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Introduction

The Third Conference on Machine Translation (WMT 2018) took place on Wednesday, October 31 and
Thursday, November 1, 2018 in Brussels, Belgium, immediately preceding the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2018).

This is the third time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, and the second time was at EMNLP 2017 in Copenhagen,
Denmark. Prior to being a conference, WMT was held 10 times as a workshop. WMT was held for
the first time at HLCT-NAACL 2006 in New York City, USA. In the following years the Workshop on
Statistical Machine Translation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus,
Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore,
USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of three translation tasks: Machine Translation of News,
Biomedical Translation, and Multimodal Machine Translation, two evaluation tasks: Metrics and Quality
Estimation, as well as the Automatic Post-Editing and Parallel Corpus Filtering tasks. The Parallel
Corpus Filtering tasks was run at this year’s edition of WMT for the first time. As almost all machine
translation system require parallel corpora to train their models, the size and quality of available parallel
corpora has a substantial impact on machine translation quality. At the same, sizable, high-quality
parallel corpora are not available for many languages. This task addresses the important issue of how to
exploit noisy parallel corpora, which are available in much larger quantities and for a larger number of
languages.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2018 has received 84 full research paper submissions (not counting withdrawn
submissions). This is a record number of research paper submissions and more than double the number of
submissions of earlier editions of WMT. In total, WMT 2018 featured 27 full research paper presentations
(32% acceptance rate) and 82 shared task poster presentations.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondfej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves,
Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor, and Mark Fishel

Co-Organizers
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Scaling Neural Machine Translation
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Abstract

Sequence to sequence learning models still re-
quire several days to reach state of the art per-
formance on large benchmark datasets using
a single machine. This paper shows that re-
duced precision and large batch training can
speedup training by nearly 5x on a single 8-
GPU machine with careful tuning and im-
plementation.! On WMT’ 14 English-German
translation, we match the accuracy of Vaswani
etal. (2017) in under 5 hours when training on
8 GPUs and we obtain a new state of the art
of 29.3 BLEU after training for 85 minutes on
128 GPUs. We further improve these results
to 29.8 BLEU by training on the much larger
Paracrawl dataset. On the WMT’ 14 English-
French task, we obtain a state-of-the-art BLEU
of 43.2 in 8.5 hours on 128 GPUs.

1 Introduction

Neural Machine Translation (NMT) has seen im-
pressive progress in the recent years with the intro-
duction of ever more efficient architectures (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017). Similar sequence-to-sequence mod-
els are also applied to other natural language
processing tasks, such as abstractive summariza-
tion (See et al., 2017; Paulus et al., 2018) and
dialog (Sordoni et al., 2015; Serban et al., 2017;
Dusek and Jurcicek, 2016).

Currently, training state-of-the-art models on
large datasets is computationally intensive and can
require several days on a machine with 8 high-
end graphics processing units (GPUs). Scaling
training to multiple machines enables faster exper-
imental turn-around but also introduces new chal-
lenges: How do we maintain efficiency in a dis-
tributed setup when some batches process faster

*Work done while at Facebook Al Research.
'Our implementation is available at:
https://www.github.com/pytorch/fairseq

1

than others (i.e., in the presence of stragglers)?
How do larger batch sizes affect optimization and
generalization performance? While stragglers pri-
marily affect multi-machine training, questions
about the effectiveness of large batch training are
relevant even for users of commodity hardware
on a single machine, especially as such hardware
continues to improve, enabling bigger models and
batch sizes.

In this paper, we first explore approaches to im-
prove training efficiency on a single machine. By
training with reduced floating point precision we
decrease training time by 65% with no effect on
accuracy. Next, we assess the effect of dramati-
cally increasing the batch size from 25k to over
400k tokens, a necessary condition for large scale
parallelization with synchronous training. We im-
plement this on a single machine by accumulating
gradients from several batches before each update.
We find that by training with large batches and by
increasing the learning rate we can further reduce
training time by 40% on a single machine. Fi-
nally, we parallelize training across 16 machines
and find that we can reduce training time by an
additional 90% compared to a single machine.

Our improvements enable training a Trans-
former model on the WMT’ 16 En-De dataset to
the same accuracy as Vaswani et al. (2017) in just
32 minutes on 128 GPUs and in under 5 hours on
8 GPUs. This same model trained to full conver-
gence achieves a new state of the art of 29.3 BLEU
in 85 minutes. These scalability improvements
additionally enable us to train models on much
larger datasets. We show that we can reach 29.8
BLEU on the same test set in less than 10 hours
when trained on a combined corpus of WMT and
Paracrawl data containing ~150M sentence pairs
(i.e., over 30x more training data). Similarly, on
the WMT’ 14 En-Fr task we obtain a state of the
art BLEU of 43.2 in 8.5 hours on 128 GPUs.
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Figure 1: Validation loss for Transformer model trained with varying batch sizes (bsz) as a function of
optimization steps (left) and epochs (right). Training with large batches is less data-efficient, but can be
parallelized. Batch sizes given in number of target tokens excluding padding. WMT En-De, newstestl3.

2 Related Work

Previous research considered training and infer-
ence with reduced numerical precision for neu-
ral networks (Simard and Graf, 1993; Courbariaux
et al., 2015; Sa et al., 2018). Our work relies on
half-precision floating point computation, follow-
ing the guidelines of Micikevicius et al. (2018) to
adjust the scale of the loss to avoid underflow or
overflow errors in gradient computations.

Distributed training of neural networks follows
two main strategies: (i) model parallel evalu-
ates different model layers on different work-
ers (Coates et al., 2013) and (ii) data paral-
lel keeps a copy of the model on each worker
but distributes different batches to different ma-
chines (Dean et al., 2012). We rely on the second
scheme and follow synchronous SGD, which has
recently been deemed more efficient than asyn-
chronous SGD (Chen et al., 2016). Synchronous
SGD distributes the computation of gradients over
multiple machines and then performs a synchro-
nized update of the model weights. Large neu-
ral machine translation systems have been recently
trained with this algorithm with success (Dean,
2017; Chen et al., 2018).

Recent work by Puri et al. (2018) considers
large-scale distributed training of language mod-
els (LM) achieving 109x scaling with 128 GPUs.
Compared to NMT training, however, LM train-
ing does not face the same challenges of variable
batch sizes. Moreover, we find that large batch
training requires warming up the learning rate,
whereas their work begins training with a large
learning rate. There has also been recent work

on using lower precision for inference only (Quinn
and Ballesteros, 2018).

Another line of work explores strategies
for improving communication efficiency in dis-
tributed synchronous training setting by abandon-
ing “stragglers,” in particular by introducing re-
dundancy in how the data is distributed across
workers (Tandon et al., 2017; Ye and Abbe, 2018).
The idea rests on coding schemes that introduce
this redundancy and enable for some workers to
simply not return an answer. In contrast, we do
not discard any computation done by workers.

3 Experimental Setup

3.1 Datasets and Evaluation

We run experiments on two language pairs, En-
glish to German (En-De) and English to French
(En—Fr). For En-De we replicate the setup
of Vaswani et al. (2017) which relies on the
WMT’16 training data with 4.5M sentence pairs;
we validate on newstest13 and test on newstest14.
We use a vocabulary of 32K symbols based on a
joint source and target byte pair encoding (BPE;
Sennrich et al. 2016). For En—Fr, we train on
WMT’ 14 and borrow the setup of Gehring et al.
(2017) with 36M training sentence pairs. We use
newstest12+13 for validation and newstest14 for
test. The 40K vocabulary is based on a joint source
and target BPE factorization.

We also experiment with scaling training be-
yond 36M sentence pairs by using data from
the Paracrawl corpus (ParaCrawl, 2018). This
dataset is extremely large with more than 4.5B
pairs for En—-De and more than 4.2B pairs for



En-Fr. We rely on the BPE vocabulary built
on WMT data for each language pair and ex-
plore filtering this noisy dataset in Section 4.5.
We measure case-sensitive tokenized BLEU with
multi-bleu.pl? and de-tokenized BLEU with
SacreBLEU? (Post, 2018). All results use beam
search with a beam width of 4 and length penalty
of 0.6, following Vaswani et al. 2017. Checkpoint
averaging is not used, except where specified oth-
erwise.

3.2 Models and Hyperparameters

We wuse the Transformer model (Vaswani
et al.,, 2017) implemented in PyTorch in the
fairseg-py toolkit (Edunov et al., 2017). All
experiments are based on the “big” transformer
model with 6 blocks in the encoder and decoder
networks. Each encoder block contains a self-
attention layer, followed by two fully connected
feed-forward layers with a ReLU non-linearity
between them. Each decoder block contains self-
attention, followed by encoder-decoder attention,
followed by two fully connected feed-forward
layers with a ReLU between them. We include
residual connections (He et al., 2015) after each
attention layer and after the combined feed-
forward layers, and apply layer normalization (Ba
et al., 2016) after each residual connection. We
use word representations of size 1024, feed-
forward layers with inner dimension 4,096, and
multi-headed attention with 16 attention heads.
We apply dropout (Srivastava et al., 2014) with
probability 0.3 for En-De and 0.1 for En-Fr. In
total this model has 210M parameters for the
En-De dataset and 222M parameters for the En-Fr
dataset.

Models are optimized with Adam (Kingma and
Ba, 2015) using 81 = 0.9, B2 = 0.98, and
€ = le—8. We use the same learning rate schedule
as Vaswani et al. (2017), i.e., the learning rate in-
creases linearly for 4,000 steps to 5e—4 (or le—3
in experiments that specify 2x 1r), after which
it is decayed proportionally to the inverse square
root of the number of steps. We use label smooth-
ing with 0.1 weight for the uniform prior distri-
bution over the vocabulary (Szegedy et al., 2015;

https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

3SaCI‘CBLEUhaShZBLEU+case.mixed+lang.en—{de,fr}+
numrefs.l+smooth.exp+test.wmtld/full+tok.l3a+

version.1.2.9

Pereyra et al., 2017).

All experiments are run on DGX-1 nodes
with 8 NVIDIA® V100 GPUs interconnected
by Infiniband. We use the NCCL2 library and
torch.distributed for inter-GPU commu-
nication.

4 Experiments and Results

In this section we present results for improving
training efficiency via reduced precision floating
point (Section 4.1), training with larger batches
(Section 4.2), and training with multiple nodes in
a distributed setting (Section 4.3).

4.1 Half-Precision Training

NVIDIA Volta GPUs introduce Tensor Cores that
enable efficient half precision floating point (FP)
computations that are several times faster than
full precision operations. However, half precision
drastically reduces the range of floating point val-
ues that can be represented which can lead to nu-
merical underflows and overflows (Micikevicius
et al., 2018). This can be mitigated by scaling val-
ues to fit into the FP16 range.

In particular, we perform all forward-backward
computations as well as the all-reduce (gradient
synchronization) between workers in FP16. In
contrast, the model weights are also available in
full precision, and we compute the loss and op-
timization (e.g., momentum, weight updates) in
FP32 as well. We scale the loss right after the for-
ward pass to fit into the FP16 range and perform
the backward pass as usual. After the all-reduce
of the FP16 version of the gradients with respect
to the weights we convert the gradients into FP32
and restore the original scale of the values before
updating the weights.

In the beginning stages of training, the loss
needs to be scaled down to avoid numerical over-
flow, while at the end of training, when the loss
is small, we need to scale it up in order to avoid
numerical underflow. Dynamic loss scaling takes
care of both. It automatically scales down the loss
when overflow is detected and since it is not pos-
sible to detect underflow, it scales the loss up if no
overflows have been detected over the past 2,000
updates.

To evaluate training with lower precision, we
first compare a baseline transformer model trained
on 8 GPUs with 32-bit floating point (Our reim-
plementation) to the same model trained with 16-



model #gpu bsz cumul | BLEU updates tkn/sec time speedup
Vaswani et al. (2017) 8xP100 25k 1 26.4 300k ~25k ~5,000 -
Our reimplementation 8xV100 25k 1 26.4 192k 54k 1,429  reference
+16-bit 8 25k 1 26.7 193k 143k 495 2.9x
+ cumul 8 402k 16 26.7 13.7k 195k 447 3.2x
+2x 1r 8 402k 16 26.5 9.6k 196k 311 4.6x
+ 5k tkn/gpu 8 365k 10 26.5 10.3k 202k 294 4.9x
16 nodes (from +2x 1r) 128 402k 1 26.5 9.5k 1.53M 37 38.6x
+ overlap comm+bwd 128 402k 1 26.5 9.7k 1.82M 32 44.7x

Table 1: Training time (min) for reduced precision (1 6-bit), cumulating gradients over multiple back-
wards (cumul), increasing learning rate (2x 1r) and computing each forward/backward with more
data due to memory savings (5k tkn/gpu). Average time (excl. validation and saving models) over 3
random seeds to reach validation perplexity of 4.32 (2.11 NLL). Cumul=16 means a weight update after
accumulating gradients for 16 backward computations, simulating training on 16 nodes. WMT En-De,

newstestl 3.
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Figure 2: Accumulating gradients over multiple
forward/backward steps speeds up training by: (i)
reducing communication between workers, and
(ii) saving idle time by reducing variance in work-
load between GPUs.

bit floating point (16-bit). Note, that we keep
the batch size and other parameters equal. Table 1
reports training speed of various setups to reach
validation perplexity 4.32 and shows that 1 6-bit
results in a 2.9x speedup.

4.2 Training with Larger Batches

Large batches are a prerequisite for distributed
synchronous training, since it averages the gradi-
ents over all workers and thus the effective batch
size is the sum of the sizes of all batches seen by
the workers.

Figure 1 shows that bigger batches result in
slower initial convergence when measured in
terms of epochs (i.e. passes over the training set).
However, when looking at the number of weight

updates (i.e. optimization steps) large batches con-
verge faster (Hoffer et al., 2017). These results
support parallelization since the number of steps
define the number of synchronization points for
synchronous training.

Training with large batches is also possible on a
single machine regardless of the number of GPUs
or amount of available memory; one simply iter-
ates over multiple batches and accumulates the re-
sulting gradients before committing a weight up-
date. This has the added benefit of reducing com-
munication and reducing the variance in workload
between different workers (see Figure 2), leading
to a 36% increase in tokens/sec (Table 1, cumul).
We discuss the issue of workload variance in more
depth in Section 5.

Increased Learning Rate: Similar to Goyal
et al. (2017) and Smith et al. (2018) we find that
training with large batches enables us to increase
the learning rate, which further shortens training
time even on a single node (2x 1r).

Memory Efficiency: Reduced precision also
decreases memory consumption, allowing for
larger sub-batches per GPU. We switch from a
maximum of 3.5k tokens per GPU to a maximum
of 5k tokens per GPU and obtain an additional 5%
speedup (cf. Table 1; 2x 1r vs. 5k tkn/gpu).

Table 1 reports our speed improvements due to
reduced precision, larger batches, learning rate in-
crease and increased per-worker batch size. Over-
all, we reduce training time from 1, 429 min to 294
min to reach the same perplexity on the same hard-
ware (8x NVIDIA V100), i.e. a 4.9x speedup.
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Figure 3: Illustration of how the backward pass in
back-propagation can be overlapped with gradient
synchronization to improve training speed.

4.3 Parallel Training

While large batch training improves training time
even on a single node, another benefit of train-
ing with large batches is that it is easily paral-
lelized across multiple nodes (machines). We run
our previous 1-node experiment over 16 nodes of
8 GPUs each (NVIDIA V100), interconnected by
Infiniband. Table 1 shows that with a simple, syn-
chronous parallelization strategy over 16 nodes we
can further reduce training time from 311 minutes
to just 37 minutes (cf. Table 1; 2x 1r vs. 16
nodes).

However, the time spent communicating gradi-
ents across workers increases dramatically when
training with multiple nodes. In particular, our
models contain over 200M parameters, therefore
multi-node training requires transferring 400MB
gradient buffers between machines. Fortunately,
the sequential nature of back-propagation allows
us to further improve multi-node training perfor-
mance by beginning this communication in the
background, while gradients are still being com-
puted for the mini-batch (see Figure 3). Back-
propagation proceeds sequentially from the top of
the network down to the inputs. When the gradi-
ent computation for a layer finishes, we add the
result to a synchronization buffer. As soon as the
size of the buffer reaches a predefined threshold*
we synchronize the buffered gradients in a back-
ground thread that runs concurrently with back-
propagation down the rest of the network. Ta-
ble 1 shows that by overlapping gradient commu-
nication with computation in the backwards pass,
we can further reduce training time by 15%, from
37 minutes to just 32 minutes (cf. Table 1; 16

“We use a threshold of 150MB in this work.

E ---- 1 node (25k bsz)
—_ 1 —— 1 node (402k bsz)
%' 55 \ —— 16 nodes (402k bsz)
. N \
@
w0
o
S
©
>
2.11 A
2.0 T T
32 311 495

wall time (min)

Figure 4: Validation loss (negative log likelihood
on newstest13) versus training time on 1 vs 16
nodes.

En-De En-Fr
a. Gehring et al. (2017) 25.2 40.5
b. Vaswani et al. (2017) 28.4 41.0
¢. Ahmed et al. (2017) 28.9 414
d. Shaw et al. (2018) 29.2 41.5
Our result 29.3 43.2
16-node training time 85 min 512 min

Table 2: BLEU on newstest2014 for WMT
English-German (En-De) and English-French
(En—Fr). All results are based on WMT’ 14 train-
ing data, except for En-De (b), (c), (d) and our
result which are trained on WMT’16.

nodes vs. overlap comm+bwd).

We illustrate the speedup achieved by large
batches and parallel training in Figure 4.

4.4 Results with WMT Training Data

We report results on newstestl4 for English-to-
German (En-De) and English-to-French (En-Fr).
For En-De, we train on the filtered version of
WMT’16 from Vaswani et al. (2017). For En-
Fr, we follow the setup of Gehring et al. (2017).
In both cases, we train a “big” transformer on
16 nodes and average model parameters from the
last 10 checkpoints (Vaswani et al., 2017). Ta-
ble 2 reports 29.3 BLEU for En-De in 1h 25min
and 43.2 BLEU for En-Fr in 8h 32min. We
therefore establish a new state-of-the-art for both
datasets, excluding settings with additional train-
ing data (Kutylowski, 2018). In contrast to Ta-
ble 1, Table 2 reports times to convergence, not
times to a specific validation likelihood.



Train set En-De En-Fr
WMT only 29.3 43.2
detok. SacreBLEU 28.6 41.4
16-node training time | 85 min 512 min
WMT + Paracrawl 29.8 42.1
detok. SacreBLEU 29.3 40.9
16-node training time | 539 min 794 min

3.0

valid loss (NLL)
N
u

2.11 4

=== 1:0 (WMT only)
—— 0:1 (Para only)
— 1:31
— 14
1:1

Table 3: Test BLEU (newstest/4) when training
with WMT+Paracrawl data.

4.5 Results with WMT & Paracrawl Training

Fast parallel training lets us additionally explore
training over larger datasets. In this section we
consider Paracrawl (ParaCrawl, 2018), a recent
dataset of more than 4B parallel sentences for each
language pair (En-De and En-Fr).

Previous work on Paracrawl considered training
only on filtered subsets of less than 30M pairs (Xu
and Koehn, 2017). We also filter Paracrawl by re-
moving sentence-pairs with a source/target length
ratio exceeding 1.5 and sentences with more than
250 words. We also remove pairs for which the
source and target are copies (Ott et al., 2018). On
En-De, this brings the set from 4.6B to 700M.
We then train a En—De model on a clean dataset
(WMT’ 14 news commentary) to score the remain-
ing 700M sentence pairs, and retain the 140M
pairs with best average token log-likelihood. To
train an En—Fr model, we filter the data to 129M
pairs using the same procedure.

Next, we explored different ways to weight the
WMT and Paracrawl data. Figure 5 shows the val-
idation loss for En-De models trained with differ-
ent sampling ratios of WMT and filtered Paracrawl
data during training. The model with 1:1 ratio per-
forms best on the validation set, outperforming the
model trained on only WMT data. For En-Fr, we
found a sampling ratio of 3:1 (WMT:Paracrawl)
performed best.

Test set results are given in Table 3. We find that
Paracrawl improves BLEU on En-De to 29.8 but
it is not beneficial for En—Fr, achieving just 42.1
vs. 43.2 BLEU for our baseline.

5 Analysis of Stragglers

In a distributed training setup with synchronized
SGD, workers may take different amounts of time
to compute gradients. Slower workers, or strag-
glers, cause other workers to wait. There are sev-

e,

2.0 A

30k 50k
opt. steps

Figure 5: Validation loss when training on
Paracrawl+WMT with varying sampling ratios.
1:4 means sampling 4 Paracrawl sentences for ev-
ery WMT sentence. WMT En-De, newstestl3.
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Figure 6: Histogram of time to complete one for-
ward and backward pass for each sub-batch in the
WMT En-De training dataset. Sub-batches con-
sist of a variable number of sentences of similar
length, such that each sub-batch contains at most
3.5k tokens.

eral reasons for stragglers but here we focus on
the different amounts of time it takes to process
the data on each GPU.

In particular, each GPU typically processes one
sub-batch containing sentences of similar lengths,
such that each sub-batch has at most N tokens
(e.g., N = 3.5k tokens), with padding added as
required. We refer to sub-batches as the data that
is processed on each GPU worker whose combina-
tion is the entire batch. The sub-batches processed
by a worker may therefore differ from other work-
ers in the following three characteristics: the num-
ber of sentences, the maximum source sentence
length, or the maximum target sentence length. To
illustrate how these characteristics impact training



speed, Figure 6 shows the amount of time required
to process the 44K sub-batches in the En-De train-
ing data. There is large variability in the amount
time to process sub-batches with different charac-
teristics: the mean time to process a sub-batch is
0.11 seconds, the slowest sub-batch takes 0.228
seconds and the fastest 0.049 seconds. Notably,
there is much less variability if we only consider
batches of a similar shape (e.g., batches where
23 < srclen = tgt len < 27).

Unsurprisingly, constructing sub-batches based
on a maximum token budget as just described ex-
acerbates the impact of stragglers. In Section 4.2
we observed that we could reduce the variance
between workers by accumulating the gradients
over multiple sub-batches on each worker be-
fore updating the weights (see illustration in Fig-
ure 2). A more direct, but naive solution is to as-
sign all workers sub-batches with a similar shape.
However, this increases the variance of the gradi-
ents across batches and adversely affects the final
model. Indeed, when we trained a model in this
way, then it failed to converge to the target valida-
tion perplexity of 4.32 (cf. Table 1).

As an alternative, we construct sub-batches
so that each one takes approximately the same
amount of processing time across all workers. We
first set a target for the amount of time a sub-batch
should take to process (e.g., the 90th percentile
in Figure 6) which we keep fixed across training.
Next, we build a table to estimate the processing
time for a sub-batch based on the number of sen-
tences and maximum source and target sentence
lengths. Finally, we construct each worker’s sub-
batches by tuning the number of sentences until
the estimated processing time reaches our target.
This approach improves single-node throughput
from 143k tokens-per-second to 150k tokens-per-
second, reducing the training time to reach 4.32
perplexity from 495 to 479 minutes (cf. Table 1,
16-bit). Unfortunately, this is less effective than
training with large batches, by accumulating gra-
dients from multiple sub-batches on each worker
(cf. Table 1, cumul, 447 minutes). Moreover,
large batches additionally enable increasing the
learning rate, which further improves training time
(cf. Table 1, 2x 1r, 311 minutes).

6 Conclusions

We explored how to train state-of-the-art NMT
models on large scale parallel hardware. We in-

vestigated lower precision computation, very large
batch sizes (up to 400k tokens), and larger learn-
ing rates. Our careful implementation speeds up
the training of a big transformer model (Vaswani
et al., 2017) by nearly 5x on one machine with 8
GPUs.

We improve the state-of-the-art for WMT’ 14
En-Fr to 43.2 vs. 41.5 for Shaw et al. (2018),
training in less than 9 hours on 128 GPUs. On
WMT’14 En-De test set, we report 29.3 BLEU
vs. 29.2 for Shaw et al. (2018) on the same setup,
training our model in 85 minutes on 128 GPUs.
BLEU is further improved to 29.8 by scaling the
training set with Paracrawl data.

Overall, our work shows that future hardware
will enable training times for large NMT sys-
tems that are comparable to phrase-based sys-
tems (Koehn et al., 2007). We note that multi-node
parallelization still incurs a significant overhead:
16-node training is only ~10x faster than 1-node
training. Future work may consider better batch-
ing and communication strategies.
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Abstract

Character-level Neural Machine Translation
(NMT) models have recently achieved impres-
sive results on many language pairs. They
mainly do well for Indo-European language
pairs, where the languages share the same
writing system. However, for translating be-
tween Chinese and English, the gap between
the two different writing systems poses a ma-
jor challenge because of a lack of system-
atic correspondence between the individual
linguistic units. In this paper, we enable
character-level NMT for Chinese, by breaking
down Chinese characters into linguistic units
similar to that of Indo-European languages.
We use the Wubi encoding scheme!, which
preserves the original shape and semantic in-
formation of the characters, while also being
reversible. We show promising results from
training Wubi-based models on the character-
and subword-level with recurrent as well as
convolutional models.

1 Introduction

Character-level sequence-to-sequence (Seq2Seq)
models for machine translation can perform
comparably to subword-to-subword or subword-
to-character models, when dealing with Indo-
European language pairs, such as German-English
or Czech-English (Lee et al., 2017). Such lan-
guage pairs benefit from having a common Latin
character representation, which facilitates suitable
character-to-character mappings to be learned.
This method, however, is more difficult for non-
Latin language pairs, such as Chinese-English.
Chinese characters differ from English characters,
in the sense that they carry more meaning and
resemble subword units in English. For exam-
ple, the Chinese character A\’ corresponds to the

'Code and data available at https://github.com/

duguyuel00/wmt-en2wubi.
* Equal contribution
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Figure 1: Overview of the wubi2en approach to
Chinese-to-English translation. A raw Chinese
word (‘X 1%’) is encoded into ASCII characters
(‘bd|yad’), using the Wubi encoding method, be-
fore passing it to a Seq2Seq network. The net-
work generates the English translation ‘commit-
ment’, processing one ASCII character at a time.

word ‘human’ in English. This lack of correspon-
dence makes the problem more demanding for a
Chinese-English character-to-character model, as
it would be forced to map higher-level linguis-
tic units in Chinese to individual Latin characters
in English. Good performance on this task may,
therefore, require specific architectural decisions.

In this paper, we propose a simple solution to
this challenge: encode Chinese into a meaning-
ful string of ASCII characters, using the Wubi
method (Lunde, 2009) (Section 3). This encoding
enables efficient and accurate character-level pre-
diction applications in Chinese, with no changes
required to the model architecture (see Figure 1).
Our approach significantly reduces the character
vocabulary size of a Chinese text, while preserv-
ing the shape and semantic information encoded
in the Chinese characters.

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 10-16
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
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We demonstrate the utility of the Wubi en-
coding on subword- and character-level Chinese
NMT, comparing the performance of systems
trained on Wubi vs. raw Chinese characters (Sec-
tion 4). We test three types of Seq2Seq models: re-
current (Cho et al., 2014) convolutional (Gehring
et al., 2017) as well as hybrid (Lee et al., 2017).
Our results demonstrate the utility of Wubi as a
preprocessing step for Chinese translation tasks,
showing promising performance.

2 Background

2.1 Sequence-to-sequence models for NMT

Neural networks with Encoder-Decoder archi-
tectures have recently achieved impressive per-
formance on many language pairs in Machine
Translation, such as English-German and English-
French (Wu et al., 2016). Recurrent Neural Net-
works (RNNs) (Cho et al., 2014) process and en-
code the input sequentially, mapping each word
onto a vector representation of fixed dimensional-
ity. The representations are used to condition a de-
coder RNN which generates the output sequence.

Recent studies have shown that Convolu-
tional Neural Networks (CNNs) (LeCun et al.,
1998) can perform better on Seq2Seq tasks than
RNNs (Gehring et al., 2017; Chen and Wu, 2017;
Kalchbrenner et al., 2016). CNNs enable simul-
taneous computations which are more efficient es-
pecially using parallel GPU hardware. Successive
layers in CNN models have an increasing recep-
tive field for modeling long-term dependencies in
candidate languages.

2.2 Chinese-English translation

Recent large-scale benchmarks of RNN encoder-
decoder models (Wu et al, 2016; Junczys-
Dowmunt et al., 2016) have shown that transla-
tion pairs involving Chinese are among the most
challenging for NMT systems. For instance, in
Wu et al. (2016) an NMT system trained on
English-to-Chinese had the least relative improve-
ment across five other language pairs, measured
over the performance of a phrase-based machine
translation baseline.

While it is known that the quality of a Chi-
nese translation system can be significantly im-
pacted by the choice of word segmentation (Wang
et al., 2015), there has been little work on improv-
ing the representation medium for Chinese trans-
lation. Wang et al. (2017) perform an empirical

comparison on various translation granularities for
the Chinese-English task. They find that adding
additional information about the segmentation of
the Chinese characters, such as marking the start
and the end of each word, leads to improved per-
formance over raw character or word translation.

The work that is most related to ours is (Du and
Way, 2017), in which they use Pinyin2 to romanize
raw Chinese characters based on their pronuncia-
tion. This method, however, adds ambiguity to the
data, because many Chinese characters share the
same pronunciation.

3 Encoding Chinese characters with
Wubi

Wubi (Lunde, 2009) is a shape-based encoding
method for inputting Chinese characters on a com-
puter QWERTY keyboard. The encoding is based
on the structure of the characters rather than on
their pronunciation. Using the method, each raw
Chinese character (e.g., “¥%”) can be efficiently
mapped to a unique sequence of 1 to 5 ASCII
characters (e.g., “ymc”). This feature greatly re-
duces the ambiguity brought by other phonetic in-
put methods, such as Pinyin.

As an input method, Wubi uses 25 key caps
from the QWERTY keyboard, where each key cap
is assigned to five categories based on the char-
acter’s first stroke (when written by hand). Each
of the key caps is associated with different char-
acter roots. A Chinese character is broken down
into its character roots, and a corresponding QW-
ERTY association of the character roots is used
to encode a word. For example, the Wubi encod-
ing of ‘M5’ is ‘kwgk’, and the character roots of
this word are H(k), A(w), FE(g) and H(k).
To create a one-to-one mapping of every Chinese
character to a Wubi encoding during translation,
we append numbers to the encodings, whenever
one code maps to multiple Chinese characters.

Table 1: Examples of Wubi words and the corre-
sponding Chinese words

English Chinese Wubi
Set up % xyna0|ymc
Public property | A3 | we|aw|mflu
Step aside ik yh|ga
Applying Wubi significantly reduces the

’The official romanization system for Standard Chinese
in mainland China.



character-level vocabulary size of a Chinese
text (from > 5,000 commonly used Chinese
characters, to 128 ASCII characters3), while
preserving its shape and semantic information.
Table 1 contains examples of Wubi, along with
the corresponding words in Chinese and English.

4 Results

4.1 Dataset

In this work, we use a subset of the English and
Chinese parts of the United Nations Parallel Cor-
pus (Ziemski et al., 2016). We choose the UN cor-
pus because of its high-quality, man-made trans-
lations. The dataset is sufficient for our purpose:
our aim here is not to reach state-of-the-art per-
formance on Chinese-English translation, but to
demonstrate the potential of the Wubi encoding on
the character level.

We preprocess the UN dataset with the MOSES
tokenizer®, and use Jieba’ to segment the Chinese
sentence into words, following which we encode
the texts into Wubi. We use the ‘|’ character as a
subword separator for Wubi, in order to ensure that
the mapping from Chinese to Wubi is unique. We
also convert all Chinese punctuation marks (e.g.
‘o ~ () ) from UTF-8 to ASCII (e.g. “.,<>’)
because they share similar linguistic roles to En-
glish punctuations. This conversion additionally
decreases the size of the Wubi character vocabu-
lary.

Our final dataset contains 2.1M sentence pairs
for training, and 55k pairs for validation and test-
ing respectively (Table 2 contains additional statis-
tics). Note that our procedures are entirely re-
versible.

Table 2: Statistics of our dataset (mean and stan-
dard deviation).

English Waubi Chinese
words 258411.0 2294100 22.9410.0
per sentence
characters | o, 5 5 46433  1.8+0.83
per word
characters | 155 31 679 12714565 63.5427.6
per sentence

To investigate the utility of the Wubi encoding,
we compare the performance of NMT models

3302 ASCII and special characters such as non-ASCII
symbols used in the experiments, see Section 4.

*https://github.com/moses-smt

Shttps://github.com/fxsjy/jieba
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on four training pairs: raw Chinese-to-English
(cn2en) versus Wubi-to-English  (wubiZen);
English-to-raw Chinese (en2cn) versus English-
to-Wubi (en2wubi). For each pair, we investigate
three levels of sequence granularity: word-
level, subword-level, and character-level. The
word-level operates on individual English words
(e.g. walk) and either raw-Chinese words (e.g. 4
%) or Wubi words (e.g. sh|wy). We limit all word-
level vocabularies to the 50k most frequent words
for each language. The subword-level is produced
using the byte pair encoding (BPE) scheme
(Sennrich et al., 2016), capping the vocabulary
size at 10k for each language. The character-level
operates on individual raw-Chinese characters
(e.g. “E’), or individual ASCII characters.

4.2 Model descriptions and training details

Our models are summarized in Table 3, includ-
ing the number of parameters and vocabulary sizes
used for each pair. For the subword- and word-
level experiments, we use two systems®. The
first, LSTM, is an LSTM Seq2Seq model (Cho
et al., 2014) with an attention mechanism (Bah-
danau et al., 2015). We use a single layer of 512
hidden units for the encoder and decoder, and set
512 as the embedding dimensionality. The second
system, FConv, is a smaller version of the convo-
lutional Seq2Seq model with an attention mecha-
nism from (Gehring et al., 2017). We use word
embeddings with dimension 256 for this model.
The encoder and the decoder of FConv have the
same convolutional architecture which consists of
4 convolution layers for the encoder and 3 for the
decoder, each layer having filters with dimension
256 and size 3.

