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Introduction

Welcome to the Third Workshop on Structured Prediction for NLP!

Structured prediction has a strong tradition within the natural language processing (NLP) community,
owing to the discrete, compositional nature of words and sentences, which leads to natural combinatorial
representations such as trees, sequences, segments, or alignments, among others. It is no surprise that
structured output models have been successful and popular in NLP applications since their inception.
Many other NLP tasks, including, but not limited to: semantic parsing, slot filling, machine translation, or
information extraction, are commonly modeled as structured problems, and accounting for said structure
has often lead to performance gain.

Of late, continuous representation learning via neural networks has been a significant complementary
direction, leading to improvements in unsupervised and semi-supervised pre-training, transfer learning,
domain adaptation, etc. Using word embeddings as features for structured models such as part-of-speech
taggers count among the very first uses of continuous embeddings in NLP, and the symbiosis between
the two approaches is an exciting research direction today.

The five papers (as well as three additional non-archival papers) accepted for presentation in this
edition of the workshop, after double-blind peer review, all explore this interplay between structure
and neural data representations, from different, important points of view. The program includes work on
structure-informed representation learning, transfer learning, partial supervision, and parallelization of
computation in structured computation graphs. Our program also includes six invited presentations from
influential researchers.

Our warmest thanks go to the program committee – for their time and effort providing valuable feedback,
to all submitting authors – for their thought-provoking work, and to the invited speakers – for doing us
the honor of joining our program. We are looking forward to seeing you in Minneapolis!

Zornitsa Kozareva
Julia Kreutzer
Gerasimos Lampouras
André Martins
Vlad Niculae
Sujith Ravi
Andreas Vlachos
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Parallelizable Stack Long Short-Term Memory

Shuoyang Ding Philipp Koehn
Center for Language and Speech Processing

Johns Hopkins University
{dings, phi}@jhu.edu

Abstract

Stack Long Short-Term Memory (StackL-
STM) is useful for various applications such
as parsing and string-to-tree neural machine
translation, but it is also known to be notori-
ously difficult to parallelize for GPU training
due to the fact that the computations are de-
pendent on discrete operations. In this paper,
we tackle this problem by utilizing state access
patterns of StackLSTM to homogenize compu-
tations with regard to different discrete opera-
tions. Our parsing experiments show that the
method scales up almost linearly with increas-
ing batch size, and our parallelized PyTorch
implementation trains significantly faster com-
pared to the Dynet C++ implementation.

1 Introduction

Tree-structured representation of language has been
successfully applied to various applications includ-
ing dependency parsing (Dyer et al., 2015), sen-
timent analysis (Socher et al., 2011) and neural
machine translation (Eriguchi et al., 2017). How-
ever, most of the neural network architectures used
to build tree-structured representations are not able
to exploit full parallelism of GPUs by minibatched
training, as the computation that happens for each
instance is conditioned on the input/output struc-
tures, and hence cannot be naïvely grouped together
as a batch. This lack of parallelism is one of the ma-
jor hurdles that prevent these representations from
wider adoption practically (e.g., neural machine
translation), as many natural language processing
tasks currently require the ability to scale up to very
large training corpora in order to reach state-of-the-
art performance.

We seek to advance the state-of-the-art of this
problem by proposing a parallelization scheme for
one such network architecture, the Stack Long
Short-Term Memory (StackLSTM) proposed in
Dyer et al. (2015). This architecture has been

successfully applied to dependency parsing (Dyer
et al., 2015, 2016; Ballesteros et al., 2017) and
syntax-aware neural machine translation (Eriguchi
et al., 2017) in the previous research literature,
but none of these research results were produced
with minibatched training. We show that our paral-
lelization scheme is feasible in practice by showing
that it scales up near-linearly with increasing batch
size, while reproducing a set of results reported in
(Ballesteros et al., 2017).

2 StackLSTM

StackLSTM (Dyer et al., 2015) is an LSTM archi-
tecture (Hochreiter and Schmidhuber, 1997) aug-
mented with a stack H that stores some of the
hidden states built in the past. Unlike traditional
LSTMs that always build state ht from ht−1, the
states of StackLSTM are built from the head of the
state stack H, maintained by a stack top pointer
p(H). At each time step, StackLSTM takes a real-
valued input vector together with an additional dis-
crete operation on the stack, which determines what
computation needs to be conducted and how the
stack top pointer should be updated. Throughout
this section, we index the input vector (e.g. word
embeddings) xt using the time step t it is fed into
the network, and hidden states in the stack hj using
their position j in the stack H, j being defined as
the 0-base index starting from the stack bottom.

The set of input discrete actions typically con-
tains at least Push and Pop operations. When
these operations are taken as input, the correspond-
ing computations on the StackLSTM are listed be-
low:1

• Push: read previous hidden state hp(H), per-
form LSTM forward computation with xt and

1To simplify the presentation, we omitted the updates on
cell states, because in practice the operations performed on
cell states and hidden states are the same.
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Transition Systems Transition Op Stack Op Buffer Op Composition Op

Arc-Standard
Shift push pop none
Left-Arc pop, pop, push hold S1← g(S0, S1)
Right-Arc pop hold S1← g(S1, S0)

Arc-Eager

Shift push pop none
Reduce pop hold none
Left-Arc pop hold B0← g(B0, S0)
Right-Arc push pop B0← g(S0, B0)

Arc-Hybrid
Shift push pop none
Left-Arc pop hold B0← g(B0, S0)
Right-Arc pop hold S1← g(S1, S0)

Table 1: Correspondence between transition operations and stack/buffer operations for StackLSTM, where g de-
notes the composition function as proposed by (Dyer et al., 2015). S0 and B0 refers to the token-level representa-
tion corresponding to the top element of the stack and buffer, while S1 and B1 refers to those that are second to the
top. We use a different notation here to avoid confusion with the states in StackLSTM, which represent non-local
information beyond token-level.

hp(H), write new hidden state to hp(H)+1 , up-
date stack top pointer with p(H)← p(H)+1.

• Pop: update stack top pointer with p(H) ←
p(H)− 1.

Reflecting on the aforementioned discussion on
parallelism, one should notice that StackLSTM
falls into the category of neural network architec-
tures that is difficult to perform minibatched train-
ing. This is caused by the fact that the computation
performed by StackLSTM at each time step is de-
pendent on the discrete input actions. The follow-
ing section proposes a solution to this problem.

3 Parallelizable StackLSTM

Continuing the formulation in the previous section,
we will start by discussing our proposed solution
under the case where the set of discrete actions
contains only Push and Pop operations; we then
move on to discussion of the applicability of our
proposed solution to the transition systems that are
used for building representations for dependency
trees.

The first modification we perform to the Push
and Pop operations above is to unify the pointer
update of these operations as p(H)← p(H) + op,
where op is the input discrete operation that could
either take the value +1 or -1 for Push and Pop
operation. After this modification, we came to the
following observations:

Observation 1 The computation performed for
Pop operation is a subset of Push operation.

Now, what remains to homogenize Push and
Pop operations is conducting the extra computa-
tions needed for Push operation when Pop is fed
in as well, while guaranteeing the correctness of
the resulting hidden state both in the current time
step and in the future. The next observation points
out a way for this guarantee:

Observation 2 In a StackLSTM, given the current
stack top pointer position p(H), any hidden state
hi where i > p(H) will not be read until it is
overwritten by a Push operation.

What follows from this observation is the guar-
antee that we can always safely overwrite hidden
states hi that are indexed higher than the current
stack top pointer, because it is known that any read
operation on these states will happen after another
overwrite. This allows us to do the extra computa-
tion anyway when Pop operation is fed, because
the extra computation, especially updating hp(H)+1,
will not harm the validity of the hidden states at
any time step.

Algorithm 1 gives the final forward computation
for the Parallelizable StackLSTM. Note that this
algorithm does not contain any if-statements that
depends on stack operations and hence is homoge-
neous when grouped into batches that are consisted
of multiple operations trajectories.

In transition systems (Nivre, 2008; Kuhlmann
et al., 2011) used in real tasks (e.g., transition-based
parsing) as shown in Table 1, it should be noted that
more than push and pop operations are needed
for the StackLSTM. Fortunately, for Arc-Eager and
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Algorithm 1: Forward Computation for Paral-
lelizable StackLSTM
Input: input vector xt

discrete stack operation op
Output: current top hidden state hp(H)

h_prev← hp(H);
h← LSTM(xt, h_prev);
hp(H)+1 ← h;
p(H)← p(H) + op;
return hp(H);

Arc-Hybrid transition systems, we can simply add
a hold operation, which is denoted by value 0 for
the discrete operation input. For that reason, we
will focus on parallelization of these two transition
systems for this paper. It should be noted that both
observations discussed above are still valid after
adding the hold operation.

4 Experiments

4.1 Setup

We implemented2 the architecture described above
in PyTorch (Paszke et al., 2017). We implemented
the batched stack as a float tensor wrapped in a
non-leaf variable, thus enabling in-place operations
on that variable. At each time step, the batched
stack is queried/updated with a batch of stack head
positions represented by an integer vector, an op-
eration made possible by gather operation and
advanced indexing. Due to this implementation
choice, the stack size has to be determined at ini-
tialization time and cannot be dynamically grown.
Nonetheless, a fixed stack size of 150 works for all
the experiments we conducted.

We use the dependency parsing task to evaluate
the correctness and the scalability of our method.
For comparison with previous work, we follow
the architecture introduced in Dyer et al. (2015);
Ballesteros et al. (2017) and chose the Arc-Hybrid
transition system for comparison with previous
work. We follow the data setup in Chen and Man-
ning (2014); Dyer et al. (2015); Ballesteros et al.
(2017) and use Stanford Dependency Treebank
(de Marneffe et al., 2006) for dependency parsing,
and we extract the Arc-Hybrid static oracle using
the code associated with Qi and Manning (2017).
The part-of-speech (POS) tags are generated with
Stanford POS-tagger (Toutanova et al., 2003) with

2https://github.com/shuoyangd/hoolock
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Figure 1: Training speed at different batch size. Note
that the x-axis is in log-scale in order to show all the
data points properly.

a test set accuracy of 97.47%. We use exactly the
same pre-trained English word embedding as Dyer
et al. (2015).

We use Adam (Kingma and Ba, 2014) as the opti-
mization algorithm. Following Goyal et al. (2017),
we apply linear warmup to the learning rate with an
initial value of τ = 5× 10−4 and total epoch num-
ber of 5. The target learning rate is set by τ multi-
plied by batch size, but capped at 0.02 because we
find Adam to be unstable beyond that learning rate.
After warmup, we reduce the learning rate by half
every time there is no improvement for loss value
on the development set (ReduceLROnPlateau).
We clip all the gradient norms to 5.0 and apply a
L2-regularization with weight 1× 10−6.

We started with the hyper-parameter choices in
Dyer et al. (2015) but made some modifications
based on the performance on the development set:
we use hidden dimension 200 for all the LSTM
units, 200 for the parser state representation before
the final softmax layer, and embedding dimension
48 for the action embedding.

We use Tesla K80 for all the experiments, in or-
der to compare with Neubig et al. (2017b); Dyer
et al. (2015). We also use the same hyper-parameter
setting as Dyer et al. (2015) for speed comparison
experiments. All the speeds are measured by run-
ning through one training epoch and averaging.

4.2 Results

Figure 1 shows the training speed at different batch
sizes up to 256.3 The speed-up of our model is

3At batch size of 512, the longest sentence in the training
data cannot be fit onto the GPU.
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b
dev test
UAS LAS UAS LAS

1* 92.50* 89.79* 92.10* 89.61*

8 92.93 90.42 92.54 90.11

16 92.62 90.19 92.53 90.13

32 92.43 89.89 92.31 89.94

64 92.53 90.04 92.22 89.73

128 92.39 89.73 92.55 90.02

256 92.15 89.46 91.99 89.43

Table 2: Dependency parsing result with various train-
ing batch size b and without composition function.
The results marked with asterisks were reported in the
Ballesteros et al. (2017).

close to linear, which means there is very little over-
head associated with our batching scheme. Quan-
titatively, according to Amdahl’s Law (Amdahl,
1967), the proportion of parallelized computations
is 99.92% at batch size 64. We also compared
our implementation with the implementation that
comes with Dyer et al. (2015), which is imple-
mented in C++ with DyNet (Neubig et al., 2017a).
DyNet is known to be very optimized for CPU com-
putations and hence their implementation is reason-
ably fast even without batching and GPU accelera-
tion, as shown in Figure 1.4 But we would like to
point out that we focus on the speed-up we are able
to obtain rather than the absolute speed, and that
our batching scheme is framework-universal and
superior speed might be obtained by combining our
scheme with alternative frameworks or languages
(for example, the torch C++ interface).

