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Abstract

In natural language generation (NLG), the
task is to generate utterances from a more
abstract input, such as structured data. An
added challenge is to generate utterances
that contain an accurate representation of
the input, while reflecting the fluency and
variety of human-generated text. In this
paper, we report experiments with NLG
models that can be used in task oriented
dialogue systems. We explore the use of
additional input to the model to encourage
diversity and control of outputs. While our
submission does not rank highly using au-
tomated metrics, qualitative investigation
of generated utterances suggests the use of
additional information in neural network
NLG systems to be a promising research
direction.

1 Introduction

Natural Language Generation (NLG) is a broad
field, ranging from text-to-text translation to ex-
periments in computational poetry (Gatt and Krah-
mer, 2018). Whether the task is to summarize,
translate, or entertain, a core challenge is doing so
in a manner that is compatible with human needs
and preferences.

Formally, NLG systems aim to create utter-
ances from a set of abstract inputs. These inputs
can be closely aligned, e.g. machine translation
(Sutskever et al., 2014), or require significant ab-
stractive reasoning, as in summarization or data-
to-text tasks (See and Manning, 2017; Wiseman
et al., 2017). Traditionally NLG systems have
followed a rule-based approach (Reiter and Dale,
2000). While robust, these systems are noted to
generate repetitive and stilted output, which can

Meaning Representation
name[The Wrestlers]
eatType[restaurant]
food[Japanese]
priceRange[more than £30]
area[riverside]
familyFriendly[no]
near[Raja Indian Cuisine]
additionalWords[looking adults offerings
really try good prices situated]
Generated utterance
If you’re looking for an adults only
Japanese restaurant, try The Wrestlers. It
is really good and situated near Raja In-
dian Cuisine. The prices are more than
£30.

Table 1: Utterance generated with a novel dia-
logue act containing additional words

make interacting with rule based systems a tedious
experience (Wen et al., 2015).

Data driven models using deep neural networks
have achieved state-of-the-art results in many
NLG tasks/datasets such as RoboCup, Weather-
gov, SF Hotels/Restaurants and AMR-to-text (Mei
et al., 2016; Wen et al., 2016; Konstas et al.,
2017). However Sharma et al. (2017) notes that
high performance on datasets such as Wen et al.
(2015)’s SF Restaurant indicates they no longer
pose a sufficient challenge and that the community
ought to progress to using larger and more com-
plex datasets.

Two new crowd sourced datasets, each contain-
ing tens of thousands of examples and focusing on
complex sentence structures, have been recently
released; WebNLG and E2E (Colin et al., 2016;
Novikova et al., 2017). This paper focuses on
the E2E dataset which was created using a new
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methodology to maximize both the quality of col-
lected utterances as well as their naturalness and
variety (Novikova et al., 2016).

Wei et al. (2017) note that neural networks
learning from highly unaligned datasets have trou-
ble choosing between equally plausible outputs
and tend towards short and less meaningful out-
puts. They suggest that the number of plausible
outputs can be decreased by providing additional
information to the model. In Table 1 we augment
the meaning representation (MR) with a novel di-
alogue act (DA) containing additional words to be
included in the generated utterance. By condition-
ing the output on these words the model has man-
aged to generate an utterance with a complex sen-
tence structure and wide vocabulary.

Our contribution is to propose a pipeline sys-
tem. Additional words are sampled from a sec-
ondary model which uses DAs from a given MR
as inputs. These additional words are put into a
new DA and added to the existing MR, as shown
in Table 1. The augmented MR is then used as in-
put to a model which generates the final utterance.

The approach of augmenting the source se-
quence takes inspiration from recent work in para-
phrase generation (Guu et al., 2017) and gen-
erating structured queries from natural language
(Zhong et al., 2017). As noted by Sharma et al.
(2016) delexicalization can often lead to gram-
matically incorrect sentences. We opt instead to
use a pointer network (Vinyals et al., 2015) which
allows the model to copy tokens directly from
the source sequence into the generated utterance.
The model does not perform well relative to the
baseline and this is possibly due to the failure of
the secondary model to generate appropriate addi-
tional words. Improving upon the pipeline system
remains an area of active research for us.