For all character-level experiments, we use the
fully-character level model, char2char from (Lee
et al., 2017)”. The encoder of this model consists
of 8 convolutional layers with max pooling, which
produce intermediate representations of segments
of the input characters. Following this, a 4-layer
highway network (Srivastava et al., 2015) is ap-
plied, as well as a single-layer recurrent network
with gated recurrent units (GRUs) (Cho et al.,
2014). The decoder consists of an attention mech-
anism and a two-layer GRU, which predicts the
output one character at a time. The character em-
bedding dimensionality is 128 for the encoder and

®We use the fairseq library https://github.
com/pytorch/fairseq.
"https://github.com/nyu-dl/dldmt-c2c



Table 3: Model and vocabulary sizes used in our experiments. In brackets, we include the number of
embedding parameters for a model (left), or the percentage of vocabulary coverage of the dataset (right).

No. of model parameters (Embedding) Vocab Size (% coverage of dataset)
level char2char FConv LSTM EN Wubi CN
word - 42M (25M) 83M (51M) 50k (99.7%) 50k (99.5%) 50k (99.5%)

subword - 11IM (5.1M) 22M (10.6M) | 10k (100%) 10k (100%) 10k (98.7%)
character | 69-74M (0.21M-2.81M") - 302 (100%) 302 (100%) 5183 (100%)

t: 0.21M for wb2en/en2wb (69M in total); 0.77M for cn2en (70M) and 2.81M for en2cn (74M),
due to a larger size of the decoder embedding.

Table 4: BLEU test scores on the UN dataset.

character subword word
char2char FConv LSTM FConv LSTM
wubi2en 40.55 3820 43.06 39.53 43.36
cn2en 39.60 3820 43.03 39.64 43.67
en2wubi 36.78 36.04 39.03 3698 39.69
en2cn’ 36.13 35.41 38.64 37.25 39.59

t: We convert these translations to Wubi before computing BLEU to ensure a consistent comparison.

512 for the decoder, whereas the number of hid-
den units is 512 for the encoder and 1024 for the
decoder.

We train all models for 25 epochs using the
Adam optimizer (Kingma and Ba, 2014). We used
four NVIDIA Titan X GPUs for conducting the
experiments, and use beam search with beam size
of 20 to generate all final outputs.

4.3 Quantitative evaluation

In Table 4, we present the BLEU scores for all the
previously described experiments. Before com-
puting BLEU, we convert all Chinese outputs to
Waubi to ensure a consistent comparison. This con-
version has a one-to-one mapping between Chi-
nese and Wubi, whereas, in the reverse direc-
tion, ill-formed Wubi output on the character-level
might not be reversible to Chinese.

On the word-level, the Wubi-based models
achieve comparable results to their counterparts
in Chinese, in both translation directions. LSTM
significantly outperforms FConv across all experi-
ments here, most likely due to its much larger size
(see Table 3).

On the subword-level, we observe a slight in-
crease of about 0.5 BLEU when translating from
English to Wubi instead of raw Chinese. This in-
crease is most likely due to the difference in the
BPE vocabularies: while the English and Wubi
BPE rules that were learned cover 100% of the
dataset, for Chinese this is 98.7% - the remaining
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1.3% had to be replaced by the unk symbol un-
der our vocabulary constraints. While the models
were capable of compensating for this gap when
translating to English, in the reverse direction it
resulted in a loss of performance. This highlights
one benefit of Wubi on the subword-level: the
Latin encoding seems to give a greater flexibil-
ity for extracting suitable BPE rules. It would be
interesting to repeat this comparison using much
larger datasets and larger BPE vocabularies.

Character-level translation is more difficult than
word-level, since the models are expected to not
only predict sentence-level semantics, but also to
generate the correct spelling of each word. Our
char2char Wubi models outperformed the raw
Chinese models with 0.95 BLEU points when
translating to English, and 0.65 BLEU when trans-
lating from English. The differences are statisti-
cally significant (p = 0.001 and p = 0.034 respec-
tively) according to bootstrap resampling (Koehn,
2004) with 1500 samples. The results demon-
strate the advantage of Wubi on the character-
level, which outperforms raw Chinese even though
it has fewer parameters dedicated for character
embeddings (Table 3) and that it has to deal with
substantially longer input or output sequences (see
Table 2).

In Figure 2, we plot the sentence-level BLEU
scores obtained by the char2char models on our
test set, with respect to the length of the input
sentences. When translating from Chinese to En-
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Figure 2: Sentence-level BLEU scores obtained by the character-level char2char models on our test
dataset, plotted with respect to the word length of the source sentences.

glish (Figure 2a) the Wubi-based model consis-
tently outperforms the raw Chinese model, for
all input lengths. Interestingly, the gap between
the two systems increases for longer Chinese in-
puts of over 20 words, indicating that Wubi is
more robust for such examples. This result could
be explained by the fact that the encoder of the
char2char model is more suitable for modeling
languages with a higher level of granularity such
as English and German. When translating from
English to Chinese (Figure 2b) Wubi still has a
small edge, however in this case we see the re-
verse trend: it performs much better on shorter
sentences up to 12 English words. Perhaps, the
increased granularity of the output sequence led to
an advantage during decoding using beam search.

Interestingly, all the char2char models use only
a tiny fraction of their parameters as embeddings,
due to the much smaller size of their vocabularies.
The best-performing LSTM word-level model has
the majority of its parameters, 61% or over S50M,
dedicated to word embeddings. For the Wubi-
based character-level models, the number is only
0.3% or 0.21M. There is even a significant differ-
ence between Wubi and Chinese on the character-
level, for example, en2wb has 12 times fewer em-
bedding parameters than en2cn. Thus, although
char2char performed worse than LSTM in our ex-
periments, these results highlight the potential of
character-level prediction for developing compact
yet performant translation systems, for Latin as
well as non-Latin languages.

4.4 Qualitative evaluation

In Table 5, we present four examples from our test
dataset that cover short as well as long sentences.
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We also include the translations produced by the
character-level char2char systems, which is the
main focus of this paper. Full examples from the
additional systems are available in the supplemen-
tary material.

In the first example, which is a short sen-
tence resembling the headline of a document, both
the wubi2en and cn2en models produced correct
translations. When translating from English to
Chinese, however, the en2wubi produced the word
‘5’ (highlighted in red) which more correctly
matches the ground truth text. In contrast, the
en2cn model produced the synonym ‘F1°. In the
second example, the en2wubi output completely
matches the ground truth and is superior to the
en2cn output. The latter failed to correctly trans-
late ‘the’ to “3X{X’ (marked in green).

The wubiZen translation in the third example ac-
curately translated the word ‘believe’ (marked in
blue) and the full form of the abbreviation ‘Idcs’
— ‘the least developed countries’ (highlighted in
green), whereas the cn2en chooses ‘are convinced’
and ignores ‘ldcs’ in its output sentence. Inter-
estingly, although the ground truth text maps the
word ‘essential’ (marked in red) to three Chinese
words ‘ZE_HN_HE &, both en2wubi and en2cn
use only a single word to interpret it. Arguably,
en2wubi’s translation ‘% K EHZL is closer to the
ground truth than en2cn’s translation < /NAJ 71>

The fourth example is more challenging. There,
the English ground truth ‘requested’ (highlighted
in blue) maps to two different parts of the Chi-
nese ground truth ‘“$& H” (in blue) and “ZK’ (in
green). This one-to-many mapping confuses both
translation models. The wubiZen tries to match
the Chinese text by translating ‘2 i’ into ‘pro-



Table 5: Four examples from our test dataset, along with system-generated translations produced by the
char2char models. We converted the Wubi translations to raw Chinese. Translations of words with a

similar meaning are marked with the same color.

Translation Type Example 1
English | ground truth | social and human rights questions
Chinese | ground truth | ¥t 5 AR 8]
Wubi ground truth | py|wf gn w|sc ukdO|jghm1|
wubi2en social and human rights questions
cn2en social and human rights questions
en2wubi 4 5 A R&
en2cn e A AR B
Example 2
English | ground truth | the informal consultations is open to all member states .
Chinese | ground truth | FiFE & GE ¥ 0] 20 Xk JEIEZ U -
Wubi ground truth | rnje wflkm|l fqu sk cd|lk pluqw djd|ghdO|aa fljum .
wubi2en this informal consultation may be open to all member states .
cn2en the informal consultations will be open to all member states .
en2wubi frE 20 E 5 7] 20 XK FER R .
en2cn e 2 A E ¥ A] T JEESC A -
Example 3
English | ground truth | we believe that increased trade is essential for the growth and development of ldcs .
Chinese | ground truth | F&AI1HH{E . H9hn B 5 & & A ZAER B K M AR = 5 55 .
Wubi ground truth | qlwu sh|wy , fullk qyv|jqr cf jb i v|dp|l|pe r fulta t v|nae gcf o tgj]s .
wubi2en we believe that increased trade is essential for the growth and development of the least
developed countries .
cnZen we are convinced that increased trade growth and development is essential .
en2wubi AT, 0 85 X & A ZORER B K AR EREE
en2cn AT T, 0 B 5 X T e A AR ESK B A M R R R AT D Y
Example 4
English | ground truth | in some cases , additional posts were requested without explanation .
Chinese | ground truth | 7£ FEE8 fF00 1 SEH 0 S0 205K B, R (B BT .
Wubi ground truth | d afs|hxf nge|ukq k , rj|bm fu|lk km|ptkmO s|fiy jf , ua|fii wt|bm yulje .
wubi2en in some cases , no indication was made when additional staffing requirements were pro-
posed .
cn2en in some cases , there was no indication of the request for additional posts .
en2wubi ERL BN, ESR N ST -
en2cn EHL 0L N L BRI BB, (E IR TR R AR

posed’ and “Z-3K’ into ‘requirements’: this model
may have been misled by the word ‘B (can be
translated to ‘when’); the output contains an ad-
verbial clause. While the wubiZen output is closer
to the ground truth, the two have little overlap.
For the English-to-Chinese task, the en2cn trans-
lation is better than the one produced by en2wubi:
while en2cn successfully translated ‘without ex-
planation’ (in red), the en2wubi model ignored this
part of the sentence.

The Wubi-based models tend to produce
slightly shorter translations for both directions
(see Table 6). In overall, the Wubi-based outputs
appear to be visibly better than the raw Chinese-
based outputs, in both directions.

5 Conclusion

We demonstrated that an intermediate encod-
ing step to ASCII characters is suitable for the
character-level Chinese-English translation task,
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Table 6: Word counts of the outputs of the
char2char models (mean and standard deviation).

Model Word Count
wb2en 25.01 £10.95
cn2en 25.80 £11.72
en2wb 21.61 +9.68
en2cn 22.19 £ 10.11

and can even lead to performance improvements.
All of our models trained using the Wubi encod-
ing achieve comparable or better performance to
the baselines trained directly on raw Chinese. On
the character-level, using Wubi yields BLEU im-
provements when translating both to and from En-
glish, despite the increased length of the input or
output sequences, and the smaller number of em-
bedding parameters used. Furthermore, there are
also improvements on the subword-level, when
translating from English.



Future work will focus on making use of the se-
mantic structure of the Wubi encoding scheme, to
develop architectures tailored to utilize it. Another
exciting future direction is multilingual many-to-
one character-level translation from Chinese and
several Latin languages simultaneously, which be-
comes possible using encodings such as Wubi.
This has previously been successfully realized for
Latin and Cyrillic languages (Lee et al., 2017).
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Abstract

Recent neural machine translation (NMT)
systems have been greatly improved by
encoder-decoder models with attention mech-
anisms and sub-word units. However, im-
portant differences between languages with
logographic and alphabetic writing systems
have long been overlooked. This study fo-
cuses on these differences and uses a simple
approach to improve the performance of NMT
systems utilizing decomposed sub-character
level information for logographic languages.
Our results indicate that our approach not
only improves the translation capabilities of
NMT systems between Chinese and English,
but also further improves NMT systems be-
tween Chinese and Japanese, because it uti-
lizes the shared information brought by simi-
lar sub-character units.

1 Introduction

Neural machine translation (Cho et al., 2014)
(NMT) systems based on sequence-to-sequence
models (Sutskever et al., 2014) have recently be-
come the de facto standard architecture. The
models use attention mechanisms (Bahdanau
et al., 2015; Luong et al., 2015) to keep records
of all encoding results, and can focus on particu-
lar parts of these results during decoding, so that
the model can produce longer and more accurate
translations. Sub-word units are another tech-
nique first introduced by Sennrich’s (2016) appli-
cation of the byte pair encoding (BPE) algorithm,
and are used to break up words in both source and
target sentences into sequences of smaller units,
learned without supervision. This alleviates the
risk of producing <unk> symbols when the model
encounters infrequent “unknown” words, also
known as the out-of-vocabulary (OOV) problem.
Moreover, sub-word units, which can be viewed
as learned stems and affixes, can help the NMT
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model better encode the source sentence and de-
code the target sentence, particularly when the
source and target languages share some similar-
ities.

Almost all of the methods used to improve
NMT systems were developed for alphabetic lan-
guages such as English, French, and German as
either the source or target language, or both. An
alphabetic language typically uses an alphabet: a
small set of letters (basic writing symbols) that
each roughly represents a phoneme in the spo-
ken language. Words are composed by ordered
letters, and sentences are composed by space-
segmented ordered words. However, in other
major writing systems—namely, logographic (or
character-based) languages such as Chinese,
Japanese, and traditional Korean—strokes are
used to construct ideographs; ideographs are used
to construct characters, which are the basic units
for meaningful words. Words can then further
compose sentences. In alphabetic languages,
sub-word units are easy to identify, whereas in
logographic languages, a similar effect can be
achieved only if sub-character level information
is taken into consideration.

Having noticed this significant difference
between these two writing systems, Shi et
al. (2015), Liu et al. (2017), Peng et al. (2017),
and Cao et al. (2017) used stroke-level informa-
tion for logographic languages when constructing
word embeddings; Toyama et al. (2017) used vi-
sual information for strokes and Japanese Kanji

'Taking the ASPEC corpus as an example, the average
word lengths are roughly 1.5 characters (Chinese words, to-
kenized by Jieba tokenizer), 1.7 characters (Japanese words,
tokenized by MeCab tokenizer), and 5.7 characters (English
words, tokenized by Moses tokenizer), respectively. There-
fore, when a sub-word model of similar vocabulary size is ap-
plied directly, English sub-words usually contain several let-
ters, which are more effective in facilitating NMT, whereas
Chinese and Japanese sub-words are largely just characters.

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 17-25
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/W18-64003
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radicals in a text classification task.?

Some studies have performed NMT tasks using
various sub-word “equivalents”. For instance,
Du and Way (2017) trained factored NMT mod-
els using “Pinyin”3 sequences on the source side.
Unfortunately, they did not apply a BPE algo-
rithm during training, and their model also cannot
perform factored decoding. Wang et al. (2017)
directly applied a BPE algorithm to character se-
quences before building NMT models. However,
they did not take advantage of sub-character level
information during the training of sub-word and
NMT models. Kuang and Han (2018) also at-
tempted to use a factored encoder for Chinese
NMT systems using radical data. It is worth not-
ing that although the idea of using ideographs and
strokes in NLP tasks (particularly in NMT tasks)
is not new, no previous NMT research has fo-
cused on the decoding process. Ifit is also possi-
ble to construct an ideograph/stroke decoder, we
can further investigate translations between lo-
gographic languages. Additionally, no NMT re-
search has previously used stroke data.

To summarize, there are three potential in-
formation gaps associated with current studies
on NMT systems for logographic languages us-
ing sub-character level data: 1) no research has
been performed on the decoding process; 2) no
studies have trained models using sub-character
level sub-words; and 3) no studies have attempted
to build NMT models for logographic language
pairs, despite their sharing many similarities.
This study investigates whether sub-character in-
formation can facilitate both encoding and decod-
ing in NMT systems and between logographic
language pairs, and aims to determine the best
sub-character unit granularity for each setting.

The main contributions of this study are three-
fold:

1. We create a sub-character database of Chi-
nese character-based languages, and conduct
MT experiments using various types of sub-
character NMT models.

2To be more precise, there is another so-called syl-
labic writing system, which uses individual symbols to
represent symbols rather than phonemes. Japanese hira-
gana and katakana are actually syllabic symbols rather than
ideographs. In this paper, we focus only on the logographic
part.

3An official Romanization system for standard Chinese
in mainland China. Pinyin includes both letters and dia-
critics, which represent phonemic and tonal information, re-
spectively.
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2. We facilitate the encoding or decoding pro-
cess by using sub-character sequences on ei-
ther the source or target side of the NMT
system. This will improve translation perfor-
mance; if sub-character information is shared
between the encoder and decoder, it will fur-
ther benefit the NMT system.

Specifically, Chinese ideograph* data and
Japanese stroke data are the best choices for
relevant NMT tasks.

2 Background

2.1 NMT with Attention Mechanisms and
Sub-word Units

In this study, we applied a sequence-to-sequence
model with an attention mechanism (Bahdanau
etal., 2015). The basic recurrent unit is the “long
short-term memory” (Hochreiter and Schmidhu-
ber, 1997) unit. Because of the nature of the
sequence-to-sequence model, the vocabulary size
must be limited for the computational efficiency
of the Softmax function. In such cases, the de-
coder outputs an <unk> symbol for any word
that is not in the vocabulary, which will harm
the translation quality. This is called the out-of-
vocabulary (OOV) problem.

Sub-word unit algorithms (such as BPE algo-
rithms) first break up a sentence into the smallest
possible units. Then, two adjacent units at a time
are merged according to some standard (e.g., the
co-occurrence frequency). Finally, after n steps,
the algorithm collects the merged units as “sub-
word” units. By using sub-word units, it is pos-
sible to represent a large number of words with
a small vocabulary. Originally, sub-word units
were only applied to unknown words (Sennrich
etal., 2016). However, in the recent GNMT (Wu
et al., 2016) and transformer systems (Vaswani
et al., 2017), all words are broken up into sub-
word units to better represent the shared informa-
tion.

For alphabetic languages, researchers have in-
dicated that sub-word units are useful for solving
OOV problems, and that shared information can
further improve translation quality. The Senten-
cepiece project® compared several combinations
of word-pieces (Kudo, 2018) and BPE sub-word

“We use the term “logographic” to refer to writing sys-
tems such as Chinese characters and Japanese Kanji, and
“ideograph” to refer to the character components.

Shttps://github.com/google/sentencepiece



Semantic Phonetic ..
Character . . Pinyin
ideograph ideograph
9t run 5 horse h cha
W pool | /K(7) water th cha
Jfi impose | 5 direction 1 sh
it loosen = bow h chu
i land =+ soil i) dm
YK drive =} horse X q

Table 1: Examples of decomposed ideographs of Chi-
nese characters. The composing ideographs of differ-
ent functionality might be shared across different char-
acters.

models in English/Japanese NMT tasks. The sub-
word units were trained on character (Japanese
Kanji and Hiragana/Katakana) sequences. Sim-
ilarly, Wang et al. (2017) attempted to compare
the effects of different segmentation methods on
NMT tasks, including “BPE” units trained on
Chinese character sequences.

2.2 Sub-character Units in NLP

In alphabetic languages, the smallest unit for
sub-word unit training is the letter; in character-
based languages, the smallest units should be sub-
character units, such as ideographs or strokes.
Because sub-character units are shared across dif-
ferent characters and have similar meanings, it
is possible to build a significantly smaller vocab-
ulary to cover a large amount of training data.
This has been researched quite extensively within
tasks such as word embeddings, as mentioned
previously.

As we can see from the examples in Table 1,
there are several independent Chinese charac-
ters. Fach character can be split into at least
two ideographs: a semantic ideograph and a pho-
netic ideograph.® More importantly, the same
ideograph can be shared by different characters
denoting similar meanings. For example, the
first five characters (4tt, yth, fti, 5t and i) have
similar pronunciation (and they are written sim-
ilarly in Pinyin) because they share the same
phonetic ideograph “th”.  Similarly, semantic
ideographs can be shared across characters and
denote a similar semantic meaning. For exam-
ple, the first character “4th” and the last char-
acter “4X> share same semantic ideograph “”
(meaning “horse”); and their semantic meanings
are closely related (“run” and “drive”, respec-

5Semantic ideographs denote the meaning of a character,
whereas phonetic ideographs denote the pronunciation.
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Word Meaning  Ideographs
[ZEN Wood ARXFAR
I Forest ARARARAKRAR

Table 2: Examples of multi-character words in Chi-
nese and their ideograph sequences.

tively). A few ideographs can also be treated as
standalone characters.

To the best of our knowledge, however, no re-
search has been performed on logographic lan-
guage NMT beyond character-level data, except
in the work of Du and Way (2017), who attempted
to use Pinyin sequences instead of character se-
quences in Chinese—English NMT tasks. Consid-
ering the fact that there are a large number of ho-
mophones and homonyms in Chinese languages,
it was difficult for this method to be used to re-
construct characters in the decoding step.

3 NMT Using Sub-character Level Units

3.1 Ideograph Information

When building NMT vocabulary, the use of sub-
characters (instead of words, characters, and char-
acter level sub-words) can greatly condense vo-
cabulary size. For example, a vocabulary can be
decreased from 6,000 to 10,000 character types’
to hundreds ® of ideographs. Table 2 presents two
Chinese words composed of four different char-
acters that have very close meanings. Character-
based NMT models treat these characters sep-
arately as one-hot vectors. In contrast, if the
two words are broken down into ideograph se-
quences, they overlap significantly. Then, only
two ideographs are needed to compose the vocab-
ulary of the two words. The computational load
will be reduced, and the chances of training neu-
rons responsible for low-frequency vocabularies
will increase.

Moreover, sub-character units can serve as
building blocks for constructing characters that
are not present in the training data, because all
CJK characters are designed to be composed of a
limited number of ideographs in UNICODE stan-
dards.

3.2 Stroke Information

All ideographs can be further decomposed into
strokes, which are smaller units and have an even
7 According to the ASPEC corpus.

8214 as defined in UNICODE 10.0 standard and 517 as
defined in CNS11643 charset.



smaller number of types. Therefore, we also
propose training our model on stroke sequences.
There are five basic stroke types for Chinese char-
acters and Japanese Kanji: “horizontal” (—),
“vertical” ( | ), “right falling” (=), “left falling”
() ), and “break” (" 1). Each stroke type can be
further sub-categorized into several stroke varia-
tions. For example, left falling strokes contain
both long and short left fallings () and ~ ), while
a break contains many more variations, such as
L, 1, 1, and "5 (details can be found in Ap-
pendix A).

In practice, the CNS11643 charset’ is used to
transform each character into a stroke sequence,
where unfortunately only “stroke-type” informa-
tion is available. In this study, we manually tran-
scribed all ideographs into stroke sequences using
33 pre-defined strokes.

3.3 Character Decomposition

The CNS11643 charset is used to facilitate char-
acter decomposition, where Chinese, Japanese,
and Korean characters are merged into a sin-
gle character type based on similarities in their
forms and meanings. This is potentially bene-
ficial; for example, if Chinese and Japanese vo-
cabularies are built, they will authentically share
some common types. There are 517 so-called
“components” (i.e., ideographs) pre-defined in
CNS11643. This ensures that all characters can
be divided into certain sequences of components.
For example, the character “H]” can be split into
“71” and “I[1”; and the character “£” can be
split into “7*” and “I1”. Details can be found
on the CNS11643 website!?. Using this ideo-
graph decomposition information, all Chinese
and Japanese sentence data can be transformed
into new ideograph sequences; then, using the
manually transcribed stroke decomposition data
introduced in Section 3.2, we can also obtain new
stroke sequences.

Note that although there are no clear indica-
tions of how the components/strokes are struc-
tured together, the sequence potentially contains
structural information, because the writing of
characters always follows a certain order, such as
“up-down”, “outside-in”, etc. We also note that
UNICODE 10.0 has introduced symbols indi-

°The CNS11643 charset is published and maintained by
the Taiwan government.
http://www.cns11643.gov.tw/AIDB/welcome_en.do

Ohttp://www.cns11643.gov.tw/search.jsp?ID=13
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Word
El‘ ==K

B33

Language

JP-character

JP-ideograph ~ JL—H H--I/h 1
J =1 "T—1~->

P-strok S EE——
JP-stroke | T~ 1
CN-character X 5t
CN-ideograph  JLX H-/h_1

_ )
CN-stroke T 1]~ 1
EN landscape

Table 3: The Japanese word JE\ 5t and Chinese word
X5t both mean “landscape” in English, and they only
differ in the middle part of the first character. Note that
there are “_1” tags at the ends of some decomposed se-
quences to distinguish between possible duplications.

cating sub-character structures (Ideographic De-
scription Characters), which provide a clearer in-
dication of character compositions. We will make
further use of this information in future studies.
To ensure that there are no duplicated ideo-
graph and stroke sequences for different charac-
ters and multi-character words, we post-tag the se-
quences on the duplicated ones using “_17, “_2”,
etc. Table 3 shows an example of character de-
composition in Chinese and Japanese'!.
4 Experiments on
Chinese—Japanese—English Translation

To answer our research questions, we set up a
series of experiments to compare NMT mod-
els of logographic languages trained on word
sequences, character-level sub-word unit se-
quences, and ideograph- and stroke-level sub-
word unit sequences.

We performed two lines of experiments:

1. We trained NMT models between logo-
graphic language and alphabetic language
combinations, i.e., Japanese/Chinese and
English. In each model, we varied the data
granularity for the logographic language,
using “character level” or “sub-character
level” (ideograph level and stroke level)
granularities. We used the character level

UFor example, the ideograph and stroke sequences for
character 5t are the same as those for character fj{ (meaning
“to dry in the sun”). However, these two characters have dif-
ferent architectures (“top-down” vs. “left-right™). Post-tags
are thus appended in order to distinguish them. Similarly,
characters X\ and J¥ have the same ideograph and stroke se-
quences, and thus must be post-tagged.



NMT models as our baselines, and investi-
gated whether the sub-character level NMT
models could outperform the baseline mod-
els.

We trained NMT models between combina-
tions of two logographic languages, i.e., Chi-
nese and Japanese. Similarly, we used data
sets with different granularities: 1) Models
lacking sub-character level data. 2) Mod-
els having sub-character level data on both
sides (to confirm the results of the previ-
ous experiment). For the experiments, the
models will have both source and target
sides. The models will use sub-character
level data with/without shared vocabularies
(namely, ideograph models, stroke models,
ideograph-stroke models, stroke-ideograph
models, and ideograph/stroke models with
shared vocabularies). 3) Pinyin baselines ac-
cording to (Du and Way, 2017), where both
Pinyin word sequences with tones and char-
acter sequences with Pinyin factors are used
with the encoder.

4.1 Dataset

We trained our baselines and experiments using
Chinese, Japanese, and English. The Asian Sci-
entific Paper Excerpt Corpus (ASPEC (Nakazawa
et al., 2016)) and Casia2015'? corpus were used
for this purpose.

ASPEC contains a Japanese—English paper
abstract corpus of 3 million parallel sentences
(ASPEC-JE) and a Japanese—Chinese paper
excerpt corpus of 680,000 parallel sentences
(ASPEC-JC). We used the first million con-
fidently aligned parallel sentences in ASPEC-
JE and all of the ASPEC-JC data to cover
Japanese—English and Japanese—Chinese lan-
guage pairs. The Casia2015 corpus contains ap-
proximately 1 million parallel Chinese—English
sentences. All data in the Casia2015 corpus were
used to cover Chinese—English language pairs.
During training, the maximum length hyperpa-
rameter was adjusted to ensure 90% coverage of
the training data. For development and testing,
the ASPEC corpus has an official split between
the development set and test set; however, be-
cause the Casia2015 corpus is not similarly split,

2http://nlp.nju.edu.cn/cwmt-wmt/, provided by the Insti-
tute of Automation, Chinese Academy of Sciences.
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we made random selections from the develop-
ment set and test set of 1,000 sentences each.

4.2 Settings

Different pre-tokenization methods were applied
to the data in three languages (if applicable). A
Moses tokenizer was applied to the English data;
a Jieba!3 tokenizer using the default dictionary
was applied to the Chinese data; and a MeCab'4
tokenizer using the IPA dictionary was applied to
the Japanese data. For the Pinyin baseline, the
pypinyin'® Python library was used to transcribe
the Chinese character sequence into a Pinyin se-
quence.

In both of the experiment lines discussed
above, data at the “word”, “character”, “ideo-
graph”, and “stroke” levels were used in combi-
nations. For “word” level data, only dictionary-
based segmentation was applied; for the other
three levels of data, the byte pair encoding (BPE)
models were trained and applied, with a vocabu-
lary size of 8,000. In the second line of exper-
iments, where both the source and target sides
were logographic languages, we added “charac-
ter” level data without BPE (“char”) for com-
parison. Additionally, shared vocabularies were
applied when both the source and target had the
same data granularity level (meaning that both the
source and target side would have the same vocab-
ulary)'®.

A basic RNNsearch model (Bahdanau et al.,
2015) with two layers of long short-term mem-
ory (LSTM) units was used. The hidden size was
512. A normalized Bahdanau attention mecha-
nism was applied at the output layer of the de-
coder. We developed our model based on Ten-
sorFlow!” and its neural machine translation tu-
torial'8.

The model was trained on a single GeForce
GTX TITAN X GPU. During training, the SGD
optimizer was used, and the learning rate was
set at 1.0. The size of the training batch was
set to 128, and the total global training step was
250,000. We also decayed the learning rate as the
training progressed: after two-thirds of the train-

Bhttps://github.com/fxsjy/jieba

Yhttp://taku910.github.io/mecab/

Bhttps://github.com/mozillazg/python-pinyin

16The shared vocabulary can be trained by a BPE model
on a concatenated corpus of source and target sentences.

https://github.com/tensorflow

"B https://github.com/tensorflow/nmt



English-Japanese NMT BLEU
EN_word JP_word 36.1
EN_word JP_character 38.3
EN_word JP_ideograph 40.3”
EN_word JP_stroke 41.3*

Japanese-English NMT BLEU
JP_word EN_word 25.5
JP_character EN_word 26.3
JP_ideograph EN_word 26.8*
JP_stroke EN_word 27.0%

English-Chinese NMT BLEU
EN_word CN_word 11.8
EN_word CN_character 10.3
EN_word CN_ideograph  14.6*
EN_word CN_stroke 14.1*

Chinese-English NMT BLEU
CN_word EN_word 14.7
CN__character EN_word 14.5
CN_ideograph EN_word 15.6*
CN_stroke EN_word 15.5*

Table 4: Experimental results (BLEU scores) of NMT
systems for Japanese/English and Chinese/English
language pairs. All the scores are statistically signifi-
cant at p = 0.0001 (marked by x).

ing steps, we set the learning rate to be four times
smaller until the end of training. Additionally, we
set the drop-out rate to 0.2 during training.

BLEU was used as the evaluation metric in
our experiments. For Chinese and Japanese data,
a KyTea tokenization was applied before we ap-
plied BLEU, following the WAT (Workshop on
Asian Translation) leaderboard standard. To val-
idate the significance of our results, we ran boot-
strap re-sampling (Koehn, 2004) for all results us-
ing Travatar (Neubig, 2013) at a significance level
of p = 0.0001.

4.3 Results

4.3.1 NMT of Logographic and Alphabetic
Language Pairs

Table 4 shows the experimental results for the
Japanese/English and Chinese/English language
pairs in both translation directions. Generally,
for each of the experiment settings, the mod-
els using ideograph and stroke data outperformed
the baseline systems, regardless of the language
pair or translation direction. However, for the
Japanese/English language pair, the stroke se-
quence models performed better. For the Chi-
nese/English language pairs, the ideograph se-
quence models worked better. The reason for
these differences will be discussed in detail in
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Section 5.

4.3.2 NMT of Logographic Language Pairs

Table 5 shows the results for all baselines and pro-
posed models. Among the character-level base-
lines, the “char” models and “bpe” models out-
performed the “word” models in both translation
directions. When we applied a shared vocabu-
lary to the “bpe” models, the models achieved the
best BLEU scores in both translation directions.
These character-level baselines conform with pre-
vious studies indicating that sub-word units im-
prove the performance of NMT systems, and that
whenever both the source and target side data
have similarities in their writing systems, shared
vocabularies will further enhance performance.

Sub-character level models aim to replicate
similar results to those presented in Section 4.3.1,
because only one side of these models uses sub-
character level data. For Japanese—Chinese trans-
lation directions, half of the models showed a sig-
nificant improvement over the baselines, whereas
for Chinese—Japanese translation directions, five
out of six models showed significant improve-
ments.

When both the source and target side used the
same sub-character level data (either ideograph or
stroke data), the experimental results also showed
significant improvement over character baselines.
Additionally, the ideograph models outperformed
stroke models. When shared vocabularies were
applied to the models, the ideograph models ex-
hibited slight performance improvements (0.1 ~
0.4 BLEU point), and the stroke models exhib-
ited dramatically decreased performance (0.9 ~
1.1 BLEU points). However, no model here out-
performed the sub-character baselines.

To further exploit the power of sub-character
units, the last models having different levels of
sub-character units on the source and target side
were trained. The results conform with what we
found in Section 4.3.1: the models using Chinese
ideograph data and Japanese stroke data exhib-
ited the best performance, regardless of whether
they were applied at the source or target side. For
Japanese—Chinese translations, the best BLEU
score was 33.8, which was produced by the
Japanese-stroke and Chinese-ideograph model;
for Chinese—Japanese translation, the best BLEU
score was 43.9, which was produced by the
Chinese-ideograph and Japanese-stroke model.