The dependency parsing results are shown in Ta-
ble 2. Our implementation is able to yield better
test set performance than that reported in Balles-
teros et al. (2017) for all batch size configurations
except 256, where we observe a modest perfor-
mance loss. Like Goyal et al. (2017); Keskar et al.
(2016); Masters and Luschi (2018), we initially
observed more significant test-time performance
deterioration (around 1% absolute difference) for
models trained without learning rate warmup, and
concurring with the findings in Goyal et al. (2017),
we find warmup very helpful for stabilizing large-
batch training. We did not run experiments with
batch size below 8 as they are too slow due to

4Measured on one core of an Intel Xeon E7-4830 CPU.

Python’s inherent performance issue.

5 Related Work

DyNet has support for automatic minibatching
(Neubig et al., 2017b), which figures out what com-
putation is able to be batched by traversing the
computation graph to find homogeneous compu-
tations. While we cannot directly compare with
that framework’s automatic batching solution for
StackLSTM5, we can draw a loose comparison
to the results reported in that paper for BiLSTM
transition-based parsing (Kiperwasser and Gold-
berg, 2016). Comparing batch size of 64 to batch
size of 1, they obtained a 3.64x speed-up on CPU
and 2.73x speed-up on Tesla K80 GPU, while our
architecture-specific manual batching scheme ob-
tained 60.8x speed-up. The main reason for this
difference is that their graph-traversing automatic
batching scheme carries a much larger overhead
compared to our manual batching approach.

Another toolkit that supports automatic mini-
batching is Matchbox6, which operates by analyz-
ing the single-instance model definition and deter-
ministically convert the operations into their mini-
batched counterparts. While such mechanism elim-
inated the need to traverse the whole computation
graph, it cannot homogenize the operations in each
branch of if. Instead, it needs to perform each op-
eration separately and apply masking on the result,
while our method does not require any masking.
Unfortunately we are also not able to compare with
the toolkit at the time of this work as it lacks sup-
port for several operations we need.

Similar to the spirit of our work, Bowman et al.
(2016) attempted to parallelize StackLSTM by us-
ing Thin-stack, a data structure that reduces the
space complexity by storing all the intermediate
stack top elements in a tensor and use a queue to
control element access. However, thanks to Py-
Torch, our implementation is not directly depen-
dent on the notion of Thin-stack. Instead, when
an element is popped from the stack, we simply
shift the stack top pointer and potentially re-write
the corresponding sub-tensor later. In other words,
there is no need for us to directly maintain all the in-
termediate stack top elements, because in PyTorch,
when the element in the stack is re-written, its un-
derlying sub-tensor will not be destructed as there

5This is due to the fact that DyNet automatic batching
cannot handle graph structures that depends on runtime input
values, which is the case in StackLSTM.

6https://github.com/salesforce/matchbox
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are still nodes in the computation graph that point
to it. Hence, when performing back-propagation,
the gradient is still able to flow back to the ele-
ments that are previously popped from the stack
and their respective precedents. Hence, we are
also effectively storing all the intermediate stack
top elements only once. Besides, Bowman et al.
(2016) didn’t attempt to eliminate the conditional
branches in the StackLSTM algorithm, which is
the main algorithmic contribution of this work.

6 Conclusion

We propose a parallelizable version of StackLSTM
that is able to fully exploit the GPU parallelism
by performing minibatched training. Empirical
results show that our parallelization scheme yields
comparable performance to previous work, and our
method scales up very linearly with the increasing
batch size.

Because our parallelization scheme is based on
the observation made in section 1, we cannot incor-
porate batching for neither Arc-Standard transition
system nor the token-level composition function
proposed in Dyer et al. (2015) efficiently yet. We
leave the parallelization of these architectures to
future work.

Our parallelization scheme makes it feasible to
run large-data experiments for various tasks that
requires large training data to perform well, such as
RNNG-based syntax-aware neural machine trans-
lation (Eriguchi et al., 2017).
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Abstract

Procedural text, which describes entities and
their interactions as they undergo some pro-
cess, depicts entities in a uniquely nuanced
way. First, each entity may have some ob-
servable discrete attributes, such as its state
or location; modeling these involves impos-
ing global structure and enforcing consistency.
Second, an entity may have properties which
are not made explicit but can be effectively in-
duced and tracked by neural networks. In this
paper, we propose a structured neural archi-
tecture that reflects this dual nature of entity
evolution. The model tracks each entity recur-
rently, updating its hidden continuous repre-
sentation at each step to contain relevant state
information. The global discrete state struc-
ture is explicitly modelled with a neural CRF
over the changing hidden representation of the
entity. This CRF can explicitly capture con-
straints on entity states over time, enforcing
that, for example, an entity cannot move to
a location after it is destroyed. We evaluate
the performance of our proposed model on QA
tasks over process paragraphs in the PROPARA
dataset (Dalvi et al., 2018) and find that our
model achieves state-of-the-art results.

1 Introduction

Many reading comprehension question answering
tasks (Richardson et al., 2013; Rajpurkar et al.,
2016; Joshi et al., 2017) require looking at primar-
ily one point in the passage to answer each ques-
tion, or sometimes two or three (Yang et al., 2018;
Welbl et al., 2018). As a result, modeling surface-
level correspondences can work well (Seo et al.,
2017) and holistic passage comprehension is not
necessary. However, certain QA settings require
deeper analysis by focusing specifically on enti-
ties, asking questions about their states over time
(Weston et al., 2015; Long et al., 2016), combina-

tion in recipes (Bosselut et al., 2018), and partic-
ipation in scientific processes (Dalvi et al., 2018).
These settings then suggest more highly structured
models as a way of dealing with the more highly
structured tasks. One crucial aspect of such texts is
the way an entity’s state evolves with both discrete
(observable state and location changes) and con-
tinuous (changes in unobserved hidden attributes)
phenomena going on. Additionally, the discrete
changes unfold in a way that maintains the state
consistency: an entity can not be destroyed before
it even starts to exist.

In this work, we present a model which both re-
currently tracks the entity in a continuous space
while imposing discrete constraints using a condi-
tional random field (CRF). We focus on the sci-
entific process understanding setting introduced in
Dalvi et al. (2018). For each entity, we instantiate
a sentence-level LSTM to distill continuous state
information from each of that entity’s mentions.
Separate LSTMs integrate entity-location infor-
mation into this process. These continuous com-
ponents then produce potentials for a sequential
CRF tagging layer, which predicts discrete entity
states. The CRF’s problem-specific tag scheme,
along with transition constraints, ensures that the
model’s predictions of these observed entity prop-
erties are structurally coherent. For example, in
procedural texts, this involves ensuring existence
before destruction and unique creation and de-
struction points. Because we use global inference,
identifying implicit event creation or destruction
is made easier, since the model resolves conflicts
among competing time steps and chooses the best
time step for these events during sequence predic-
tion.

Past approaches in the literature have typically
been end-to-end continuous task specific frame-
works (Henaff et al., 2017; Bosselut et al., 2018),
sometimes for tasks that are simpler and more syn-
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Figure 1: Task and our proposed model. Top: raw text descriptions are annotated with entity-state change informa-
tion; we modify this in a rule-based way for our model. Bottom: our model. Entity mention and verb information
is aggregated in per-entity LSTMs (right). A CRF layer then predicts entity state. A separate sentence-level LSTM
(left) tracks each entity-location pair using the combined entity and location mention information.

thetic (Weston et al., 2015), or continuous entity-
centric neural language models (Clark et al., 2018;
Ji et al., 2017). For process understanding specifi-
cally, past work has effectively captured global in-
formation (Dalvi et al., 2018) and temporal char-
acteristics (Das et al., 2019). However, these mod-
els do not leverage the structure constraints of the
problem, or only handle them heuristically (Tan-
don et al., 2018). We find that our model out-
performs these past approaches on the PROPARA

dataset of Dalvi et al. (2018) with a significant
boost in questions concerning entity state, regard-
less of the location.

2 Model

We propose a structured neural model for the pro-
cess paragraph comprehension task of Dalvi et al.
(2018). An example from their dataset is shown in
Figure 1. It consists of annotation over a process
paragraph w = {wi}Pi=1 of P tokens described by
a sequence of T sentences s = {st}Tt=1. A pre-
specified set of entities E = {ek}mk=1 is given as
well. For each entity, gold annotation is provided
consisting of the state (EXISTS, MOVES, etc.) and
location (soil, leaf ) after each sentence. From this
information, a set of questions about the process
can be answered deterministically as outlined in
Tandon et al. (2018).

Our model, as depicted in Fig. 1, consists of
two core modules: (i) state tracking, and (ii) lo-
cation tracking. We follow past work on neural
CRFs (Collobert et al., 2011; Durrett and Klein,
2015; Lample et al., 2016), leveraging continuous
LSTMs to distill information and a discrete CRF
layer for prediction.

2.1 State Tracking

This part of the model is charged with modeling
each entity’s state over time. Our model places a
distribution over state sequences y given a passage
w and an entity e: P (y|w, e).

Contextual Embeddings Our model first com-
putes contextual embeddings for each word in
the paragraph using a single layered bidirectional
LSTM. Each token word wi is encoded as a vec-
tor xi = [emb(wi); vi] which serves as input to
the LSTM. Here, emb(wi) ∈ Rd1 is an embed-
ding for the word produced by either pre-trained
GloVe (Pennington et al., 2014) or ELMo (Peters
et al., 2018) embeddings and vi is a scalar binary
indicator if the current word is a verb. We denote
by hi = LSTM([xi]) the LSTM’s output for the
ith token in w.

Entity Tracking LSTM To track entities across
sentences for state changes, we use another task
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specific bidirectional LSTM on top of the base
LSTM which operates at the sentence level. The
aim of this BiLSTM is to get a continuous rep-
resentation of the entity’s state at each time step,
since not all time steps mention that entity. This
representation can capture long-range information
about the entity’s state which may not be summa-
rized in the discrete representation.

For a fixed entity e and each sentence st in the
paragraph, the input to the entity tracking LSTM
is the contextual embedding of the mention loca-
tion1 of the entity e in st, or a mask vector when
the entity isn’t present in st. Let xe

t denote the
representation of entity e in sentence t. Then

xe
t =

{
[he

t ;h
v
t ], if e ∈ st

zero vector, otherwise
(1)

where he
t and hv

t denote the contextual embed-
dings of the entity and the associated verb, respec-
tively, from the base BiLSTM. In case of multiple
tokens, a mean pooling over the token represen-
tations is used. Here, the information about verb
is extracted using POS tags from an off-the-shelf
POS tagger. The entity tracking LSTM then pro-
duces representations h̃e

t = LSTM([xe
t ]).

Neural CRF We use the output of the entity
tracking BiLSTM to generate emission potentials
for each tag in our possible tag set at each time
step t:

φ(yt, t,w, e) = WT
yth̃

e
t (2)

where W is a learnable parameter matrix. For the
specific case of entity tracking, we propose a 6 tag
scheme where the tags are as follows:

Tags Description

OB , OA None state before and after existence, resp.
C,D Creation and destruction event for entity, resp.
E Exists in the process without any state change
M Entity moves from loca to locb

Table 1: Proposed tag scheme for the neural CRF
based model for entity tracking.

Additionally, we train a transition matrix to get
transition potentials between tags which we de-
note byψ(yi−1, yi) and two extra tags: 〈START〉
and 〈STOP〉. Finally, for a tag sequence y, we

1We use mention location to differentiate these from the
physical entity locations present in this QA domain.

get the probability as:

P (y|w, e)∝exp
( T∑

i=0

φi(yi,w, e)+ψ(yi−1, yi)
)

(3)

2.2 Location Tracking

To complement entity’s state changes with the
change in physical location of the entity, we use
a separate recurrent module to predict the loca-
tions. Given a set of potential locations L =
(l1, l2, . . . , ln), where each lj ∈ L is a continuous
span in w, the location predictor outputs a distri-
bution for a passage w and entity e, at a given time
step t as P (l|w, e, t).

