this is
also true for P-vectors. As stated earlier, our ex-
planation for this is that functional and geomet-
ric knowledge is in complementary distribution.
This has positive and negative implications for
joint vision and language models used in generat-
ing spatial descriptions. In the absence of geomet-
ric information, language models provide strong
discriminative power in terms of functional con-
texts, but even if geometric latent information is
expressed in them, an image captioning system
still needs to ground each description in the scene
geometry.

4.3 Similarity with human judgments

We compare the cosine similarity between words
in LM- and P-vector spaces with similarities from
(i) word association judgments (De Deyne et al.,
2018), (ii) our word similarity judgments from
AMT, and (iii) spatial templates (Section 3.4). We
take the maximum subset of shared vocabulary be-
tween them, including on, in only shared between
(i) and (ii). Since (i) is an association test, unre-
lated relations do not have association strengths.
There are 55 total possible pairs of 11 words,
while only 28 pairs are present in (i) as shown in
Figure 4.

Method We take the average of the two way as-
sociation strengths if the association exists and for
(i) we assign a zero association for unrelated pairs
such as left and above. Spearman’s rank correla-
tion coefficient ρX ,Y is used to compare the calcu-
lated similarities.
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Figure 4: (i) Word association judgments and (ii) word
similarity judgments

Results Table 5 shows ranked correlations of
different similarity measures. Spatial templates
do not correlate with (WA) word associations and
(WS) word similarities. On 28 pairs there is a
weak negative correlation between spatial tem-
plates and WS. The correlation of similarities of
two different human judgments is positive but
weak (ρ = 0.33). The similarities predicted by
LM-vectors and P-vectors correlate better with
WA than WS.

55 pairs 28 pairs
WA WS WA WS

SpTemp −0.02 −0.08 0.06 −0.35
LM 0.48∗∗∗ 0.15 0.59∗∗∗ 0.08

P 0.48∗∗∗ 0.19 0.40∗∗ −0.08
p-values: ∗< 0.01, ∗∗< 0.01, ∗∗∗< 0.001

Table 5: Spearman’s ρ between pairwise lists of simi-
larities. WA are similarities based on word associations
and WS are direct word similarities from human judg-
ments.

Discussion The low correlation between the two
similarities from human judgments is surprising.
Our explanation is that this is because of different
priming to functional and geometric dimension of
meaning in the data collection task. In the WA
task participants are not primed with the spatial
domain but they are providing general word as-
sociations, hence functional associations. On the
other hand, in the WS task participants are pre-
sented with two spatial relations, e.g. left of and
right of, and therefore the geometric dimension
of meaning is more explicitly attended. We also
notice that judgments are not always unison, the
same pair may be judged as similar and dissimi-
lar which further confirms that participants are se-
lecting between two different dimensions of mean-
ing. This observation is consistent with our argu-
ment that LM-vectors and P-vectors encode func-
tional knowledge. Both representations correlate
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better with WA than with WS. Finally, (Logan and
Sadler, 1996) demonstrate that WS judgments can
be decomposed to dimensions that correlate with
the dimensions of the spatial templates. We leave
this investigation for our future work.

5 Conclusion and future work

In the preceding discussion, we have examined
what semantic knowledge about spatial relations is
captured in representations of a generative neural
language model. In particular, we are interested if
the language model is able to encode a distinction
between functional and geometric bias of spatial
relations and how the two dimensions of mean-
ing interact. The idea is based on earlier work
that demonstrates that this bias can be recovered
from the selectivity of spatial relations for target
and landmark objects. In particular, (i) we test the
difference between multi-word spatial relations at
two levels: the word embeddings which are a form
of internal semantic representations in a language
model and the perplexity-based P-vectors which
are external semantic representations based on the
language model performance; (ii) we project spa-
tial relations in the contexts of other relations and
we measure the fit of the language model to these
contexts using perplexity (P-vectors); (iii) we use
these contexts to build a distributional model of
multi-word spatial relations; (iv) in the evalu-
ation on standard semantic similarity tasks, we
demonstrate that these vectors capture fine seman-
tic distinctions between spatial relations; (v) we
also demonstrate that these representations based
on word-context associations latently capture geo-
metric knowledge that allows analogical reasoning
about space; this suggests that functional and ge-
ometric components of meaning are complemen-
tary: (vi) doing so we also demonstrated that gen-
eration of spatial descriptions is also dependent on
textual features, even if the system has no access
to the visual features of the scene. This has impli-
cations for baselines for image captioning and how
we evaluate visual grounding of spatial relations.

Our work could be extended in several ways, in-
cluding by (i) using the knowledge about the bias
of spatial relations to evaluate captioning tasks
with spatial word substitutions (Shekhar et al.,
2017a,b); (ii) examining how functional knowl-
edge is complemented with visual knowledge in
language generation (Christie et al., 2016; Dele-
craz et al., 2017) (iii) using different contextual

embeddings such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) for the embedding
layer of the generative language model rather than
our specifically-trained word embeddings; note
that P-vectors are representations of collections of
context based on the performance of the decoder
language model while ELMo and BERT are repre-
sentations of specific context based on the encoder
language model; (iv) comparing language mod-
els for spatial descriptions from different prag-
matic tasks. As the focus of image captioning is
to best describe the image and not for example,
spatially locate a particular object, the pragmatic
context of image descriptions is biased towards the
functional sense of spatial relations. Our analysis
should be extended to different kinds of corpora,
for example those for visual question answering,
human-robot interaction, and navigation instruc-
tions where we expect that precise geometric lo-
cating of objects receives more focus. Therefore,
we expect to find a stronger geometric bias across
all descriptions and a lower performance of our
representations on analogical reasoning.
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