JP-CN NMT CN_word CN_char CN_bpe CN_ideograph  CN_stroke
JP_word 29.6 - - 30.8 30.3
JP_char - 31.6 - 32.0" 32.1*
JP_bpe - - 31.5(31.7) 31.6 31.7
JP_ideograph 30.4 33.1" 33.3" 32.0" (32.4™) 33.4"
JP_stroke 30.3 33.4" 32.6" 33.8* 32.17 (31.2)
CN-JP NMT JP_word JP_char JP_bpe JP_ideograph JP_stroke
CN_word 40.0 (40.0) - - 40.5 40.1
CN_char 42.1 (40.4) 41.7 - 43.1* 42.2*
CN_bpe 42.1 - 42.0 (42.3) 43.1* 42.2*
CN_ideograph 43.2* 43.5" 43.0" 42.6™ (42.7) 43.9*
CN_stroke 43.0" 43.3" 42.5" 42.9* 42.2* (41.1)

Table 5: Experimental results (BLEU scores) for Japanese/Chinese NMT systems. The row headers and column
headers indicate which source and target data were used in the training. In particular, “word” and “char” are
character level data without BPE segmentation, while “bpe” (character level), “ideograph”, and “stroke” (sub-
character level) are data with BPE segmentation. The scores in parentheses indicate the models that had a shared
vocabulary, whenever applicable. The italic numbers represent the two Pinyin baselines used for comparative
purposes, namely the “WdPyT” model, which uses Pinyin words with tones as the source data, and the “factored-
NMT?” model, which uses Pinyin characters as factors (Du and Way, 2017). Note that these two baselines can
only have Chinese data on the encoder side. The * superscripts indicate that a score is significantly better than

the best baseline result.

5 Discussions

5.1 Translation Examples

Table 6 shows some of the translation exam-
ples. There is a rare proper noun “FA NFE%T
(Matsushita Electric)” (OOV) in the source sen-
tence. The word baseline model cannot decode
this; therefore, an <unk> symbol is produced.
The character baseline model avoids the OOV
problem. However, the underlined parts in both
baseline translations seem to be word-for-word
translations from the Japanese source sentence
C“PAN FER$ ZVv—7 T 13”), which be-
come a prepositional phrase in Chinese (“fE
FAT rigs %M B (in Matsushita Electric
Group)”). This makes the translation ungram-
matical because there will be no noun phrase as
the subject in the sentence. Our best model (i.e.,
sub-character based NMT model using Japanese
stroke data and Chinese ideograph data) can
solve these two problems by better encoding the
source sentence and can produce translations
both without OOV and with a noun phrase as the
sentence subject.

5.2 Strokes vs. Ideographs

The experimental results show that in NMT mod-
els, different logographic languages appear to pre-
fer sub-character units with different granulari-
ties. A very clear tendency that was observed con-
sistently in both experiments was that ideographs
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worked better for Chinese and strokes worked
better for Japanese. This difference might be be-
cause of the differences in the writing systems. In
addition to Kanji (Chinese characters), Japanese
uses Hiragana and Katakana, which are stan-
dalone alphabets.

Moreover, as described in Section 4, stroke
models tended to perform more poorly than ideo-
graph models. This probably occurred because
to achieve a fair comparison between all baseline
models and proposed models, the same hyper-
parameter configurations were used. For exam-
ple, the embedding dimensions for all vocabular-
ies were set to 300. This might be appropriate
for vocabularies of character-based data and ideo-
graph data having vocabulary sizes larger than
500. However, the stroke data only has a vocabu-
lary size of approximately 30, which is too dispro-
portional. This phenomenon might also account
for the decrease in BLEU scores when shared vo-
cabularies were applied to stroke models.

5.3 The Encoding and Decoding Process

In comparison with character level data, sub-
character level data (such as ideographs and
strokes) can be used to generate much smaller
and more concentrated vocabularies. This is help-
ful during both the encoding and decoding pro-
cesses. Vocabularies constructed using character-
level data are known to be very skewed, con-
taining both very frequent words and very rare



Model Sentence

R ®ds V=7 T3, KE A& o Bk L L T 1991 4 G T OBREE
Source .

HE 1 & dlE L .
Reference B8 &8 B& , I FRASER T 19914 e 7 K B 'ES Y .
(';‘;Soer‘;)‘e E <umk> B, 19914 FIE T MM EE C MEN 4E HR 19 Lk .
Baseline £ AN RHEE R b, MEA &F L& 1Y A, 19914F #ilE T < IR
(Char) HE D o
Best Model
(JP-stroke- AR |, A &85 B 1Y A6l 19914F $IE 7 MR 'S 7
CN-ideograph)
English The Matsushita Electric Group enacted the ”Environmental Declaration” as the basis of
Translation its business philosophy in 1991.

Table 6: Translation examples of Japanese-Chinese NMT systems. Note that “f24 NHL

B 99

7iIr as a proper noun,

could be handled properly in sub-character based translation systems.

words. As a result, during training, the neurons
responsible for high-frequency words might be
updated many times, while the neurons respon-
sible for low-frequency words might be updated
only a very limited number of times. This will
potentially harm translation performance for low-
frequency words.

However, this problem can be alleviated by ap-
plying sub-character units. Because ideographs
and strokes are repeatedly shared by different
characters, no items occur with very low frequen-
cies. More instances can be found in the train-
ing data, even for the least frequent sub-character
items. Therefore, the translation performance for
low-frequency items could be much better.

6 Conclusions and Future Work

This study was the first attempt to use sub-
character units in NMT models. Our results
not only confirmed the positive effects of using
ideograph and stroke sequences in NMT tasks,
but also indicated that different logographic lan-
guages actually preferred different sub-character
granularities (namely, ideograph for Chinese and
stroke for Japanese). Finally, this paper presented
a simple method for extending the available cor-
pus from the character level to the sub-character
level. During this process, we maintained a one-
to-one relationship between the original charac-
ters and transformed sub-character sequences. As
a result, this simple and straightforward method
achieved consistently better results for NMT sys-
tems used to translate logographic languages, and
could be easily applied to similar scenarios.
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Many questions remain to be answered in fu-
ture work. The first question involves the relative
benefits of ideograph data and stroke data, and the
effects of shared vocabularies. We have not yet
explained why there are considerable differences
in performance. In particular, for NMT models
in which both sides have stroke data, why does
performance drop dramatically when shared vo-
cabularies are applied? We discussed the possi-
ble reasons for this phenomenon in Section 5.2;
however, further investigation is needed.

Another important issue is as follows: when
characters are transformed into ideographs and
strokes, no structural information is considered.
This causes repetitions in data, and we must add
tags at the end of each sequence to differentiate
them. A better way to solve this problem would
be to have structural information directly encoded
in the data.
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Abstract

Recent work has shown that the encoder-
decoder attention mechanisms in neural ma-
chine translation (NMT) are different from the
word alignment in statistical machine trans-
lation. In this paper, we focus on analyz-
ing encoder-decoder attention mechanisms, in
the case of word sense disambiguation (WSD)
in NMT models. We hypothesize that atten-
tion mechanisms pay more attention to context
tokens when translating ambiguous words.
We explore the attention distribution patterns
when translating ambiguous nouns. Counter-
intuitively, we find that attention mechanisms
are likely to distribute more attention to the
ambiguous noun itself rather than context to-
kens, in comparison to other nouns. We con-
clude that attention is not the main mecha-
nism used by NMT models to incorporate con-
textual information for WSD. The experimen-
tal results suggest that NMT models learn to
encode contextual information necessary for
WSD in the encoder hidden states. For the at-
tention mechanism in Transformer models, we
reveal that the first few layers gradually learn
to “align” source and target tokens and the last
few layers learn to extract features from the re-
lated but unaligned context tokens.

1 Introduction

Human languages exhibit many different types of
ambiguity. Lexical ambiguity refers to the fact that
words can have more than one semantic meaning.
Dealing with these lexical ambiguities is a chal-
lenge for various NLP tasks. Word sense disam-
biguation (WSD) is recognizing the correct mean-
ing of an ambiguous word, with the help of con-
textual information.

In statistical machine translation (SMT) (Koehn
etal., 2003), a system could explicitly take context
tokens into account to improve the translation of
ambiguous words (Vickrey et al., 2005). By con-
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trast, in neural machine translation (NMT) (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014), especially in attentional
NMT (Bahdanau et al., 2015; Luong et al., 2015),
each hidden state incorporates contextual informa-
tion. Hence, NMT models could potentially per-
form WSD well. However, there are no empiri-
cal results to indicate that the hidden states encode
the contextual information needed for disambigua-
tion. Moreover, how the attention mechanism’
deals with ambiguous words is also not known yet.

In this paper, we focus on the question of how
encoder-decoder attention mechanisms deal with
ambiguous nouns. We explore two different atten-
tion mechanisms. One is the vanilla one-layer at-
tention mechanism (Bahdanau et al., 2015; Luong
et al., 2015), and the other one is the Transformer
attention mechanism (Vaswani et al., 2017).

Rios et al. (2017) find that attentional NMT
models perform well in translating ambiguous
words with frequent senses,> while Liu et al.
(2018) show that there are plenty of incorrect
translations of ambiguous words. In Section 4, we
evaluate the translations of ambiguous nouns, us-
ing the test set from Rios et al. (2017). In this
setting, we expect to get a more accurate picture
of the WSD performance of NMT models.

In Section 5, we present a fine-grained inves-
tigation of attention distributions of different at-
tention mechanisms. We focus on the process
of translating the given ambiguous nouns. Previ-
ous studies (Ghader and Monz, 2017; Koehn and
Knowles, 2017) have shown that attention mecha-
nisms learn to pay attention to some unaligned but
useful context tokens for predictions. Thus, we
hypothesize that attention mechanisms distribute
more attention to context tokens when translating

"Denotes the encoder-decoder attention mechanism in
this paper, unless otherwise specified.
*More than 2,000 instances in the training set.
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ambiguous nouns, compared to when translating
other words. To test this hypothesis, we compare
the attention weight over ambiguous nouns with
the attention weight over all words and all nouns.
In Section 6, we first compare the two different
attention mechanisms. Then, we explore the rela-
tion between accuracy and attention distributions
when translating ambiguous nouns. In the end, we
investigate the error distributions over frequency.
Our main findings are summarized as follows:

e We find that WSD is challenging in NMT,
and data sparsity is one of the main issues.
We show that attention mechanisms prefer to
pay more attention to the ambiguous nouns
rather than context tokens when translating
ambiguous nouns.

We conclude that encoder-decoder attention
is not the main mechanism used by NMT
models to incorporate contextual information
for WSD. Experimental results suggest that
models learn to encode contextual informa-
tion necessary for WSD in the encoder hid-
den states.

We reveal that the attention mechanism in
Transformers first gradually learns to extract
features from the “aligned” source tokens.
Then, it learns to capture features from the
related but unaligned source context tokens.

2 Related Work

Both Rios et al. (2017) and Liu et al. (2018) pro-
pose some techniques to improve the translation
of ambiguous words. Rios et al. (2017) use sense
embeddings and lexical chains as additional input
features. Liu et al. (2018) introduce an additional
context vector. There is an apparent difference in
evaluation between these two studies. Rios et al.
(2017) design a constrained WSD task. They cre-
ate well-designed test sets to evaluate the perfor-
mance of NMT models in distinguishing different
senses of ambiguous words, rather than evaluat-
ing the translations of ambiguous words directly.
By contrast, Liu et al. (2018) evaluate the trans-
lations of ambiguous words but on a common test
set. Scoring the contrastive translations is not eval-
uating the real output of NMT models. In this pa-
per, we directly evaluate the translations generated
by NMT models, using ContraWSD as the test set.

In NMT, the encoder may encode contextual
information into the hidden states. Marvin and
Koehn (2018) explore the ability of hidden states
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at different encoder layers in WSD, while we fo-
cus on exploring the attention mechanisms that
connect the encoder and the decoder.

Koehn and Knowles (2017) and Ghader and
Monz (2017) investigate the relation between
attention mechanisms and the traditional word
alignment. They find that attention mechanisms
not only pay attention to the aligned source to-
kens but also distribute attention to some un-
aligned source tokens. In this paper, we per-
form a more fine-grained investigation of atten-
tion mechanisms, focusing on the task of trans-
lating ambiguous nouns. We also explore the
advanced attention mechanisms in Transformer
models (Vaswani et al., 2017).

The encoder-decoder attention mechanisms dif-
fer in NMT models. Tang et al. (2018b) evaluate
different NMT models, but focusing on NMT ar-
chitectures. Tang et al. (2018a); Domhan (2018)
compare different attention mechanisms. How-
ever, there is no detailed analysis on attention
mechanisms.

In this paper, we mainly investigate the encoder-
decoder attention mechanisms. More specifically,
we explore how attention mechanisms work when
translating ambiguous nouns.

3 Background

3.1 Attention Mechanisms

Attention mechanisms were initially proposed to
learn the alignment between source and target to-
kens by Bahdanau et al. (2015) and Luong et al.
(2015), in order to improve the performance of
NMT. However, attention mechanisms are differ-
ent from the traditional word alignment in SMT
which learns the hard alignment between source
and target tokens. Attention mechanisms learn to
extract features from all the source tokens when
generating a target token. They assign weights to
all the hidden states of source tokens. The more
related hidden states are assigned larger weights.
Then attention mechanisms feed a context vector
¢, which is extracted from the encoder, into the
decoder for target-side predictions.

We use h to represent the hidden state set
{h1,ha,--+ ,hy} in the encoder, where n is the
number of source-side tokens. Then ¢; is com-
puted by Equation 1:

ey

where ay is the attention vector at time step . oy is

¢ = oth
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Figure 1: Different attention mechanisms between encoders and decoders in NMT.

a normalized distribution of a score computed by
the hidden state set h and the decoder state s;_1,
as described by Equation 2:

2)

There are different score() functions to compute
the attention vector a, including multi-layer per-
ceptron (MLP), dot product, multi-head attention,
etc. In this paper, the vanilla attention mechanism
employs MLP. The advanced attention mechanism
applies multi-head attention with scaled dot prod-
uct, which is the same as the attention mechanism
in Transformer (Vaswani et al., 2017).

Figure 1 illustrates different attention mecha-
nisms. In vanilla attention mechanisms (Bah-
danau et al., 2015; Luong et al., 2015), the con-
text vector c; is only fed into the first layer of
the decoder networks. Then the single- or multi-
layer decoder networks compute from bottom to
top to predict target tokens. The vanilla attention
mechanisms can only extract the source-side fea-
tures once, which may be insufficient. Therefore,
Gehring et al. (2017) and Vaswani et al. (2017)
feed a context vector into each decoder layer. The
higher layer could take the result of the previous
layer into account when computing the new atten-
tion. More recently, Domhan (2018) has shown
that multi-layer attention is crucial in NMT mod-
els. Moreover, Vaswani et al. (2017) also propose
the multi-head attention mechanism. In contrast to
the single-head attention, there are multiple atten-
tion functions which compute the attention from
the linearly projected vectors in parallel. Then,
the context vectors from all the heads are concate-
nated and fed into the decoder networks.

a; = softmax(score(si—1,h))

3.2 ContraWSD

ContraWSD? from Rios et al. (2017) consists of
contrastive translation sets where the human ref-

*https://github.com/a-rios/ContraWSD
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erence translations are paired with one or more
contrastive variants. Given an ambiguous word in
the source sentence, the correct translation is re-
placed by an incorrect translation corresponding
to another meaning of the ambiguous word. For
example, in a case where the English word ‘line’
is the correct translation of the German source
word ‘Schlange’, ContraWSD replaces ‘line” with
other translations of ‘Schlange’, such as ‘snake’ or
‘serpent’, to generate contrastive translations. To
evaluate the performance on disambiguation, con-
trastive translations are designed not to be easily
identified as incorrect based on grammatical and
phonological features.

ContraWSD is extracted from a large amount of
balanced parallel text. It contains 84 different Ger-
man word senses. It has 7,200 German—English
lexical ambiguities and each lexical ambiguity in-
stance has 3.5 contrastive translations on average.
All the ambiguous words are nouns so that the
WSD is not simply based on syntactic context.

4 Evaluation

Instead of using NMT models to score the con-
trastive translations, we use NMT models to trans-
late source sentences and evaluate the translations
of the ambiguous nouns directly. We evaluate
two popular NMT models with different attention
mechanisms. One is RNNS2S with the vanilla at-
tention mechanism, and the other is Transformer
with the advanced attention mechanism.

We apply fast-align (Dyer et al., 2013) to get
the aligned translations of ambiguous nouns. To
achieve better alignment, we run fast-align on both
training data and test data which includes refer-
ence translations and generated translations. How-
ever, for some ambiguous nouns, there is no align-
ment. We call these ambiguous nouns filtered.

There are multiple reference translations for



each ambiguous noun in ContraWSD. We addi-
tionally add their synonyms* into the reference
translations as well. The non-reference transla-
tions are crawled from the Internet’.

In addition to the filtered nouns, the transla-
tions of the ambiguous nouns are classified into
six groups, depending on which class (references,
incorrect senses, no translation) the translations
at aligned/unaligned positions belong to, as de-
scribed in Table 1. For instance, in C3, there is nei-
ther a correct nor an incorrect sense at the aligned
position. However, there is a reference translation
at an unaligned position.

Group Aligned Unaligned
Ref. | Incor. | No | Ref. | Incor. | No

Cl v
C2 v J
Wi N v
C3 NARY
w2 Vv

Drop v N

Table 1: Different groups of translations. Ref. denotes
the reference translations. Incor. represents the incor-
rect senses. No means that there is neither a correct nor
an incorrect sense of the ambiguous noun. 4/ indicates
that the translations belong to the reference translations
or incorrect senses or neither.

Since the alignment learnt by fast-align is not per-
fect, we also consider the translations at unaligned
positions.  All the translations in CI, C2, C3
groups are viewed as correct translations. Thus,
the accuracy of an NMT model on this test set is
the amount of translations in Group CI, C2, C3,
divided by the sum of ambiguous noun instances.
Formally, Accuracy = (C1+ C2+ C3)/(C1 +
C24+W1+C3+ W2+ Drop + Filtered), where
C1,C2,W1,C3, W2, Drop, and Filtered are the
amount of translations in each group.

4.1 Experimental Settings

We use the Sockeye (Hieber et al., 2017) toolkit,
which is based on MXNet (Chen et al., 2015), to
train models. In addition, we have extended Sock-
eye to output the distributions of encoder-decoder
attention in Transformer models, from different at-
tention heads and different attention layers.

All the models are trained with 2 GPUs. During
training, each mini-batch contains 4096 tokens. A

4Synonyms from WordNet (Miller, 1995)
>https://www.linguee.com/german-english
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model checkpoint is saved every 4,000 updates.
We use Adam (Kingma and Ba, 2015) as the op-
timizer. The initial learning rate is set to 0.0002.
If the performance on the validation set has not
improved for 8 checkpoints, the learning rate is
multiplied by 0.7. We set the early stopping pa-
tience to 32 checkpoints. All the neural networks
have 8 layers. For RNNS2S, the encoder has 1
bi-directional LSTM and 6 stacked uni-directional
LSTMs, and the decoder is a stack of 8 uni-
directional LSTMs. The size of embeddings and
hidden states is 512. We apply layer-normalization
and label smoothing (0.1) in all models. We tie the
source and target embeddings. The dropout rate of
embeddings and Transformer blocks is set to 0.1.
The dropout rate of RNNs is 0.2. The attention
mechanism in Transformer has 8 heads.

We use the training data from the WMT17
shared task.® We choose newstest2013 as the vali-
dation set, and use newstest2014 and newstest2017
as the test sets. All the BLEU scores are measured
by SacreBLEU. There are about 5.9 million sen-
tence pairs in the training set after preprocessing
with Moses scripts. We learn a joint BPE model
with 32,000 subword units (Sennrich et al., 2016).
There are 6,330 sentences left after filtering the
sentences with segmented ambiguous nouns. We
employ the models that have the best perplexity on
the validation set for the evaluation.

4.2 Results

Table 2 gives the performance of NMT mod-
els on newstests and ContraWSD. The detailed
translation distributions over different groups are
also provided. Transformer is much better than
RNNS2S in both newstests and ContraWSD. Com-
pared to the accuracy of scoring contrastive trans-
lation pairs (Score), the accuracy of evaluating the
translations (Acc.) is apparently lower.

There are 8—10% of ambiguous nouns belong-
ing to Drop and Filtered for both models. We man-
ually checked the translations of sentences with
these ambiguous nouns and found that 250 and
206 ambiguous nouns (41%) are translated cor-
rectly by RNNS2S and Transformer, respectively.
Our automatic classification failed for two rea-
sons. On the one hand, because the models are
trained at subword-level, there are a lot of sub-
words in the translations. The correctly gener-

*http://www.statmt.org/wmt17/
translation—-task.html



Model 2014 | 2017 Cl C2 | WI | C3 | W2 | Drop | Filtered || Acc. || Score
RNNS2S 233 | 25.1 || 4,560 | 187 | 863 | 81 | 31 | 333 275 76.27 || 84.01
Transformer || 26.7 | 27.5 | 4,982 | 140 | 599 | 85 | 23 | 308 193 82.26 || 90.34

Table 2: Evaluation results of NMT models and the distributions of translations. 2014 and 2017 denote the BLEU
scores on newstest2014 and newstest2017, Acc. (in %) is short for accuracy. Score (in %) is the accuracy using
NMT models to score contrastive translation pairs. Filtered is the amount of translations that there is no learnt

alignment for the ambiguous nouns.

ated translations are subword sequences, and not
all the subwords (sometimes even no subword) are
aligned to the ambiguous nouns by fast-align. On
the other hand, the reference translations are all
nouns. If the translations are verbs or variants,
they are not recognized. If we move these transla-
tions into CI, the accuracy of the two NMT mod-
els will be improved from 76.27% to 80.22%, and
from 82.26% to 85.51%, respectively. Thus, atten-
tional NMT models are good at sense disambigua-
tion in German—English, but there is much room
for improvement as well.

5 Ambiguous Nouns in Attentional NMT

Ghader and Monz (2017) show that there are dif-
ferent attention patterns for words of different
part-of-speech (POS) tags, which sheds light on
interpreting attention mechanisms. In this sec-
tion, we investigate the attention distributions over
source-side ambiguous nouns.

5.1 Hypothesis and Tests

Attention mechanisms not only pay attention to
the hidden states at aligned positions but also dis-
tribute attention to the hidden states at unaligned
positions. The hidden states at unaligned posi-
tions can influence the generation of the current
token. In general, NLP models disambiguate am-
biguous words by means of context words. Thus,
for ambiguous nouns, we hypothesize that atten-
tion mechanisms distribute more attention to con-
text tokens for disambiguation.

We test our hypothesis via two different com-
parisons. We use wgmp; to denote the average
attention weight over the ambiguous nouns and
employ wyeuns to represent the average attention
weight over all nouns’ (including the ambiguous
nouns), while wy,rens denotes the average atten-
tion weight over all tokens.® We first compare
Wambi With Wiokens. As nouns have a more con-

"We use the TreeTagger (Schmid, 1999) to tag German.
8Subword tokens are excluded, which account for 32%.
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centrated attention distribution than other word
types (Ghader and Monz, 2017), we then compare
Wambi WIth Wnouns. If Wemp; 1S the smallest, it
supports our hypothesis.

The NMT models we evaluated are trained at
subword-level. When we compute the attention
distributions, we only consider the ambiguous
nouns that are not segmented into subwords. To
some extent, we therefore conduct an analysis of
frequent tokens. We employ the alignment learnt
by fast-align to find the step of translating the cur-
rent source token.

Given the attention distribution matrix M €
RIs* of a sentence translation, [; represents the
length of the target sentence, while [; denotes the
length of the source sentence. Each column is
the attention distribution over all the source tokens
when generating the current target token. Each
row is the attention distribution over the current
source token at all the translation steps. w repre-
sents the attention weight over any tokens. If the
tth source token is aligned to the jth target token,
then w = [M],;. If a token is aligned to more than
one token, we choose the largest attention weight
as w.”

As for Transformer attention mechanisms, there
are multiple layers, and each layer has multiple
heads. We maximize the attention weights in dif-
ferent heads to represent the attention distribution
matrix for each attention layer.! We first com-
pute Wambi» Wnouns, and Wyokens for each attention
layer. Then we average these weights.

5.2 Results

As Table 3 shows, wgm,p; 1S substantially larger
than wyokens in both two models. Even though
Wnouns 18 much larger compared to Wyiokens> Wambi

°A source token may be aligned to a set/subset of sub-
word sequences, but the attention mechanism only assigns
the corresponding weight to one of the subwords. We select
the maximal weight rather than the average weight.

%We visualize both the maximal and average attention
weights. We find that maximal attention weights are more
representative in feature extraction.



is still greater than wy,guns, especially in Trans-
former. This result is against our hypothesis. That
is to say, attention mechanisms do not distribute
more attention to context tokens when translat-
ing an ambiguous noun. Instead, attention mech-
anisms pay more attention to the ambiguous noun
itself. We assume that the contextual information
has already been encoded into the hidden states
by the encoder, and attention mechanisms do not
learn which source words are useful for WSD.

Model Wambi | Wtokens | Wnouns
RNNS2S 0.63 0.48 0.62
Transformer | 0.74 0.57 0.69

Table 3: Average attention weights over ambiguous
nouns, non-subword tokens, and nouns.

Figure 2 demonstrates the average attention
weights of the ambiguous nouns, nouns, and non-
subword tokens in different Transformer attention
layers. In each attention layer, wg,p; is always
the largest attention weight. It is very interesting
that the attention weights keep increasing at lower
layers and achieve the largest weight at Layer 5.
Then wyprens decreases steadily, while wg,,p; and
Wnouns have a distinct drop in the final attention
layer. We also re-train a model with 6 attention
layers, and we get a figure with the same pattern,
but the largest attention weights appear at Layer
4. We will give a further analysis of Transformer
attention mechanisms in Section 6.1.
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Figure 2: Average attention weights of ambiguous
nouns, nouns, and non-subword tokens in different
Transformer attention layers.

6 Analysis

We first give our analysis of the two different at-
tention mechanisms based on the attention distri-
butions and visualizations. Then, we explore the
relation between translation accuracy and atten-
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tion weight over the ambiguous nouns. In the end,
we provide the error distributions over frequency.

6.1 Vanilla Attention vs. Advanced Attention

As Table 2 shows, the Transformer model with ad-
vanced attention mechanisms is distinctly better
than the RNN model with vanilla attention mecha-
nisms. Even though there are differences in the en-
coder and decoder networks, we focus on the com-
parison between these two attention mechanisms.
Moreover, there is no existing empirical interpre-
tation of the advanced attention mechanisms.

Figure 3 demonstrates the attention distribu-
tions of different models when translating ambigu-
ous nouns. For the vanilla attention mechanism
in the RNN model, most of the attention weights
are relatively uniformly distributed in [0.5,0.9).
While the patterns in advanced attention mecha-
nisms are completely different. In the first layer,
most of the attention weights are smaller than 0.1.
The larger attention weights, the fewer instances,
except when the weight is larger than 0.9. In the
following layers, the attention weights are getting
more and more concentrated in [0.9,1) until the
fifth layer. After the fifth layer, the amount in
[0.9,1) decreases dramatically. We hypothesize
that the first few layers are learning the “align-
ment” gradually. When attention mechanisms fin-
ish the “alignment” learning, they start to capture
contextual features from the related but unaligned
context tokens. In the last layer, the attention is
almost equally distributed over all the attention
ranges except (0,0.1). That is to say, for some
ambiguous nouns, the weights are large. For the
other ambiguous nouns, the weights are small. It
indicates that there is no clear attention distribu-
tion pattern over ambiguous nouns in the last layer.

Figure 4 shows the average attention weights
over word tokens and subword tokens (Wsypwords)-
In the first five layers, Wgypwords 18 clearly lower
than wiokens Which can be taken to show that
attention mechanisms focus on the ‘“alignment”
of single word tokens, while wgypords SUrpasses
Wyokens from the sixth layer. We conclude that
attention mechanisms focus on subwords instead
of word tokens. Many words are segmented into
multiple consecutive subwords and not all the sub-
words are aligned to the expected target tokens.
Thus, the pattern over subword tokens demon-
strates that attention mechanisms are learning to
capture context-level features.
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Figure 4: Average attention weights of non-subword
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We further validate the hypothesis by visualizing
the attention distributions. Table 4 demonstrates
the visualization of attention distributions of dif-
ferent attention mechanisms.

‘Stelle’ is an ambiguous noun, whose reference
translations are ‘job/position/work’. ‘Stelle’ also
has other translations such as ‘location/spot/site’.
The context tokens ‘garantiert’ (guarantee) and
‘Leuten’ (people) contribute to disambiguating
‘Stelle’. However, the RNN model could translate
‘Stelle’ correctly but only pays a little attention to
‘Leuten’.

In the first layer, the attention mechanism does
not pay attention to the correct source tokens if we
only consider the larger attention weights. Then
the “alignment” is learnt gradually in the follow-
ing layers. The attention mechanism could pay at-
tention to all the correct source tokens in the fifth
layer. In addition, the attention mechanism could
learn to pay attention to the related but unaligned
source tokens in the eighth layer. For instance, the
attention mechanism also attends to ‘Stelle’ when

[0.4, 0.5)

[0506 [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1)

Attentlon range
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Trans-L3 denotes the

generating ‘guarantees’, and attends to ‘garantiert’
and ‘Leuten’ when generating ‘job’. These source
tokens are not clearly attended to in the fifth layer.
Since the vanilla attention mechanism is only
one layer with one head, it does not perform
as well as the advanced attention mechanism in
learning to pay attention to context tokens. For in-
stance, the attention mechanism in RNN only dis-
tributes a little attention to ‘Leuten” when generat-

ing ‘job’.
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Figure 5: WSD accuracy over attention ranges.

6.2 Accuracy and Attention Weights

We explore the relation between WSD accuracy
and the attention weights over ambiguous nouns.
As the alignment learnt by fast-align does not
guarantee that each ambiguous noun is aligned to
the corresponding translation, we only consider
the translations belonging to Group CI, Wi, and
Drop. Figure 5 shows the WSD accuracy over dif-
ferent attention ranges. Obviously, the accuracy is
higher when the attention weight is greater. This
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Table 4: An example of attention visualization (German—English). Each row is the attention distribution over all
the source tokens at each time step. Each column represents the attention weight over a source token at all the time
steps. Layer 1 to Layer 8 are attention layers in the Transformer model. Each attention layer has 8 heads, and the
attention weights in each row are the maximal of all the heads. Thus, the summation of attention weights in each
row is larger than 1. Darker blue means larger attention weights.

result further confirms our assumption in Section 5
that the contextual information for disambiguation
has been learnt by the encoder. In the attention
range (0,0.3), the small attention weight causes
many ambiguous nouns to be untranslated, which
results in low WSD accuracy.

6.3 Error Distribution

Figure 6 shows the error distributions over abso-
lute frequency (sense frequency in the training set)
and relative frequency (sense frequency to source
word frequency). The frequency information is
given in the test set. It is very clear that most of
the errors are in the left bottom corner which are
low in both absolute frequency and relative fre-
quency. There are 84.1% and 80.8% errors with
an absolute frequency of less than 2000 in RNN
and Transformer, respectively.

Even though the attention mechanism pays a lot
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Figure 6: Error distributions over frequency. Absolute
frequency is the sense frequency in training set. Rel-
ative frequency is the sense frequency in relation to
source word frequency. The size of the marker indi-
cates how often the error occurs.



of attention to a low-frequency sense, the model
is still likely to generate an incorrect translation.
Our evaluation method is different from Rios et al.
(2017), but the finding is the same, namely that
data sparsity leads to incorrect translations.

7 Conclusion

In this paper, we analyze two different attention
mechanisms with respect to WSD in NMT. We
evaluate the translations of ambiguous nouns di-
rectly rather than scoring the contrastive transla-
tions pairs, using ContraWSD as the test set. We
show that the WSD accuracy of these two mod-
els is around 80.2% and 85.5%, respectively. Data
sparsity is the main problem causing incorrect
translations. We hypothesize that attention mech-
anisms distribute more attention to context tokens
to guide the translation of ambiguous nouns. How-
ever, we find that attention mechanisms are likely
to pay more attention to the ambiguous noun itself.
Compared to vanilla attention mechanisms, we re-
veal that the first few layers in Transformer atten-
tion mechanisms learn to “align” source and target
tokens, while the last few layers learn to distribute
attention to the related but unaligned context to-
kens. We conclude that encoder-decoder attention
is not the main mechanism used by NMT models
to incorporate contextual information for WSD. In
addition, Section 6.2 has told us that the larger at-
tention weights, the higher WSD accuracy. Tang
et al. (2018b) have shown that Transformer mod-
els are better than RNN models in WSD because
of their stronger encoding ability. These results
suggest that NMT models learn to encode contex-
tual information necessary for WSD in the encoder
hidden states.

The question how NMT models learn to repre-
sent word senses and similar phenomena has im-
plications for transfer learning, the diagnosis of
translation errors, and for the design of architec-
tures for MT, including architectures that scale up
the context window to the level of documents. We
hope that future work will continue to deepen our
understanding of the internal workings of NMT
models.
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Abstract

We present an analysis of a number of coref-
erence phenomena in English-Croatian human
and machine translations. The aim is to shed
light on the differences in the way these struc-
turally different languages make use of dis-
course information and provide insights for
discourse-aware machine translation system
development. The phenomena are automati-
cally identified in parallel data using annota-
tion produced by parsers and word alignment
tools, enabling us to pinpoint patterns of inter-
est in both languages. We make the analysis
more fine-grained by including three corpora
pertaining to three different registers. In a sec-
ond step, we create a test set with the challeng-
ing linguistic constructions and use it to evalu-
ate the performance of three MT systems. We
show that both SMT and NMT systems strug-
gle with handling these discourse phenomena,
even though NMT tends to perform somewhat
better than SMT. By providing an overview
of patterns frequently occurring in actual lan-
guage use, as well as by pointing out the weak-
nesses of current MT systems that commonly
mistranslate them, we hope to contribute to the
effort of resolving the issue of discourse phe-
nomena in MT applications.