Identifying potential locations Instead of con-
sidering all the spans of text as candidates for po-
tential locations, we systematically reduce the set
of locations by utilizing the part of speech (POS)
tags of the tokens, whereby extracting all the max-
imal noun and noun + adjective spans as potential
physical location spans. Thus, using an off-the-
shelf POS tagger, we get a set L = (l1, l2, . . . , ln)
of potential locations for each w. These heuristics
lead to a 85% recall classifier for locations which
are not null or unk.2

Location Tracking LSTM For a given location
l and an entity e, we take the mean of the hid-
den representations of tokens in the span of l in st
(or else a mask vector) analogous to the input for
entity state tracking LSTM, concatenating it with
the mention location of the entity e in st, as input
for time-step t for the tracking this entity-location
pair with h̃e,l

t = LSTM
(
[xe,l

t ]
)

. Fig. 1 shows
an example where we instantiate location tracking
LSTMs for each pair of entity e and potential loca-
tion l. In the example, e ∈ {water, CO2, sugar}
and l ∈ {soil, leaf}.

Softmax over Location Potentials The output
of the location tracking LSTM is then used to gen-
erate potentials by for each entity e and location
l pair for a time step t. Taking softmax over the
potentials gives us a probability distribution over
the locations l at that time step t for that entity e:
pe,lt = softmax(wT

loch̃
e,l
t )

2Major non-matching cases include long phrases like
“deep in the earth”, “side of the fault line”, and “area of high
elevation” where the heuristics picks “earth”, “fault line”, and
“area”, respectively.
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Model Task-1 Task-2

Cat-1 Cat-2 Cat-3 Macro-Avg Micro-Avg Precision Recall F1

EntNet (Henaff et al., 2017) 51.62 18.83 7.77 26.07 25.96 50.2 33.5 40.2
QRN (Seo et al., 2017) 52.37 15.51 10.92 26.26 26.49 55.5 31.3 40.0

ProGlobal (Dalvi et al., 2018) 62.95 36.39 35.90 45.08 45.37 46.7 52.4 49.4
ProStruct (Tandon et al., 2018) - - - - - 74.2 42.1 53.75

KG-MRC (Das et al., 2019) 62.86 40.00 38.23 47.03 46.62 64.52 50.68 56.77

This work: NCET 70.55 44.57 41.34 52.15 52.31 64.2 53.9 58.6
This work: NCET + ELMo 73.68 47.09 41.03 53.93 53.97 67.1 58.5 62.5

Table 2: Results on the sentence-level (Task-1) and document-level (Task-2) evaluation task of the PROPARA
dataset on the test set. Our proposed CRF-based model achieves state of the art results on both the tasks compared
to the previous work in (Das et al., 2019). Incorporating ELMo further improves the performance for the state
tracking module, as we see from the gains in Cat-1 and Cat-2.

2.3 Learning and Inference

The full model is trained end-to-end by minimiz-
ing the negative log likelihood of the gold state
tag sequence for each entity and process paragraph
pair. The location predictor is only trained to make
predictions when the gold location is defined for
that entity in the dataset (i.e., the entity exists).

At inference time, we perform a global state
change inference coupled with location prediction
in a pipelined fashion. First, we use the state track-
ing module of the proposed model to predict the
state change sequence with the maximum score
using Viterbi decoding. Subsequently, we predict
locations where the predicted tag is either create
or move, which is sufficient to identify the object’s
location at all times since these are the only points
where it can change.

3 Experiments

We evaluate the performance of the proposed
model on the two comprehension tasks of the
PROPARA dataset (Dalvi et al., 2018). This dataset
consists of 488 crowdsourced real world process
paragraphs about 183 distinct topics in the science
genre. The names of the participating entities and
their existence spans are identified by expert an-
notators. Finally, crowd workers label locations
of participant entities at each time step (sentence).
The final data consists of 3.3k sentence with an av-
erage of 6.7 sentences and 4.17 entities per process
paragraph. We compare our model, the Neural
CRF Entity Tracking (NCET) model, with bench-
mark systems from past work.

3.1 Task 1: Sentence Level

This comprehension task concerns answering 10
fine grained sentence level templated questions

grouped into three categories: (Cat-1) Is e Cre-
ated (Moved, Destroyed) in the process (yes/no for
each)? (Cat-2) When was e Created (Moved, De-
stroyed)? (Cat-3) Where was e Created, (Moved
from/to, Destroyed)? The ground truth for these
questions were extracted by the application of sim-
ple rules to the annotated location state data. Note
that Cat-1 and Cat-2 can be answered from our
state-tracking model alone, and only Cat-3 in-
volves location.

As shown in Table 2, our model using GloVe
achieves state of the art performance on the test
set. The performance gain is attributed to the gains
in Cat-1 and Cat-2 (7.69% and 4.57% absolute),
owing to the structural constraints imposed by the
CRF layer. The gain in Cat-3 is relatively lower as
it is the only sub-task involving location tracking.
Additionally, using the frozen ELMo embedding
the performance further improves with major im-
provements in Cat-1 and Cat-2.

3.2 Task 2: Document Level

The document level evaluation tries to capture a
more global context where the templated3 ques-
tions set forth concern about the whole paragraph
structure: (i) What are the inputs to the process?
(ii) What are the outputs of the process? (iii)
What conversions occur, when and where? (iv)
What movements occur, when and where? Table 2
shows the performance of the model on this task.
We achieve state of the art results with a F1 of
58.6.

3Inputs refer to the entities which existed prior to the pro-
cess and are destroyed during it. Outputs refer to the entities
which get created in the process without subsequent destruc-
tion. Conversion refers to the simultaneous event which in-
volves creation of some entities coupled with destruction of
others.
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Model C-1 C-2 C-3 Mac. Mic.

NCET 72.27 46.08 40.82 53.06 53.13

Tag Set 1 71.53 41.89 41.42 51.61 51.94
Tag Set 2 71.97 41.85 39.71 51.18 51.43
No trans. 71.68 44.22 40.38 52.09 52.24

No verb 73.16 42.58 41.85 52.53 52.85
Attn. 61.69 22.80 36.44 40.31 41.38

Table 3: Ablation studies for the proposed architecture.

3.3 Model Ablations

We now examine the performance of the model by
comparing its variants along two different dimen-
sions: (i) modifying the structural constraints for
the CRF layer, and (ii) making changes to the con-
tinuous entity tracking.

Discrete Structural Constraints We experi-
ment with two new tag schemes: (i) tag1 : OA =
OB , and (ii) tag2 : OA = E = OB . As shown
in Table 3, the proposed 6 tag scheme outperforms
the simpler tag schemes indicating that the model
is able to gain more from a better structural anno-
tation. Additionally, we experiment with remov-
ing the transition features from our CRF layer,
though we still use structural constraints. Taken
together, these results show that carefully captur-
ing the domain constraints in how entities change
over time is an important factor in our model.

Continuous Entity Tracking To evaluate the
importance of different modules in our continu-
ous entity tracking model, we experiment with
(i) removing the verb information, and (ii) taking
attention-based input for the entity tracking LSTM
instead of the entity-mention information. This
way instead of giving a hard attention by focus-
ing exactly on the entity, we let the model learn
soft attention across the tokens for each time-step.
The model can now learn to look anywhere in a
sentence for entity information, but is not given
prior knowledge of how to do so. As shown, using
attention-based input for entity tracking performs
substantially worse, indicating the structural im-
portance of passing the mask vector.

4 Conclusion

In this paper, we present a structured architecture
for entity tracking which leverages both the dis-
crete and continuous characterization of the en-
tity evolution. We use a neural CRF approach to

model our discrete constraints while tracking enti-
ties and locations recurrently. Our model achieves
state of the art results on the PROPARA dataset.
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Abstract

We propose structured encoding as a novel ap-
proach to learning representations for relations
and events in neural structured prediction. Our
approach explicitly leverages the structure of
available relation and event metadata to gener-
ate these representations, which are parameter-
ized by both the attribute structure of the meta-
data as well as the learned representation of
the arguments of the relations and events. We
consider affine, biaffine, and recurrent oper-
ators for building hierarchical representations
and modelling underlying features.
Without task-specific knowledge sources or
domain engineering, we significantly improve
over systems and baselines that neglect the
available metadata or its hierarchical struc-
ture. We observe across-the-board improve-
ments on the BeSt 2016/2017 sentiment anal-
ysis task of at least 2.3 (absolute) and 10.6%
(relative) F-measure over the previous state-
of-the-art.

1 Introduction

Information extraction has long been an active
subarea of natural language processing (NLP)
(Onyshkevych et al., 1993; Freitag, 2000). A
particularly important class of extraction tasks is
ERE detection in which an object, typically an el-
ement in a knowledge base, is created for each
ENTITY, RELATION, and EVENT identified in a
given text (Song et al., 2015). In some variants
of ERE detection, metadata descriptions and spe-
cific mentions of the ERE objects also need to be
recorded as shown graphically in Figure 1. Sub-
sequent second-order extraction tasks can further
build upon first-order ERE information.

In this work, in particular, we consider the
second-order structured prediction task studied in
the 2016/2017 Belief and Sentiment analysis eval-
uations (BeSt) (Rambow et al., 2016a): given a

Figure 1: ERE graph for “China, a growing world
power, is developing its army.” Entities are denoted in
blue, entity mentions in green, and relations in red.

document and its EREs (including metadata and
mentions) determine the sentiment of each EN-
TITY towards every RELATION and EVENT in the
document.1

Until quite recently, existing approaches to this
type of second-order extraction task have relied
heavily on domain knowledge and feature engi-
neering (Rambow et al., 2016b; Niculae et al.,
2016; Dalton et al., 2016; Gutirrez et al., 2016).
And while end-to-end neural network methods
that bypass feature engineering have been devel-
oped for information extraction problems, they
have largely been applied to first-order extrac-
tion tasks (Katiyar and Cardie, 2016; Miwa and
Bansal, 2016; Katiyar and Cardie, 2017; Orr et al.,
2018). Possibly more importantly, these tech-
niques ignore, or have no access to, the internal
structure of relations and events.

We hypothesize that utilizing the metadata-

1The BeSt evaluation also requires the identification of
sentiment towards entities. For reasons that will become clear
later, we do not consider entity-to-entity sentiment here.
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induced structure of relations and events will
improve performance on the second-order sen-
timent analysis task. To this end, we propose
structured encoding as an approach towards learn-
ing representations for relations and events in end-
to-end neural structured prediction. In particular,
our approach not only models available metadata
but also its hierarchical nature.

We evaluate the structured encoding approach
on the BeSt 2016/2017 dataset. Without
sentiment-specific resources, we are able to see
significant improvements over baselines that do
not take into account the available structure. We
achieve state-of-the-art F1 scores of 22.9 for dis-
cussion forum documents and 14.0 for newswire
documents. We also openly release our implemen-
tation to promote further experimentation and re-
producible research.

2 Task Formulation

In the BeSt sentiment analysis setting, we are
given a corpus D where every document di ∈ D
is annotated with the set of entities Ei, relation
mentions Ri, and event mentions2 EV i present in
di. For each entity ej ∈ Ei, we are additionally
given the span, or variable-length n-gram, associ-
ated with (each of) its mention(s). Similarly, for
each relation and event, we are given metadata
specifications of its type and subtype as well as the
arguments that constitute it. Our task is then the
following: for each potential source-target pair,
(src, trg) ∈ (Ei × Ri) ∪ (Ei × EV i), predict the
sentiment (one of POSITIVE, NEGATIVE or NONE)
of the src entity towards the trg relation/event.

3 Model

Our structured encoding model is depicted in Fig-
ure 2. Its goal is to compute representations for
the src, trg, and context c; we then pass the con-
catenated triple into a FFNN for sentiment classi-
fication. We describe the model components in the
paragraphs below.

Word and Entity Mention Representation
Given a span s = w1, . . . , w|s| of the input doc-
ument, a noncontextual embedding mapping f ,
and a contextual mapping g, we create the ini-
tial word representation wt for each word wt in s
by concatenating its noncontextual and contextual

2In this work, the distinction between relations/events and
relation/event mentions is not considered, so we use ‘relation’
and ‘event’ as a shorthand.

Figure 2: Model for representing the source (blue), tar-
get (red), and context (yellow) for the directed senti-
ment analysis task.

embedding. We then pass the initial word repre-
sentations through a bidirectional RNN to obtain
a domain-specific contextual word representation
ht.3

wt = [f(wt); g(wt|s)]
ht = [

−−−→
RNN(wt);

←−−−
RNN(wt)]

(1)

For each entity mention s, we compute a represen-
tation of s as the mean-pooling of h1, . . . ,h|s|.

Source Encoding For each source entity ej we
are given its grounded entity mentions e1j , . . . , e

n
j .