2 System Description

Here we present details of the pipeline system.
First we describe how the training data for the
pointer network with additional words model is
constructed. This is followed by an explanation
of the additional word generator which uses DAs
from a given MR as input.

Typical approaches to generating diverse out-
puts focus on objective functions that affect the de-
coding step (Li et al., 2015). Our approach of aug-
menting the input sequence is similar to previous
work on common sense dialogue models (Young

et al., 2017) and content-introducing text genera-
tion (Mou et al., 2016). Other approaches to con-
trollable text generation have focused on more ab-
stract inputs. Language models which generate
text about a specific topic, product, person, senti-
ment (Li et al., 2016; Tang et al., 2016; Fan et al.,
2017; Dong et al., 2017).

2.1 Additional words model

We augment the MR with an extra DA containing
additional words to be included in the generated
sentence. To obtain the data for this we looked
at each target sentence and, using a set of rules,
determined what words the model would learn to
include. These selected words were added to the
source sequence inside a custom DA. This ability
of the model to accept additional words ensured
that we would have both diversity of outputs and
fine grained control over those outputs at test time.

For our additional words model we extracted to-
kens from the target sequence that adhered to the
following set of rules:

• Not part of a list of stopwords

• Does not appear in the source sequence or
meaning representation

• Does not contain punctuation or numbers

After the original list was compiled we removed
the most frequently appearing token located and
any tokens which occurred less than 6 times.

Table 2 contains an example of an augmented
MR and utterance pair used for training.

Source sequence
name[The Vaults]
eatType[pub]
priceRange[more than £30]
customer rating[5 out of 5]
near[Café Adriatic]
additionalWords[star Prices start]
Target sequence
The Vaults pub near Café Adriatic has a 5
star rating. Prices start at £30.

Table 2: Example from the additional words
model training set



459

2.1.1 Generating additional words
The unique contents of each DA in the MR are
treated as a single token. We omit the name and
near DAs as they were observed to have little cor-
relation with the semantics of the additional words
chosen. The model attempts to correlate specific
DAs with the additional words that appear in tar-
get sentences. An example of the source and target
sequences used for training are shown in Table 3.
We use a sequence-to-sequence network with at-
tention as the model.

Additional words are sampled from the model.
We scale the final output layer of the model be-
fore applying softmax and sampling tokens for the
generated utterance. The value used for scaling is
known as temperature. Higher values of temper-
ature lead to more diverse outputs. Temperature
values close to 0 lead to the model choosing more
conservative outputs. We use values of 0.9 to 1.1,
to encourage the generation of a more diverse set
of additional words.

Source sequence
pub
more than £30
5 out of 5
Target sequence
star Prices start

Table 3: Example pair used for training the addi-
tional word generator

3 Experiments

The data set was tokenized using the NLTK port
of the moses tokenizer with aggressive hyphen
splitting. For each DA a custom start and stop
token was added to the source sequence; e.g.

name start The Vaults name end
The models used were from the OpenNMT-py

library (Klein et al., 2017). Our model architecture
contains 2 layers of bidirectional recurrent neu-
ral networks (RNN) with long short-term mem-
ory (LSTM) cells (Hochreiter and Schmidhuber,
1997). We use 500 hidden units for the encoder
and decoder layer, and 500 units for the word vec-
tors which are learned jointly across the whole
model. We add dropout of 0.3 applied between
the LSTM stacks.

The models are trained using Adam (Kingma
and Ba, 2014) with learning rate 0.001 and learn-

ing rate decay of 0.5 applied after 8 epochs. The
models were trained for 10 epochs and the best
performing checkpoint on the development set
was chosen.

The exploration and choice of hyperparameters
was aided by the use of Bayesian hyperparameter
optimization platform SigOpt (2014).