1 Introduction

Every natural language has means of marking ele-
ments belonging to the same coreference chain in
order to achieve cohesion and coherence in run-
ning text. These discourse phenomena are crucial
for understanding texts and their misrepresenta-
tion harms text intelligibility. Despite their sig-
nificance, machine translation (MT) systems have
been known to struggle with adequately transfer-
ring coreference relations from the source to the
target language, which is partly due to the great
differences in the way languages express these re-
lations. In our approach, we extend the framework
introduced by Lapshinova-Koltunski and Hard-
meier (2017), who identify discourse discrepan-
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cies in parallel data for English and German by
predefining and automatically extracting discourse
patterns of interest, and then utilize word align-
ment information to determine which of the ex-
tracted phenomena lack the equivalent counterpart
in the other language. We use the same procedure
to automatically extract phenomena, but extend
the methodology to include cases where the phe-
nomenon does have an equivalent construction in
the other language, despite the alignment data sug-
gesting that it is more frequently left unaligned.

In this research, we perform an in-depth study
of the way in which diverse discourse phenomena
are handled in translation from English to Croa-
tian. We investigate both human translation and
the output of different types of MT systems. In
the first step, we use the extended methodology
of Lapshinova-Koltunski and Hardmeier (2017)
to extract interesting diverging discourse patterns
that commonly occur in the parallel data. While
reflections on the relevant linguistic intuitions are
given as a reference, the selection of the phenom-
ena chosen for further examination is primarily
based on the data obtained from corpora. This
makes our approach strongly usage-based and pro-
vides ample space for making observations uncon-
strained by a particular theoretical framework.

In the second step, we construct a dataset with
sentences containing challenging discourse phe-
nomena identified in the analysis of human trans-
lations. The constructed dataset can be used for
further research in the field of corpus linguistics
and translation studies, but it is also useful for
gaining insight about language contrasts that is of
relevance to MT researchers. We therefore use
it to test and evaluate the performance of sev-
eral types of MT systems and to that end devise
a weighted error classification, tailored to accom-
modate the complexity of the problem at hand.

The paper is structured as follows: in Section
2 we explain the motivation for the research and
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in Section 3 we give an overview of related work.
In Section 4 we describe the used parallel corpora
and present the approach to and findings of their
analysis. In Section 5 we describe the MT experi-
ment and our approach to error classification. Sec-
tion 6 contains a discussion of the obtained results
and the paper ends with concluding remarks and
ideas for future research in Section 7.

2 Motivation

As a South Slavic language, Croatian is a morpho-
logically rich language with relatively free word
order. Its pronouns and determiners are grammat-
ically marked for seven cases, three genders and
two numbers. Additionally, the forms of deter-
miners and some pronouns show the distinction
between animate and inanimate, whereas personal
pronouns have long and short variants that reflect
emphasis, the choice between them affecting the
word order and information flow in the sentence.
Croatian is a pro-drop language, meaning that pro-
nouns in the subject position tend to be omitted
if the agent can be inferred from other features,
such as verbal inflection. In comparison, English
is a morphologically less diverse and syntactically
stricter language, which suggests that the two lan-
guages potentially employ quite different mecha-
nisms to express coreference links.

Apart from the inevitable structural differences,
there are several general points of divergence that
quickly come to light when handling parallel data
for the two languages. First of all, although Croa-
tian has means of expressing the notion of def-
initeness, it does not have articles, which have
a prominent role in the English language. In-
stead, demonstratives and possessives are some-
times used, as well as definite forms of adjectives
and, to a certain extent, restrictive relative clauses.
There is also a general tendency to avoid pas-
sive constructions and inanimate subjects in Croat-
ian, with these structures commonly rephrased us-
ing impersonal verb forms with the reflexive pro-
noun se. Moreover, there is no need for cleft
constructions, as information flow can be manipu-
lated through word order, which makes pleonastic
pronouns largely redundant in Croatian. Finally,
it does not easily create participial constructions,
preferring to elaborate the concise English par-
ticipial expressions into full, finite relative clauses
using the relative pronoun koji.
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3 Related Work

The study by Lapshinova-Koltunski and Hard-
meier (2017) examines discrepancies in discourse
structures for the language pair English-German.
The structures are defined as linguistic patterns
using part-of-speech and dependency annotation
and the discrepancies are identified using align-
ment information by finding elements with no cor-
responding structure in the parallel sentence. This
approach allows for a corpus-based contrastive
analysis, since the discrepancies might be an in-
dication of systematic linguistic differences or ex-
amples of explicitation and implicitation phenom-
ena in the translation process. The mentioned
study is mostly focused around the former and the
authors manually investigate definite articles and
pronouns in subject position as the most frequent
unaligned patterns in both languages. Through
the analysis, they were able to obtain quantitative
proof of tendencies regarding, for example, article
use in generics and differences in the use of rela-
tive clauses.

Although our approach largely follows the
above described methodology, Lapshinova-
Koltunski and Hardmeier (2017) were hardly the
first to recognize the need to address discourse
phenomena in translation. Given the immense
variety of linguistic phenomena that fall within
the scope of the term, research on discourse
phenomena in translation has often focused on a
limited group of phenomena (e.g. Furkd, 2014;
Zinsmeister et al., 2012; Biihrig and House, 2004),
which frequently have to be studied in reference
to particular registers (Kunz and Lapshinova-
Koltunski, 2015). Moreover, the pronouncedly
language-specific character of their form has led
to examinations of explicitation and implicitation
of these phenomena in translation (Blum-Kulka,
1986). On a similar note, Meyer and Webber
(2013) compare implicitation tendencies in human
and machine translation and find that the latter
displays more cases where the phenomena are
kept in translation. Scarton and Specia (2015)
assess the impact of discourse structures on
MT quality through quantitative analysis, while
Lapshinova-Koltunski (2017) compares human
and machine translations to identify and describe
variation in the distribution of different cohesive
devices.

On the other hand, a variety of approaches have
also been proposed to incorporate discursive infor-



mation in the workflow of MT systems. The ap-
proaches of Le Nagard and Koehn (2010), Hard-
meier and Federico (2010) and Guillou (2012)
are based on the projection of the source side
annotation of coreferring pronouns. A number
of discourse-oriented pronoun prediction systems,
statistical and rule-based, have also been devel-
oped for the submission for the DiscoMT shared
task (Hardmeier et al., 2015). The systems experi-
mented with different coreference resolution tech-
niques to improve the translation of pronouns. In
recent approaches, Voita et al. (2018), Jean et al.
(2017), Wang et al. (2017), Tiedemann and Scher-
rer (2017) and Bawden et al. (2018) all attempt
to improve the translation of discourse phenomena
using context-aware NMT systems. Although the
degree of their success varies, all papers notably
report improvement over the baseline systems.
However, the evaluation of these systems re-
mains problematic, as MT evaluation research
has typically been focused on providing an over-
all score for documents, either through automatic
metrics like BLEU (Papineni et al., 2002), or
through human evaluation, such as the ranking
of systems in the WMT evaluations (Bojar et al.,
2017). There have been attempts at error analy-
sis where specific errors are identified and classi-
fied into typologies (Vilar et al., 2006; Stymne and
Ahrenberg, 2012; Comelles et al., 2016), but these
classifications usually do not target discourse-
related phenomena. Taking a more specific ap-
proach to MT evaluation, Burlot and Yvon (2017)
describe how test suites can be created and used
automatically for the evaluation of MT systems
on morphological phenomena, while the test suite
PROTEST, developed by Guillou and Hardmeier
(2016), enables relative comparisons between MT
systems in terms of pronoun translation. Bawden
et al. (2018) construct a contrastive test set to eval-
uate anaphoric pronouns, cohesion and coherence
by having NMT systems rank a correct and an in-
correct translation of an input sentence, whereas
Sennrich (2017) describes a ranking approach for
evaluating NMT systems on grammaticality.
Some of the above work has specifically tar-
geted the differences in performance between
NMT and SMT (Burlot and Yvon, 2017; Sennrich,
2017). There are also other types of error analysis
targeting this difference, e.g. based on post-edits
(Bentivogli et al., 2016). For Croatian in particu-
lar, Klubicka et al. (2017) conducted an error anal-
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ysis of SMT and NMT systems, finding that the
translation of function words in general is consid-
erably improved in NMT. However, they do not
present separate results for pronouns or other ele-
ments with coreference functions.

4 Human Translation Analysis

In this section we give an overview of the used
datasets and their preprocessing. We also describe
the extraction process and the selected phenom-
ena, along with the observations based on the man-
ual data analysis.

4.1 Parallel Corpora

As the use of coreference phenomena varies across
different registers and text types, we decided to
perform the analysis on corpora from three differ-
ent domains:

e DGT-TM (Steinberger et al., 2012): EU legal
texts, 950K sentences

o SETIMES?2 (Tiedemann, 2009): newspaper
articles, 200K sentences

e TedTalks (Tiedemann,
speeches, 86K sentences

2012):  prepared

The three datasets cover an interesting range from
very formal, strictly standardized and highly repet-
itive texts (DGT) to fairly loose and informal
translation of speeches (TedTalks). For the pur-
poses of the analyses, English is taken as the
source and Croatian as the target language. The
corpora were tokenized, tagged for parts of speech
and parsed using the pre-trained models for the re-
spective languages developed for the annotation
pipeline UDPipe (2017). The parallel data were
then aligned at word-level with efmaral (Ostling
and Tiedemann, 2016), using the grow-diag-final-
and heuristic (Koehn et al., 2003).

Relying on the approach of Lapshinova-
Koltunski and Hardmeier (2017), we used POS-
tags and dependency information to extract a high-
recall list of pronouns and determiners in both
languages, in order to identify potentially inter-
esting coreference patterns. The main criterion
for their extraction was the pron or det tag, as
the original research has found this approach to
permit reliable identification of phenomena, even
with multi-word units. Similarly to Lapshinova-
Koltunski and Hardmeier (2017), we couple the



POS-tags with syntactic information to create lin-
guistic patterns in the format lemma, POS-tag, de-
pendency label (e.g. it, pron, nsubj:pass) and use
word-alignment information to identify the equiv-
alent structure in the other language, if it exists.
This gave us a dataset of sentence pairs with indi-
cated coreference phenomena, grouped according
to the described linguistic patterns.

Although our approach was largely open and
we looked into a variety of phenomena, an ini-
tial overview analysis of the data revealed noise
both in the output of the tools and in the corpora
themselves. As a result, the phenomena chosen
for closer examination were selected based on the
combination of several factors: the interesting ten-
dencies in their translation identified in the brief
overall examination of the data, the tentative in-
terpretation of the frequency of their occurrence
across the corpora and the purely practical crite-
rion of having a pattern that enables reliable ex-
traction, meaning that we opted for phenomena
which were in most cases correctly handled by the
parsing and alignment tools.

4.2 Analysis of Discourse Phenomena

This subsection contains the description of the
studied phenomena' and the observations made in
relation to the specific datasets. The number of
phenomena occurrences per corpus is shown in Ta-
ble 1.

KOJ]I, det, unaligned. The high frequency of
cases where the relative pronoun koji is present
in Croatian with no corresponding phenomenon
on the English side (who, whom, whose, which,
that) led us to further examine its use. We sepa-
rate the phenomenon into two groups, depending
on whether the relative pronoun has the function
of the subject (nominative case) or object (oblique
cases) in the relative clause. A major source of
unaligned instances with object function seems to
be the omission of that in English. In both syntac-
tic functions, koji is often introduced as a result of
elaboration of participial clauses into finite relative
clauses. Interestingly enough, introducing relative
clauses seems to be a way of dealing with lexical
gaps, as illustrated by the example:

!The patterns used to refer to phenomena have the fol-
lowing format: phenomenon, pos-tag, alignment information.
The last feature specifies whether or not the equivalent struc-
ture exists in the other language. At a more specific level,
phenomena are defined in reference to the Universal Depen-
dency Treebank labels (Nivre et al., 2015).
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EN: a resealable bag

vreica koja se moZe ponovno zatvoriti
bag that REFL can again to seal
‘a bag that can be sealed again’

Moreover, it is a way of making the concise En-
glish phrases more natural and understandable in
Croatian:

EN: women-run entreprises

poduzeéa  koja vode Zene

enterprises that run  women

‘enterprises that are run by women’

Essentially, clauses with koji seem to constitute
a fairly neutral means of paraphrasing, but their
overuse might yield unnecessarily elaborate and
clumsy constructions. In SETIMES2 we notice a
tendency to resort to such paraphrases in order to
maintain a more neutral style:

EN: the beheaded mother

majka koja je ostala bez glave

mother who is left without head

‘the mother who has lost her head’

Here the entire relative clause could be substituted
with the Croatian adjective obezglavijen, whose
meaning is equivalent to that of ‘beheaded’, but
whose use is slightly stylistically marked.

ARTICLES, det, aligned. We have already
mentioned that Croatian has alternative ways of
representing definiteness, the most straightfor-
ward example of this being through the use of
demonstratives and possessives’>. We were inter-
ested to see whether specific contextual features
could be distinguished that make the explicitation
of these coreference links necessary. In that re-
spect, the function of articles seems to vary among
the corpora: while the DGT deploys a strict coref-
erencing system to ensure precision, cohesion and
consistency, in TedTalks articles are more pro-
nouncedly used for emphasis and achieving imme-
diacy and closeness in delivering a speech in front
of an audience. SETIMES?2 generally retains defi-
niteness for the purposes of cohesion and boosting
the effect of reader engagement by making news
appear as more relevant:

EN: to address the problem, he says...

kako bi se uspjesno
in order to would REFL successfully deal
ovim problemom, kaZe Simitis
this  problem says Simitis

‘to successfully deal with this problem, says Simitis’

nosilo s
with

>The automatic annotation of adjective definiteness was
not reliable enough to be used for automatic extraction.



KOJIsub | KOJIobj | ARTICLES | ITnsubj | ITexpl | ITpass | ITobj | ITobl/nmod | POSSESSIVES
DGT 19747 6606 10558 8019 1576 3981 | 3113 2395 9645
SETIMES?2 2844 1532 8304 3801 400 448 1648 401 6842
TedTalks 618 300 1758 4411 185 134 4919 1758 3043

Table 1: Overall number of occurrences of each phenomenon in the respective language per corpus.

IT, pron, both. The semantically vague English
pronoun it can be used in a variety of functions
and roles. Given that our approach is based on
the patterns produced by the dependency parser,
we generally split the phenomenon according to
its syntactic function (subject or object), and then
break down the two groups into more fine-grained
categories. It as the subject is hence analysed ac-
cording to three different patterns: it as the sub-
ject of an active clause (nsubj), as the subject of
a passive clause (nsubj:pass) and as an expletive
(expl). In the first case, the behaviour of it gen-
erally follows that of other Croatian pronouns, i.e.
it is frequently omitted. The two latter cases, by
contrast, frequently require paraphrasing of vary-
ing extent and level of conventionality in Croatian.
These typically entail changing the word order and
using impersonal constructions:

EN: It is necessary to make them from scratch.
Potrebno  ih je stvoriti  od  pocetka.
Necessary them is to create from beginning
‘It is necessary to make them from scratch.’

In the example, the expletive if is dropped and the
adjective in singular neuter form is shifted to the
initial position in the sentence.

Unfortunately, the diversity of forms of it in
Croatian makes it a tricky task for word align-
ment tools, which especially comes to light when
it is in object position and varies both lexically and
grammatically depending on the antecedent. Due
to the inability to reliably separate aligned from
unaligned instances, we abstracted away from this
information in analysing how this phenomenon is
handled in translation. For it as an object we
looked at two phenomena, depending on whether
the object is preceded by a preposition (obl/nmod)
or not (obj). [t in object position is more fre-
quently retained in Croatian, which is understand-
able as it is often required by verb valency.

POSSESSIVES, det, unaligned. Finally, we
noticed that possessives, especially reflexive pos-
sessives, are frequently left out on the Croatian
side when their introduction is clumsy or redun-
dant. Notably, possessives are sometimes omitted
when there are other clear markers of possession

in the sentence, encoded for example by verb in-
flection or indirect objects:

EN: it did not deny my right to vote

nije mi uskratila pravo da glasujem

did not tome deny right to vote

‘it did not deny me the right to vote’

The specification of possession in the example
above is made redundant by the use of the personal
pronoun in dative case mi. Similar situations fre-
quently occur in the more informal TedTalks cor-
pus, where personal pronouns in dative case are
often introduced to denote a degree of familiarity
with the audience. Given the nature of the cor-
pus, there is also a relatively large proportion of
cases where the possessives are dropped in phrases
that are closely tied to the agent (referring to e.g.
one’s body parts or family members). On the other
hand, SETIMES?2 and DGT are somewhat stricter
in style and often omit possessives, an interesting
tendency being the omission of reflexive posses-
sives in cataphoric reference:

EN: Shortly after their arrival, the royal couple...
Nedugo nakon dolaska, kraljevski par

Shortly after arrival royal couple
‘Shortly upon arrival, the royal couple’

In the example, the reflexive possessive svoj refer-
ring to the subject is omitted from the adverbial
phrase that precedes it. In the DGT data we also
notice the tendency to substitute possessives with
explicit noun phrases:

EN: the value of the procurement over its entire
duration

vrijednost nabave tijekom cijelog razdoblja
value procurement during entire period

trajanja nabave
duration procurement

‘the value of the procurement during the entire
duration of the procurement’

As can be seen, the noun nabava is repeated in the
translation instead of using the possessive njezin.

5 MT Experiment

After analysing the parallel data and identifying
interesting tendencies regarding the coreference



TRAIN | DEV | PREPROCESSING CONFIGURATION BLEU
SMT 1.23M | 4500 | Standard preprocessing: data Training and tuning using the

tokenized and truecased, max. | Moses default settings, order of the
sentence length 80. n-gram model: 3.

NMT1 | 1.18M | 4500 | Tokenization, max. sentence Encoder: 3-layer bidirectional
length 60, min. word LSTM, hidden size 500. Decoder:
frequency 5. 3-layer LSTM, hidden size 500.

NMT2 | 1.18M | 4500 | Tokenization, max. sentence Encoder: 3-layer bidirectional
length 60, individual BPE, LSTM, hidden size 500. Decoder:
min. frequency 5. 3-layer LSTM, hidden size 500.

Table 2: MT systems — training configurations.

phenomena, we wanted to see how they were han-
dled by different types of MT systems. Using our
linguistic patterns, we extracted a subset of sen-
tences, targeting the constructions that are han-
dled differently by the two languages. The num-
ber of sentences per phenomenon corresponds to
the overall frequency of their occurrence, while
the proportion of sentences taken from each cor-
pus roughly reflects the differences in corpus sizes.
We added a couple of manually selected examples
(cases of lexical gaps and unaligned reflexive pro-
noun se in Croatian) to construct a test set com-
prising a total of 1899 sentence pairs with indi-
cated phenomena of interest’. We have made the
dataset publicly available®.

5.1 MT Systems

For the experiment we trained a baseline SMT sys-
tem and several baseline NMT systems. We used
open-source toolkits, the phrase-based SMT pack-
age Moses (Koehn et al., 2007) and the OpenNMT
toolkit (Klein et al., 2017) respectively, and fol-
lowed the standard training procedures. The NMT
systems were based on a sequence-to-sequence
architecture with general attention (Luong et al.,
2015) and were trained for 13 epochs. We also ex-
perimented with sub-word segmentation with byte
pair encoding (Sennrich et al., 2016), trained both
individually and jointly, for which 10,000 oper-
ations were performed. However, only the two
models with the highest BLEU scores were re-
tained for the manual analysis. An overview of

3Due to the nature of the extraction process, the study is
largely focused on intra-sentential phenomena. Although the
segmented nature of the artificially constructed test set might
be considered a constraint, it is difficult to find an alternative
way of testing such a variety of phenomena, while retaining
as much data as possible for training.

‘nttp://hdl.handle.net/11234/1-2855
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the chosen MT systems is given in Table 2°.

The BLEU scores seem to be in line with what
could generally be expected from standard MT
systems used on relatively repetitive data, except
that the performance of NMT systems slightly
drops with the application of byte-pair encoding.
This calls for further investigation in the future,
with some adaptations possibly needed to be made
in the training process. However, the BLEU scores
are given only as a reference, as it remains ques-
tionable whether this evaluation metric can cap-
ture the quality of performance on such specific
instances as those that are examined in this study.
We hence turn to the manual error analysis.

5.2 Error Analysis

For the purposes of the manual analysis, the orig-
inal human translations are taken as a reference
and the order of the machine translations is ran-
domized to reduce bias. The MT output is eval-
uated only with regard to the relevant antecedent
and the syntactic structure containing the specific
phenomenon, with the rest of the sentence not be-
ing taken into account. Based on our initial data
analysis, we devised a classification of errors in
terms of translation variation acceptability. The
categories used in classification are listed in Ta-
ble 3. The evaluation was performed by one of the
authors, who is a native speaker of Croatian.

To reflect the scalar nature of error severity,
we assign a penalty to each error category. This
also enables us to produce a provisional score
for relative comparison and evaluation of the sys-
tems. Some clarification might be needed for cat-
egories 4 to 6. Agreement error means that the
phenomenon does not agree with the grammati-

5The test and development sets are kept constant, but the

training data used for the two NMT systems had to be further
filtered due to technical issues.




error description category penalty
mistranslation 1 1
phen. misrepresented, unacceptable translation 2 1
different formulation, unacceptable translation 3 1
phen. represented, agreement error 4 0.75
phen. represented, lexical error 5 0.5
phen. represented, grammatical error 6 0.5
phen. misrepresented, unacceptable due to style/register 7 0.25
phen. misrepresented, acceptable in the style/register 8 0
different formulation, acceptable translation 9 0
identical translation 10 0

Table 3: MT error classification.

cal categories of its antecedent, whereas the lexi-
cal and grammatical errors refer to cases such as
antecedent mistranslation or errors in the gram-
matical form of the surrounding elements con-
tained within the same phrase as the phenomenon.
As we are primarily interested in the coreference
element, we assign a higher penalty for cases
where the coreference link gets lost due to agree-
ment mismatch between the antecedent and the
observed phenomenon. On a different note, the
choice between errors 2, 7 and 8 sometimes seems
particularly subjective, but as we conducted the
analysis for three different corpora, it was inter-
esting to retain this fine-grained distinction. As an
illustration of the complexity of the categorization
task, as well as of our approach to it, we provide
an example from the created dataset:

SOURCE: ... modifications for the feed currently
legally placed on the market...

REFERENCE:

.. izmjene hrane za Zivotinje koja
f.pl.nom f.sg.gen prep f.pl.acc f.sg.nom
modifications feed which
se trenutacno zakonito stavlja na
refl.pron. adv adv 3.sg  prep
REFL currently legally place on
triiste...

n.sg.acc

market

‘modifications for the feed which is currently legally
placed on the market’

SMT:

.. izmjene hrane za Zivotinje trenutacno
f.pl.nom f.sg.gen prep f.pl.acc adv
modifications feed currently
zakonito stavljeni na  triiste...

adv m.pl.nom prep n.sg.acc

legally  placed on  market

‘modifications for the feed currently legally placed on
the market’

NMTI1:
... izmjene hrane za Zivotinje ved
f.pl.nom f.sg.gen prep f.pl.acc adv

modifications feed already

pravno stavljene na  triiste...
adv f.sg.gen prep n.sg.acc
juridically placed on  market

‘modifications for the feed already juridically placed
on the market’

NMT2:

... izmjene za  hranu za Zivotinje kaoje
f.pl.nom prep f.sg.acc prep f.pl.acc f.pl.nom
modifications for feed which

su  trenutacno zakonito stavljene na  triiste...
3.pl adv adv f.pl.nom prep n.sg.acc
are currently legally placed on  market

‘modifications relating to the feed which are currently

legally placed on market’

The observed phenomenon here is the unaligned
relative pronoun koji in subject position, which
means we evaluate the translation of the noun
phrase whose head noun is feed, or hrana. The
reference translation uses the relative pronoun and
an impersonal verb form (se stavlja) instead of the
participial post-modification. SMT keeps the par-
ticipial form, which would arguably be an accept-
able translation in the DGT corpus (error category
8). However, there is an agreement mismatch be-
tween the head noun hrane (feminine, singular,
genitive case) and the participle stav/jeni (mascu-
line, plural, nominative case). As the phenomenon
present in the reference translation is not repre-
sented and there are additional errors which make
the translation unacceptable, this is an example of
error category 2.

The translation produced by NMT1 uses the
correct participial form stavijene, but makes inad-
equate lexical choices in the translation of other
elements contained in the phrase, translating cur-
rently and legally by ve¢ and pravno instead of
trenutacno and zakonito, respectively. Regardless
of the correct participial form, using the relative
clause is generally more acceptable in the trans-
lation of this particular sentence, so we treat it as
a case of misrepresented phenomenon and opt for
a more severe punishment by marking it as error
category 2, and not 5. Finally, NMT?2 uses the rel-
ative pronoun koji, but the post-modification does
not agree with the head noun in number. It is there-
fore categorized as error 4. As a side note, all three
machine translations also lack the durative aspect,
which is one of the morphological properties of



total | SMT | NMT1 | NMT2 acceptable | unacceptable | score
DGT 931 | 41.78 | 4329 | 38.78 SMT 538 1361 1219.5
SETIMES2 | 628 | 17.36 37.9 | 38.85 NMT1 743 1156 980
TedTalks 340 | 11.76 30| 27.65 NMT2 699 1200 1036

Table 4: Percentage of acceptable translations out of the total
number of sentences for each corpus.

verbs in Croatian (e.g. stavljane instead of stavi-
Jjene), which means that they all belong to error
category 6 as well. However, if multiple categories
are applicable, we give precedence to the one with
the severest penalty so that the overall error scores
do not get distorted by single examples.

5.3 Results

As already mentioned, the different properties of
individual corpora were taken into account in the
analysis, but for brevity’s sake we focus more on
the overall results in the discussion. However, we
should point out that all systems generally perform
better on the DGT dataset, which is hardly surpris-
ing given that it is the largest and most repetitive
corpus. As can be seen in Table 4, the variance in
performance across corpora is most pronounced in
SMT, which produces 42% of acceptable transla-
tions for the DGT and only 12% for the TedTalks
data.

While for individual phenomena SMT invari-
ably performs best on DGT, there is some varia-
tion in the NMT systems, with NMT2 notably per-
forming best on SETIMES?2 for all three cases of if
in subject position and for koji as object. Interest-
ingly enough, when it comes to the retention of ar-
ticles and the omission of possessives, both NMT
systems perform best on TedTalks. However, a
closer look at the data reveals that the good perfor-
mance on articles is largely due to NMT produc-
ing differently phrased translations (category 9),
whereas their performance on possessives is ex-
plained by the fact that the informal style and over-
all proliferation of determiners and pronouns fre-
quently make the retention of possessives seem ac-
ceptable (category 8). Finally, we take note of the
poor performance of all systems on if in obl/nmod
function in the TedTalks corpus, with the majority
of errors belonging to one of the first three cate-
gories and the NMT systems producing the lowest
percentage of acceptable translations.

Looking at the overall results, it should be
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Table 5: Overall number of acceptable and unacceptable
translations and the score based on summed-up penalties.
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Figure 1: Percentages of error categories for each system.

pointed out that the systems generally perform rel-
atively badly on the examined phenomena. As can
be seen in Table 5, the systems in total produce
more unacceptable than acceptable translations,
although the penalty score does seem to loosely
reflect the difference in overall translation qual-
ity measured by BLEU. For individual phenom-
ena, shown in Table 6, NMT1 consistently per-
forms best, except on possessives and the miscel-
laneous examples where NMT?2 achieves a better
score. All systems are most successful in trans-
lating it as an expletive and passive subject. On
the other end of the scale, SMT performs worst on
possessives, NMT1 on articles and NMT?2 on it as
object.

In terms of total error counts, SMT produces
significantly more complete mistranslations, while
NMT2 makes more agreement errors than the
other two systems. Both NMT systems also pro-
duce more translations that are generally accept-
able, but do not fit the given register/style. Over-
all percentages of individual error categories in the
output of each system are shown in Figure 1. We
also notice that most cases fall into the extreme
ends of the spectrum, i.e. identical translations and
mistranslations.

6 Discussion

It is often pointed out that NMT systems gener-
ally produce more fluent, albeit sometimes inac-
curate output compared to SMT. We can therefore
hypothesize that the two NMT systems will per-



SMT NMT1 NMT2
phenomenon instances | acceptable score | acceptable score | acceptable score
KOJI, det, subject, unaligned 237 30.8 148.5 40.51 120.5 40.93 | 126.25
KOIJI, det, object, unaligned 247 332 | 143.25 46.56 | 102.75 43.72 | 110.25
ARTICLES, det, aligned 327 23.85 | 231.25 27.83 211 26.61 212.5
IT, pron, nsubj, both 109 33.03 64.75 44.04 50.25 39.45 57.5
IT, pron, expl, both 138 40.58 67.25 57.97 44.75 54.35 49
IT, pron, nsubj:pass, both 137 37.23 78.5 53.28 56.25 51.82 60.5
IT, pron, obj, both 263 22.81 | 180.75 32.7 | 148.75 25.48 165.5
IT, pron, obl/nmod, both 132 27.27 86.5 36.36 74 28.03 86.25
POSSESSIVES, pron, unaligned 297 21.89 209 33.33 | 166.75 35.69 | 164.25
MISCELLANEOUS 12 8.33 9.75 58.33 5 66.67 4

Table 6: Total scores and percentages of acceptable translations for each system per phenomenon.

form better on unaligned phenomena, especially
when the omission or insertion of elements on the
target side is more a matter of degree of expression
idiomaticity than a strict rule. This is confirmed by
our analysis, as NMT systems outperform SMT on
all three unaligned phenomena. Moreover, SMT
performs worst on possessives, which are gener-
ally indeed frequently retained in Croatian, and
NMT seems to do a better job at identifying con-
texts in which they should be left out. As for
the relative pronoun koji in object position, NMT2
does the best job at recognizing when it is neces-
sary to introduce it on the target side, producing
31.98% of translations identical to the original.
The fluency of NMT could also result in better
translations of it as an expletive or passive sub-
ject, as these instances typically require rephras-
ing in Croatian. This is confirmed in our analy-
sis to some extent as well, with both NMT sys-
tems producing the highest percentage of accept-
able translations for these phenomena. However,
this is also the case for the SMT system, even if its
percentages are much lower, which suggests that
the patterns used to paraphrase these two phenom-
ena are fairly standardized in Croatian, and hence
frequently occur in the corpora. On the other hand,
all systems tend to make mistakes when the re-
phrasing entails moving a noun into the subject
position:
it is not possible for the controls
kontrole ne mogu
controls not can
‘the controls cannot’

When it comes to restructuring participial
clauses into finite relative clauses using koji, the
situation is similar. The systems rarely produce
the less natural literal translations of participial
structures, despite the existence of grammatically
equivalent forms in the Croatian language. How-
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ever, when the translation requires more imagina-
tive paraphrasing, the MT systems in most cases
fail to deliver, which highlights their incapabil-
ity to deal with creative language use and satis-
factorily handle lexical gaps. Most cases of such
mistranslations, manifested as either omission or
retention of the source side element, are noticed
for the phenomena of unaligned koji and in the
small group of miscellaneous examples, which
comprises a number of cases chosen specifically
to see what the systems will do in situations where
the translation and use of coreference phenomena
are less straightforward.

For instance, let us consider the innovative
phrase non-carbon-based life, which in the refer-
ence is translated as
Zivot koji  se ne bazira na ugljiku
life which REFL not base on carbon
‘life which is not based on carbon’

and is entirely mistranslated by all three systems.
The SMT system leaves the unknown word in
source language, misinterprets the dependency re-
lations and substitutes the relative clause with an
impersonal verb construction with se:

non-carbon se temelje na Zivotu

non-carbon REFL based on life

‘non-carbon are based on life’

Both NMT systems leave out the entire unknown
part and translate the phrase only as Zivor (‘life’).
The systems also fail to cope with idiomatic ex-
pressions, frequently omitting or producing word-
for-word translations for idiomatic uses of if in ob-
ject position (e.g. make it, get it). The translation
of multi-word units is another well-known stum-
bling block of MT systems, but this particular dis-
course phenomenon seems to be problematic for
another reason, and that is the already mentioned
diversity of grammatical forms this pronoun can



take in the object position in Croatian. Inciden-
tally, it in object position is the phenomenon for
which all three systems produce the largest per-
centage of agreement errors: well above 20% of
errors made by the systems on this phenomenon
belong to category 4, compared to the usual av-
erage of around 3% of agreement errors produced
in the translation of other phenomena. Finally, the
relative performance of all three systems lies clos-
est in the case of aligned articles, but that is be-
cause all systems perform poorly, probably due to
the very strong tendency not to translate these ele-
ments that permeate the English side of the corpus.