Similar to the representation methodology for
entity-mentions, we represent each source as the
average of its entity mention representations.

ej =
1

n

n∑

i=1

1∣∣[eij ]
∣∣

|[eij ]|∑

t=1

ht (2)

The dataset is also annotated with entities corre-
sponding to the authors of articles. To more appro-
priately handle these entities, we learn two author
embeddings. The post author embedding repre-
sents the source entity if the target occurs in a post
written by the source. If this is not the case, we
use the other author embedding.

Target Encoding To encode targets, we lever-
age the hierarchical structure provided in the rela-
tion and event metadata. Initially, we construct a
fixed-length representation for each of the target’s
arguments, which are (role, entity mention) pairs,
(r, ekj ), via concatenation (flat) or an affine map
(affine) as follows (where Ur and vr are learned):

argr
j,k = Ure

k
j (affine)

argr
j,k = [vr; e

k
j ] (flat)

(3)

For relations, given that the dataset enforces the
constraint of two arguments per relation, we pool

3This process is not shown in Figure 2.
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the relation vectors by concatenating them. On the
other hand, for events, as the number of arguments
is variable, we propose to pool them with a GRU
encoder (Cho et al., 2014). This allows for us to
deal with the variable number of arguments and
learn compositional relationships between differ-
ent arguments (arguments are ordered by their se-
mantic roles in the overarching event).

Both relations and events are annotated with
their types and subtypes. Based on our hypothe-
sis that hierarchical modeling of structure is im-
portant in encoding targets, we consider encoding
the subtype and type using flat concatenation or
learned affine maps applied successively in a sim-
ilar fashion to role encoding for arguments.

Context Representation We encode the source
and target independently, capturing the inductive
bias that these two components of the input have
stand-alone meanings. We find that this is compu-
tationally efficient as opposed to approaches that
model the source and target on a pair-specific ba-
sis. We introduce source-target interaction into
the architecture by modeling the textual context
in which they appear: first select a source-target
specific context span; then construct a fixed-length
encoding of the context using an attention mech-
anism conditional on the source-target pair. To
identify the context span, we identify the closest
mention of the source that precedes the target. We
begin the context span starting at the first word be-
yond the end of this mention (wi). Similarly, we
conclude the span at the last word preceding the
target (wj). Denoting the context span as [wi, wj ],
we compute the context vector c as (where the U
maps are learned):
usrc = Usrc src; utrg = Utrg trg; ut = Uc ht

αt = uT
t (usrc � utrg)

α = softmax([αi, . . . , αj ]
T )

c = [hi, . . . ,hj ]α

(4)
We truncate long spans (length greater than 20) to
be the 20 words preceding the start of the target
(i = j − 20).

4 Results and Analysis

Dataset and Evaluation We use the LDCE114
dataset that was used in the BeSt 2016/2017 En-
glish competition. The dataset contains 165 doc-
uments, 84 of which are multi-post discussion fo-
rums (DF) and 81 are single-post newswire arti-

DF NW
Length (in num. tokens) 750.36 538.96
Relation Pairs 775.34 1474.51
Relation Positive Examples 1.32 1.02
Event Pairs 810.36 1334.53
Event Positive Examples 2.60 3.98

Table 1: Average document statistics

cles (NW), and is summarized in Table 1. We ob-
serve that the data is extremely sparse with respect
to positive examples: only 0.203% of all source-
target pairs are positive examples with 431 pos-
itive examples in 211310 candidate pairs in the
training set.

Consistent with the BeSt evaluation framework,
we report the microaverage adjusted F1 score4 and
treat NONE as the negative class and both POSI-
TIVE and NEGATIVE as the positive classes. The
BeSt metric introduces a notion of partial credit
to reward predictions that are incorrect but share
global properties with the correct predictions. We
find that this metric is well-suited for structured
prediction treatments of the task that also consider
global structure.

Implementation Details We use frozen word
representations that concatenate noncontextual
300-dimensional GloVe embeddings (Pennington
et al., 2014) and contextual 3072-dimensional
ELMo embeddings (Peters et al., 2018). We use
a 2-layer bidirectional LSTM encoder (Hochreiter
and Schmidhuber, 1997) and consistently use both
a hidden dimensionality of 128 and tanh nonlin-
earities throughout the work. Based on results
on the development set, we use an attention di-
mensionality of 32, a dropout (Srivastava et al.,
2014) probability in all hidden layers of 0.2, and
a batch size of 10 documents. We also find that a
single-layer GRU worked best for event argument
pooling and interestingly find that a unidirectional
GRU is preferable to a bidirectional GRU. The fi-
nal classifier is a single-layer FFNN. The model
is trained with respect to the class-weighted cross
entropy loss where weights are the `1-normalized
vector corresponding to inverse class frequences
and optimized using ADAM (Kingma and Ba,
2014) with the default parameters in PyTorch
(Paszke et al., 2017). All models are trained for
50 epochs.

4Complete results can be found in Appendix A.
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DF NW
Baseline 14.53 7.24
Columbia/GWU 20.69 10.10
Cornell-Pitt-Michigan 19.48 0.70
Target Arg (Sub)Type
Relation Flat Flat 15.2 8.5
Event Flat Flat 15.5 8.5
Both Affine Affine 22.9 14.0

Table 2: Experimental results on the BeSt dataset.
The specified target types are encoded using struc-
tured encoding with the specified argument and sub-
type/type encoding methods. The other target type is
encoded with affine maps for the arguments, subtypes,
and types.

Overall Results In Table 2, the upper half of
the table describes the official BeSt baseline sys-
tem as well as the top systems on the task. The
baseline employs a rule-based heuristic that con-
siders pairs for which the source is the article
author as potential positive examples and clas-
sifies positive examples as NEGATIVE (the more
frequent positive class) (Rambow et al., 2016a).
The Columbia/GWU system treats second-order
sentiment classification as first-order relation ex-
traction and extends a relation extraction system
that uses phrase structure trees, dependency trees,
and semantic parses with an SVM using tree ker-
nels (Rambow et al., 2016b). The Cornell-Pitt-
Michigan system employs a rule-based heuristic
to prune candidate pairs in the sense of link pre-
diction and then performs sentiment classification
via multinomial logistic regression (Niculae et al.,
2016). They find that the link prediction system
sometimes predicts spurious links and permit the
classifier to overrule the link prediction judgment
by predicting NONE.

Note these results include entities as targets and
we argue that this makes the task comparatively
easier. In particular, sparsity and dataset size are
less of a concern for entity targets as positive ex-
amples are equally frequent (0.196%) and there
are significantly more entity pairs (438165 pairs)
than relation and event targets combined (211310
pairs).5

In the lower half of Table 2, we report results
for different structured encoding approaches. As
we simultaneously predict sentiment towards re-
lation targets and event targets, we find that the

5Additionally, entities are unstructured targets and there-
fore are not well-suited for the contributions of this work.

Embeddings Encoder DF NW
GloVe + ELMo Bidi-LSTM 22.9 14.0

GloVe + ELMo* Bidi-LSTM 8.5 2.4
GloVe Bidi-LSTM 12.6 8.3
ELMo Bidi-LSTM 15.0 9.9

GloVe + ELMo Uni-LSTM 20.9 13.6
GloVe + ELMo none 22.1 13.6

Table 3: Experimental results on the effects of word
representations. * indicates embeddings are not frozen.

encoding method for one target category tends to
improve performance on the other due to shared
representations (refer to Appendix A). We find that
using affine encoders, which is consistent with the
inductive bias of hierarchical encoding, performs
best in all settings.

Word Representations To understand the effect
of pretraining given its pervasive success through-
out NLP as well as the extent to which domain-
specific LSTM encoders are beneficial, we per-
form experiments on the development set. When
the LSTM encoder is omitted, we introduce an
affine projection that yields output vectors of the
same dimension as the original LSTM (128). This
ensures that the capacity of subsequent model
components is unchanged but means there is no
domain-specific context modelling. As shown
in Table 3, the combination of contextual and
noncontextual embeddings leads to an improve-
ment but the contextual embeddings perform bet-
ter stand-alone. In doing this comparison, we con-
sider pretrained embeddings of differing dimen-
sionalities however since in most settings the em-
beddings are frozen, we do not find that this sig-
nificantly effects the run time or model capacity.
When embeddings are learned, we observe a sub-
stantial decline in performance which we posit is
due to catastrophic forgetting due to noisy and er-
ratic signal from the loss. The results further indi-
cate that a bidirectional task oriented encoder im-
proves performance.

5 Conclusion

In this paper, we propose structured encoding to
model structured targets in semantic link predic-
tion. We demonstrate that this framework along
with pretrained word embeddings can be an ef-
fective combination as we achieve state-of-the-
art performance on several metrics in the BeSt
2016/2017 Task in English.
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Abstract

We propose a lightly-supervised approach for
information extraction, in particular named en-
tity classification, which combines the bene-
fits of traditional bootstrapping, i.e., use of
limited annotations and interpretability of ex-
traction patterns, with the robust learning ap-
proaches proposed in representation learning.
Our algorithm iteratively learns custom em-
beddings for both the multi-word entities to
be extracted and the patterns that match them
from a few example entities per category. We
demonstrate that this representation-based ap-
proach outperforms three other state-of-the-
art bootstrapping approaches on two datasets:
CoNLL-2003 and OntoNotes. Additionally,
using these embeddings, our approach outputs
a globally-interpretable model consisting of a
decision list, by ranking patterns based on their
proximity to the average entity embedding in
a given class. We show that this interpretable
model performs close to our complete boot-
strapping model, proving that representation
learning can be used to produce interpretable
models with small loss in performance. This
decision list can be edited by human experts to
mitigate some of that loss and in some cases
outperform the original model.

1 Introduction

One strategy for mitigating the cost of super-
vised learning in information extraction (IE) is
to bootstrap extractors with light supervision
from a few provided examples (or seeds). Tra-
ditionally, bootstrapping approaches iterate be-
tween learning extraction patterns such as word n-
grams, e.g., the pattern “@ENTITY , former
president” could be used to extract person
names,1 and applying these patterns to extract the
desired structures (entities, relations, etc.) (Carl-
son et al., 2010; Gupta and Manning, 2014, 2015,

1In this work we use surface patterns, but the proposed
algorithm is agnostic to the types of patterns learned.

inter alia). One advantage of this direction is
that these patterns are interpretable, which mit-
igates the maintenance cost associated with ma-
chine learning systems (Sculley et al., 2014).

On the other hand, representation learning has
proven to be useful for natural language pro-
cessing (NLP) applications (Mikolov et al., 2013;
Riedel et al., 2013; Toutanova et al., 2015, 2016,
inter alia). Representation learning approaches of-
ten include a component that is trained in an unsu-
pervised manner, e.g., predicting words based on
their context from large amounts of data, mitigat-
ing the brittle statistics affecting traditional boot-
strapping approaches. However, the resulting real-
valued embedding vectors are hard to interpret.

Here we argue that these two directions are
complementary, and should be combined. We pro-
pose such a bootstrapping approach for informa-
tion extraction (IE), which blends the advantages
of both directions. As a use case, we instanti-
ate our idea for named entity classification (NEC),
i.e., classifying a given set of unknown entities
into a predefined set of categories (Collins and
Singer, 1999). The contributions of this work are:
(1) We propose an approach for bootstrapping
NEC that iteratively learns custom embeddings for
both the multi-word entities to be extracted and the
patterns that match them from a few example enti-
ties per category. Our approach changes the objec-
tive function of a neural network language models
(NNLM) to include a semi-supervised component
that models the known examples, i.e., by attract-
ing entities and patterns in the same category to
each other and repelling them from elements in
different categories, and it adds an external iter-
ative process that “cautiously” augments the pools
of known examples (Collins and Singer, 1999).
In other words, our contribution is an example of
combining representation learning and bootstrap-
ping.
(2) We demonstrate that our representation learn-

18



ing approach is suitable for semi-supervised NEC.
We compare our approach against several state-
of-the-art semi-supervised approaches on two
datasets: CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) and OntoNotes (Pradhan et al.,
2013). We show that, despite its simplicity, our
method outperforms all other approaches.

(3) Our approach also outputs an interpretation of
the learned model, consisting of a decision list of
patterns, where each pattern gets a score per class
based on the proximity of its embedding to the av-
erage entity embedding in the given class. This
interpretation is global, i.e., it explains the entire
model rather than local predictions. We show that
this decision-list model performs comparably to
the complete model on the two datasets.

(4) We also demonstrate that the resulting system
can be understood, debugged, and maintained by
non-machine learning experts. We compare the
decision-list model edited by human domain ex-
perts with the unedited decision-list model and
see a modest improvement in overall performance,
with some categories getting a bigger boost. This
improvement shows that, for non-ambiguous cat-
egories that are well-defined by the local contexts
captured by our patterns, these patterns truly are
interpretable to end users.