4 Results & Discussion

We report results using automated evaluation met-
rics; BLEU (Papineni et al., 2002), NIST (Przy-
bocki et al., 2009), METEOR (Lavie and Agar-
wal, 2007), and ROUGE-L (Lin, 2004). Table
4 shows the performance of the baseline rela-
tive to our models using both sample additional
words and those extracted from target sentences,
these are the gold standard additional words. The
baseline model is TGen, a sequence-to-sequence
model with attention (Dušek and Jurčı́ček, 2016).

The model using extracted additional words
performs better in almost all metrics. The poor
performance of models using sampled words ver-
sus gold standard words highlights an issue with
the generation of additional words. These results
maintain their relative ranking in the test set as
shown in Table 5.

Human evaluation was carried out on the pri-
mary systems. The two metrics used were Qual-
ity; which measures grammatical correctness and
overall adequacy in the context of the MR, and
Naturalness; could the utterance have been pro-
duced by a native speaker. Crowd workers were
used to collect pairwise comparisons for each sys-
tem. Systems were ranked using the TrueSkill
algorithm (Sakaguchi et al., 2014). Our model
ranked 4th, below the baseline which came in 2nd,
as shown in Table 4 (Dušek et al., 2018)

Automated evaluation and subsequent human
evaluation results show our additional words
model performs poorly relative to the baseline. A
manual observation of the model’s outputs reveal
many errors such as repeated phrases and occa-
sionally absent or incorrect information. We in-
clude a collection of generated utterances from
the test set in table 7 to highlight areas where the
model performs both well and poorly relative to
the baseline.

Utterances from the baseline model tend to be
more consistent but when viewed over many hun-
dreds of samples this can be dry and repetitive.
In most cases the baseline model appears to have
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Model BLEU NIST METEOR ROUGE-L CIDEr
Additional words - temperature 1.1 0.5307 7.1738 0.4108 0.6112 1.5658
Additional words - temperature 1.0 0.5574 7.4078 0.4171 0.6308 1.6380
Additional words - temperature 0.9 0.5659 7.5196 0.4209 0.6327 1.7652
Baseline 0.6925 8.4781 0.4703 0.7257 2.3987
Additional words - extracted from target 0.7381 9.9435 0.4726 0.7508 2.2858

Table 4: Dev set results

Model BLEU NIST METEOR ROUGE-L CIDEr
Additional words - temperature 1.1 0.5092 7.1954 0.4025 0.5872 1.5039
Additional words - temperature 1.0 0.5265 7.3991 0.4095 0.5992 1.6488
Additional words - temperature 0.9 0.5573 7.7013 0.4154 0.6130 1.8110
Baseline 0.6593 8.6094 0.4483 0.6850 2.2338

Table 5: Test set results

Model Naturalness Quality
Baseline 2nd 2nd
Additional words -
temperature 1.1

4th 4th

Table 6: True skill clusters

learned its own simple templates for generating ut-
terances from an MR. The following is an example
of the template-like output the baseline produces
if provided with all 8 possible DAs; ”[name] is
a [food] [eatType] near [near] in the [area]. It
has a [customer rating] and a price range of [price
range]. It is [family friendly].” While the baseline
model outperformed rule based systems in the E2E
challenge, its generated utterances do not appear
to fully reflect the diversity of the dataset which
has been collected.

5 Future Work

Many verbalization issues in the additional word
model arise due to a conflict between an additional
word and the existing DAs in the MR. This can
be seen in some of the examples in Table 7. The
model used for generating additional words could
be improved substantially. Increasing the mini-
mum frequency of occurrence for additional words
in the training data may give the model more ex-
amples from which to better learn correct syntax.
The pointer network with additional words model
also suffers from an issue, common with pointer
networks, in which source tokens are incorrectly
repeated in the generated utterance. One way to
handle this would be to have a second stage of
training with a coverage loss as in See and Man-

ning (2017).

6 Conclusion

We proposed the use of an additional DA to im-
prove the diversity and level of control over ut-
terances. Results show both the underlying net-
work and the method used for generating addi-
tional words could be improved. Observation of
generated samples show this approach has the po-
tential to yield high quality and varied responses.
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