7 Conclusion and Future Work

In this paper, we apply the usage-based approach
of Lapshinova-Koltunski and Hardmeier (2017)
for automatic identification of unaligned patterns
linked to discourse-related language discrepan-
cies, and extend it to also include cases of inter-
esting aligned phenomena. We focus on pronouns
and determiners in two structurally different lan-
guages, English and Croatian, and study them in
parallel corpora pertaining to three different regis-
ters. We were able to distinguish tendencies both
at the general level (e.g. the omission of reflex-
ive possessives in cataphoric position in Croatian)
and at corpus-specific levels (e.g. the stricter regu-
lation of representation of definiteness in the DGT
corpus). We find that the data-driven nature of the
approach makes it a useful framework for linguis-
tic and translation studies, as it hardly makes any
initial assumptions about the behaviour of phe-
nomena.

The observations obtained from the parallel data
analysis were used to pinpoint interesting linguis-
tic patterns in the two languages, and we further
study the way they are handled in MT. To that end,
we trained several statistical and neural MT sys-
tems and constructed a test set targeting the chal-
lenging linguistic expressions. The test set has
been made publicly available for further research.
We devised a relatively fine-grained classification
of errors to evaluate system performance and as-
signed a penalty to the different error categories in
order to facilitate the comparison and ranking of
systems in terms of translation acceptability. We
provide insights for these diverse extracted phe-
nomena both with regard to the different registers
and to the general performance of several MT sys-
tems.
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Overall, all systems seem to perform unsatisfac-
torily, especially so on the TedTalks corpus, which
is smallest in size as well as linguistically infor-
mal and diverse. On the other hand, insofar as bet-
ter handling of unaligned phenomena can be inter-
preted as a reflection of translation fluency, NMT
systems seem to outperform SMT by producing
a higher percentage of acceptable translations in
cases which involve standard patterns of para-
phrasing and the introduction/omission of coref-
erence elements on the target side. However, all
MT systems fall short when it comes to more cre-
ative language use, such as handling lexical gaps
or idiomatic expressions. Our analysis highlights
the complexity of the issue and offers an approach
through which further insights can be obtained
with a view to improve the translation of coref-
erence phenomena. Lastly, we would like to point
out that the research included Croatian, a language
that is both under-resourced and under-researched
in the field of MT. We also believe that many of
the insights for English—Croatian could carry over
to other closely related Slavic languages.

As part of future work it would be interesting
to investigate other coreference phenomena, and
experiment with basing the extraction patterns on
some other linguistic features, such as pronoun
function (cf. Guillou et al., 2014). As for MT
system applications, our manual analysis suggests
that the MT systems for this language pair are
generally in need of some improvement to bet-
ter support the study of such specific phenomena,
despite obtaining reasonably high BLEU scores.
Further inquiry into why the system performance
dropped with the application of byte-pair encod-
ing would certainly be advisable and experiment-
ing with different architectures, notably the Trans-
former (Vaswani et al., 2017), would be desirable.
Future work might also include attempts at inte-
grating the output of coreference annotation sys-
tems in the workflow of MT systems, in order to
make them more attuned to the translation of dis-
course phenomena.
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Abstract

Cross-sentence context can provide valuable
information in Machine Translation and is crit-
ical for translation of anaphoric pronouns and
for providing consistent translations. In this
paper, we devise simple oracle experiments
targeting coreference and coherence. Oracles
are an easy way to evaluate the effect of dif-
ferent discourse-level phenomena in NMT us-
ing BLEU and eliminate the necessity to man-
ually define challenge sets for this purpose.
We propose two context-aware NMT mod-
els and compare them against models work-
ing on a concatenation of consecutive sen-
tences. Concatenation models perform better,
but are computationally expensive. We show
that NMT models taking advantage of context
oracle signals can achieve considerable gains
in BLEU, of up to 7.02 BLEU for corefer-
ence and 1.89 BLEU for coherence on subti-
tles translation. Access to strong signals al-
lows us to make clear comparisons between
context-aware models.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015) is a state-of-the-art approach to MT.
Standard NMT models translate an input language
sentence to an output language sentence, and do
not take into account discourse-level phenomena.
Cross-sentence context has already proven useful
for language modeling (Ji et al., 2015; Wang and
Cho, 2016) and dialogue systems (Serban et al.,
2016). It has also been of interest in Statistical
Machine Translation (SMT) research (Hardmesier,
2012; Hardmeier et al., 2013; Carpuat and Simard,
2012), and NMT research (Wang et al., 2017; Jean
et al., 2017; Tiedemann and Scherrer, 2017; Baw-
denetal., 2018; Tu et al., 2017; Voita et al., 2018).

Two important discourse phenomena for MT
are coreference and coherence. Pronominal coref-
erence relates to the issue of translating anaphoric
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pronouns and is tackled in several works (Guillou,
2016; Hardmeier and Federico, 2010; Le Nagard
and Koehn, 2010) and is the central motivation for
the DiscoMT shared task on cross-lingual pronoun
prediction (Lodiciga et al., 2017). Coherence on
the other hand, is important for producing consis-
tent and coherent translations throughout a docu-
ment, especially for domain-specific terminology
(Carpuat, 2009; Ture et al., 2012; Gonzales et al.,
2017) and it is helpful to properly disambiguate
polysemous words. Modeling discourse-level phe-
nomena for MT is a challenging endeavor because
of difficulties in acquiring relevant linguistic sig-
nals. Measuring the effect of discourse-level phe-
nomena with automatic metrics such as BLEU is
also difficult as pointed out by Hardmeier (2012).
In this paper, we address these issues by propos-
ing several oracle experimental setups for eval-
uating the effect of coreference resolution (CR)
and coherence in MT. Oracle experiments provide
strong linguistic signals that enable strongly vis-
ible effects on BLEU scores, thus alleviating the
difficulty of using BLEU to evaluate discourse-
level phenomena in MT. Oracles highlight the ca-
pability of NMT systems to use context (which
we call context-aware NMT) and to handle dif-
ferent discourse-level phenomena. They provide
a variety of scenarios that can easily be set up
for any domain, dataset or language pair, unlike
discourse-specific challenge sets (Bawden et al.,
2018) which must be manually created. Further-
more, strong linguistic signals from oracles enable
us to easily study how the models use context.
Our primary task is translating subtitles from
English to German. Subtitles provide for a reason-
able diversity of topics necessary for testing coher-
ence. They also contain a large amount of short,
informal and conversational text, where anaphoric
pronouns are very important. We study corefer-
ence by aiding pronoun translation and coherence

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 49-60
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by providing disambiguation signals for transla-
tion of polysemous words. The oracles are auto-
matically created and targeted for each discourse
phenomenon. We additionally include a previous
target sentence oracle, where the context consists
of the previous target sentence, as a more generic
way of including context. This is an interesting
oracle, but this scenario is actually also beneficial
for online post-editing, because the gold standard
previous target sentence is available there.

We propose a simple, yet effective exten-
sion to standard RNN models for NMT (which
we refer to as NMT(RNN)) which models con-
text by employing attention over word embed-
dings only. We compare it against a standard
NMT(RNN) model working on a concatenation of
consecutive sentences (Tiedemann and Scherrer,
2017). Additionally, we evaluate the Transformer
(Vaswani et al., 2017) and propose a context-aware
NMT(Transformer) extension. Our oracles al-
low us to compare the context-aware NMT mod-
els with the baselines and make strong conclu-
sions. Moreover, we study how comparable ora-
cles are with the challenge sets proposed by Baw-
den et al. (2018) by analyzing the performance
of our context-aware model with both approaches.
Finally, we conduct a qualitative study and show
the inner workings of context-aware models under
different oracle settings.

Contributions: (i) We modify the data us-
ing an oracle experimental setup in order to ac-
commodate evaluating coreference and coherence
in NMT. (ii) Our evaluation is independent of
carefully constructed challenge sets, and can eas-
ily be transferred across language pairs and do-
mains. (iii) Results clearly show context-aware
NMT(RNN) and NMT(Transformer) can improve
performance over NMT models without access to
context. (iv) We empirically analyze the pros and
cons of the major approaches to context-aware
NMT and explain how different modeling deci-
sions interact with different discourse phenomena.
(v) We present the trade-offs in modeling power
versus speed that are important when considering
multiple sentences of context.

2 Oracle Signals for Coreference and
Coherence

Acquiring clean and strong context signals is a dif-
ficult challenge and previous work has not pro-
posed a way to do this on a larger scale. In our
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work, we use oracles, where the context signals
are strong and allow us to carry out clear analysis.
We define three oracles which differ based on the
context supplied to the model.

First, we define the previous target sentence or-
acle where the context is the gold standard previ-
ous target sentence. Second, we define the coref-
erence or pronoun oracle where we simulate per-
fect knowledge of gender and number for pronoun
translation. Finally, we define the coherence or
more specifically, the repeated words oracle where
we help in identifying polysemous words and pro-
viding the correct signal for disambiguation.

Each of these oracles is accompanied by a fair
and a noisy oracle experimental setup. For the fair
setup, we obtain the linguistic signals in a realis-
tic way without having access to any target side
knowledge. In the noisy oracle setups, we add ad-
ditional target side information to the oracle sig-
nals. This additional information is not necessarily
relevant to the specific problem at hand (corefer-
ence or coherence) and it is used to test the robust-
ness of the models to identify the proper signals.

The oracle datasets are created in an automatic
way. We only need to manually define the list of
pronouns that will be taken into consideration in
the coreference oracle.

Oracle Table 1 shows samples from our ora-
cle setup. For each example we show the context,
original source sentence, our modified oracle sen-
tence and the target sentence. The first two exam-
ples show coreference (pronoun) oracle samples,
while the third one a coherence (repeated words)
oracle sample. The text in brackets shows which
is the counterpart repeated target word or the gen-
der of the noun the pronoun is referencing. It is not
explicitly provided to the models. The text preced-
ing the special token /@#$ in the oracle examples
is the input to the context part of the architecture.

For coreference, we aid the model with pronoun
translation as can be seen in example (c). In this
case, it refers to Roman (meaning novel), which is
apparent in the previous sentence (a). Without this
information the model will have difficulties gener-
ating the proper translation er (the German mas-
culine pronoun agreeing with Roman).

When creating the pronoun oracle setup, we do
not utilize the context sentence. Instead, we just
consider the current source and corresponding tar-
get sentence. If both sentences contain at least one
pronoun in their respective languages, we mark



the source pronouns with XPRONOUN and insert
the target pronouns in the context of the main sen-
tence, as in example (c).

The example shows that the context provides
access to perfect knowledge of the coreferent,
which in turn tells us the number and gender.
However, the models still need to learn to use the
correct pronouns. As we can see in example (g),
there may be multiple pronouns in the context.
Since (g) is an imperative sentence, Sie does not
have a pronoun counterpart in the source and it is
used in conjunction with the German verb for use.

Example (k) shows how we model the coher-
ence phenomenon by using repeated words. Given
the English word source in a sentence without
helpful context, it would be impossible to disam-
biguate between two possible translations of the
word: Quelle (a source of a fountain or figuratively
the source of information) or Ursprung (origin,
where something originates from). However, we
see that the previous sentence (i) contains the rele-
vant information to select the correct translation of
the English source. The word source is present in
the previous and current source sentence and Ur-
sprung is present in the previous and current target
sentence. When we find at least one repeated word
on both the source and target side, we mark the
source word with a special token XREP and the
repeated target word is used as context to the main
source sentence. The intuition here follows previ-
ous work (Tu et al., 2017) where past translation
decisions are used for disambiguation. This ora-
cle is admittedly weaker than the coreference one
since it relies on the assumption that a polysemous
word has already been seen in the text. However,
if a word occurs in two consecutive sentences, it is
likely that it will have the same translation.

For the previous target sentence oracle, we use
the gold standard previous target sentence as con-
text and don’t modify the main source sentence.
We also setup experiments with 2 and 3 previous
target sentences as context.

Fair For the fair coreference setup, we attempt
to acquire gender and number knowledge by using
a coreference resolution tool, namely CorefAnno-
tator from Stanford CoreNLP! (Clark and Man-
ning, 2016a,b). We run the model on entire doc-
uments. We only modified sentences that contain
a pronoun which has an antecedent in the previ-
ous source sentence. Consequently, the pronoun is

"https://stanfordnlp.github.io/CoreNLP
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context sentence

(a) Let me summarize the novel ™! for you,

source sentence

(b) It presents a problem

pronoun oracle sample

(c) er™m>evlinel 1 @ #¢ XPRONOUN It presents a problem.
target sentence

(d) Er prisentiert ein Problem.

context sentence

(e) But you have a charm
to respond to.

source sentence

(f) Use it. OK, sport?
multiple pronoun oracle sample

(g) Sie ihn™*inel 1@#$ Use XPRONOUN it. OK, sport?
target sentence

(h) Setzen Sie ihn ein.

fmaseuline] oyeryone else here seems

context sentence

(1) When dealing with a crisis everyone knows you go right
to the source!U"Prnel,

source sentence

(j) God the source is pretty.

repeated words oracle sample

(k) Ursprung !@#$ God the XREP source is pretty.

target sentence

(1) Mann, so ein hiibscher Ursprung.

Table 1: Coreference and coherence oracle samples. For
detailed explanation of the examples, refer to Section 2.

marked and the antecedent is inserted into the con-
text of the given sentence. In this way, we don’t
utilize any target side knowledge.

For the fair coherence experiment, we don’t
have access to target side information and we just
put special emphasis on words that are polyse-
mous candidates. As a result, we only use repeated
source words. A repeated word is marked in the
main sentence and it is used as context.

For the fair previous sentence experimental
setup, we use the same models trained on the pre-
vious target sentence oracle setup, but evaluate
them by translating the previous source sentence
with a baseline model and using this translation as
context. Additionally, we train models where the
previous sentence is from the source side.

Noisy oracles In order to test the robustness
of context-aware models, we define noisy coref-
erence oracles. We use the same approach as in
the oracle, but the previous gold standard target
sentence is added at the beginning of the context
(which already contains the target side pronouns).

We also define noisy oracles for coherence. In
this case, this is achieved by marking repeated
source words and marking repeated target words
in the previous target sentence and using the mod-
ified previous target sentence as context.



3 Related Work

Bawden et al. (2018) is a recent work with simi-
larities to ours. They look at the scores computed
by context-aware models using challenge sets, by
comparing model scores on two perfect target lan-
guage sentences differing only on a single choice
of, e.g., gender for a pronoun, and providing two
different contexts to try to obtain, e.g., masculine
in the first case and feminine in the second case.

Like Bawden et al. (2018), we provide a focused
evaluation on coherence and coreference, but un-
like their work, we do not depend on manually cre-
ated datasets. Our simple oracles are a strong al-
ternative to manually constructed challenge sets,
as we can easily have a more diverse experimen-
tal setup (our oracles can be defined for different
languages, domains and datasets with little effort).

Several approaches have been proposed for
context-aware NMT that utilize a separate mecha-
nism to handle extra-sentential information. Wang
et al. (2017) integrate cross-sentence context using
gates in the decoder, which control information
flow between the cross-sentence context and the
current decoder state. However, the context repre-
sentation is fixed at each decoding time step, while
the model needs to focus on different parts of the
context. Tu et al. (2017) propose a caching mecha-
nism that stores previous translation decisions. As
a result, this approach fails to take into account
CR as stored translation decisions can’t be used to
address this phenomenon. Jean et al. (2017) and
Bawden et al. (2018) propose methods using a sep-
arate RNN-based context encoder. Tiedemann and
Scherrer (2017), propose concatenating the pre-
ceding sentence, both on source and target side
and then using a standard NMT model. These ap-
proaches are computationally expensive. They ei-
ther have an extra RNN-based encoder (Jean et al.,
2017; Bawden et al., 2018) or work on very long
sentences (Tiedemann and Scherrer, 2017).

A recent work by Voita et al. (2018) proposed
a context-aware Transformer model and provided
an analysis of anaphora resolution in MT. Their
proposed model is conceptually similar to our
NMT(Transformer) model, differing in that the
context is integrated in the encoder unlike our
model which does it in the decoder.

We propose a simple NMT(RNN) model that
only uses attention to encode the context and in-
tegrates it with a gating mechanism (Wang et al.,
2017). It provides for a better computational ef-
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ficiency compared to models employing an extra
RNN-based encoder. We also propose a context-
aware Transformer model. In the experiments,
we compare our models against a concatena-
tion NMT(RNN) and NMT(Transformer) model
(Tiedemann and Scherrer, 2017).

4 Context-Aware Models

4.1 Lightweight context-aware NMT(RNN)
model

In this paper, we introduce a new lightweight
context-aware model based on the attention
encoder-decoder model proposed by Bahdanau
et al. (2015). We introduce this context-aware
model to compare against the proposed model by
Tiedemann and Scherrer (2017) as an alternative
approach to handling context.

The encoder part of the model, takes the source
sentence X = (x1,x9,...,27,) and generates a
set of annotation vectors {hy, ha, ..., hr, } where
h, = [ﬁz,%l] ﬁl and %Z are the ¢-th hid-
den states from the forward and backward recur-
rent networks respectively. The decoder generates
one target symbol y; at a time by computing the
conditional probability p(v;|y1,y2, - - -, Yi—1, )
f(yi-1, 8i,¢;) where ¢; represents the attention
weighted sum of annotation vectors and is com-
puted as in (Bahdanau et al., 2015). Unlike previ-
ous approaches that model context by employing
an RNN-based encoder (Jean et al., 2017; Bawden
et al., 2018), we propose to utilize the capability
of the attention mechanism only. This provides
for better computational efficiency, thus allowing
the model to exploit larger context at a lower com-
putational cost.

The context sentence is given as a sequence of
X¢ = (zf,25,... ,ar%f). We map the tokens to
the corresponding word embeddings wg. We share
all embeddings across the model, including the
context ones. The attention on the cross-sentence
context is conditioned on the previously generated
token y;_1 current candidate decoder state s;_i
and attention weighted main sentence representa-
tion ¢;. Formally, the context sentence represen-
tation is computed as c¢j = ZjTil Bijw; where
B o exp(fa (Yi-1, Si-1, w5, ¢)).

We integrate the context representation using
a gating mechanism (Wang et al., 2017) which
controls the flow of information between the cur-
rent decoder state and the context representation.
which is computed as g = f4(yi—1, Si—1, ¢4, ¢5).



The final decoder representation is computed as
8i = fe(Yi-1,8i-1,¢i, 9 ® c§).

4.2 Transformer context-aware model

The Transformer (Vaswani et al., 2017) is an
encoder-decoder architecture which fully relies on
attention. The encoder layers have two main
components, a multi-head self-attention and a
position-wise fully-connected feed-forward net-
work. Each of these components is followed by a
residual connection. In the self-attention sublayer,
each word from the input sentence acts as a query,
key and value when computing the attention. Each
attention head uses the queries and keys to com-
pute a dot product to which a softmax is applied
in order to get the attention weights to score the
values. Consequently, the representation of each
word depends on all the others. The final repre-
sentation is generated by concatenating the out-
put of the separate attention heads and inputting
it to the feed-forward network. The decoder on
the other hand, has three sublayers. It starts by
applying masked self-attention which is then used
to compute multi-head attention over the encoder
representation. This is then used as input to a feed-
forward network as in the encoder.

The proposed context-aware model in this pa-
per is built as an extension to the standard Trans-
former. All embeddings including the context em-
beddings are shared across the model. We mod-
ify the encoder by sharing the parameters for the
multi-head self-attention for the main and con-
text sentence. However, we don’t share the feed-
forward network after the self-attention.

The standard decoder computes a multi-head at-
tention ¢; over the main encoder representation us-
ing the output from the masked self-attention c;".
We add an additional multi-head attention over the
context representation c; as well. Before comput-
ing the context attention, the output of the masked
self-attention is projected using a feed-forward
network. The main and context multi-head self-
attention representations are merged using a gat-
ing mechanism as s; = ¢; @ ¢; + (1 — ¢;) ® ¢§
where g; = o(Wee; + Wee§ + Wiy cl).

S Experiments

We train our models on OpenSubtitles2016 En-De
with =~ 13.9M parallel sentences. The develop-
ment and test set consist of 6 and 7 documents ran-
domly sampled from the dataset, containing 3172
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and 4627 sentences respectively. In the corefer-
ence oracle setup ~ 7.8M training samples were
modified and added the appropriate context, while
in the coherence setup only ~ 0.8M. The remain-
ing samples are unchanged and have no context.

We apply tokenization, truecasing and BPE
splitting computed jointly on both languages with
59500 operations. All sentences with length above
60 tokens are discarded. Batch size is 80. All
embeddings are tied (Press and Wolf, 2017) in-
cluding the ones in the context part of the archi-
tecture. Dropout (Gal and Ghahramani, 2016) of
0.2 is applied and 0.1 on the embeddings. We ap-
ply layer (Ba et al., 2016) and weight normaliza-
tion (Salimans and Kingma, 2016). The models
are trained with early-stopping based on the de-
velopment set’s cost. We report BLEU score on
detokenized text.

Our RNN-based model is implemented as an
extension to Nematus? (Sennrich et al., 2017). We
used the Sockeye® (Hieber et al., 2017) implemen-
tation of the Transformer. For the Transformer
we use hyper-parameters as similar as possible to
the ones in the Nematus models. We additionally
use label smoothing of value 0.1. Both, the base-
line and context-aware model have 4 layers. We
didn’t do any special hyper-parameter tuning for
the context-aware models, so further performance
improvements are possible. The datasets and the
source code for our context-aware models are pub-
licly available®.

6 Experimental Results

6.1 Previous target sentence oracle

In this section, we discuss the effect of using
context in context-aware NMT. In Table 2 we
show the results for the three different oracle
setups. Experiment (la) shows that a baseline
NMT(RNN) model obtains 28.57 BLEU on the
test set. The NMT(Transformer) baseline (1b)
on the other hand, achieves 29.53 BLEU. Us-
ing the gold standard previous target sentence as
context, provides for 1.32 BLEU improvement
on the test for our context-aware NMT(RNN)
model (2a) and 1.78 BLEU for the concatenation
NMT(RNN) model (3a). Our proposed context-

https://github.com/EdinburghNLP/
nematus

Shttps://github.com/awslabs/sockeye

*nttp://www.cis.uni-muenchen.de/
~dario/projects/oracles



aware NMT(Transformer) model (2b) also im-
proves upon the baseline, but only by 0.6 BLEU,
and the concatenation model (3b) closely follows
the RNN model, adding 1.49 BLEU.

We also evaluate the usefulness of larger con-
text. Using the previous 2 (6a) and 3 (7a) sen-
tences consistently adds 0.6 BLEU with the
concatenation NMT(RNN) model. The context-
aware NMT(RNN) model, does not improve when
using 2 sentences (4a), but has large gains when
extending to 3 (5a). In our context-aware mod-
els, the larger context is handled by concatenat-
ing all previous sentences. The context-aware
NMT(Transformer) (4b), (5b) was actually hurt by
the larger context. On the other hand, for the con-
catenation model (6b), (7b) we observed some im-
provements, but they were not as consistent as the
gains for the NMT(RNN) model.

The results in (2ab), (3ab), (4ab), (5ab) (6ab),
(7ab) are obtained with models trained and eval-
vated with the gold standard previous target sen-
tences as context. In the fair experiments (8ab),
(9ab) we train with the gold standard previous tar-
get sentence as context, but then evaluate with
translations of the previous source sentences ob-
tained with the baseline model. This lowers the
performance of both NMT(RNN) models (8a),
(9a), but they still improve over the baseline.
Our context-aware NMT (Transformer) model (8b)
slightly lowers performance compared to the base-
line, unlike the concatenation model (9b).

Additionally, we train context-aware mod-
els where the previous sentence is obtained
from the source side (10ab), (11ab). Even in
such a scenario, context-aware and concatena-
tion NMT(RNN) models obtain improvements
over the baseline. Again, the concatenation
NMT(Transformer) shows improvements over the
baseline. The context-aware NMT(Transformer)
was not able to make use of the source side infor-
mation. Given that the encoder representations are
shared this is to some extent surprising and sug-
gests that additional encoder components are nec-
essary to model the contextual representation.

~
~

6.2 Coreference

Results for coreference are also shown in Table 2.
Experiments (12a) and (12b) show the results we
obtained with the pronoun oracle setup. It is clear
that NMT can benefit from strong coreference sig-
nals. We observed a large difference between the
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(a) RNN  (b) TF
(1) baseline 28.57 29.53
(2) context - gold prev. target 29.89 30.13
(3) concat - gold prev. target 30.35 31.02
(4) context - gold prev. 2 target 29.96 29.57
(5) context - gold prev. 3 target 30.95 29.98
(6) concat - gold prev. 2 target 30.96 31.69
(7) concat - gold prev. 3 target 31.56 31.26
(8) context - baseline prev. target 29.10 29.25
(9) concat - baseline prev. target 29.28 29.89
(10) context - prev. source 29.48 28.80
(11) concat - prev. source 29.56 30.25
Coreference
(12) context - pronoun oracle 34.35 34.60
(13) context - fair 29.05 28.76
(14) context - noisy pronoun oracle  33.61 34.62
(15) concat - noisy pronoun oracle 35.59 35.18
Coherence
(16) context - repeated target words ~ 29.83 29.35
(17) context - repeated source words ~ 29.27 29.04
(18) context - noisy rep. target words 30.07 29.85
(19) concat - noisy rep. target words  30.46 31.25

Table 2: BLEU scores from all of the oracle experimental
setups on the test set. Results in the first column correspond
to the NMT(RNN) context-aware and concatenation models
while the second column to the NMT(Transformer) ones. The
number in brackets in each line is used to indicate the corre-
sponding experiment throughout the text.

improvements on the development and the test set,
probably because this phenomenon is not equally
prominent in the datasets. In the absence of perfect
CR, this setup is a reasonable proxy for obtaining
coreference signals and gender information, and
the context-aware models achieve large improve-
ments over their respective baselines.

Experiments (13a) and (13b) show the results
for the fair coreference setup. Using a CR tool, we
identified the appropriate antecedents (to current
sentence pronouns) in the previous source sen-
tence and used them as context. The results show
small improvements on the test set. This signal
is significantly weaker. Moreover, only ~ 0.3M
samples had a non-empty context, meaning a pro-
noun was referring to a coreferent as identified by
the CR tool. These results show that while weak,
the context-aware NMT(RNN) model is able to
utilize this signal. The NMT(Transformer) model
on the other hand, was significantly hurt by this
setup. We attribute this to the model not being able
to handle scenarios where the majority of the sam-
ples are without context information.

In the noisy pronoun oracle setup, the context
consists of the previous gold standard target sen-
tence to which we append the target side pronouns
as in the previously outlined pronoun oracle setup.
The results are shown in Table 2. We can ob-



serve that the context-aware NMT(RNN) model
(14a) is actually hurt by the extra information in
the form of previous target sentence. We attribute
the decrease to the model learning to strongly at-
tend to all pronouns in the context. As such, in
some cases, it chooses to attend to a pronoun from
the previous sentence which ends up acting as
noise in these models. Using oracles allowed us to
easily find this important weakness in our model
design. The context-aware NMT(Transformer)
model (14b) is more robust to noise and had no
problems identifying the appropriate information.

Using the same setting for the concatenation
NMT(RNN) model (15a), achieves best perfor-
mance with an absolute gain of 7.02 BLEU. Based
on the obtained results in (3a), we conclude that
the effects in (15a) are a compound of the capabil-
ity of concatenation models to make use of the pre-
vious sentence and target side pronouns. The same
effects can be observed for the NMT(Transformer)
concatenation model as well (15b). However, de-
spite the concatenation Transformer being able to
obtain better results for the previous target sen-
tence and pronoun oracle than the RNN model, the
compound effect is not as strong.

6.3 Coherence

Table 2 shows the results we obtained for the co-
herence experimental setup. For the oracle setup,
we identify repeated source and target words in
the previous and current sentence, mark the source
words and insert the target words in the context.
For the fair setup, we insert repeated source words
in the context. The aim with this scenario is to em-
phasize which words are potentially important for
disambiguation. Moreover, in the oracle setup, we
provide the presumably gold standard translation
of the repeated word in the appropriate context.

Both scenarios (16a), (17a) obtain improve-
ments over the baseline with the NMT(RNN)
model, although not as strong as the gains with
the pronoun oracle. One reason is that the num-
ber of samples with context is significantly smaller
than the pronoun oracle. Another potential reason
is that coherence is already modeled well by the
baseline. The results indicate that obtaining coher-
ence and disambiguating signals from past trans-
lation decisions, whether from an oracle such as
in our work or from the model itself (Tu et al.,
2017) is difficult. Nevertheless, the noticeable
gains in BLEU we observed in our experiments
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confirm that further improvements can be made.
The context-aware NMT(Transformer) is hurt by
these oracle setups as shown in experiments (16b)
and (17b) because of the lack of sufficient context.
Table 2 presents the results for the noisy co-
herence oracle. The context-aware NMT(RNN)
model (18a) obtains improvement over the base-
line of 1.5 BLEU and the concatenation model
(19a) of 1.89 BLEU. This is likely a compound ef-
fect of having access to the entire previous target
sentence as in (2a) and (3a) and the weak signals
in the form of pointers to where disambiguation is
necessary. This is to some extent matched by the
Transformer experiments (18b), (19b).

6.4 Comparison with challenge sets

In order to assess the quality of our oracles, we
also set them up on OpenSubtitles2016 En-Fr and
compare them against the challenge sets proposed
in Bawden et al. (2018). This allows us to compare
the two methods and show whether we can draw
similar conclusions about a model when evaluat-
ing it with both the oracles and challenge sets. For
simplicity, we only evaluate our proposed context-
aware NMT(RNN) model. We randomly sampled
documents from the En-Fr dataset to create a de-
velopment and test set. The challenge sets are used
as provided by Bawden et al. (2018). We set up the
oracles in the same way as for En-De. However, in
French the pronouns /e, la and les can also be used
as definite articles. Therefore, we used MarMoT
(Mueller et al., 2013) to filter out these instances.

We compare the methods by measuring the im-
provements a context-aware model achieves over
a baseline, on our oracles and on the challenge
sets. Since our oracles use target side knowledge,
we use the version of the challenge sets where the
previous sentence is from the target side. This
provides for a fairer comparison. We train our
context-aware model on the pronoun and repeated
words oracle. In order to evaluate the model on the
challenge sets, we train the model with the gold
standard previous target sentence as context.

The baseline model obtains a score of 27.73
BLEU on the test and by design, it achieves 50%
accuracy on the coreference and 50% accuracy
on the coherence challenge set. Our proposed
context-aware model trained on the pronoun ora-
cle achieved 30.72 BLEU on the test set. On the
repeated words oracle, it scored 28.25 BLEU. As
in the En-De experimental results, our model ob-



pronoun oracle

meine er ! @#$ XPRONOUN My reading of the prophecy is that XPRONOUN it will come in 2012

Zeit fiir diese Abneigung ist.

reference Meine Textstudien ergeben, daf er 2012 kommen wird

baseline Mein Lesen der Prophezeiung lautet, dass es 2012 kommen wird

context Meine Lesung der Prophezeiung ist, dass er 2012 kommen wird

repeated words ~ Abneigung Romulaner ! @#$ If you had seen them kill your parents, you would XREP understand it

oracle is always the XREP time for those XREP feelings.

reference Hoatten Sie mit angesehen, wie Ihre Eltern getotet werden... Meine Abneigung gegen die Romulaner
ist universell.

baseline Wenn du gesehen hittest, wie sie deine Eltern tdten wiirden, wiirdest du verstehen, dass es immer die
Zeit fiir diese Gefiihle ist.

context Wenn du gesehen hiittest, wie sie deine Eltern getotet haben, wiirdest du verstehen, dass es immer die

prev. sent. oracle

reference Tut sie nicht?
baseline Ist es nicht?
context Ist es nicht?

Er dachte, die Geschichte handelte von einem Fisch. ! @#$ It isn’t?

Table 3: Samples from the qualitative analysis.

tains small gains for coherence and larger ones
for coreference. The context-aware model we
trained with the previous target sentence as con-
text, scored 63.0% and 54.0%, on the corefer-
ence and coherence challenge set, respectively.
From these results we also can conclude that our
model is reasonably powerful to handle corefer-
ence and marginally improves coherence. These
results show that challenge sets and oracles pro-
vide comparable results when evaluating discourse
in MT. However, our oracle setups are easier to de-
fine and control.

6.5 Qualitative study

In this section, we show examples from our ora-
cle setups and provide visualizations of the extra-
sentential attention for our context-aware and
the concatenation NMT(RNN) model (Tiedemann
and Scherrer, 2017). We also show the activations
of the decoder gates which control the context in-
formation flow. This can help us understand how
the models make decisions at each time step.

In Table 3 we show the pronoun, repeated words
and previous target sentence oracles and com-
pare the output from a baseline and our proposed
context-aware model against the reference transla-
tion. For simplicity, in the visualizations for the
concatenation model, we only present the atten-
tion over the previous sentence and the sentence
separating token SEP.

The first row in Table 3 shows a pronoun oracle
sample. In this case, it refers to comet. It is ob-
vious that there is not sufficient information in the
main sentence alone to properly translate it and the
baseline model falls back to the data-driven prior,
which is to generate es.
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Figure 1: Context attention for the pronoun and repeated
words oracles.

From the visualization in Figure 1a we see that
our context-aware model pays attention to the ap-
propriate pronoun (meine, er). From Figure 3 we
see that for this example, the noisy oracle shows
the same behavior and correctly ignores the noise.
Furthermore, Figure 2a and Figure 2b show that
the gate activations follow the intuitive assump-
tion that they should be high when generating pro-
nouns. Our model in the noisy pronoun oracle
produced a correct translation, but it still weakly
paid attention to irrelevant parts of the sentence.
From Figure 4 we see that concatenation model
on the other hand, makes a clean distinction be-
tween what is relevant and what is not, and only
has strong attention over the pronouns.
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Figure 3: Context attention of our proposed model on the
noisy pronoun oracle.
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Figure 4: Attention over the previous sentence of the con-
catenation model on the noisy pronoun oracle.