2 Related Work

Bootstrapping is an iterative process that alternates
between learning representative patterns, and ac-
quiring new entities (or relations) belonging to
a given category (Riloff, 1996; McIntosh, 2010).
Patterns and extractions are ranked using either
formulas that measure their frequency and asso-
ciation with a category, or classifiers, which in-
creases robustness due to regularization (Carlson
et al., 2010; Gupta and Manning, 2015). While
semi-supervised learning is not novel (Yarowsky,
1995; Gupta and Manning, 2014), our approach
performs better than some modern implementa-
tions of these methids such as Gupta and Manning
(2014).

Distributed representations of words (Deer-
wester et al., 1990; Mikolov et al., 2013; Levy
and Goldberg, 2014) serve as underlying repre-
sentation for many NLP tasks such as information
extraction and question answering (Riedel et al.,
2013; Toutanova et al., 2015, 2016; Sharp et al.,
2016). Mrkšić et al. (2017) build on traditional
distributional models by incorporating synonymy

and antonymy relations as supervision to fine
tune word vector spaces, using an Attract/Repel
method similar to our idea. However, most of
these works that customize embeddings for a spe-
cific task rely on some form of supervision. In
contrast, our approach is lightly supervised, with
a only few seed examples per category. Batista
et al. (2015) perform bootstrapping for relation ex-
traction using pre-trained word embeddings. They
do not learn custom pattern embeddings that apply
to multi-word entities and patterns. We show that
customizing embeddings for the learned patterns
is important for interpretability.

Recent work has focused on explanations of
machine learning models that are model-agnostic
but local, i.e., they interpret individual model pre-
dictions (Ribeiro et al., 2018, 2016a). In contrast,
our work produces a global interpretation, which
explains the entire extraction model rather than in-
dividual decisions.

Lastly, our work addresses the interpretability
aspect of information extraction methods. Inter-
pretable models mitigate the technical debt of ma-
chine learning (Sculley et al., 2014). For example,
it allows domain experts to make manual, gradual
improvements to the models. This is why rule-
based approaches are commonly used in industry
applications, where software maintenance is cru-
cial (Chiticariu et al., 2013). Furthermore, the
need for interpretability also arises in critical sys-
tems, e.g., recommending treatment to patients,
where these systems are deployed to aid human
decision makers (Lakkaraju and Rudin, 2016).
The benefits of interpretability have encouraged
efforts to either extract interpretable models from
opaque ones (Craven and Shavlik, 1996), or to ex-
plain their decisions (Ribeiro et al., 2016b).

As machine learning models are becoming
more complex, the focus on interpretability has
become more important, with new funding pro-
grams focused on this topic.2 Our approach
for exporting an interpretable model (§3) is sim-
ilar to Valenzuela-Escárcega et al. (2016), but
we start from distributed representations, whereas
they started from a logistic regression model with
explicit features.

2 DARPA’s Explainable AI program: http://www.darpa.
mil/program/explainable-artificial-intelligence.
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3 Approach

Bootstrapping with representation learning

Our algorithm iteratively grows a pool of multi-
word entities (entPoolc) and n-gram patterns
(patPoolc) for each category of interest c, and
learns custom embeddings for both, which we will
show are crucial for both performance and inter-
pretability.

The entity pools are initialized with a few seed
examples (seedsc) for each category. For exam-
ple, in our experiments we initialize the pool for
a person names category with 10 names such
as Mother Teresa. Then the algorithm iteratively
applies the following three steps for T epochs:

(1) Learning custom embeddings: The algorithm
learns custom embeddings for all entities and pat-
terns in the dataset, using the current entPoolcs as
supervision. This is a key contribution, and is de-
tailed in the second part of this section.

(2) Pattern promotion: We generate the patterns
that match the entities in each pool entPoolc,
rank those patterns using point-wise mutual in-
formation (PMI) with the corresponding category,
and select the top ranked patterns for promotion
to the corresponding pattern pool patPoolc. In
this work, we use use surface patterns consist-
ing of up to 4 words before/after the entity of in-
terest, e.g., the pattern “@ENTITY , former
president” matches any entity followed by the
three tokens ,, former, and president. However,
our method is agnostic to the types of patterns
learned, and can be trivially adapted to other types
of patterns, e.g., over sytactic dependency paths.

(3) Entity promotion: Entities are promoted to
entPoolc using a multi-class classifier that esti-
mates the likelihood of an entity belonging to each
class (Gupta and Manning, 2015). Our feature set
includes, for each category c: (a) edit distance over
characters between the candidate entity e and cur-
rent ecs ∈ entPoolc, (b) the PMI (with c) of the
patterns in patPoolc that matched e in the training
documents, and (c) similarity between e and ecs in
a semantic space. For the latter feature group, we
use the set of embedding vectors learned in step
(1). These features are taken from Gupta and Man-
ning (2015). We use these vectors to compute the
cosine similarity score of a given candidate entity
e to the entities in entPoolc, and add the average
and maximum similarities as features. The top
10 entities classified with the highest confidence

for each class are promoted to the corresponding
entPoolc after each epoch.

Learning custom embeddings

We train our embeddings for both entities and pat-
terns by maximizing the objective function J :

J = SG + Attract + Repel (1)

where SG, Attract, and Repel are individual com-
ponents of the objective function designed to
model both the unsupervised, language model part
of the task as well as the light supervision coming
from the seed examples, as detailed below. A sim-
ilar approach is proposed by (Mrkšić et al., 2017),
who use an objective function modified with At-
tract and Repel components to fine-tune word em-
beddings with synonym and antonym pairs.

The SG term is formulated identically to the
original objective function of the Skip-Gram
model of Mikolov et al. (2013), but, crucially,
adapted to operate over multi-word entities and
contexts consisting not of bags of context words,
but of the patterns that match each entity. Thus, in-
tuitively, our SG term encourages the embeddings
of entities to be similar to the embeddings of the
patterns matching them:

SG =
∑

e

[log(σ(V >
e Vpp))+

∑

np

log(σ(−V >
e Vnp))]

(2)

where e represents an entity, pp represents a posi-
tive pattern, i.e., a pattern that matches entity e in
the training texts, np represents a negative pattern,
i.e., it has not been seen with this entity, and σ is
the sigmoid function. Intuitively, this component
forces the embeddings of entities to be similar to
the embeddings of the patterns that match them,
and dissimilar to the negative patterns.

The second component, Attract, encourages en-
tities or patterns in the same pool to be close to
each other. For example, if we have two entities in
the pool known to be person names, they should
be close to each other in the embedding space:

Attract =
∑

P

∑

x1,x2∈P
log(σ(V >

x1Vx2)) (3)

where P is the entity/pattern pool for a category,
and x1, x2 are entities/patterns in said pool.
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Lastly, the third term, Repel, encourages that
the pools be mutually exclusive, which is a soft
version of the counter training approach of Yan-
garber (2003) or the weighted mutual-exclusive
bootstrapping algorithm of McIntosh and Curran
(2008). For example, person names should be far
from organization names in the semantic embed-
ding space:

Repel =
∑

P1,P2 if P16=P2

∑

x1∈P1

∑

x2∈P2

log(σ(−V >
x1Vx2))

(4)

where P1, P2 are different pools, and x1 and x2
are entities/patterns in P1, and P2, respectively.

We term the complete algorithm that learns and
uses custom embeddings as Emboot (Embeddings
for bootstrapping), and the stripped-down ver-
sion without them as EPB (Explicit Pattern-based
Bootstrapping). EPB is similar to Gupta and Man-
ning (2015); the main difference is that we use pre-
trained embeddings in the entity promotion classi-
fier rather than Brown clusters. In other words,
EPB relies on pretrained embeddings for both pat-
terns and entities rather than the custom ones that
Emboot learns.3

Interpretable model
In addition to its output (entPoolcs), Emboot pro-
duces custom entity and pattern embeddings that
can be used to construct a decision-list model,
which provides a global, deterministic interpreta-
tion of what Emboot learned.

This interpretable model is constructed as fol-
lows. First, we produce an average embedding per
category by averaging the embeddings of the enti-
ties in each entPoolc. Second, we estimate the co-
sine similarity between each of the pattern embed-
dings and these category embeddings, and convert
them to a probability distribution using a softmax
function; probc(p) is the resulting probability of
pattern p for class c.

After being constructed, the interpretable model
is used as follows. First, each candidate entity to
be classified, e, receives a score for a given class
c from all patterns in patPoolc that match it. The
entity score aggregates the relevant pattern proba-
bilities using Noisy-Or:

3For multi-word entities and patterns, we simply average
word embeddings to generate entity and pattern embeddings
for EPB.

Score(e, c) =

1−
∏

{pc∈patPoolc|matches(pc,e)}
(1− probc(pc))

(5)

Each entity is then assigned to the category with
the highest overall score.

4 Experiments

We evaluate the above algorithms on the task of
named entity classification from free text.

Datasets: We used two datasets, the CoNLL-
2003 shared task dataset (Tjong Kim Sang and
De Meulder, 2003), which contains 4 entity types,
and the OntoNotes dataset (Pradhan et al., 2013),
which contains 11.4 These datasets contain
marked entity boundaries with labels for each
marked entity. Here we only use the entity bound-
aries but not the labels of these entities during the
training of our bootstrapping systems. To simulate
learning from large texts, we tuned hyper param-
eters on development, but ran the actual experi-
ments on the train partitions.

Baselines: In addition to the EPB algorithm, we
compare against the approach proposed by Gupta
and Manning (2014)5. This algorithm is a sim-
pler version of the EPB system, where entities
are promoted with a PMI-based formula rather
than an entity classifier.6 Further, we compare
against label propagation (LP) (Zhu and Ghahra-
mani, 2002), with the implementation available
in the scikit-learn package.7 In each boot-
strapping epoch, we run LP, select the entities with
the lowest entropy, and add them to their top cate-
gory. Each entity is represented by a feature vector
that contains the co-occurrence counts of the entity
and each of the patterns that matches it in text.8

Settings: For all baselines and proposed models,
we used the same set of 10 seeds/category, which
were manually chosen from the most frequent en-
tities in the dataset. For the custom embedding

4We excluded numerical categories such as DATE.
5
https://nlp.stanford.edu/software/patternslearning.shtml

6We did not run this system on OntoNotes dataset as it
uses a builtin NE classifier with a predefined set of labels
which did not match the OntoNotes labels.

7
http://scikit-learn.org/stable/modules/generated/

sklearn.semi_supervised.LabelPropagation.html
8We experimented with other feature values, e.g., pattern

PMI scores, but all performed worse than raw counts.
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Figure 1: t-SNE visualizations of the entity embeddings at three stages during training.
Legend: = LOC. = ORG. = PER. = MISC. This figure is best viewed in color.
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Figure 2: t-SNE visualizations of the entity embeddings learned by Emboot after training completes.
Legend: = LOC. = ORG. = PER. = MISC.

features, we used randomly initialized 15d em-
beddings. Here we consider patterns to be n-
grams of size up to 4 tokens on either side of
an entity. For instance, “@ENTITY , former
President” is one of the patterns learned for
the class person. We ran all algorithms for 20
bootstrapping epochs, and the embedding learning
component for 100 epochs in each bootstrapping
epoch. We add 10 entities and 10 patterns to each
category during every bootstrapping epoch.

5 Discussion

Qualitative Analysis

Before we discuss overall results, we provide a
qualitative analysis of the learning process for Em-
boot for the CoNLL dataset in Figure 1. The fig-
ure shows t-SNE visualizations (van der Maaten
and Hinton, 2008) of the entity embeddings at sev-
eral stages of the algorithm. This visualization
matches our intuition: as training advances, en-
tities belonging to the same category are indeed
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grouped together. In particular, Figure 1c shows
five clusters, four of which are dominated by one
category (and centered around the corresponding
seeds), and one, in the upper left corner, with the
entities that haven’t yet been added to any of the
pools.

Figure 2 shows a more detailed view of the t-
SNE projections of entity embeddings after Em-
boot’s training completes. Again, this demon-
strates that Emboot’s semi-supervised approach
clusters most entities based on their (unseen) cate-
gories. Interestingly, Emboot learned two clusters
for the PER category. Upon a manual inspection
of these clusters, we observed that one contains
mostly performers (e.g., athletes or artists such as
Stephen Ames, a professional golfer), while the
other contains many politicians (e.g., Arafat and
Clinton). Thus, Emboot learned correctly that, at
least at the time when the CoNLL 2003 dataset
was created, the context in which politicians and
performers were mentioned was different. The
cluster in the bottom left part of the figure contains
the remaining working pool of patterns, which
were not assigned to any category cluster after the
training epochs.

Quantitative Analysis

A quantitative comparison of the different models
on the two datasets is shown in Figure 3.

Figure 3 shows that Emboot considerably out-
performs LP and Gupta and Manning (2014), and
has an occasional improvement over EPB. While
EPB sometimes outperforms Emboot, Emboot has
the potential for manual curation of its model,
which we will explore later in this section. This
demonstrates the value of our approach, and the
importance of custom embeddings.

Importantly, we compare Emboot against: (a)
its interpretable version (Embootint), which is con-
structed as a decision list containing the pat-
terns learned (and scored) after each bootstrapping
epoch, and (b) an interpretable system built simi-
larly for EPB (EPBint), using the pretrained Levy
and Goldberg embeddings9 rather than our custom
ones. This analysis shows that Embootint performs
close to Emboot on both datasets, demonstrating
that most of the benefits of representation learning
are available in an interpretable model. Please see

9For multi-word entities, we averaged the embeddings of
the individual words in the entity to create an overall entity
embedding.

the discussion on the edited interpretable model in
the next section.

Importantly, the figure also shows that EPBint,
which uses generic entity embeddings rather than
the custom ones learned for the task performs con-
siderably worse than the other approaches. This
highlights the importance of learning a dedicated
distributed representation for this task.

Interpretability Analysis

Is the list of patterns generated by the interpretable
model actually interpretable to end users? To in-
vestigate this, we asked two linguists to curate
the models learned by Embootint, by editing the
list of patterns in a given model. First, the ex-
perts performed an independent analysis of all the
patterns. Next, the two experts conferred with
each other and came to a consensus when their
independent decisions on a particular pattern dis-
agreed. These first two stages took the experts 2
hours for the CoNLL dataset and 3 hours for the
OntoNotes dataset. The experts did not have ac-
cess to the original texts the patterns were pulled
from, so they had to make their decisions based
on the patterns alone. They made one of three de-
cisions for each pattern: (1) no change, when the
pattern is a good fit for the category; (2) changing
the category, when the pattern clearly belongs to
a different category; and (3) deleting the pattern,
when the pattern is either not informative enough
for any category or when the pattern could occur
with entities from multiple categories. The experts
did not have the option of modifying the content
of the pattern, because each pattern is associated
with an embedding learned during training. Ta-
ble 1 shows several examples of the patterns and
decision made by the annotators. A summary of
the changes made for the CoNLL dataset is given
in Figure 4, and a summary of the changes made
for the OntoNotes dataset is given in Figure 5.

As Figure 3 shows, this edited interpretable
model (Embootint-edited) performs similarly to the
unedited interpretable model. When we look a lit-
tle deeper, the observed overall similarity between
the unchanged and the edited interpretable Em-
boot models for both datasets depends on the spe-
cific categories and the specific patterns involved.
For example, when we look at the CoNLL dataset,
we observe that the edited model outperforms the
unchanged model on PER entities, but performs
worse than the unchanged model on ORG enti-
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Figure 3: Overall results on the CoNLL and OntoNotes datasets. Throughput is the number of entities classified,
and precision is the proportion of entities that were classified correctly. Please see Sec. 4 for a description of the
systems listed in the legend.

Pattern Original Label Decision Rationale

@ENTITY was the LOC delete the pattern is too broad
@ENTITY ) Ferrari LOC delete the pattern is uninformative
citizen of @ENTITY MISC change to LOC the pattern is more likely to

occur with a location
According to @ENTITY officials ORG no change the pattern is likely to occur

with an organization

Table 1: Examples of patterns and experts’ decisions and rationales from the CoNLL dataset.
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Figure 4: Summary of expert decisions when editing
the Embootint model, for the CoNLL dataset by original
category. Dark blue (bottom) is no change, medium
blue (middle) is deletions, light blue (top) is change of
category.

Figure 5: Summary of expert decisions when edit-
ing the Embootint model, for the OntoNotes dataset by
original category. Dark blue (bottom) is no change,
medium blue (middle) is deletions, light blue (top) is
change of category.

ties (Figure 6). We observe a similar pattern with
the OntoNotes dataset, where the Embootint-edited
model outperforms the Embootint model greatly
for GPE but not for LAW (Figure 7). Over-
all, for OntoNotes, Embootint-edited outperforms
Embootint for 5 categories out of 11. For the cat-
egories where Embootint-edited performs worse, the
data is sparse, so few patterns are promoted (30
FAC patterns compared to 200 GPE patterns), and
many of them were deleted or changed by the two
linguists (14 FAC deletions and 13 FAC changes,
with only 3 FAC patterns remaining).

This difference in outcome partially has to do
with the amount of local vs. global informa-
tion available in the patterns. For example, lo-
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Figure 6: CoNLL results for PER and ORG.
The Embootint-edited model generally outperforms the
Embootint model when it comes to PER entities, but not
for ORG entities. This discrepancy seems to relate to
the amount of local information available in PER pat-
terns versus ORG patterns that can aid human domain
experts in correcting the patterns. The EPBint model
(incorrectly) classifies very few entities as ORG, which
is why it only shows up as a single point in the bottom
left of the lower plot.

cal patterns are common for the PER and MISC
categories in CoNLL, and for the GPE category
in OntoNotes, e.g., the entity “Syrian” is cor-
rectly classified as MISC (which includes de-
monyms) due to two patterns matching it in the
CoNLL dataset: “@ENTITY President” and
“@ENTITY troops”. In general, the majority
of predictions are triggered by 1 or 2 patterns,
which makes these decisions explainable. For the
CoNLL dataset, 59% of Embootint’s predictions
are triggered by 1 or 2 patterns; 84% are generated
by 5 or fewer patterns; only 1.1% of predictions
are generated by 10 or more patterns.

On the other hand, without seeing the full
source text, the experts were not able to
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Figure 7: OntoNotes results for GPE and LAW. The
Embootint-edited model greatly outperforms both Em-
boot and Embootint models when it comes to GPE enti-
ties, but not for LAW entities. This discrepancy seems
to relate to the amount of local information available in
GPE patterns versus LAW patterns that can aid human
domain experts in correcting the patterns. EPBint does
not classify any entities as LAW.

make an accurate judgment on the validity of
some patterns—for instance, while the pattern
@ENTITY and Portugal clearly indicates a
geo-political entity, the pattern @ENTITY has
been (labeled facility originally when train-
ing on OntoNotes documents) can co-occur with
entities from any category. Such patterns are com-
mon for the LAW category in OntoNotes, and for
the ORG category in CoNLL (due to the focus
on sport events in CoNLL, where location names
are commonly used as a placeholder for the corre-
sponding team), which partially explains the poor
curation results on these categories in Figures 6
and 7. Additionally, lower performance on certain
categories can be partially explained by the small
amount of data in those categories and the fact that
the edits made by the experts drastically changed

the number of patterns that occur with some cate-
gories (see Figures 4 and 5).

6 Conclusion

This work introduced an example of representa-
tion learning being successfully combined with
traditional, pattern-based bootstrapping for infor-
mation extraction, in particular named entity clas-
sification. Our approach iteratively learns custom
embeddings for multi-word entities and the pat-
terns that match them as well as cautiously aug-
menting the pools of known examples. This ap-
proach outperforms several state-of-the-art semi-
supervised approaches to NEC on two datasets,
CoNLL 2003 and OntoNotes.

Our approach can also export the model learned
into an interpretable list of patterns, which hu-
man domain experts can use to understand why
an extraction was generated. These patterns can
be manually curated to improve the performance
of the system by modifying the model directly,
with minimal effort. For example, we used a team
of two linguists to curate the model learned for
OntoNotes in 3 hours. The model edited by human
domain experts shows a modest improvement over
the unedited model, demonstrating the usefulness
of these interpretable patterns. Interestingly, the
manual curation of these patterns performed better
for some categories that rely mostly on local con-
text that is captured by the type of patterns used
in this work, and less well for categories that re-
quire global context that is beyond the n-gram pat-
terns used here. This observation raises opportu-
nities for future work such as how to learn global
context in an interpretable way, and how to adjust
the amount of global information depending on the
category learned.

7 Acknowledgments

We gratefully thank Yoav Goldberg for his sugges-
tions for the manual curation experiments.

This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under
the Big Mechanism program, grant W911NF-14-
1-0395, and by the Bill and Melinda Gates Foun-
dation HBGDki Initiative. Marco Valenzuela-
Escárcega and Mihai Surdeanu declare a financial
interest in lum.ai. This interest has been properly
disclosed to the University of Arizona Institutional
Review Committee and is managed in accordance
with its conflict of interest policies.

26



References

David S Batista, Bruno Martins, and Mário J Silva.
2015. Semi-supervised bootstrapping of relation-
ship extractors with distributional semantics. In In
Empirical Methods in Natural Language Process-
ing. ACL.

Andrew Carlson, Justin Betteridge, Richard C Wang,
Estevam R Hruschka Jr, and Tom M Mitchell. 2010.
Coupled semi-supervised learning for information
extraction. In Proceedings of the third ACM inter-
national conference on Web search and data mining,
pages 101–110. ACM.

Laura Chiticariu, Yunyao Li, and Frederick R Reiss.
2013. Rule-based information extraction is dead!
long live rule-based information extraction systems!
In EMNLP, October, pages 827–832.

Michael Collins and Yoram Singer. 1999. Unsuper-
vised models for named entity classification. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Mark W Craven and Jude W Shavlik. 1996. Extracting
tree-structured representations of trained networks.
Advances in neural information processing systems,
pages 24–30.

Scott Deerwester, Susan T Dumais, George W Fur-
nas, Thomas K Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American society for information science,
41(6):391–407.

Sonal Gupta and Christopher D Manning. 2014. Im-
proved pattern learning for bootstrapped entity ex-
traction. In CoNLL, pages 98–108.

Sonal Gupta and Christopher D. Manning. 2015. Dis-
tributed representations of words to guide boot-
strapped entity classifiers. In Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics.

Himabindu Lakkaraju and Cynthia Rudin. 2016.
Learning cost-effective treatment regimes using
markov decision processes. CoRR, abs/1610.06972.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In ACL (2), pages 302–
308.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. The Journal of Ma-
chine Learning Research, 9(2579-2605):85.

Tara McIntosh. 2010. Unsupervised discovery of nega-
tive categories in lexicon bootstrapping. In Proceed-
ings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 356–365.
Association for Computational Linguistics.

Tara McIntosh and James R Curran. 2008. Weighted
mutual exclusion bootstrapping for domain indepen-
dent lexicon and template acquisition. In Proceed-
ings of the Australasian Language Technology Asso-
ciation Workshop, volume 2008.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.
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Abstract

Generating a large amount of training data for
information extraction (IE) is either costly (if
annotations are created manually), or runs the
risk of introducing noisy instances (if distant
supervision is used). On the other hand, semi-
supervised learning (SSL) is a cost-efficient
solution to combat lack of training data. In this
paper, we adapt Mean Teacher (Tarvainen and
Valpola, 2017), a denoising SSL framework to
extract semantic relations between pairs of en-
tities. We explore the sweet spot of amount of
supervision required for good performance on
this binary relation extraction task. Addition-
ally, different syntax representations are incor-
porated into our models to enhance the learned
representation of sentences. We evaluate our
approach on the Google-IISc Distant Supervi-
sion (GDS) dataset, which removes test data
noise present in all previous distance supervi-
sion datasets, which makes it a reliable evalu-
ation benchmark (Jat et al., 2017). Our results
show that the SSL Mean Teacher approach
nears the performance of fully-supervised ap-
proaches even with only 10% of the labeled
corpus. Further, the syntax-aware model out-
performs other syntax-free approaches across
all levels of supervision.

1 Introduction

Occurrences of entities in a sentence are often
linked through well-defined relations; e.g., occur-
rences of PERSON and ORGANIZATION in a sen-
tence may be linked through relations such as em-
ployed at. The task of relation extraction (RE)
is to identify such relations automatically (Pawar
et al., 2017). RE is not only crucial for populating
knowledge bases with triples consisting of the en-
tity pairs and the extracted relations, but it is also
important for any NLP task involving text under-
standing and inference, such as question answer-
ing. In this work, we focus on binary RE, such

as identifying the nationality relation between two
entities, Kian Tajbakhsh and Iran, in the sentence:
Kian Tajbakhsh is a social scientist who lived for
many years in England and the United States be-
fore returning to Iran a decade ago.