The second sample is selected from the repeated
words oracle setup. Because the reference transla-
tion does not exactly match the source sentence,
there is a small mismatch between the repeated
words on the source and target side. However,
we see that without the contextual signal that feel-
ings in this case refers to adverse feelings (as in-
dicated by Abneigung) the baseline falls back to
the more common translation Gefiihle. We also
looked at the previous sentence which did not have
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any context information and both the baseline and
the context-aware model generated Gefiihle.

Figure 1b shows that the context-aware model
has no problem attending to the disambiguating
signal (Abneigung) and it also uses this signal
when generating the determiner dieses which is
dependent on the noun. However, we also can ob-
serve that given the incorrect indication to look at
the context when translating fime, it also has at-
tention activation over the context as well. This is
closely followed by the gate activations in Figure
2c. The same doesn’t happen when translating the
marked source token understand. This is probably
because the model is confident that it doesn’t need
context when translating understand.
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Figure 5: Context attention of our proposed model on the
noisy repeated words oracle.

From Figure 5 and Figure 2d we see that the
context-aware model in a noisy repeated words
oracle setting has difficulties identifying the co-
herence information and when to use it. It tends
to pay attention to certain words throughout the
whole sequence generation. This is likely a side
effect of having access to the previous target sen-
tence which in other cases provides useful infor-
mation. Although it pays attention to the appro-
priate repeated word (Abneigung), it still fails to
generate it. Since the concatenation model uses an
RNN over the context, it has no problem identify-
ing the disambiguating signal, marked with XREP
and generates it accordingly (Figure 6).

We also did an analysis of the previous target
sentence oracle as well as the models that use the
previous source sentence as context. We looked
at examples where there is an anaphoric pronoun
it. When the context is from the source side, our



Ner

<
o g <
§ ¢ 5 o s IS

_so5688 . 888 5.8 2§ .

S S5 Q00 0 oo 9 Ys &£ 893 uj

LY¥EXITC o TXax 9 T 0 £ .un

PR S S S S S S M SO S SO S ST S S
wenn
Sie q
sie
gesehen -
hatten -
wirden
Sie q
verstehen -
dass
es
immer 4
die 4
Ab@@ -

neigung - -
gegen -
die 4
Romulaner - [ ]

ist 4
</s> 1

Figure 6: Attention over the previous sentence of the con-
catenation model on the noisy repeated words oracle.

context-aware model tends to pay attention to a
single noun, while in the previous target sentence
oracle, it looks at more explicit gender informa-
tion, such as pronouns, articles etc. This is illus-
trated in the last example in Table 3 and Figure 7
and 8. In this case, it refers to die Geschichte or
story. When translating it both models paid atten-
tion to the appropriate place in the previous sen-
tence, but failed to generate the correct pronoun
sie. For this particular example, the concatenation
model paid no attention to the previous sentence.
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Figure 7: Context attention of our proposed model on the
previous target sentence.
s
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Figure 8: Context attention of our proposed model on the
previous source sentence.

6.6 Model inference speed

Although the concatenation model performs better
than our context-aware model, an important con-
sideration when working with context-aware NMT
is computational efficiency. We compared infer-
ence times for the RNN models on the develop-
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ment set. We report times with context size of 1, 2
and 3 previous sentences.

The context model took 1233 seconds to de-
code the development set, while the concatenation
model 2063 seconds. The concatenation model
took additional ~ 900 seconds for each additional
context sentence. Because our context-aware im-
plementation is not tightly dependent on context
length, there are no considerable drops in speed.
This is a disadvantage of the concatenation ap-
proach. If one is to use large context, or even
entire documents, the problem quickly becomes
very computationally expensive. This highlights
the necessity of specialized context-aware mod-
els. Since the Transformer can be more easily
parallelized, there is still room for improving the
computational performance of our context-aware
Transformer. As a result, we leave such a compar-
ison for future work.

7 Conclusion and Future Work

We used simple oracles to look at discourse-level
phenomena in MT. We compared context-aware
NMT models and show that these approaches pro-
vide large gains in BLEU for coreference and
coherence given clear oracle signals. We also
showed that even when using fair signals, such as
the previous source sentence or a system transla-
tion of the previous target sentence, NMT mod-
els benefit and make use of the extra informa-
tion. Some future work in context-aware NMT
can focus on using the standard NMT architecture,
which performs well. However, if one requires ac-
cess to larger context, vanilla NMT will have diffi-
culties scaling in terms of speed and perhaps even
in modeling ability. For this reason, a promising
way forward is studying different ways of model-
ing and integrating context that support fast infer-
ence. Oracle experiments will allow us to quickly
test interesting modeling differences.
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Abstract

The translation of pronouns presents a
special challenge to machine translation
to this day, since it often requires con-
text outside the current sentence. Re-
cent work on models that have access
to information across sentence boundaries
has seen only moderate improvements in
terms of automatic evaluation metrics such
as BLEU. However, metrics that quan-
tify the overall translation quality are ill-
equipped to measure gains from additional
context. We argue that a different kind of
evaluation is needed to assess how well
models translate inter-sentential phenom-
ena such as pronouns. This paper therefore
presents a test suite of contrastive transla-
tions focused specifically on the transla-
tion of pronouns. Furthermore, we per-
form experiments with several context-
aware models. We show that, while gains
in BLEU are moderate for those systems,
they outperform baselines by a large mar-
gin in terms of accuracy on our contrastive
test set. Our experiments also show the ef-
fectiveness of parameter tying for multi-
encoder architectures.

1 Introduction

Even though machine translation has improved
considerably with the advent of neural machine
translation (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015), the translation of pronouns re-
mains a major issue. They are notoriously hard to
translate since they often require context outside
the current sentence.

As an example, consider the sentences in Fig-
ure 1. In both languages, there is a pronoun in the

* Work performed prior to joining Amazon.
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EN However, the European Central Bank (ECB)
took an interest in it. It describes bitcoin as
“the most successful virtual currency”.

DE Dennoch hat die Europidische Zentralbank
(EZB) Interesse hierfiir gezeigt. Sie
beschreibt Bitcoin als “die virtuelle Wahrung
mit dem grossten Erfolg”.

Figure 1: Example sentence illustrating how the
translation of pronouns is ambiguous on a sen-
tence level. Pronouns of interest are in italics, and
the antecedents they refer to are underlined. Taken
from WMT newstest2013.

second sentence that refers to the European Cen-
tral Bank. When the second sentence is translated
from English to German, the translation of the pro-
noun it is ambiguous. This ambiguity can only
be resolved with context awareness: if a transla-
tion system has access to the previous English sen-
tence, the previous German translation, or both, it
can determine the antecedent the pronoun refers
to. In this German sentence, the antecedent Eu-
ropdische Zentralbank dictates the feminine gen-
der of the pronoun sie.

It is unfortunate, then, that current NMT sys-
tems generally operate on the sentence level
(Vaswani et al., 2017; Gehring et al., 2017; Hieber
et al., 2017). Documents are translated sentence-
by-sentence for practical reasons, such as line-
based processing in a pipeline and reduced compu-
tational complexity. Furthermore, improvements
of larger-context models over baselines in terms of
document-level metrics such as BLEU or RIBES
have been moderate, so that their computational
overhead does not seem justified, and so that it is
hard to develop more effective context-aware ar-
chitectures and empirically validate them.

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 61-72
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/W18-64007
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To address this issue, we present an alternative
way of evaluating larger-context models on a test
set that allows to specifically measure a model’s
capability to correctly translate pronouns. The test
suite consists of pairs of source and target sen-
tences, in combination with contrastive translation
variants (for evaluation by model scoring) and ad-
ditional linguistic and contextual information (for
further analysis). The resource is freely available.!
Additionally, we evaluate several context-aware
models that have recently been proposed in the lit-
erature on this test set, and extend existing models
with parameter tying.

The main contributions of our paper are:

e We present a large-scale test set to evaluate
the accuracy with which NMT models trans-
late the English pronoun it to its German
counterparts es, sie and er.

e We evaluate several context-aware systems
and show how targeted, contrastive evalua-
tion is an effective tool to measure improve-
ment in pronoun translation.

e We empirically demonstrate the effectiveness
of parameter tying in multi-encoder context-
aware models.

Section 2 explains how our paper relates to ex-
isting work on context-aware models and the eval-
uation of pronoun translation. Section 3 describes
our test suite. The context-aware models we use in
our experiments are detailed in Section 4. We dis-
cuss our experiments in Section 5 and the results
in Section 6.

2 Related Work

Two lines of work are related to our paper: re-
search on context-aware translation (described in
Section 2.1) and research on focused evaluation of
pronoun translation (described in Section 2.2).

2.1 Context-Aware NMT Models

If the translation of a pronoun requires context be-
yond the current sentence (see the example in Fig-
ure 1), a natural extension of sentence-level NMT
models is to condition the model prediction on this
necessary context. In the following, we describe a
number of existing approaches to making models
“aware” of additional context.

'nttps://github.com/ZurichNLP/
ContraPro
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The simplest possible extension is to trans-
late units larger than sentences. Tiedemann and
Scherrer (2017) concatenate each sentence with
the sentence that precedes it, for the source side
of the corpus or both sides. All of their models
are standard sequence-to-sequence models built
with recurrent neural networks (RNNSs), since the
method does not require any architectural change.
Agrawal et al. (2018) use the same concatena-
tion technique with a Transformer architecture
(Vaswani et al., 2017), and experiment with wider
context.

A number of works do propose changes to the
NMT architecture. A common technique is to ex-
tend a standard encoder-decoder model by addi-
tional encoders for the context sentence(s), with a
modified attention mechanism (Jean et al., 2017;
Bawden et al., 2018; Voita et al., 2018). One as-
pect that differs between these works is the ar-
chitecture of the encoder and attention. While
Jean et al. (2017); Bawden et al. (2018) extend an
RNN encoder-decoder with a second encoder that
the decoder attends to, Voita et al. (2018) extend
the Transformer architecture with an encoder that
is attended to by the main encoder. Voita et al.
(2018) also introduce parameter sharing between
the main encoder and the context encoder, but do
not empirically demonstrate its importance.

While the number of encoded sentences in
the previous work is fixed, Wang et al. (2017);
Maruf and Haffari (2018) explore the integration
of variable-size context through a hierarchical ar-
chitecture, where a first-level RNN reads in words
to produce sentence vectors, which are then fed
into a second-level RNN to produce a document
summary.

Apart from differences in the architectures, re-
lated work varies in whether it considers source
context, target context, or both (see Table 1 for
an overview of language arcs and context types).
Some work considers only source context, but for
pronoun translation, target-side context is intu-
itively important for disambiguation, especially if
the antecedent itself is ambiguous. In our evalua-
tion, we therefore emphasize models that take into
account both source and target context.

Our experiments are based on models from
Bawden et al. (2018), who have released their
source code.”> We extend their models with pa-
rameter sharing, which was shown to be beneficial

https://github.com/rbawden/nematus



Languages Context types
source target source target preceding following
Tiedemann and Scherrer (2017) DE EN X X X
Jean et al. (2017) EN FR/DE X X
Wang et al. (2017) ZH EN X X
Voita et al. (2018) EN RU X X X
Bawden et al. (2018) EN FR X X X
Maruf and Haffari (2018) FR/DE/ET EN X X X
Agrawal et al. (2018) EN IT X X X X

Table 1: Overview of context-aware translation models in related work.

by Voita et al. (2018). Additionally, we consider a
concatenative baseline, similar to Tiedemann and
Scherrer (2017), and Transformer-based models
(Voita et al., 2018).

2.2 Evaluation of Pronoun Translation

Pronouns can serve a variety of functions with
complex cross-lingual variation (Guillou, 2016),
and hand-picked, manually annotated test suites
have been presented for the evaluation of pronoun
translation (Guillou and Hardmeier, 2016; Isabelle
et al., 2017; Bawden et al., 2018). While suitable
for analysis, the small size of the test suites makes
it hard to make statistically confident comparisons
between systems, and the hand-picked nature of
the test suites introduces biases.> To overcome
these problems, we opted for a fully automatic ap-
proach to constructing a large-scale test suite.

Conceptually, our test set is most similar to
the “cross-lingual pronoun prediction” task held
at DiscoMT and WMT in recent years (Hardmeier
et al., 2015; Guillou et al., 2016; Lodiciga et al.,
2017): participants are asked to fill a gap in a tar-
get sentence, where gaps correspond to pronouns.

The first edition of the task focused on
English—French, and it was found that local con-
text (such as the verb group) was a strong sig-
nal for pronoun prediction. Hence, future editions
only provided target-side lemmas instead of fully
inflected forms, which makes the task less suitable
to evaluate end-to-end neural machine translation
systems, although such systems have been trained
on the task (Jean et al., 2017).

Lodiciga et al. (2017) do not report on the
proportion of intra-sentential and inter-sentential
anaphora in their test set, but the two top-

3For example, all pronoun examples in the test suite by
Bawden et al. (2018) require the previous target sentence for
disambiguation, and thus do not reward models that condition
on more than one sentence of context.

performing systems only made use of intra-
sentential information. Our test suite focuses on
allowing the comparison of end-to-end context-
aware NMT systems, and we thus extract a
large number of inter-sentential anaphora, with
meta-data allowing for a focus on inter-sentential
anaphora with a long distance between the pro-
noun and its antecedent. Our focus on evaluat-
ing end-to-end NMT systems also relieves us from
having to provide annotated training sets, and re-
duces pressure to achieve balance and full cover-
age of phenomena.*

An alternative approach to automatically evalu-
ate pronoun translation are reference-based meth-
ods that produce a score based on word alignment
between source, translation output, and reference
translation, and identification of pronouns in them,
such as AutoPRF (Hardmeier and Federico, 2010)
and APT (Miculicich Werlen and Popescu-Belis,
2017). Guillou and Hardmeier (2018) perform a
human meta-evaluation and show substantial dis-
agreement between reference-based metrics and
human judges, especially because there often ex-
ist valid alternative translations that use different
pronouns than the reference. Our test set, and our
protocol of generating contrastive examples, is fo-
cused on selected pronouns to minimize the risk
of producing contrastive examples that are actu-
ally valid translations.

3 Test set with contrastive examples

Contrastive evaluation requires a large set of suit-
able examples that involve the translation of pro-
nouns. As additional goals, our test set is designed

“For example, we do not consider cases where English i
is translated into something other than a personal pronoun.
While this would be a severe blind spot in a training set for
pronoun prediction, the focused nature of our test suite does
not impair the performance of end-to-end NMT systems on
other phenomena.
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Alignment Frequency Probability
it—es 255764 0.334
it—sie 64446 0.084
it—er 44543 0.058
it—ist 42614 0.055
it—Sie 26054 0.034
it—, 21037 0.027
it—das 17992 0.023
it—dies 11943 0.015
it—wird 11886 0.015
it—man 10539 0.013
it—ihn 7744 0.010

Table 2: Frequency and probability of alignments
of it in the training data of our systems (all
data from the WMT 2017 news translation task).
Alignments are produced by a fast_align model.

to 1) focus on hard cases, so that it can be used
as a benchmark to track progress in context-aware
translation and 2) allow for fine-grained analysis.
Section 3.1 describes how we extract our data
set. Section 3.2 explains how, given a set of con-
trastive examples, contrastive evaluation works.

3.1 Automatic extraction of contrastive
examples from corpora

We automatically create a test set from the Open-
Subtitles corpus (Lison and Tiedemann, 2016).
The goal is to provide a large number of diffi-
cult test cases where an English pronoun has to
be translated to a German pronoun.

The most challenging cases are translating it to
either er, sie or es, depending on the grammatical
gender of the antecedent.® Not only is the transla-
tion of it ambiguous, there is also class imbalance
in the training data (see Table 2). There is roughly
a 30% probability that it is aligned to es,” which
makes it difficult to learn to translate er and sie.
We use parsing and automatic co-reference reso-
lution to find translation pairs that satisfy our con-
straints.

Shttp://opus.nlpl.eu/
OpenSubtitles2016.php

SThe pronouns he and she usually refer to a person in En-
glish, and since persons do not change gender in the trans-
lation, we assume that learning the correspondences he —
er and she — sie does not present a challenge for a model.
Cases where he or she refer to a noun that is not a person are
possible, but extremely rare.

"Note that these statistics include non-referential uses of
it, that we exclude from our testset.
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To provide a basis for filtering with constraints,
we tokenize the whole data set with the Moses
tokenizer, generate symmetric word alignments
with fast_align (Dyer et al., 2013), parse the En-
glish text with CoreNLP (Manning et al., 2014),
parse the German text with ParZu (Sennrich et al.,
2013) and perform coreference resolution on both
sides. The coreference chains are obtained with
the neural model of CoreNLP for English, and
with CorZu for German (Tuggener, 2016), respec-
tively.

Then we opt for high-precision, aggressive fil-
tering, according to the following protocol: for
each pair of sentences (e, f) in English and Ger-
man, extract iff

e ¢ contains the English pronoun it, and f con-
tains a German pronoun that is third person
singular (er;, sie or es), as indicated by their
part-of-speech tags;

o those pronouns are aligned to each other;
e both pronouns are in a coreference chain;

e their nominal antecedents in the coreference
chain are aligned on word level.

This removes most candidate pairs, but is neces-
sary to overcome the noise introduced by our pre-
processing pipeline, most notably coreference res-
olution. From the filtered set, we create a balanced
test set by randomly sampling 4000 instances of
each of the three translations of it under consider-
ation (er, sie, es). We do not balance antecedent
distance. See Table 4 for the distribution of pro-
noun pairs and antecedent distance in the test set.

For each sentence pair in the resulting test set,
we introduce contrastive translations. A con-
trastive translation is a translation variant where
the correct pronoun is swapped with an incor-
rect one. For an example, see Table 3, where
the pronoun it in the original translation corre-
sponds to sie because the antecedent bat is a fem-
inine noun in German (Fledermaus). We produce
wrong translations by replacing sie with one of the
other pronouns (er, es).

Note that, by themselves, these contrastive
translations are grammatically correct if the an-
tecedent is outside the current sentence. The test
set also contains pronouns with an antecedent in
the same sentence (antecedent distance 0). Those
examples do not require any additional context



source: It could get tangled in your hair.

reference: Sie konnte sich in deinem Haar verfangen.
contrastive: Er konnte sich in deinem Haar verfangen.
contrastive: Es konnte sich in deinem Haar verfangen.

antecedent en: a bat
antecedent de:

antecedent distance : 1

eine Fledermaus (f.)

Table 3: Example sentence pair with contrastive translations. An antecedent distance of 1 means that the
antecedent is in the immediately preceding sentence.

for disambiguation and we therefore expect the
sentence-level baseline to perform well on them.

We take extra care to ensure that the resulting
contrastive translations are grammatically correct,
because ungrammatical sentences are easily dis-
missed by an NMT system. For instance, if there
are any possessive pronouns (such as seine) in the
sentence, we also change their gender to match the
personal pronoun replacement.

The German coreference resolution system does
not resolve es because most instances of es in Ger-
man are either non-referential forms, or they refer
to a clause instead of a nominal antecedent. We
limit the test set to nominal antecedents, as these
are the only ambiguous cases with respect to trans-
lation. For this reason, we have to rely entirely
on the English coreference links for the extraction
of sentence pairs with ir—es, as opposed to pairs
with it—er and ir—sie where we have coreference
chains in both languages.®

Our extraction process respects document
boundaries, to ensure we always search for the
right context. We extract additional information
from the annotated documents, such as the dis-
tance (in sentences) between pronouns and their
antecedents, the document of origin, lemma, mor-
phology and dependency information if available.

3.2 Evaluation by scoring

Contrastive evaluation is different from conven-
tional evaluation of machine translation in that it
does not require any translation. Rather than test-
ing a model’s ability to translate, it is a method
to test a model’s ability to discriminate between
given good and bad translations.

8There are some cases where the antecedent is listed as it
in the test set. This is our fallback behaviour if the corefer-
ence chain does not contain any noun. In that case, we do not
know the true antecedent.
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distance it—es it—er it—sie total
0 872 736 792 2400

1 1892 2577 2606 7075

2 631 459 420 1510

3 274 167 132 573

>3 331 61 50 442
total 4000 4000 4000 12000

Table 4: Test set frequencies of pronoun pairs and
antecedent distance (measured in sentences).

We exploit the fact that NMT systems are in
fact language models of the target language, con-
ditioned on source text. Like language models,
NMT systems can be used to compute a model
score (the negative log probability) for an existing
translation. Contrastive evaluation, then, means
to compare the model score of two pairs of in-
puts: (actual source, reference translation)
and (actual source, contrastive translation).
If the model score of the actual reference transla-
tion is higher, we assume that this model can de-
tect wrong pronoun translations.

However, this does not mean that systems actu-
ally produce the reference translation when given
the source sentence for translation. An entirely
different target sequence might rank higher in the
system’s beam during decoding. The only conclu-
sion permitted by contrastive evaluation is whether
or not the reference translation is more probable
than a contrastive variant.

If the model score of the reference is indeed
higher, we refer to this outcome as a “correct
decision” by the model. The model’s decision
is only correct if the reference translation has a
higher score than any contrastive translation. In
our evaluation, we aggregate model decisions on



the whole test set and report the overall percent-
age of correct decisions as accuracy.

During scoring, the model is provided with ref-
erence translations as target context, while during
translation, the model needs to predict the full se-
quence. It is an open question to what extent per-
formance deteriorates when context is itself pre-
dicted, and thus noisy. We highlight that the same
problem arises for sentence-level NMT, and has
been addressed with alternative training strategies
(Ranzato et al., 2015).

4 Context-Aware NMT Models

This section describes several context-aware NMT
models that we use in our experiments. They fall
into two major categories: models based on RNNs
and models based on the Transformer architecture
(Vaswani et al., 2017). We experiment with addi-
tional context on the source side and target side.

4.1 Recurrent Models

We consider the following recurrent baselines:

baseline Our baseline model is a standard bidi-
rectional RNN model with attention, trained with
Nematus. It operates on the sentence level and
does not see any additional context. The input
and output embeddings of the decoder are tied, en-
coder embeddings are not.

concat22 We concatenate each sentence with
one preceding sentence, for both the source and
target side of the corpus. Then we train on this
new data set without any changes to the model ar-
chitecture. This very simple method is inspired by
Tiedemann and Scherrer (2017).

The following models are taken, or slightly
adapted, from Bawden et al. (2018). For this rea-
son, we give only a very short description of them
here and the reader is referred to their work for
details.

s-hier A multi-encoder architecture with hier-
archical attention. This model has access to one
additional context: the previous source sentence.
It is read by a separate encoder, and attended to by
an additional attention network. The output of the
resulting two attention vectors is combined with
yet another attention network.

s-t-hier Identical to s-hier, except that it consid-
ers two additional contexts: the previous source
sentence and previous target sentence. Both are
read by separate encoders, and sequences from all
encoders are combined with hierarchical attention.

66

s-hier-to-2 The model has an additional en-
coder for source context, whereas the target side
of the corpus is concatenated, in the same way as
for concat22. This model achieved the best results
in Bawden et al. (2018).

For each variant, we also introduce and test
weight tying: we share the parameters of embed-
ding matrices between encoders that read the same
kind of text (source or target side).

4.2 Transformer Models

All remaining models are based on the Trans-
former architecture (Vaswani et al., 2017). A
Transformer avoids recurrence completely: it
follows an encoder-decoder architecture using
stacked self-attention and fully connected layers
for both the encoder and decoder.

baseline A standard context-agnostic Trans-
former. All model parameters are identical to a
Transformer-base in Vaswani et al. (2017).

concat22 A simple concatentation model where
only the training data is modified, in the same way
as for the recurrent concat22 model.

concat21 Trained on data where the preceding
sentence is concatenated to the current one only
on the source side. This model is also taken from
Tiedemann and Scherrer (2017).

Voita et al. (2018) A more sophisticated
context-aware Transformer that uses source con-
text only. It has a separate encoder for source con-
text, but all layers except the last one are shared
between encoders. A source and context sentence
are first encoded independently, and then a sin-
gle attention layer and a gating function are used
to produce a context-aware representation of the
source sentence. Such restricted interaction with
context is shown to be beneficial for analysis of
contextual phenomena captured by the model. For
details the reader is referred to their work.

5 Experiments

We train all models on the data from the WMT
2017 English—German news translation shared
task (~ 5.8 million sentence pairs). These cor-
pora do not have document boundaries, therefore
a small fraction of sentences will be paired with
wrong context, but we expect the model to be ro-
bust against occasional random context (see also
Voita et al. 2018). Experimental setups for the
RNN and Transformer models are different, and
we describe them separately.



All RNN-based models are trained with Ne-
matus (Sennrich et al., 2017). We learn a joint
BPE model with 89.5k merge operations (Sen-
nrich et al., 2016). We train shallow models with
an embedding size of 512, a hidden layer size of
1024 and layer normalization. Models are trained
with Adam (Kingma and Ba, 2015), with an initial
learning rate of 0.0001. We apply early stopping
based on validation perplexity. The batch size for
training is 80, and the maximum length of training
sequences is 100 (if input sentences are concate-
nated) or 50 (if input lines are single sentences).

For our Transformer-based experiments, we use
a custom implementation and follow the hyperpa-
rameters from Vaswani et al. (2017); Voita et al.
(2018). Systems are trained on lowercased text
that was encoded using BPE (32k merge opera-
tions). Models consist of 6 encoder and decoder
layers with 8 attention heads. The hidden state size
is 512, the size of feedforward layers is 2048.

Model performance is evaluated in terms of
BLEU, on newstest2017, newstest2018
and all sentence pairs from our pronoun test
set. We compute scores with SacreBLEU (Post,
2018).” Evaluation with BLEU is done mainly to
control for overall translation quality.

To evaluate pronoun translation, we perform
contrastive evaluation and report the accuracy of
models on our contrastive test set.

6 Evaluation

The BLEU scores in Table 5 show a moder-
ate improvement for most context-aware systems.
This suggests that the architectural changes for
the context-aware models do not degrade overall
translation quality. The contrastive evaluation on
our test set on the other hand shows a clear in-
crease in the accuracy of pronoun translation: The
best model s-hier-to-2.tied achieves a total of +16
percentage points accuracy on the test set over the
baseline, see Table 6.

Table 7 shows that context-aware models per-
form better than the baseline when the antecedent
is outside the current sentence. In our exper-
iments, all context-aware models consider one
preceding sentence as context. The evaluation
according to the distance of the antecedent in
Table 8 confirms that the subset of sentences

°Our (cased) SacreBLEU signature is BLEU+c . mixed+
l.en-de+#.1l+s.exp+t.wmt{17,18}+tok.13a+
v.1.2.10.
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with antecedent distance 1 benefits most from the
tested context-aware models (up to +20 percentage
points accuracy). However, we note two surprising
patterns:

e For inter-sentential anaphora, the perfor-
mance of all systems, including the base-
line, improves with increasing antecedent
distance.

e Context-aware systems that consider one
preceding sentence also improve on intra-
sentential anaphora, and on pronouns whose
antecedent is outside the context window.

The first observation can be explained by the
distribution of German pronouns in the test set.
The further away the antecedent, the higher the
percentage of ir—es cases, which are the major-
ity class, and thus the class that will be predicted
most often if evidence for other classes is lacking.
We speculate that this is due to our more permis-
sive extraction heuristics for ir—es.

We attribute the second observation to the ex-
istence of coreference chains where the preced-
ing sentence contains a pronoun that refers to the
same nominal antecedent as the pronoun in the
current sentence. Consider the example in Table
9: The nominal antecedent of it in the current sen-
tence is door, Tiir in German with feminine gen-
der. The nominal antecedent occurs two sentences
before the current sentence, but the German sen-
tence in between contains the pronoun sie, which
is a useful signal for the context-aware models,
even though they cannot know the nominal an-
tecedent.

Note that only models aware of target-side con-
text can benefit from such circumstances: The s-
hier models as well as the Transformer model by
(Voita et al., 2018) only see source side context,
which results in lower accuracy if the distance to
the antecedent is >1, see Table 8.

While such coreference chains complicate the
interpretation of the results, we note that im-
provements on inter-sentential anaphora with an-
tecedent distance > 1 are relatively small (com-
pared to distance 1), and that performance is still
relatively poor (especially for the minority classes
er and sie). We encourage evaluation of wider-
context models on this subset, which is still large
thanks to the size of the full test set.

Regarding the comparison of different context-
aware architectures, our results demonstrate the



newstest2017 newstest2018 pronoun set
cased uncased cased wuncased cased uncased

baseline 23.0 23.7 33.7 34.2 19.4 19.9
concat22 23.8 24.4 34.5 35.0 20.2 20.8
independent encoders

s-hier 23.5 24.0 335 34.0 18.9 19.5
s-hier-to-2 23.8 24.3 34.2 34.8 19.2 19.7
s-t-hier 23.1 23.6 33.1 33.6 19.3 20.0
with weight tying

s-hier.tied 23.6 24.1 33.7 34.2 19.7 20.3
s-hier-to-2.tied 24.2 24.8 34.1 34.7 20.1 20.7
s-t-hier.tied 23.5 24.0 33.9 34.5 194 20.0
Transformer-based models

baseline - 24.6 - 354 - 21.1
concat21 - 24.8 - 35.3 - 21.8
concat22 - 24 .4 - 36.0 - 21.3

(Voita et al., 2018) 25.3 - 36.5 - 21.7

Table 5: English—German BLEU scores on newstest2017, newstest2018 and all sentence pairs from our
pronoun test set. Case-sensitive and case-insensitive (uncased) scores are reported. Higher is better, and
the best scores are marked in bold.

antecedent location

reference pr onoun intrasegmental  external

total es er sie
) baseline 0.57 0.41

baseline 044 085 0.17 0.31 concat22 0.58 0.51
concat22 053 084 0.32 042

independent encoders
independent encoders s-hier 0.58 0.39
s-hier 043 0.80 0.20 0.29 s-hier-to-2 0.63 0.53
s-hier-to-2 0.55 0.84 041 0.40 s-t-hier 0.52 0.52
s-t-hier 0.52 0.88 0.32 0.36

- - - with weight tying

with weight tying s-hier.tied 0.56 0.45
s—h%er.tled ‘ 0.47 0.85 0.30 0.26 s-hier-to-2.tied 0.65 0.58
s-hier-to-2.tied 0.60 0.87 045 048 s-t-hier.tied 0.57 0.55
s-t-hier.tied 0.56 086 0.39 042

Transformer-based models
Tran.sformer-based models baseline 0.70 0.41
baseline 0.47 0.81 0.22 0.38 concat21 0.67 0.44
concat21 0.48 0.88 0.26 0.31 concat2? 0.56 0.47
concat22 049 091 020 0.36 (V01ta et al., 201 8) 0.75 0.43

(Voita et al., 2018) 0.49 0.84 0.23 0.39

Table 7: Accuracy on contrastive test set with re-
gard to antecedent location (within segment vs.
outside segment).

Table 6: Accuracy on contrastive test set (N=4000
per pronoun) with regard to reference pronoun.
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antecedent distance
0 1 2 3 >3

baseline 0.57 038 047 0.52 0.67
concat22 0.58 050 0.51 051 0.69
independent encoders

s-hier 0.58 036 042 046 0.61
s-hier-to-2 0.63 0.51 0.54 0.60 0.70
s-t-hier 0.52 049 0.57 0.61 0.71
with weight tying

s-hier.tied 0.56 043 046 049 0.67
s-hier-to-2.tied 0.65 058 0.55 055 0.75
s-t-hier.tied 0.57 054 056 059 0.72
Transformer-based models

baseline 0.70 038 045 049 0.65
concat21 067 042 045 047 0.66
concat22 056 044 053 054 0.74

(Voita et al., 2018) 0.75 0.39 0.48 0.54 0.66

Table 8: Accuracy on contrastive test set with regard to antecedent distance of antecedent (in sentences).

source sentence with antecedent  What’s with the door?
target sentence with antecedent ~ Was ist mit der Tiir?

source context It won’t open.
reference context Sie geht nicht auf.
source sentence - Is it locked?

reference sentence - Ist sie abgeschlossen?
contrastive 1 - Ist er abgeschlossen?
contrastive 2 - Ist es abgeschlossen?

Table 9: Example where 1) antecedent distance is >1 and 2) the context given contains another pronoun
as an additional hint.
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effectiveness of parameter sharing between the
main encoder (or decoder) and the contextual en-
coder. We observe an improvement of 5 percent-
age points from s-hier-to-2 to s-hier-to-2.tied, and
4 percentage points from s-t-hier to s-t-hier.tied.
Context encoders introduce a large number of ex-
tra parameters, while inter-sentential context is
only relevant for a relatively small number of pre-
dictions. We hypothesize that the training signal
is thus too weak to train a strong contextual en-
coder in an end-to-end fashion without parame-
ter sharing. Our results also confirm the finding
by Bawden et al. (2018) that multi-encoder archi-
tectures, specifically s-hier-to-2(.tied), can outper-
form a simple concatenation system in the transla-
tion of coreferential pronouns.

The Transformer-based models perform
strongest on pronouns with intra-segmental
antecedent, outperforming the recurrent baseline
by 9-18 percentage points. This is likely an effect
of increased model depth and the self-attentional
architecture in this set of experiments. The model
by (Voita et al., 2018) only uses source context,
and outperforms the most comparable RNN
system, s-hier.tied. However, the Transformer-
based concat22 slightly underperforms the
RNN-based concat22, and we consider it future
research how to better exploit target context with
Transformer-based models.

7 Conclusions

We present a large-scale test suite to specifically
test the capacity of NMT models to translate pro-
nouns correctly. The test set contains 12,000 dif-
ficult cases of pronoun translations from English
it to its German counterparts er, sie and es, ex-
tracted automatically from OpenSubtitles (Lison
and Tiedemann, 2016).