Semi-supervised learning (SSL) methods have
been shown to work for alleviating the lack of
training data in information extraction. For exam-
ple, bootstrapping learns from a few seed exam-
ples and iteratively augments the labeled portion
of the data during the training process (Yarowsky,
1995; Collins and Singer, 1999; Carlson et al.,
2010; Gupta and Manning, 2015, inter alia). How-
ever, an important drawback of bootstrapping,
which is typically iterative, is that, as learning
advances, the task often drifts semantically into
a related but different space, e.g., from learning
women’s names into learning flower names (Yan-
garber, 2003; McIntosh, 2010). Unlike iterative
SSL methods such as bootstrapping, SSL teacher-
student networks (Tarvainen and Valpola, 2017;
Laine and Aila, 2016; Rasmus et al., 2015) make
full use of both a small set of labeled examples as
well as a large number of unlabeled examples in a
one-shot, non-iterative learning process. The un-
supervised component uses the unlabeled exam-
ples to learn a robust representation of the input
data, while the supervised component forces these
learned representations to stay relevant to the task.

The contributions of our work are:

(1) We provide a novel application of the Mean
Teacher (MT) SSL framework to the task of bi-
nary relation extraction. Our approach is simple:
we build a student classifier using representation
learning of the context between the entity men-
tions that participate in the given relation. When
exposed to unlabeled data, the MT framework
learns by maximizing the consistency between a
student classifier and a teacher that is an average of
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past students, where both classifiers are exposed to
different noise. For RE, we introduce a strategy to
generate noise through word dropout (Iyyer et al.,
2015). We provide all code and resources needed
to reproduce results1.

(2) We represent sentences with several types of
syntactic abstractions, and employ a simple neural
sequence model to embed these representations.
We demonstrate in our experiments that the repre-
sentation that explicitly models syntactic informa-
tion helps SSL to make the most of limited training
data in the RE task.

(3) We evaluate the proposed approach on the
Google-IISc Distant Supervision (GDS) dataset
introduced in Jat et al. (2017). Our empirical anal-
ysis demonstrates that the proposed SSL architec-
ture approaches the performance of state-of-the-
art fully-supervised approaches, even when using
only 10% of the original labeled corpus.

2 Related work

The exploration of teacher-student models for
semi-supervised learning has produced impres-
sive results for image classification (Tarvainen
and Valpola, 2017; Laine and Aila, 2016; Rasmus
et al., 2015). However, they have not yet been
well-studied in the context of natural language
processing. Hu et al. (2016) propose a teacher-
student model for the task of sentiment classifi-
cation and named entity recognition, where the
teacher is derived from a manually specified set
of rule-templates that regularizes a neural student,
thereby allowing one to combine neural and sym-
bolic systems. Our MT system is different in that
the teacher is a simple running average of the stu-
dents across different epochs of training, which
removes the need of human supervision through
rules. More recently, Nagesh and Surdeanu (2018)
applied the MT architecture for the task of semi-
supervised Named Entity Classification, which is
a simpler task compared to our RE task.

Recent works (Liu et al., 2015; Xu et al., 2015;
Su et al., 2018) use neural networks to learn syn-
tactic features for relation extraction via travers-
ing the shortest dependency path. Following this
trend, we adapt such syntax-based neural models
to both of our student and teacher classifiers in the
MT architecture.

1https://github.com/Fan-Luo/
MT-RelationExtraction

Both Liu et al. (2015) and Su et al. (2018) use
neural networks to encode the words and depen-
dencies along the shortest path between the two
entities, and Liu et al. additionally encode the de-
pendency subtrees of the words for additional con-
text. We include this representation (words and
dependencies) in our experiments. While the in-
clusion of the subtrees gives Liu et al. a slight
performance boost, here we opt to focus only on
the varying representations of the dependency path
between the entities, without the additional con-
text.

Su et al. (2018) use an LSTM to model the
shortest path between the entities, but keep their
lexical and syntactic sequences in separate chan-
nels (and they have other channels for additional
information such as part of speech (POS)). Rather
than maintaining distinct channels for the different
representations, here we elect to keep both surface
and syntactic forms in the same sequence and in-
stead experiment with different degrees of syntac-
tic representation. We also do not include other
types of information (e.g., POS) here, as it is be-
yond the scope of the current work.

There are several more structured (and more
complex) models proposed for relation extraction,
e.g., tree-based recurrent neural networks (Socher
et al., 2010) and tree LSTMs (Tai et al., 2015). Our
semi-supervised framework is an orthogonal im-
provement, and it is flexible enough to potentially
incorporate any of these more complex models.

3 Mean Teacher Framework

Our approach repurposes the Mean Teacher frame-
work for relation extraction. This section an
overview of the general MT framework. The next
section discusses the adaptation of this framework
for RE.

The Mean Teacher (MT) framework, like other
teacher-student algorithms, learns from a limited
set of labeled data coupled with a much larger cor-
pus of unlabeled data. Intuitively, the larger, un-
labeled corpus allows the model to learn a robust
representation of the input (i.e., one which is not
sensitive to noise), and the smaller set of labeled
data constrains this learned representation to also
be task-relevant. This is similar in spirit to an auto-
encoder, which learns a representation that is ro-
bust to noise in the input. However, auto-encoders
generally suffer from a confirmation bias, espe-
cially when used in a semi-supervised setting (i.e.,
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they tend to overly rely on their own predictions
instead of the gold labels (Tarvainen and Valpola,
2017; Laine and Aila, 2016)), providing the mo-
tivation for MT. Specifically, to mitigate confir-
mation bias, and regularize the model, the teacher
weights in MT are not directly learned, but rather
they are an average of the learned student weights,
similar in spirit to the averaged perceptron. This
provides a more robust scaffolding that the student
model can rely on during training when gold labels
are unavailable (Nagesh and Surdeanu, 2018).

The MT architecture is summarized in Fig-
ure 1. It consists of two models, teacher and stu-
dent, both with identical architectures (but differ-
ent weights). While the weights for the student
model are learned through standard backpropaga-
tion, the weights in the teacher network are set
through an exponential moving average of the stu-
dent weights. The same data point, augmented
with noise (see Section 4.2), is input to both the
teacher and the student models.

The MT algorithm is designed for semi-
supervised tasks, where only a few of the data
points are labeled in training. The cost function
is a linear combination of two different type of
costs: classification and consistency. The classifi-
cation cost applies to labeled data points, and can
be instantiated with any standard supervised cost
function (e.g., we used categorical cross-entropy,
which is based on the softmax over the label cate-
gories). The consistency cost is used for unlabeled
data points, and aims to minimize the differences
in predictions between the teacher and the student
models. The consistency cost, J is:

J(✓) = Ex,⌘0 ,⌘

⇥
kf(x, ✓

0
, ⌘

0
)� f(x, ✓, ⌘)k2

⇤
(1)

where, given an input x, this function is defined
as the expected distance between the prediction of
the student model (f(x, ✓, ⌘), with weights ✓ and
noise ⌘) and the prediction of the teacher model
(f(x, ✓

0
, ⌘

0
) with weights ✓

0
and noise ⌘

0
). Here,

our predictions are the models’ output distribu-
tions (with a softmax) across all labels.

Importantly, as hinted above, only the student
model is updated via backpropagation. On the
other hand, the gradients are not backpropagated
through the teacher weights, rather they are deter-
ministically updated after each mini-batch of gra-
dient descent in the student. The update uses an
exponentially-weighted moving average (EMA)
that combines the previous teacher with the latest

version of the student:

✓
0
t = ↵✓

0
t�1 + (1� ↵)✓t (2)

where ✓
0
t is defined at training step t as the EMA

of successive weights ✓. This averaging strategy
is reminiscent of the average perceptron, except in
this case the average is not constructed through an
error-driven algorithm, but, instead, it is controlled
by a hyper parameter ↵.

4 Task-specific Representation

The MT framework contains two components that
are task specific. The first is the representation of
the input to be modeled, which consists of entity
mention pairs and the context between the two en-
tity mentions. The second is the strategy for insert-
ing noise in the inputs received by the student and
teacher models. We detail both these components
here.

4.1 Input Representations
Within the Mean Teacher framework, we inves-
tigate input representations of four types of syn-
tactic abstraction. Each corresponds to one of the
inputs shown in Figure 2 for the example (Robert
Kingsley, perGraduatedInstitution, Uni-
versity of Minnesota).

Average: Our shallowest learned representation
uses the surface form of the entities (e.g., Robert
Kingsley and University of Minnesota) and the
context between them. If there are several men-
tions of one or both of the entities in a given sen-
tence, we used the closest pair. The model aver-
ages the word embeddings for all tokens and then
passes it through a fully-connected feed-forward
neural network, with one hidden layer and finally
to an output layer for classification into the the re-
lation labels.

Surface LSTM (surfaceLSTM): The next
learned representation also uses the surface form
of the input, i.e., the sequence of words between
the two entities, but replaces the word embedding
average with a single-layer bidirectional LSTM,
which have been demonstrated to encode some
syntactic information (Peters et al., 2018). The
representation from the LSTM is passed to the
feed-forward network as above.

Head LSTM (headLSTM): Under the intuition
that the trigger is the most important lexical item
in the context of a relation, relation extraction
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Figure 1: The Mean Teacher (MT) framework for relation extraction which makes use of a large, unlabeled corpus and a small
number of labeled data points. Intuitively, the larger, unlabeled corpus allows the model to learn a robust representation of
the input (i.e., one which is not sensitive to noise), and the smaller set of labeled data constrains this learned representation to
also be task-relevant. Here, for illustration, we depict the training step with one labeled example. The MT framework consists
of two models: a student model which is trained through backpropagation, and a teacher model which is not directly trained,
but rather is an average of previous student models (i.e., its weights are updated through an exponential moving average of the
student weights at each epoch). Each model takes the same input, but augmented with different noise (here, word dropout). The
inputs consist of (a) a pair of entity mentions (here, hE1i: Robert Kingsley and hE2i: University of Minnesota), and (b) the
context in which they occur (i.e., (1903-1988) was an American legal scholar and California judge who graduated from the).
Each model produces a prediction for the label of the data point (i.e., a distribution over the classes). There are two distinct
costs in the MT framework: the consistency cost and the classification cost. The consistency cost constrains the output label
distribution of the two models to be the similar, and it is applied to both labeled and unlabeled inputs (as these distributions can
be constrained even if the true label is unknown) to ensure that the learned representations (distributions) are not sensitive to
the applied noise. When the model is given a labeled input, it additionally assigns a classification cost using the prediction of
the student model. This guides the learned representation to be useful to the task at hand.

can often be distilled into the task of identify-
ing and classifying triggers, i.e., words which
signal specific relations (Yu and Ji, 2016). For
example, the verb died is highly indicative of
the placeOfDeath relation. There are several
ways of finding a candidate trigger such as the
PageRank-inspired approach of Yu and Ji (2016).
Here, for simplicity, we use the governing head
of the two entities within their token interval (i.e.,
the node in the dependency graph that dominates
the two entities) as a proxy for the trigger. We
then create the shortest dependency paths from it
to each of the two entities, and concatenate these
two sequences to form the representation of the
corresponding relation mention. This is shown
as the head-lexicalized syntactic path in Figure 2.
For this representation, we once again pass this to-
ken sequence to the LSTM and subsequent feed-
forward network.

Syntactic LSTM (synLSTM): Compared with
headLSTM, our syntactic LSTM traverses the

directed shortest path between the two entities
through the dependency syntax graph for the sen-
tence, instead of concatenated shortest depen-
dency paths between the trigger and each entity.
As shown in the fully lexicalized syntactic path in
Figure 2, we include in the representation the di-
rected dependencies traversed (e.g., <nsubj for
an incoming nsubj dependency), as well as all
the words along the path (i.e., scholar and grad-
uated)2. We feed these tokens, both words and
dependencies, to the same LSTM as above.