We evaluate recently proposed context-aware
models on our test set. Even though the increase
in BLEU score is moderate for all context-aware
models, the improvement in the translation of pro-
nouns is considerable: The best model (s-hier-to-
2.tied) achieves a +16 percentage points gain in
accuracy over the baseline.

Our experiments confirm the importance of
careful architecture design, with multi-encoder
architectures outperforming a model that simply
concatenates context sentences. We also demon-
strate the effectiveness of parameter sharing be-
tween encoders of a context-aware model.
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We hope the test set will prove useful for em-
pirically validating novel architectures for context-
aware NMT. So far, we have only evaluated mod-
els that consider one sentence of context, but
the nominal antecedent is more distant for a siz-
able proportion of the test set, and the evalua-
tion of variable-size context models (Wang et al.,
2017; Maruf and Haffari, 2018) is interesting fu-
ture work.
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Abstract

Tying the weights of the target word em-
beddings with the target word classifiers of
neural machine translation models leads to
faster training and often to better translation
quality. Given the success of this parameter
sharing, we investigate other forms of shar-
ing in between no sharing and hard equal-
ity of parameters. In particular, we pro-
pose a structure-aware output layer which
captures the semantic structure of the output
space of words within a joint input-output em-
bedding. The model is a generalized form
of weight tying which shares parameters but
allows learning a more flexible relationship
with input word embeddings and allows the
effective capacity of the output layer to be
controlled. In addition, the model shares
weights across output classifiers and transla-
tion contexts which allows it to better lever-
age prior knowledge about them. Our eval-
uation on English-to-Finnish and English-to-
German datasets shows the effectiveness of the
method against strong encoder-decoder base-
lines trained with or without weight tying.

1 Introduction

Neural machine translation (NMT) predicts the
target sentence one word at a time, and thus mod-
els the task as a sequence classification problem
where the classes correspond to words. Typi-
cally, words are treated as categorical variables
which lack description and semantics. This makes
training speed and parametrization dependent on
the size of the target vocabulary (Mikolov et al.,
2013). Previous studies overcome this problem
by truncating the vocabulary to limit its size and
mapping out-of-vocabulary words to a single “un-
known” token. Other approaches attempt to use a
limited number of frequent words plus sub-word
units (Sennrich et al., 2016), the combination of
which can cover the full vocabulary, or to perform
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character-level modeling (Chung et al., 2016; Lee
etal., 2017; Costa-jussa and Fonollosa, 2016; Ling
etal., 2015); with the former being the most effec-
tive between the two. The idea behind these al-
ternatives is to overcome the vocabulary size issue
by modeling the morphology of rare words. One
limitation, however, is that semantic information
of words or sub-word units learned by the input
embedding are not considered when learning to
predict output words. Hence, they rely on a large
amount of examples per class to learn proper word
or sub-word unit output classifiers.

One way to consider information learned by in-
put embeddings, albeit restrictively, is with weight
tying i.e. sharing the parameters of the input em-
beddings with those of the output classifiers (Press
and Wolf, 2017; Inan et al., 2016) which is effec-
tive for language modeling and machine transla-
tion (Sennrich et al., 2017; Klein et al., 2017). De-
spite its usefulness, we find that weight tying has
three limitations: (a) It biases all the words with
similar input embeddings to have a similar chance
to be generated, which may not always be the case
(see Table 1 for examples). Ideally, it would be
better to learn distinct relationships useful for en-
coding and decoding without forcing any general
bias. (b) The relationship between outputs is only
implicitly captured by weight tying because there
is no parameter sharing across output classifiers.
(c) It requires that the size of the translation con-
text vector and the input embeddings are the same,
which in practice makes it difficult to control the
output layer capacity.

In this study, we propose a structure-aware out-
put layer which overcomes the limitations of pre-
vious output layers of NMT models. To achieve
this, we treat words and subwords as units with
textual descriptions and semantics. The model
consists of a joint input-output embedding which
learns what to share between input embeddings

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 73-83
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NMT NMT-tied NMT-joint
Query Input Output Input/Output Input Output
visited attacked visiting visits visiting attended
(Verb past tense) conquered attended attended attended witnessed
contacted visit visiting visits discussed
occupied visits frequented visit recognized
consulted discovered visit frequented demonstrated
~ generous  modest  spacious  generosity  spacious  friendly
(Adjective) extensive generosity spacious generosity flexible
substantial generously generously flexible brilliant
ambitious massive lavish generously fantastic
sumptuous huge massive massive massive
o friend wife friends ~ colleague  colleague  colleague
(Noun) husband colleague friends friends fellow
colleague Frie @ neighbour neighbour supporter
friends fellow girlfriend girlfriend partner
painter friendship companion husband manager

Table 1: Top-5 most similar input and output representations to two query words based on cosine sim-
ilarity for an NMT trained without (NMT) or with weight tying (NMT-t ied) and our structure-aware
output layer (NMT-joint) on De-En (|V| ~ 32K). Our model learns representations useful for en-
coding and generation which are more consistent to the dominant semantic and syntactic relations of the
query such as verbs in past tense, adjectives and nouns (inconsistent words are marked in red).

and output classifiers, but also shares parameters
across output classifiers and translation contexts
to better capture the similarity structure of the out-
put space and leverage prior knowledge about this
similarity. This flexible sharing allows it to distin-
guish between features of words which are useful
for encoding, generating, or both. Figure 1 shows
examples of the proposed model’s input and out-
put representations, compared to those of a soft-
max linear unit with or without weight tying.

This proposal is inspired by joint input-output
models for zero-shot text classification (Yazdani
and Henderson, 2015; Nam et al., 2016a), but in-
novates in three important directions, namely in
learning complex non-linear relationships, con-
trolling the effective capacity of the output layer
and handling structured prediction problems.

Our contributions are summarized as follows:

e We identify key theoretical and practical lim-
itations of existing output layer parametriza-
tions such as softmax linear units with or
without weight tying and relate the latter to
joint input-output models.

e We propose a novel structure-aware output
layer which has flexible parametrization for
neural MT and demonstrate that its mathe-
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matical form is a generalization of existing
output layer parametrizations.

e We provide empirical evidence of the superi-
ority of the proposed structure-aware output
layer on morphologically simple and com-
plex languages as targets, including under
challenging conditions, namely varying vo-
cabulary sizes, architecture depth, and output
frequency.

The evaluation is performed on 4 translation pairs,
namely English-German and English-Finnish in
both directions using BPE (Sennrich et al., 2016)
of varying operations to investigate the effect of
the vocabulary size to each model. The main
baseline is a strong LSTM encoder-decoder model
with 2 layers on each side (4 layers) trained with
or without weight tying on the target side, but we
also experiment with deeper models with up to 4
layers on each side (8 layers). To improve effi-
ciency on large vocabulary sizes we make use of
negative sampling as in (Mikolov et al., 2013) and
show that the proposed model is the most robust to
such approximate training among the alternatives.

2 Background: Neural MT

The translation objective is to maximize the con-
ditional probability of emitting a sentence in a



target language Y {y1,...,yn} given a sen-
tence in a source language X = {z1,...,xm},
noted pe (Y| X), where © are the model param-
eters learned from a parallel corpus of length N:

N
1 L
il (@) x @
max ;1 log(pe (Y| X')). (1)

By applying the chain rule, the output sequence
can be generated one word at a time by calculating
the following conditional distribution:

t—1

pllyi™, X) = fo(yi™, X). (2)

where fg returns a column vector with an element
for each y;. Different models have been proposed
to approximate the function fg (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
etal., 2015; Cho et al., 2014; Gehring et al., 2017;
Vaswani et al., 2017). Without loss of generality,
we focus here on LSTM-based encoder-decoder
model with attention Luong et al. (2015).

2.1 Output Layer parametrizations
2.1.1 Softmax Linear Unit

The most common output layer (Figure 3a), con-
sists of a linear unit with a weight matrix W &
IR42%IVI and a bias vector b € RV followed by
a softmax activation function, where V' is the vo-
cabulary, noted as NMT. For brevity, we focus our
analysis specifically on the nominator of the nor-
malized exponential which characterizes softmax.
Given the decoder’s hidden representation h; with
dimension size dp, the output probability distribu-
tion at a given time, ¥, conditioned on the input
sentence X and the previously predicted outputs

yfl can be written as follows:

p(yelyi ™, X) o exp(W'hy +b)

xexp(WTIhy +b), (3)
where [ is the identity function. From the sec-
ond line of the above equation, we observe that
there is no explicit output space structure learned
by the model because there is no parameter shar-
ing across outputs; the parameters for output class
i, WiT, are independent from parameters for any
other output class 7, WjT.

2.1.2 Softmax Linear Unit with Weight Tying

The parameters of the output embedding W can
be tied with the parameters of the input embed-
ding E € RIVIXd by setting W = E”, noted as
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NMT-tied. This can happen only when the in-
put dimension of W is restricted to be the same as
that of the input embedding (d = dj). This cre-
ates practical limitations because the optimal di-
mensions of the input embedding and translation
context may actually be when dj, # d.

With tied embeddings, the parametrization of
the conditional output probability distribution
from Eq. 3 can be re-written as:

p(yelyi™", X) oc exp((ET)"hy + b)

o exp(Eh; + b). 4
As above, this model does not capture any explicit
output space structure. However, previous stud-
ies have shown that the input embedding learns
linear relationships between words similar to dis-
tributional methods (Mikolov et al., 2013). The
hard equality of parameters imposed by W = ET
forces the model to re-use this implicit structure in
the output layer and increases the modeling bur-
den of the decoder itself by requiring it to match
this structure through h;. Assuming that the la-
tent linear structure which E learns is of the form
E ~ E;W where E; € RIVI*E and W e R¥*d
and d = dj,, then Eq. 4 becomes:

t—1

p(yelyy X)) x exp(EWWhe + b) O.

(&)

The above form, excluding bias b, shows that
weight tying learns a similar linear structure, albeit
implicitly, to joint input-output embedding mod-
els with a bilinear form for zero-shot classifica-
tion (Yazdani and Henderson, 2015; Nam et al.,
2016a).! This may explain why weight tying is
more sample efficient than the baseline softmax
linear unit, but also motivates the learning of ex-
plicit structure through joint input-output models.

2.2 Challenges

We identify two key challenges of the existing
parametrizations of the output layer: (a) their dif-
ficulty in learning complex structure of the output
space due to their bilinear form and (b) their rigid-
ness in controlling the output layer capacity due
to their strict equality of the dimensionality of the
translation context and the input embedding.

!The capturing of implicit structure could also apply for
the output embedding W in Eq. 3, however that model would
not match the bilinear input-output model form because it is
based on the input embedding E.
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(a) Typical output layer which is a softmax linear unit
without or with weight tying (W = ET).

Joint
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(b) The structure-aware output layer is a joint embedding
between translation contexts and word classifiers.

Figure 1: Schematic of existing output layers and the proposed output layer for the decoder of the NMT
model with source context vector ¢, previous word ;1 € IRY, and decoder hidden states, h; € IR,

2.2.1 Learning Complex Structure

The existing joint input-output embedding models
(Yazdani and Henderson, 2015; Nam et al., 2016a)
have the following bilinear form:

E W h
—~

Structure

(6)

where WW € TRY*dn, We can observe that the
above formula can only capture linear relation-
ships between encoded text (h;) and input embed-
ding (F) through W. We argue that for struc-
tured prediction, the relationships between differ-
ent outputs are more complex due to complex in-
teractions of the semantic and syntactic relations
across outputs but also between outputs and dif-
ferent contexts. A more appropriate form for this
purpose would include a non-linear transformation
o(+), for instance with either:

or

@ o(EW) h (7
N——

Output structure

(b) E o(Why)
——
Context structure

2.2.2 Controlling Effective Capacity

Given the above definitions we now turn our focus
to a more practical challenge, which is the capac-
ity of the output layer. Let Opqse, Oticd> Obilinear
be the parameters associated with a softmax lin-
ear unit without and with weight tying and with
a joint bilinear input-output embedding, respec-
tively. The capacity of the output layer in terms of
effective number of parameters can be expressed
as:

Cbase ~ |6base’ = ’V| X dh + |V‘ (8)
Ctied ~ ‘Gtied’ < ’V‘ X dh + ’V‘ (9)
Cbilinear ~ ’@bilinear‘ =dx dh + ‘V‘ (10)

But since the parameters of Oy;.q are tied to the
parameters of the input embedding, the effective
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number of parameters dedicated to the output layer
is only |Oycq| = V.

The capacities above depend on external fac-
tors, that is |V|, d and dj, which affect not only
the output layer parameters but also those of other
parts of the network. In practice, for Op,s. the
capacity dp can be controlled with an additional
linear projection on top of h; (e.g. as in the Open-
NMT implementation), but even in this case the
parametrization would still be heavily dependent
on |V|. Thus, the following inequality for the
effective capacity of these models holds true for
fixed |V, d, dy:

Ctied < Cbilinear < Cbase' (11)
This creates in practice difficulty in choosing
the optimal capacity of the output layer which
scales to large vocabularies and avoids under-
parametrization or overparametrization (left and
right side of Eq. 11 respectively). Ideally, we
would like to be able to choose the effective capac-
ity of the output layer more flexibly moving freely
in between Ch;jineqr and Chgse in Eq. 11.

3 Structure-aware Output Layer for
Neural Machine Translation

The proposed structure-aware output layer for
neural machine translation, noted as NMT-
joint, aims to learn the structure of the out-
put space by learning a joint embedding between
translation contexts and output classifiers, as well
as, by learning what to share with input embed-
dings (Figure 1b). In this section, we describe the
model in detail, showing how it can be trained effi-
ciently for arbitrarily high number of effective pa-
rameters and how it is related to weight tying.



3.1 Joint Input-Output Embedding

Let ginp(ht) and gous(ej) be two non-linear pro-
jections of d; dimensions of any translation con-
text h; and any embedded output e;, where e; is
the j;;, row vector from the input embedding ma-
trix E, which have the following form:

€} = gout(e;) = o(Uel +by)
h‘;f = ginp<ht) = U(Vht + bv);

(12)
(13)

where the matrix U € IR9*4 and bias b, € R% is
the linear projection of the translation context and
the matrix V' € IR%*d and bias b, € IRY is the
linear projection of the outputs, and o is a non-
linear activation function (here we use Tanh).
Note that the projections could be high-rank or
low-rank for h; and €, depending on their initial
dimensions and the target joint space dimension.

Wwith £/ € RVI*4 being the matrix result-
ing from projecting all the outputs e; to the joint
space, i.e. gout(F), and a vector b € RV which
captures the bias for each output, the conditional
output probability distribution of Eq 3 can be re-
written as follows:

t—1

p(yelyr " X)
o< exp(E'h} + b)
o< exp(gout (E) ginp(ht) + b)
o exp(a(UET +by) o(Vhe + by) +b).

3.1.1 What Kind of Structure is Captured?

From the above formula we can derive the general
form of the joint space which is similar to Eq. 7
with the difference that it incorporates both com-
ponents for learning output and context structure:

(14)

a(EW,) o(W:he)
~—— —
Output structure Context structure
where W, € IRY*% and W, € R4 are the
dedicated projections for learning output and con-
text structure respectively (which correspond to
U and V projections in Eq. 14). We argue that
both nonlinear components are essential and vali-
date this hypothesis empirically in our evaluation
by performing an ablation analysis (Section 4.4).

(15)

3.1.2 How to Control the Effective Capacity?
The capacity of the model in terms of effective
number of parameters (6 jo;n¢) is:
Cjoint ~ |@joint’ =dx dj + dj X dh + ’V’
(16)
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By increasing the joint space dimension d; above,
we can now move freely between Cpjjineqr and
Cpase in Eq .11 without depending anymore on the
external factors (d, dp,, |V]) as follows:

Ctied < Cbilinear < Cjoint < Cbase'

A7)

However, for very large number of d; the com-
putational complexity increases prohibitively be-
cause the projection requires a large matrix multi-
plication between U and E which depends on |V|.
In such cases, we resort to sampling-based train-
ing, as explained in the next subsection.

3.2 Sampling-based Training

To scale up to large output sets we adopt the
negative sampling approach from (Mikolov et al.,
2013). The goal is to utilize only a sub-set V'
of the vocabulary instead of the whole vocabu-
lary V for computing the softmax. The sub-set 1’
includes all positive classes whereas the negative
classes are randomly sampled. During back prop-
agation only the weights corresponding to the sub-
set V" are updated. This can be trivially extended
to mini-batch stochastic optimization methods by
including all positive classes from the examples
in the batch and sampling negative examples ran-
domly from the rest of the vocabulary.

Given that the joint space models generalize
well on seen or unseen outputs (Yazdani and Hen-
derson, 2015; Nam et al., 2016b), we hypothesize
that the proposed joint space will be more sample
efficient than the baseline NMT with or without
weight tying, which we empirically validate with a
sampling-based experiment in Section 4.5 (Table
2, last three rows with |V| ~ 128K).

3.3 Relation to Weight Tying

The proposed joint input-output space can be seen
as a generalization of weight tying W = ET,
Eq. 3), because its degenerate form is equivalent
to weight tying. In particular, this can be simply
derived if we set the non-linear projection func-
tions in the second line of Eq. 14 to be the identity
function, ginp(-) = gout(-) = I, as follows:

p(yelyi™", X) oc exp((IE) (Iht) +b)
o exp(Eht + b) . (18)
Overall, this new parametrization of the output
layer generalizes over previous ones and addresses
their aforementioned challenges in Section 2.2.



En — Fi Fi — En En — De De — En

Model ] BLEU (A) [E] BLEU (A) ] BLEU (A) [E] BLEU (A)
NMT 60.0M 12.68 (-) 59.8M  9.42 (-) 61.3M 1846 (-) 65.0M 15.85(-)

§ NMT-tied 43.3M 12.58(—0.10) 433M 9.59 (+0.17) 449M 1848(4+0.0) 46.7M 16.51 (40.66)T
NMT-joint 47.5M 13.03 (+0.35)f 47.5M 10.19 (+-0.77)f 47.0M 19.79 (+1.3)f 48.8M 18.11 (+2.26)}
NMT 108.0M 13.32 (-) 106.7M 12.29 (-) 113.9M 20.70 (-) 114.0M 20.01 (-)

% NMT-tied 75.0M 13.59(40.27) 75.0M 11.74 (—0.55)f 79.4M 20.85(+0.15) 79.4M 19.19 (—0.82)F
NMT-joint 75.5M 13.84 (+0.52)f 75.5M 12.08 (—0.21) 79.9M 21.62 (+0.92)f 79.9M 20.61 (4-0.60)}

7 NMT 201.1M 13.52 (-) 163.1M 11.64 (-) 211.3M 2248 (-) 178.3M 19.12 (-)

X NMT-tied 135.6M 13.90(40.38)* 103.2M 11.97 (+0.33)" 1442M 21.43(—0.0) 111.6M 19.43 (4+0.30)

= NMT-joint 137.7M 13.93 (+0.41)} 103.7M 12.07 (+-0.43)t 146.3M 22.73 (+0.25)F 115.8M 20.60 (+1.48)f

Table 2: Model performance and number of parameters (|©|) with varying BPE operations (32K, 64K,
128K) on the English-Finish and English-German language pairs. The significance of the difference
against the NMT baseline with p-values <.05, <.01 and <.001 are marked with *, { and I respectively.

4 Evaluation

We compare the NMT-joint model to two
strong NMT baselines trained with and without
weight tying over four large parallel corpora which
include morphologically rich languages as targets
(Finnish and German), but also morphologically
less rich languages as targets (English) from WMT
2017 (Bojar et al., 2017)>. We examine the be-
havior of the proposed model under challenging
conditions, namely varying vocabulary sizes, ar-
chitecture depth, and output frequency.

4.1 Datasets and Metrics

The English-Finnish corpus contains 2.5M sen-
tence pairs for training, 1.3K for develop-
ment (Newstest2015), and 3K for testing (New-
stest2016), and the English-German corpus 5.8M
for training, 3K for development (Newstest2014),
and 3K for testing (Newstest2015). We pre-
process the texts using the BPE algorithm (Sen-
nrich et al., 2016) with 32K, 64K and 128K op-
erations. Following the standard evaluation prac-
tices in the field (Bojar et al., 2017), the trans-
lation quality is measured using BLEU score
(Papineni et al., 2002) (multi-blue) on tokenized
text and the significance is measured with the
paired bootstrap re-sampling method proposed by
(Koehn et al., 2007).> The quality on infrequent
words is measured with METEOR (Denkowski
and Lavie, 2014) which has originally been pro-
posed to measure performance on function words.

Mttp://www.statmt.org/wmt17/
*multi-bleu.perl and bootstrap-hypothe-
sis-difference-significance.pl scripts.
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To adapt it for our purposes on English-German
pairs (|V| =~ 32K), we set as function words dif-
ferent sets of words grouped according to three
frequency bins, each of them containing % words
of high, medium and low frequency respectively
and set its parameters to {0.85,0.2,0.6,0.} and
{0.95,1.0,0.55,0.} when evaluating on English

and German respectively.

4.2 Model Configurations

The baseline is an encoder-decoder with 2 stacked
LSTM layers on each side from OpenNMT (Klein
et al., 2017), but we also experiment with varying
depth in the range {1, 2, 4, 8} for German-English.
The hyperparameters are set according to vali-
dation accuracy as follows: maximum sentence
length of 50, 512-dimensional word embeddings
and LSTM hidden states, dropout with a probabil-
ity of 0.3 after each layer, and Adam (Kingma and
Ba, 2014) optimizer with initial learning rate of
0.001. The size of the joint space is also selected
on validation data in the range {512, 2048,4096}.
For efficiency, all models on corpora with V =~
128K (~) and all structure-aware models with
d; > 2048 on corpora with V < 64K are trained
with 25% negative sampling.*

4.3 Translation Performance

Table 2 displays the results on four translation
sets from English-German and English-Finish lan-
guage pairs when varying the number of BPE op-
erations. The NMT-t ied model outperforms the

“Training the models with a full 128K vocabulary without
sampling runs out of memory on our machines.



Model Layer form BLEU (O]
NMT WTh, 15.85 65.0M
NMT-tied FEh; 16.51 46.7M
JEa6 EWh, 1623 47.0M
SEq.7a o (EW)h, 16.01 47.0M
quJb Eo(Why) 1752 47.0M
S Eq. 15 (512) o(EW,)o(Why) 17.54 47.2M
Eq. 15 (2048) 0 (EW,)o(W,hy) 1811 48.8M

Table 3: BLEU scores on De — En (|V| ~ 32K)
for the ablation analysis of NMT-Jjoint.

NMT baseline in many cases, but the differences
are not consistent and it even scores significantly
lower than NMT baseline in two cases, namely on
Fi — En and De — En with V ~ 64 K. This vali-
dates our claim that the parametrization of the out-
put space of the original NMT is not fully redun-
dant, otherwise the NMT-t ied would be able to
match its BLEU in all cases. In contrast, the NMT-
joint model outperforms consistently both base-
lines with a difference up to +2.2 and +1.6 BLEU
points respectively,’ showing that the NMT-t ied
model has a more effective parametrization and
retains the advantages of both baselines, namely
sharing weights with the input embeddings, and
dedicating enough parameters for generation.
Overall, the highest scores correlate with a high
number of BPE operations, namely 128K, 64K,
128K and 64k respectively. This suggests that the
larger the vocabulary the better the performance,
especially for the morphologically rich target lan-
guages, namely En — Fi and En — De. Lastly,
the NMT baseline seems to be the least robust to
sampling since its BLEU decreases in two cases.
The other two models are more robust to sampling,
however the difference of NMT-t ied with the
NMT is less significant than that of NMT-joint.

4.4 Ablation Analysis

To demonstrate whether all the components of
the proposed joint input-output model are useful
and to which extend they contribute to the perfor-
mance, we performed an ablation analysis; the re-
sults are displayed in Table 3. Overall, all the vari-
ants of the NMT-joint outperform the baseline
with varying degrees of significance. The NMT-
joint with a bilinear form (Eq. 6) as in (Yaz-

Except in the case of Fi — En with |V| a~ 64K, where
the NMT baseline performed the best.

En — Fi Fi — En
13.1 10.4
RMT
120 M T-tied 10.2
= 128 RMATjaint 10.0
L 128 as
m 127 a6
128 a4
12.5
512 2048 4096 512 2048 4096
En— De De — En
0.0 125
12.0
195 -
a 17.5
Wiao 7.0
o 16.5
125
16.0
12.0 155
512 2048 4096 512 2048 4096

Joint space dimension (f!_,)

Figure 2: BLEU scores for the NMT-joint model
when varying its dimension (d;) with |V| = 32K.

dani and Henderson, 2015; Nam et al., 2016b) is
slightly behind the NMT-tied and outperforms
the NMT baseline; this supports our theoretical
analysis in Section 2.1.2 which demonstrated that
weight tying is learning an implicit linear structure
similar to bilinear joint input-output models.

The NMT-joint model without learning ex-
plicit translation context structure (Eq. 7 a) per-
forms similar to the bilinear model and the NMT-
t ied model, while the NMT-jo1nt model with-
out learning explicit output structure (Eq. 7 b)
outperforms all the previous ones. When keep-
ing same capacity (with d;=>512), our full model,
which learns both output and translation con-
text structure, performs similarly to the latter
model and outperforms all the other baselines, in-
cluding joint input-output models with a bilinear
form (Yazdani and Henderson, 2015; Nam et al.,
2016b). But when the capacity is allowed to in-
crease (with d;=2048), it outperforms all the other
models. Since both nonlinearities are necessary
to allow us to control the effective capacity of the
joint space, these results show that both types of
structure induction are important for reaching the
top performance with NMT-joint.

4.5 Effect of Embedding Size

Performance Figure 2 displays the BLEU scores
of the proposed model when varying the size of the
joint embedding, namely d; € {512,2048,4096},
against the two baselines. For English-Finish
pairs, the increase in embedding size leads to a
consistent increase in BLEU in favor of the NMT-
joint model. For the English-German pairs, the
difference with the baselines is much more evident
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Figure 3: METEOR scores (%) on both directions of German-English language pair for all the models
when focusing the evaluation on different frequency outputs grouped into three bins (high, medium, low).

Sampling
Model d; 50% 25% 5%
NMT - 43K 57K 7.1K
NMT-tied - 52K 6.0K 7.8K
NMT-joint 512 49K 59K 7.2K
NMT-joint 2048 28K 42K 7.0K
NMT-joint 4096 17K 29K 6.0K

Table 4: Target tokens processed per second during
training with negative sampling on En — De pair
with a large BPE vocabulary V| ~ 128K.

and the optimal size is observed around 2048 for
De — En and around 512 on En — De. The results
validate our hypothesis that there is parameter re-
dundancy in the typical output layer. However
the ideal parametrization is data dependent and
is achievable systematically only with the joint
output layer which is capacity-wise in between the
typical output layer and the t ied output layer.
Training speed Table 4 displays the target to-
kens processed per second by the models on En
— DE with |V| ~ 128K using different levels of
negative sampling, namely 50%, 25%, and 5%.
In terms of training speed, the 512-dimensional
NMT-joint model is as fast as the baselines, as
we can observe in all cases. For higher dimensions
of the joint space, namely 2048 and 4096 there is
a notable decrease in speed which is remidiated by
reducing the percentage of the negative samples.

4.6 Effect of Output Frequency and
Architecture Depth

Figure 3 displays the performance in terms of ME-
TEOR on both directions of German-English lan-
guage pair when evaluating on outputs of differ-
ent frequency levels (high, medium, low) for all
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the competing models. The results on De — EN
show that the improvements brought by the NMT-
joint model against baselines are present con-
sistently for all frequency levels including the low-
frequency ones. Nevertheless, the improvement is
most prominent for high-frequency outputs, which
is reasonable given that no sentence filtering was
performed and hence frequent words have higher
impact in the absolute value of METEOR. Sim-
ilarly, for En — De we can observe that NMT-
joint outperforms the others on high-frequency
and low-frequency labels while it reaches parity
with them on the medium-frequency ones.

We also evaluated our model in another chal-
lenging condition in which we examine the ef-
fect of the NMT architecture depth in the perfor-
mance of the proposed model. The results are dis-
played in Table 5. The results show that the NMT-
joint outperforms the other two models consis-
tently when varying the architecture depth of the
encoder-decoder architecture. The NMT-joint
overall is much more robust than NMT-t ied and
it outperforms it consistently in all settings. Com-
pared to the NMT which is overparametrized the
improvement even though consistent it is smaller
for layer depth 3 and 4. This happens because
NMT has a much higher number of parameters
than NMT-joint with d;=512.

Increasing the number of dimensions d; of the
joint space should lead to further improvements,
as shown in Fig. 2. In fact, our NMT-joint with
d; = 2048 reaches 18.11 score with a 2-layer deep
model, hence it outperforms all other NMT and
NMT-t ied models even with a deeper architec-
ture (3-layer and 4-layer) regardless of the fact that
it utilizes fewer parameters than them (48.8M vs
69.2-73.4M and 50.9-55.1M respectively).



Model d; 1l-layer |©| 2-layer |O] 3-layer |©| 4-layer |O]

NMT - 1649 60.8M 1585 65.0M 17.71 692M 17.74 73.4M
NMT-tied - 1593 425M 1651 467M 17.72 509M 17.60 55.1M
NMT-joint 512 1693 43.0M 1754 472M 1783 514M 1813 55.6M

Table 5: BLEU scores on De — En (|V| ~ 32K) for the NMT-joint with d; = 512 against baselines
when varying the depth of both the encoder and the decoder of the NMT model.

5 Related Work

Several studies focus on learning joint input-
output representations grounded to word seman-
tics for zero-shot image classification (Weston
et al., 2011; Socher et al., 2013; Zhang et al.,
2016), but there are fewer such studies for NLP
tasks. (Yazdani and Henderson, 2015) proposed
a zero-shot spoken language understanding model
based on a bilinear joint space trained with hinge
loss, and (Nam et al., 2016b), proposed a similar
joint space trained with a WARP loss for zero-shot
biomedical semantic indexing. In addition, there
exist studies which aim to learn output represen-
tations directly from data such as (Srikumar and
Manning, 2014; Yeh et al., 2018; Augenstein et al.,
2018); their lack of semantic grounding to the
input embeddings and the vocabulary-dependent
parametrization, however, makes them data hun-
gry and less scalable on large label sets. All these
models, exhibit similar theoretical limitations as
the softmax linear unit with weight tying which
were described in Sections 2.2.

To our knowledge, there is no existing study
which has considered the use of such joint input-
output labels for neural machine translation. Com-
pared to previous joint input-label models our
model is more flexible and not restricted to lin-
ear mappings, which have limited expressivity,
but uses non-linear mappings modeled similar
to energy-based learning networks (Belanger and
McCallum, 2016). Perhaps, the most similar em-
bedding model to ours is the one by (Pappas and
Henderson, 2018), except for the linear scaling
unit which is specific to sigmoidal linear units de-
signed for multi-label classification problems and
not for structured prediction, as here.

6 Conclusion and Perspectives

We proposed a re-parametrization of the output
layer for the decoder of NMT models which is
more general and robust than a softmax linear
unit with or without weight tying with the input
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word embeddings. Our evaluation shows that the
structure-aware output layer outperforms weight
tying in all cases and maintains a significant dif-
ference with the typical output layer without com-
promising much the training speed. Furthermore,
it can successfully benefit from training corpora
with large BPE vocabularies using negative sam-
pling. The ablation analysis demonstrated that
both types of structure captured by our model
are essential and complementary, as well as, that
their combination outperforms all previous out-
put layers including those of bilinear input-output
embedding models. Our further investigation re-
vealed the robustness of the model to sampling-
based training, translating infrequent outputs and
to varying architecture depth.

As future work, the structure-aware output
layer could be further improved along the fol-
lowing directions. The computational complex-
ity of the model becomes prohibitive for a large
joint projection because it requires a large matrix
multiplication which depends on |V|; hence, we
have to resort to sampling based training relatively
quickly when gradually increasing d; (e.g. for
d; >= 2048). A more scalable way of increas-
ing the output layer capacity could address this
issue, for instance, by considering multiple con-
secutive additive transformations with small d;.
Another useful direction would be to use more
advanced output encoders and additional exter-
nal knowledge (contextualized or generically de-
fined) for both words and sub-words. Finally,
to encourage progress in joint input-output em-
bedding learning for NMT, our code is available
on Github: http://github.com/idiap/
joint-embedding—nmt.
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Abstract

We incorporate an explicit neural interlin-
gua into a multilingual encoder-decoder neural
machine translation (NMT) architecture. We
demonstrate that our model learns a language-
independent representation by performing di-
rect zero-shot translation (without using pivot
translation), and by using the source sentence
embeddings to create an English Yelp review
classifier that, through the mediation of the
neural interlingua, can also classify French
and German reviews. Furthermore, we show
that, despite using a smaller number of pa-
rameters than a pairwise collection of bilingual
NMT models, our approach produces compa-
rable BLEU scores for each language pair in
WMTI5.

1 Introduction

1.1 Multilingual Machine Translation

Neural machine translation (NMT) relies on word
and sentence embeddings to encode the seman-
tic information needed for translation. The stan-
dard attentional encoder-decoder models (Bah-
danau et al., 2015) for bilingual NMT decom-
pose naturally into separate encoder and decoder
subnetworks for the source and target languages.
This factorization has inspired various forms of
multilingual NMT models that extended the orig-
inal bilingual framework to handle more language
pairs simultaneously. We refer to NMT models
that accept sentences from one source language
and produce outputs in one target language as
‘bilingual’. We contrast this with ‘multilingual’
NMT models, which support more than one source
and/or target languages within the same model.
The naive approach to multilingual machine
translation would train a model for each language
pair, which scales quadratically with the number

* Equal contribution
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of languages in the corpus. Instead, by com-
bining language-specific encoders and decoders
in different ways, Dong et al. (2015), Zoph and
Knight (2016), Luong et al. (2016), and Firat
et al. (2016a) have explored the one source-to-
many target, many source-to-one target, and many
source-to-many target multilingual MT settings.
The multi-way shared attention model (Firat et al.,
2016a) is closest to our work, in that they consider
the large-scale, many-to-many scenario with mul-
tiple encoders and decoders.