4.2 Noise Regularization

One critical component of the Mean Teacher
framework is the addition of independent noise to
both the student and the teacher models (Laine

2For multi-sentence instances where no single sentence
contains both entities, in order to obtain a syntactic parse,
we concatenate the closest sentences with each of the entities
with a semi-colon and use that as our sentence. While this
could be resolved more cleanly with discourse information
or cross-sentence dependencies, that is beyond the scope of
the current work.
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Figure 2: Examples of the varying degrees of syntactic structure used for our models. The surface representation consists of a
bag of entities (shown in blue) and the words that come between them. The surface syntactic path includes the words along the
shortest path between the entities. The head lexicalized syntactic representation contains the governing head of the structure that
dominates the two entities, and the directed dependencies connecting it to each of the entities. The fully lexicalized syntactic
representation contains the directed dependencies along the shortest path in addition to the words along the shortest path. For
both head lexicalized syntactic and fully lexicalized syntactic representation, the dependency notations include the dependency
labels as well as the direction of the dependency arc (<: right-to-left, >: left-to-right). Both words and syntactic dependencies
are converted to embeddings that are trained along with the rest of the model.

and Aila, 2016; Tarvainen and Valpola, 2017).
While in some tasks, e.g., image classification,
Gaussian noise is added to the network (Rasmus
et al., 2015), here we opted to follow the exam-
ple of Iyyer et al. (2015) and Nagesh and Sur-
deanu (2018) and use word dropout for the needed
noise. For each training instance we randomly
drop k tokens from the input sequence.3 The ran-
dom dropout for the student model is independent
from that of the teacher model, in principle forcing
the learned representations to be robust to noise
and learn noise-invariant abstract latent represen-
tations for the task.

5 Experiments

5.1 Data

We evaluate our approach on Google-IISc Distant
Supervision (GDS) dataset. This is a distant su-
pervision dataset introduced by Jat et al. (2017)
that aligns the Google Relation Extraction Cor-
pus4 with texts retrieved through web search. Im-
portantly, the dataset was curated to ensure that
at least one sentence for a given entity pair sup-
ports the corresponding relation between the enti-
ties. It contains five relations including NA. The
training partition contains 11,297 instances (2,772
are NA), the development partition contains 1,864
instances (447 NA), and the test partition contains
5663 instances (1360 NA). The dataset is divided
such that there is no overlap among entity pairs

3In this work we use k = 1. In initial experiments, other
values of k did not change results significantly.

4https://research.
googleblog.com/2013/04/
50000-lessons-on-how-to-read-relation.
html

between these partitions.

5.2 Semi-Supervised Setup

In order to examine the utility of our semi-
supervised approach, we evaluate our approach
with different levels of supervision by artificially
manipulating the fully-labeled datasets described
in Section 5.1 to contain varying amounts of un-
labeled instances. To do this, we incrementally
selected random portions of the training data to
serve as labeled data, the rest being treated as un-
labeled data (i.e., their labels are masked to not be
visible to the classifier). In other words, this un-
labeled data was used to calculate the consistency
cost, but not the classification cost. We experi-
mented with using 1%, 10%, 50%, and 100% of
the labeled training data for supervision.

5.3 Baselines

Previous work: We compare our model against
the previous state-of-the-art work in Jat et al.
(2017). They propose two fully-supervised mod-
els: a bidirectional gated recurrent unit neural net-
work with word attention (their BGWA model)
and a piecewise convolutional neural network
(PCNN) with an entity attention layer (their EA
model), which is itself based on the PCNN ap-
proach of Zeng et al. (2015). Since we use sin-
gle models only, we omit Jat et al.’s supervised
ensemble for a more direct comparison. Note
these two approaches are state-of-the-art meth-
ods for RE that rely on more complex attention-
based models. On the other hand, in this work
we use only vanilla LSTMs for both of our stu-
dent and teacher models. However, since the MT
framework is agnostic to the student model, in fu-
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ture work we can potentially further increase per-
formance by incorporating these more complex
methods in our semi-supervised approach.

Student Only: In order to determine the contribu-
tion of the Mean Teacher framework itself, in each
setting (amount of supervision and input represen-
tation) we additionally compare against a baseline
consisting of our student model trained without the
teacher (i.e., we remove the consistency cost com-
ponent from the cost function).

5.4 Model Tuning

We lightly tuned the approach and hyperparame-
ters on the development partitions. We built our
architecture in PyTorch5, a popular deep learn-
ing library, extending the framework of Tarvainen
and Valpola (2017)6. For our model, we used
a bidirectional LSTM with a hidden size of 50.
The subsequent fully connected network has one
hidden layer of 100 dimensions and ReLU acti-
vations. The training was done with the Adam
optimizer (Kingma and Ba, 2015) with the de-
fault learning rate (0.1). We initialized our word
embeddings with GloVe 100-dimensional embed-
dings (Pennington et al., 2014)7. The dependency
embeddings were also of size 100 and were ran-
domly initialized. Both of these embedding were
allowed to update during training. Any word or to-
ken which occurred fewer than 5 times in a dataset
was treated as unknown. For our word dropout, we
removed one word from each input at random. MT
has some additional parameters: the consistency
cost weight (the weight given to the consistency
component of the cost function) and the EMA de-
cay rate (↵ in Eq. 2). We set these to be 1.0 and
0.99 respectively. Akin to a burn-in at the begin-
ning of training, we had an initial consistency cost
weight of 0.0 and allowed it to ramp up to the full
value over the coarse of training using a consis-
tency ramp up of 5.

During training, we saved model checkpoints
every 10 epochs, and ran our models up to a max-
imum of 200 epochs. We chose the best model by
tracking the teacher performance on the develop-
ment partition and using the model checkpoint im-
mediately following the maximum performance.

5https://pytorch.org
6https://github.com/CuriousAI/

mean-teacher
7https://nlp.stanford.edu/projects/

glove

6 Results

We evaluate our approach on the GDS dataset,
across the various levels of supervision detailed in
Section 5. The precision, recall, and F1 scores are
provided in Table 1.

In the evaluation, we consider only the top la-
bel assigned by the model, counting it as a match
only if (a) it matches the correct label and (b) the
label is not NA. For each setting, we provide the
final performance of both the student network and
the teacher network. We also compare against the
baseline student network (i.e., the network trained
without the consistency cost).

In Table 1 we see that in general the MT frame-
work improves performance over the student-only
baseline, with the sole exception of when there is
only 1% supervision. The large performance gap
between the 1% and 10% supervision configura-
tions for the student-only model indicates that 1%
supervision provides an inadequate amount of la-
beled data to support learning the different rela-
tion types. Further, when the unlabeled data over-
whelms the supervised data, the MT framework
encourages the student model to drift away from
the correct labels through the consistence cost.
Therefore, in this situation with insufficient super-
vision, the student-only approach performs better
than MT. This result highlights the importance of a
balance between the supervised and unsupervised
training partitions within the MT framework.

Among our MT models, we see that while the
surfaceLSTM models perform better than the Av-
erage models, the models which explicitly repre-
sent the syntactic dependency path between the
entities have the strongest performance. This is
true for both the student-only as well as the MT
framework. In particular, we find that the best
performing model is the synLSTM. These results
show that: (a) while surface LSTMs may loosely
model syntax (Linzen et al., 2016), they are still
largely complemented by syntax-based represen-
tation, and, more importantly, (b) syntax provides
improved generalization power over surface infor-
mation.

6.1 Comparison to Prior Work

We additionally compare our Mean Teacher
synLSTM model, against the BGWA and EA
models of Jat et al. (2017). For an accurate com-
parison, here we follow their setup closely. For
each entity pair that occurs in test, we aggregate

34



Model 100% 50% 10% 1%
Prec / Recall / F1 Prec / Recall / F1 Prec / Recall / F1 Prec / Recall / F1

Student-Only Baseline

Average Student 0.724 / 0.793 / 0.757±0.00 0.716 / 0.774 / 0.744±0.01 0.718 / 0.684 / 0.700±0.01 0.624 / 0.572 / 0.597±0.01

surfaceLSTM Student 0.754 / 0.830 / 0.790±0.01 0.748 / 0.834 / 0.788±0.01 0.735 / 0.752 / 0.744±0.00 0.691 / 0.622 / 0.655±0.01

headLSTM Student 0.739 / 0.808 / 0.772±0.01 0.725 / 0.816 / 0.767±0.00 0.697 / 0.723 / 0.709±0.01 0.633 / 0.630 / 0.631±0.01

synLSTM Student 0.757 / 0.828 / 0.791±0.00 0.759 / 0.827 / 0.791±0.00 0.716 / 0.770 / 0.742±0.01 0.667 / 0.677 / 0.671±0.01

Mean Teacher Framework

Average Student 0.719 / 0.717 / 0.716±0.04 0.739 / 0.718 / 0.728±0.01 0.715 / 0.645 / 0.677±0.02 0.611 / 0.509 / 0.555±0.02
Teacher 0.733 / 0.767 / 0.750±0.00 0.724 / 0.747 / 0.735±0.00 0.718 / 0.649 / 0.682±0.01 0.611 / 0.503 / 0.552±0.01

surfaceLSTM Student 0.760 / 0.745 / 0.752±0.01 0.762 / 0.792 / 0.777±0.00 0.725 / 0.712 / 0.718±0.00 0.546 / 0.440 / 0.486±0.07
Teacher 0.761 / 0.819 / 0.789±0.00 0.760 / 0.817 / 0.787±0.00 0.735 / 0.733 / 0.734±0.01 0.538 / 0.438 / 0.482±0.06

headLSTM Student 0.718 / 0.766 / 0.741±0.01 0.728 / 0.786 / 0.756±0.01 0.700 / 0.684 / 0.692±0.01 0.613 / 0.525 / 0.565±0.00
Teacher 0.728 / 0.815 / 0.769±0.00 0.731 / 0.800 / 0.764±0.00 0.703 / 0.717 / 0.710±0.01 0.611 / 0.527 / 0.566±0.01

synLSTM Student 0.753 / 0.780 / 0.766±0.01 0.751 / 0.826 / 0.786±0.01 0.724 / 0.732 / 0.728±0.01 0.634 / 0.590 / 0.609±0.03
Teacher 0.764 / 0.846 / 0.803±0.00 0.763 / 0.833 / 0.796±0.00 0.734 / 0.759 / 0.746±0.00 0.632 / 0.574 / 0.601±0.03

Table 1: Performance on the GDS dataset for our baseline models (i.e, student-only without the Mean Teacher framework)
and for our Mean Teacher models (both the student and teacher performance is provided). We report precision, recall, and F1
score for each of the input representations (Average, surfaceLSTM, headLSTM, and synLSTM), with varying proportions of
training labels (100%, 50%, 10% and 1% of the training data labeled). Each value is the average of three runs with different
random seed initializations, and for the F1 scores we additionally provide the standard deviation across the different runs.

Figure 3: Precision-recall curves for the GDS dataset. We include two prior systems (BGWA and EA) as well as our Mean
Teacher approach using our best performing input representation (synLSTM) for increasing amounts of supervision (from 1%
of the training labels to 100%, or fully supervised).
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the model’s predictions for all mentions of that en-
tity pair using the Noisy-Or formula into a single
distribution for our model across all labels, except
for NA, and plot the precision-recall (PR) curve ac-
cordingly.

Data for the BGWA and EA models was taken
from author-provided results files8, allowing us to
plot additional values beyond what was previously
published. The PR curves for each level of super-
vision are shown in Figures 3.

We observe that our fully supervised model per-
forms very similarly to the fully-supervised model
of Jat et al. (2017). This is encouraging, consid-
ering that our approach is simpler, e.g., we do
not have an attention model. Critically, we see
that under the Mean Teacher framework, this pat-
tern continues even as we decrease the amount
of supervision such that even with only 10% of
the original training data we approach their fully-
supervised performance. It is not until we use two
orders of magnitude fewer labeled examples that
we see a major degradation in performance. This
demonstrates the utility of our syntax-aware MT
approach for learning robust representations for
relation extraction.

7 Conclusion

This paper introduced a neural model for semi-
supervised relation extraction. Our syntactically-
informed, semi-supervised approach learns effec-
tively to extract a number of relations from very
limited labeled training data by employing a Mean
Teacher (MT) architecture. This framework com-
bines a student trained through backpropagation
with a teacher that is an average of past students.
Each model is exposed to different noise, which
we created in this work through word dropout.
The approach uses unlabeled data through a con-
sistency cost, which encourages the student to stay
close to the predictions of the teacher, and labeled
data, through a standard classification cost. The
consistency requirement between the student and
the teacher ensures that the learned representation
of the input is robust to noise, while the classifi-
cation requirement ensures that this learned rep-
resentation encodes the task-specific information
necessary to correctly extract relations between
entities.

We empirically demonstrated that our approach

8https://github.com/SharmisthaJat/
RE-DS-Word-Attention-Models

is able to perform close to more complex, fully-
supervised approaches using only 10% of the
training data for relation extraction. This work fur-
ther supports our previous work on MT for the task
of named entity classification, where we observed
similar gains (Nagesh and Surdeanu, 2018). Fur-
ther, we show that the MT framework performs
reliably for various input representations (from
purely surface forms all the way to primarily syn-
tactic). We additionally demonstrate that explic-
itly representing syntax, even in simplified ways,
is beneficial to the models across all levels of su-
pervision.
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