It is also possible to adapt existing bilingual
NMT models to the many-to-many case without
changing the architecture at all. The universal
encoder-decoder approach (Ha et al., 2016; John-
son et al., 2017) constructs a shared vocabulary
for all languages in the dataset, and use just one
encoder and decoder for multilingual translation.
In addition, Johnson et al. (2017) introduce direct
zero-shot translation, which refers to the task of
translating between language pairs without paral-
lel text or pivoting through an intermediate lan-
guage like English. Direct zero-shot translation
may yield lower BLEU scores than pivot-based
approaches, but avoids doubling the latency and
computational overhead (due to translating the
source sentence twice,) which is a concern for
large-scale, productionized MT systems.

Nonetheless, both the multi-way shared at-
tention model and the universal encoder-decoder
model suffer from certain disadvantages. For the
former, direct zero-shot translation was shown to
be impossible in Firat et al. (2016b), and there is
no indication that the model learns any kind of
shared representation across languages. For the
latter, the output vocabulary size is typically fixed
to the vocabulary size for a single target language
(i.e. roughly 20,000 to 30,000 types), regardless
of the number of languages in the corpus. Increas-
ing the vocabulary size is costly, since the training
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and inference time scales linearly with the size of
the decoder’s output layer.

1.2 Our Contributions

In this work, we construct an explicit neural in-
terlingua for multilingual NMT, which addresses
some of the limitations in existing approaches.
Our contributions are threefold:

Firstly, we describe an attentional neural inter-
lingua that receives language-specific encoder em-
beddings and produces output embeddings which
are agnostic to the source and target languages.

Secondly, we perform zero-shot translation
(without pivot translation) for the Fr<»Ru, Zh<+Es
and Es<+Fr pairs of the updated UN Parallel Cor-
pus (Ziemski et al., 2016). At the time of writing,
our approach is the only alternative to the universal
encoder-decoder model for direct neural zero-shot
translation. We observe a significant improvement
in zero-shot translation performance compared to
that model.

Finally, we demonstrate that our model gener-
ates useful representations for crosslingual trans-
fer learning. We use the source sentence embed-
dings from our translation model to create an En-
glish Yelp review classifier that can, through the
mediation of the interlingua, classify French and
German Yelp reviews. We also show that the sen-
tence embeddings of parallel translations are close
to each other in a low-dimensional space.

2 Model Architecture

En Fr De Cs Ru Fi
.......... /"’
------ ’
............. ”f’
RRLLY'S e
Neural Interlingua
e
—‘,——* ..........
- ey,
= e
e RN
En Fr De Cs Ru Fi

Figure 1: Our encoder-decoder model with the neural
interlingua, trained on WMT15. The neural interlin-
gua is an attentional encoder that converts language-
specific embeddings to language-independent ones.
Here, we illustrate the flow of data from English —
Interlingua — Finnish, and Russian — Interlingua —
English.

Figure 1 illustrates our basic model architecture.
Each language has its own recurrent encoder and
decoder. We attempt to construct a neural interlin-
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> } B > >
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Figure 2: An in-depth look at the network structure
when training/predicting with an En-De batch. The En-
glish sentence is fed through the English bidirectional
LSTM encoder. The encoder states are passed into the
neural interlingua, which is an attentional LSTM en-
coder. Finally, the hidden states of the interlingua are
consumed by the German attentional LSTM decoder to
generate the German translation.

gua by passing the language-specific encoder em-
beddings through a shared recurrent layer, whose
output embeddings are then passed to language-
specific decoders.

The figure describes the flow of data in the
model; each minibatch only contains one source
language and one target language, and only the
parameters in the source encoder, interlingua, and
target decoder are used for the forward and back-
ward passes. During training, the source and target
languages in each minibatch rotate according to a
schedule (see Algorithm 1). In Figure 2, we illus-
trate how an English sentence is converted into a
German one.

As with most sequence-to-sequence models, we
can view the generation of the next token in the tar-
get sentence as the application of a series of neural
network operations on the source sentence and the
partial output thus far. We model the probability
of each target sentence as follows,



p(Yily<i, ) = Dec;(Inter(Encs(Embs(z))),
Yi—1, h§_1)

where y is the target sentence, x is the source
sentence, Dec; is the decoder for the target lan-
guage t, Inter is the neural interlingua, Enc; is the
encoder for the source language s, Emb; is the
word embedding matrix for s, h!_; is the state of
the decoder at step i — 1, s € {1,...,.S} is the in-
dex of the source language, and ¢ € {1,...,T} is
the index of the target language.

The source sentence z is transformed from a se-
quence of one-hot representations to a sequence of
word embeddings B® through Embg,

B? = Embg(z°)

B?is ab® x L, matrix, where L, is the length of
the source sentence, and b° is the size of the word
embedding for the source language s.

The sequence of word embeddings is converted
into a sentence representation £° by Encg,

E°; = Ency(B°)
= BiLSTM(B’;, hi_;)

FE?®is a e® x L, matrix, where e is the size of
encoder’s output. The notation X ; refers to the
i column of the matrix X . BILSTM is a bidirec-
tional LSTM network,(lzvith forward and backward
states hi_y = [h§_;, h§ ;] forstepi— 1.

The neural interlingua Inter is an attentional en-
coder that maps the language-specific representa-

tion £ to an interlingual representation 7,

I ; = Inter(E?) ;
= W[ [LSTM(C7,[7 hiI—l)v Cz[] + bI
=W!hnl ]+

1971

where h{_l is the interlingua LSTM state for
! ZJL;I a{jEfj is the atten-
1 ezple))
(/A > erp(e{j)
MLP;(h}, E¥;) are the normalized and unnor-
malized attention weights introduced in Bahdanau
et al. (2015), and z = [z, y] denotes the concate-
nation of the vectors x and ¥ into a new vector z.
We perform an affine transformation with W7, b!

step i1 — 1, ¢

tional context vector, o and e{j =

86

to project the interlingua output to the desired di-
mensions.

I is a €' x L; matrix, where ¢’ is the size of
the interlingua’s output. The output of the neural
interlingua is always fixed in length to L; (where
L; = 50 in our experiments), regardless of the
length of the source sentence. We chose L; = 50
because, during model training, we restrict the
maximum source sentence length to 50. To avoid
learning language-specific embeddings, we do not
use indicator tokens for the source or target lan-
guages.

Finally, the decoder takes the interlingual repre-
sentation / and the partial target sentence y; and
computes the probability distribution for the next
output token,

P(yily<i, ©)

= Dect(I,yi—1,hi_1).

softmax (W' [LSTM([yi—1, ¢f], hf_y), ¢i] + ")
softmax(W*[hL, cf] + b")

19~

where ¢! = ZJL;
tor at step ¢, and aﬁj are the normalized attention
weights. The decoders receive the source sentence
only through the interlingual embedding.

Like Firat et al. (2016a), the number of encoders
and decoders for our model architecture scales lin-
early (rather than quadratically) with the number
of languages. In addition, since the neural inter-
lingua provides a common source sentence repre-
sentation to all decoders, the number of attention
mechanisms also scales linearly with the number
of languages.

We note that the concept of a neural interlin-
gua is independent of the architecture that is cho-
sen. While we use a LSTM encoder-decoder
model with single-headed attention for experimen-
tal simplicity, one could also introduce a neu-
ral interlingua to a transformer network (Vaswani
et al., 2017) or a CNN encoder-decoder network
(Gehring et al., 2017) instead.

tr o
1 OzijI_J is the context vec-

3 Experiments

We conducted 4 experiments with our model.

We compared the performance of bilingual
NMT baselines against our proposed multilin-
gual model, and observe comparable performance
across all the language pairs in WMT15.



Parameter Multl Bilingual
-lingual
vocabulary size 30,000 30,000
source embedding size 256 256
target embedding size 256 256
output dimension 512 512
encoder hidden size 512 512
decoder hidden size 512 512
interlingua hidden size 512 -
interlingua length 50 -
encoder depth 2 4
interlingua depth 1 0
decoder depth 1 1
attention type additive | additive
optimizer Adam Adam
learning rate 0.0002 0.0002
batch size 400 400
Table 1: Hyperparameters for the multilingual and

bilingual encoder-decoder models.

We found that the language-independent sen-
tence embeddings can be used for zero-shot mul-
tilingual classification. We train an English Yelp
review classifier with the interlingual embeddings
as input features, and use that model to classify
French and German reviews.

We performed direct zero-shot translation for
3 language pairs in the new UN Parallel Corpus.
For this task, our model showed an improvement
over the model architecture described in Johnson
et al. (2017). Our positive experimental finding
confirms that our model provides a new approach
for direct neural zero-shot translation.

Finally, @ we visualized the language-
independent sentence embeddings by projecting
them down to 2 dimensions. We observe that
parallel translations of French, German and
English sentences remain close to each other in
this low-dimensional space.

3.1 Model Training

The hyperparameters for the bilingual baseline
models and our multilingual network are summa-
rized in Table 1. Our multilingual model uses 1
bidirectional LSTM layer in the encoder for each
input language, 1 attentional LSTM layer for the
interlingua and 1 attentional LSTM layer in the
decoder for each output language. The baseline
bilingual models use 2 bidirectional LSTM layers
in the encoder and 1 attentional LSTM layer in the
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decoder. We chose the Adam optimizer (Kingma
and Ba, 2015), and we used importance sampling,
as described in Jean et al. (2015), to accelerate
model training.

3.2 Language Rotation During Training

Algorithm 1: Multilingual model training
schedule on WMT15. We store the cycle of
language pairs in schedule, and x4 and y; re-
fer to the source and target sentences respec-
tively.

0 < Randomlnitializer()

schedule + {}

for S € {En, Fr, De, Cs, Fi, Ru} do
for L € {Fr, De, Cs, Fi, Ru} do

| schedule += {(En, L), (L,En)}
end
schedule +={(S, 5)}

end
while True do
for (s, t) € schedule do
xs < SampleSource(s)
yr < SampleTarget(t)
a < ForwardStep(8,xs,yt)
V0 + BackwardStep(a, )
0 < SGDUpdate(0,V0)
end

end

The language pair schedule used during train-
ing is crucial for learning an effective sentence
representation. We provide the details in Algo-
rithm 1. In our initial experiments, we cycled
through 10 language pairs (i.e. (x — En, En —
x), x € {Fr, De, Ru, Cs, Fi}), where each mini-
batch consisted of sentences from one language
pair. However, we found that the naive schedule
failed to produce a useful representation for zero-
shot translation or crosslingual text classification.
Since WMT15 is not a multi-parallel corpus, the
model essentially learns to handle two separate
tasks, namely translation from English and trans-
lation to English. For instance, since the output of
the De encoder and the En encoder would never
be used by the same decoder, there is no reason
for De and En source sentences to share the same
embedding, even if they are translations of each
other.

To encourage the model to share the encoder
representations across English and non-English



Source | Target | Bilingual | Multilingual
Fr 34.85 33.80
De 23.67 23.37
En Cs 17.60 16.62
Ru 21.26 21.92
Fi 11.55 13.34
Fr 30.72 30.24
De 27.08 27.29
Cs En 23.00 23.87
Ru 24.14 26.15
Fi 14.77 16.58

Table 2: Comparison of BLEU scores across language
pairs in newstest2015 and newsdiscuss2015. We show
the results for the bilingual baseline NMT models and
our multilingual NMT model.

source sentences, we added an extra identity lan-
guage pair (i.e. De — De, En — En, etc.) to the ro-
tation. The identity pair forces the source embed-
dings to be compatible with an additional decoder.
We found that when we did not include the identity
mapping task during training, the zero-shot BLEU
score was < 1.0 for the Fr-Ru language pair.

3.3 Multilingual NMT versus Bilingual NMT

We used the training corpora from the WMT15
translation task to train our encoder-decoder mod-
els. The dataset provides English <> (German,
French, Czech, Russian, Finnish) parallel sen-
tences. We followed the standard WMT prepro-
cessing recipes', which are based on the Moses
library (Koehn et al., 2007). For each language,
we created a vocabulary of 30,000 word pieces
using byte pair encoding (Sennrich et al., 2016).
Sentences longer than 50 word pieces were re-
moved from the training corpus. We used new-
stest2014 and newsdev2015 as our development
set, and newstest2015 and newsdiscuss2015 as our
test set.

We compared the performance of the multilin-
gual model against bilingual baseline models. The
BLEU scores are provided in Table 2. Results are
reported on newstest2015 and newsdiscuss2015.
We see that, while the performance is broadly sim-
ilar (i.e. generally <1.0 BLEU) between the our
model and the baselines, there is a decrease in
BLEU for higher-resource languages (e.g. Fr) and
an increase in BLEU for lower-resource languages

I&g. http://data.statmt.org/wmtl17/

translation-task/preprocessed/de-en/
prepare.sh
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(e.g. Fi, Ru). We suspect that this is a conse-
quence of the language pair schedule, which cy-
cles through all language pairs as though they were
equally frequent in the corpus. A similar effect
was also observed in Johnson et al. (2017).

Currey et al. (2017) have shown that (specifi-
cally in low-resource settings) using copied mono-
lingual data can improve model performance. We
followed the technique in Currey et al. (2017) to
strengthen the baseline models, but did not ob-
serve an improvement in the final BLEU score.
This may be due to the fact that even the smallest
language pair in WMT15 has 2 million sentence
pairs, which is more than 3 times larger than ei-
ther the Tr-En or Ro-En pairs discussed in Currey
etal. (2017).

As with Firat et al. (2016a), we generally see
an improvement when translating to English. We
believe that this is because the English language
model is stronger in the multilingual case, since
the English decoder sees more English text.

3.4 Zero-shot Multilingual Classification

We constructed a multilingual Yelp review dataset
from a subset of the Yelp Challenge (Round 10)
corpus. We restrict ourselves to English, French,
and German reviews. The training corpus con-
sists of 5,000 English Yelp reviews, and the test
sets contain 4,000 reviews for each language. The
French and German reviews were extracted by ap-
plying language detection on reviews from Que-
bec, Canada and Baden-Wiirttemberg, Germany.
The review scores were binarized, where 4 and 5
star reviews were labeled as positive, and 1 and
2 star reviews were labeled as negative. We reuse
the encoders trained in Section 3.3 in this section’s
experiments.

At training time, an English Yelp review is
treated as one sentence; we do not apply sen-
tence segmentation to the review. It is passed
through the English encoder, and the neural in-
terlingua converts the English sentence represen-
tation to a fixed-length representation. To create
a feature vector for the text classifier, we apply
mean-pooling to the sentence representation. Un-
der our experimental settings, every sentence is
converted to a 512 x 50 interlingual embedding,
which is mean-pooled into a 512-dimensional vec-
tor. We then fit a logistic regression model using
this feature vector and the sentence polarity as the
binary label. The classifier is only trained on En-
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Fr

Ru

spreads between sovereign bonds in Germany and those in other countries were relatively unaffected
by political and market uncertainties concerning Greece in late 2014 and early 2015 .

par contre , la différence entre les obligations souveraines allemandes et celles d’autres pays a été
relativement peu touchée par les incertitudes politiques et les doutes des marchés concernant la Grece
fin 2014 et début 2015 .

DOJINTUYECKad W PBIHOYHAA HeCTa6I/I.HBHOCTB , CBgA3aHHadA C CI/ITyaL[I/Ieﬁ B FpeI_LI/II/I B KOHIIE
2014 - ro n naugasie 2015 roga , TpaKTHUIECKNA He OTPA3UIACH HA CIIPEIAX JOXOJIHOCTH MEXK/LY
TOoCyJapCTBEHHBIMU O6.HI/II‘&I_LI/IH1V[I/I Fepl\laHI/II/I U APpYyrux CTpaH .

Red

13 . we underscore the need to accelerate efforts at all levels to achieve the objectives of the international
arrangement on forests beyond 2015 and the need to establish a stronger , more effective and solid
arrangement for the period 2015 to 2030 ;

13 . nous soulignons qu’il faudra redoubler d’efforts a tous les niveaux pour atteindre les objectifs de
I’arrangement international apres 2015 et qu’il faudra mettre en place un arrangement plus solide et
plus efficace pour la période 2015 - 2030 ;

13 . MBI IIoJ9epKuBaeM , 9TO HeO6XOLLI/IMO AKTUBU3UPOBATHL YCUJ/INA Ha BCEX YPOBHAX B
MHTEepecax JIOCTHXKEHN 1esIeil MeXK Ty HapOJHOI'O MeXaHu3Ma I10 jlecaM Ha mepuo/t riocyie 2015
roJia U CO3/IaTh JEHCTBEHHBII , Gosree 3 DEKTUBHBIN U HAJIEXKHBIA MexaHu3M Ha repuos 2015
- 2030 ronos ;

Orange

the various training activities are listed in table 2 below .

on énumere dans le tableau 2 ci - dessous les diverses activités de formation .

B IIPEJICTABJIEHHON jaJjiee Tabjule 2 TNPUBEICH MEPEYEeHb Pa3JIUIHBIX MEpPOINPUSTHI I10
MIpodeCCUOHAJIBHOM MTOJATOTOBKE .

Blue

the Conference affirms that , pending the realization of this objective , it is in the interest of the very
survival of humanity that nuclear weapons never be used again .

elle affirme que , en attendant la réalisation de cet objectif , il est dans I’intérét de la survie méme de
I’humanité que les armes nucléaires ne soient plus jamais utilisées .

KOH(EPEHIUS 3asBJIAET , 9TO , IOKA dTa IeJb He JOCTUTHYTa , HEOOXOJIUMO B WHTEpPECcax
CaMOI'o0 BBI2KMBaHHUA YeJioBeYeCTBa ,ZLO6I/ITBC${ TOrO |, ‘{TO6I)I ANEPpHOE OpYy2KUue HHUKOILa He
OBLIO BHOBB ITPUMEHEHO .

Table 3: Text of the parallel sentences in Figure 3.

Input Language
En De Fr
Trigram 91.6% + 0.9% | 89.6% + 0.9% | 91.5% + 0.9%
Embeddings | 91.5% + 0.9% | 89.2% + 0.9% | 91.1% + 0.9%

% Positive 82.9% 86.7% 88.5%

Table 4: Accuracy for crosslingual Yelp binary review classification. The trigram baseline model was trained
on English reviews, and tested on English reviews and English translations of French and German reviews. The
embedding-based classifier uses interlingual embeddings from our model in Section 3.3. ‘% Positive’ refers to the

proportion of the test set that has a positive label.

glish reviews.

At prediction time, we pass the text of a German
review through the German encoder and the inter-
lingua, which is again mean-pooled to form a 512-
dimensional vector. Since the interlingual repre-
sentation should be language-independent, we can
attempt to classify German reviews by providing
the vector representation of the German review to
the English classifier. We use the same process for
French reviews.

In Table 4, we compare the accuracy of the clas-
sifier trained on English review embeddings to that
of a baseline model. We established the baseline
by training a trigram classifier on the English re-
views, and used English translations of the French
and German reviews for classification. We ob-

tained the translations through the Google Trans-
late API. The classification accuracy using the in-
terlingual embeddings or the translated French and
German reviews are similar, which shows that the
embeddings have retained semantic information in
a language-independent way.

3.5 Direct Zero-shot Translation

The updated UN Parallel Corpus (Ziemski et al.,
2016), unlike the WMT corpus, is a fully multi-
parallel corpus that contains English, Spanish,
French, Arabic, Chinese and Russian text. We
used this corpus as a testbed for our zero-shot
translation experiments.

We trained our multilingual model on the UN
corpus, following the same settings that we used

&9



Fr-Ru | Ru-Fr | Es-Zh | Zh-Es | Es-Fr | Fr-Es
This Work 1824 | 21.61 | 17.66 | 18.66 | 30.08 | 31.94
Univ. Enc-Dec 8.77 9.76 8.62 6.13 | 15.04 | 14.37
Pivot 20.87 | 27.34 | 26.03 | 26.01 | 31.84 | 32.93
Direct NMT 28.29 | 3326 | 32.36 | 32.69 | 41.38 | 44.49

Table 5: Zero-shot BLEU scores on the UN Parallel Corpus on selected language pairs. The universal encoder-
decoder, pivot and direct NMT results were retrieved from Miura et al. (2017). Our proposed model outperforms
the universal encoder-decoder model (Johnson et al., 2017) on the zero-shot translation task.

for the WMT corpus (see Table 1 and Algorithm
1). The text was processed following the steps pro-
vided in Miura et al. (2017). We restrict the train-
ing corpus to sentence pairs that have English as
either the source or target language.

We used the Fr-Ru, Es-Zh and Es-Fr portions of
the test set from the UN corpus for the zero-shot
translation evaluation. The training dataset that we
constructed does not contain direct Fr-Ru, Es-Zh
or Es-Fr sentence pairs. The test set contains 4,000
sentence pairs for each language pair.

We examine the BLEU scores for zero-shot
translation on the UN corpus in Table 5. The uni-
versal encoder-decoder, pivot and direct NMT re-
sults were retrieved from (Miura et al., 2017). By
‘direct NMT’, we refer to a model trained directly
on the parallel text.

Our multilingual model performs significantly
better on the direct zero-shot task than the uni-
versal encoder-decoder approach of Johnson et al.
(2017). Generally, our model does not perform
as well as the pivot approach, though in the case
of Es-Fr and Fr-Es, the difference is surprisingly
small (<2.0 BLEU).

Improving direct zero-shot methods to reach
parity with pivot translation has practical conse-
quences for large-scale NMT systems, like re-
duced latency and computational overhead. (Re-
call that pivot translation must translate every
source sentence twice; first into the intermediate
language, and then into the target language.) Our
results show progress towards the goal of transi-
tioning away from pivot-based methods to neural
zero-shot translation.

3.6 Interlingua Visualization

In Figure 3, we plot the embeddings for 4 groups
of parallel sentences. Sentences from the same
group share the same color. Each group contains
one French, one English and one Russian sentence
which are parallel translations of each other. We
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Figure 3: Interlingual embeddings for four groups of
parallel English, French, and Russian sentences from
the UN Parallel Corpus. The 512-dimensional mean-
pooled interlingual sentence embeddings were pro-
jected down to R? using PCA. Refer to Table 3 for the
colors and text of the sentences.

provide the text of the embedded sentences in Ta-
ble 3.

The embeddings were generated by mean-
pooling each sentence embedding to a 512-
dimensional vector and projecting it to R? using
PCA. From the figure, we observe a clear separa-
tion between different groups of sentences, while
sentences within the same group remain close to
each other in space. This is the expected outcome
if our model has captured language-independent
semantic information in its sentence representa-
tions.

4 Related Work

4.1 Networks with Language-specific
Encoders and Decoders

The many-to-one approach explored in Zoph and
Knight (2016) primarily considers the trilingual
case, where a multi-parallel corpus is available,
and uses 2 encoders simultaneously to provide the
source context for the decoder. We note that us-
ing 2 encoders simultaneously requires having 2
source sentences for every desired target sentence



at prediction time, which is not the setting that we
investigate here.

By combining a single encoder with multiple at-
tentional decoders, the one-to-many approach pre-
sented in Dong et al. (2015) showed an improve-
ment in translation performance, due to the in-
crease in the number of sentences seen by the en-
coder and through multi-task learning.

The many-to-many approach in the shared at-
tention model (Firat et al., 2016a) assigns a dif-
ferent encoder and decoder to each language, but
shares the decoders’ attention mechanisms. By
specifying a ‘universal’ attention mechanism for
all language pairs, Firat et al. (2016a) avoid cre-
ating as many attention mechanisms as there are
language pairs (i.e. avoids quadratic scaling).

However, the attention mechanism acts as the
alignment model between the source and target
sentences, and a shared attention mechanism may
be too restrictive, especially for languages that
have very different word orders. Our interlin-
gual approach relaxes the requirement of a single,
shared attention mechanism. In our framework,
there are as many attention mechanisms as there
are decoders.

4.2 Universal Encoder-Decoder Networks

Johnson et al. (2017) have foregone the use of
multiple encoders and decoders, and instead use
one universal encoder and one universal decoder.
They constructed a joint vocabulary for all lan-
guages in the corpus, consisting of word pieces
derived from a byte-pair encoding (Sennrich et al.,
2016) on the union of the vocabulary of all the
languages, and include special tokens to indicate
what the output language should be. Ha et al.
(2016) follow a similar approach, but the shared
vocabulary is constructed by prepending a lan-
guage identifier to each token.

The universal encoder-decoder approach does
have some shortcomings. Johnson et al. (2017)
rely on the existence of a shared vocabulary, which
may not be as sensible in some combinations (e.g.
Chinese and English) as in others (e.g. Spanish
and Portuguese). If the languages’ vocabularies
do not share many word pieces, then either the
decoder’s output layer will be very large, which
slows down training and inference, or the output
layer will be artificially constrained to a manage-
able size, which impacts translation performance.

Our approach, on the other hand, allows each
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target language to retain its own decoder. The to-
tal vocabulary size can then expand with the num-
ber of languages without affecting training or in-
ference speed.

4.3 Zero-shot Translation

One of the challenges in multilingual MT is data
sparsity, which refers to the lack of parallel text
for every possible language pair in a corpus. Zero-
shot translation is the task of translating between
language pairs without parallel text.

An early approach to allow zero-shot translation
made use of a ‘pivot’ language in the translation
process (Boitet, 1988). For instance, in sentence-
based pivoting, the source sentence is translated
into a pivot language, and from the pivot language
translated to the target language. Various exten-
sions of the pivot technique have been proposed
over the years, see Utiyama and Isahara (2007),
Chen et al. (2017), Miura et al. (2017), Cohn and
Lapata (2007).

Universal encoder-decoder systems like John-
son et al. (2017) have demonstrated the ability to
perform direct zero-shot translation without using
a pivot language at all, albeit with a significant
BLEU reduction for some language pairs.

5 Conclusion

We incorporate a neural interlingua compo-
nent into the standard encoder-decoder frame-
work for multilingual neural machine transla-
tion, and demonstrate that the resulting model
learns language-independent sentence representa-
tions, enabling zero-shot translation and crosslin-
gual text classification.

We perform direct zero-shot translation for 3
language pairs without pivoting through an inter-
mediate language like English. We observe an
improvement in zero-shot translation performance
compared to the universal encoder-decoder results
reported in Miura et al. (2017). Furthermore, we
use the learned encoder to train an English Yelp
review classifier that can, with the help of the in-
terlingual embeddings, also classify German and
French reviews. Finally, our experiments showed
that the results from our model are comparable to
the results from bilingual baselines.

In future work, we intend to address the signifi-
cant performance gap between direct neural zero-
shot translation and pivot translation. By manipu-
lating the sentence embeddings in an appropriate



way, we aim to extract significant improvements
over the results presented in this paper.
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Abstract

Embedding and projection matrices are com-
monly used in neural language models (NLM)
as well as in other sequence processing net-
works that operate on large vocabularies. We
examine such matrices in fine-tuned language
models and observe that a NLM learns word
vectors whose norms are related to the word
frequencies. We show that by initializing the
weight norms with scaled log word counts, to-
gether with other techniques, lower perplexi-
ties can be obtained in early epochs of train-
ing. We also introduce a weight norm regular-
ization loss term, whose hyperparameters are
tuned via a grid search. With this method, we
are able to significantly improve perplexities
on two word-level language modeling tasks
(without dynamic evaluation): from 54.44 to
53.16 on Penn Treebank (PTB) and from 61.45
to 60.13 on WikiText-2 (WT2).

1 Introduction

A language model (LM) measures how likely a
certain sequence of words is for a given language.
It does so by calculating the probability of occur-
rence of that sequence, which can be learned from
monolingual text data. Many models in machine
translation and automatic speech recognition ben-
efit from the use of a LM (Corazza et al., 1995;
Peter et al., 2017).

While count-based LMs (Katz, 1987; Kneser
and Ney, 1995) provided the best results in
the past, substantial improvements were achieved
with the introduction of neural networks in the
field of language modeling (Bengio et al., 2003).
Different types of architectures such as feedfor-
ward neural networks (Schwenk, 2007) and re-
current neural networks (Mikolov et al., 2010)
have since been used for language modeling.
Currently, variants of long short-term memory

*Equal contribution. Ordering determined by coin flipping.
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(LSTM) (Hochreiter and Schmidhuber, 1997) net-
works give the best results on popular language
modeling tasks (Yang et al., 2018).

In natural language processing, words are typ-
ically represented by high-dimensional one-hot
vectors. To reduce dimensionality and to be able
to learn relationships between words, they are
mapped into a lower-dimensional, continuous em-
bedding space. Mathematically, this is done by
multiplying the one-hot vector with the embed-
ding matrix. Similarly, to receive a probability dis-
tribution over the vocabulary, a mapping from an
embedding space is performed by a projection ma-
trix followed by a softmax operation. These two
matrices can be tied together in order to reduce
the number of parameters and improve the results
of NLMs (Inan et al., 2017; Press and Wolf, 2017).

Since the row vectors in the embedding and pro-
jection matrices are effectively word vectors in a
continuous space, we investigate such weight vec-
tors in well-trained and fine-tuned NLMs. We ob-
serve that the learned word vector generally has
a greater norm for a frequent word than an in-
frequent word. We then specifically examine the
weight vector norm distribution and design ini-
tialization and normalization strategies to improve
NLMs.

Our contribution is twofold:

e We identify that word vectors learned by
NLMs have a weight norm distribution that
resembles logarithm of the word counts. We
then correspondingly develop a weight initial-
ization strategy to aid NLM training.

We design a weight norm regularization loss
term that increases the generalization ability
of the model. Applying this loss term, we
achieve state-of-the-art results on Penn Tree-
bank (PTB) and WikiText-2 (WT2) language
modeling tasks.
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2 Related Work

Melis et al. (2018) investigated different NLM ar-
chitectures and regularization methods with the
use of a black-box hyperparameter tuner. In par-
ticular, the LSTM architecture was compared to
two more recent recurrent approaches, namely re-
current highway networks (Zilly et al., 2017) and
neural architecture search (Zoph and Le, 2017).
They found that the standard LSTM architecture
outperforms other models, if properly regularized.

Merity et al. (2017a) used various regularization
methods such as activation regularization (Merity
et al., 2017b) in a LSTM model. They also intro-
duced a variant of the averaged stochastic gradient
method, where the averaging trigger is not tuned
by the user but relies on a non-monotonic condi-
tion instead. With these and further regulariza-
tion and optimization methods, improved results
on PTB and WT2 were achieved.

To further improve this network architecture,
Yang et al. (2018) introduced the mixture of soft-
maxes (MoS) model, claiming that the calculation
of the output probabilities with a single softmax
layer is a bottleneck. In their approach, several
output probabilities are calculated and then com-
bined via a weighted sum. The LSTM-MoS ar-
chitecture provides state-of-the-art results on PTB
and WT?2 at the time of writing and is used as the
baseline model for comparisons in this work.

Other works proposed to tie the embedding and
projection matrices. Press and Wolf (2017) inves-
tigated the effects of weight tying, analyzed up-
date rules after tying and showed that tied matri-
ces evolve in a similar way as the projection ma-
trix. Inan et al. (2017) were motivated by the fact
that with a classification setup over the vocabulary,
inter-word information is not utilized to its full po-
tential. They also provided theoretical justification
on why it is appropriate to tie the above-mentioned
matrices.

Besides using the word embedding matrix, there
are other approaches to represent word sequences.
Zhang et al. (2015) proposed a new embedding
method called fixed-sized ordinally-forgetting en-
coding (FOFE), which allows them to encode
variable-length sentences into fixed-length vectors
almost uniquely.

Additionally, Salimans and Kingma (2016) in-
troduced a weight normalization reparametriza-
tion trick on weight matrices, which separates the
norm and the angle of a vector. This can speed
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up the convergence of stochastic gradient descent
and also allows for explicit scaling of gradients in
the amplitude and direction. They also discussed
the connections between weight normalization and
batch normalization.

On top of one-hot representations of words, Irie
et al. (2015) used additional information to rep-
resent word sequences. It is shown that the use
of long-context bag-of-words as additional feature
for language modeling can narrow the gap be-
tween feed-forward NLMs and recurrent NLMs.

3 Neural Language Modeling

In NLM the probability of a word sequence
x! = z129...74 is decomposed as

t

i—1
P@) =[] P@jlei=) @
j=1
so that the (n — 1) preceding words :13;:711 4 are

considered for the prediction of the next word ;.
This is typically done by using a recurrent neural
network, e.g. a stack of LSTM layers, to encode
the input sequence as

he = LSTM(ET (24— ni1, Tt—nt2, -y Te—1]) (2)

where E7T is the transposed embedding ma-
trix, [T4—n+1, Tt—n+2, ..., Tt—1) are the one-hot en-
coded preceding words and the LSTM() function
returns the last hidden state of the last LSTM layer.
The probability distribution over the next word x;
is then calculated as

exp(Wihy)
Z;/:1 exp(Wjhy)

with V' being the vocabulary size, k = 1,2, ..., V,
and Wy, being the k-th row vector in the projection
matrix W.

For training the neural network, the cross-entropy
error criterion, which is equivalent to the maxi-
mum likelihood criterion, is used. For the ¢-th se-
quence of words :B’ii, the cross-entropy loss L; is
defined as

Li = —logP (1, = wy|hy,) 4)

with y; being the true label of x;,. The total loss is
then calculated as

6))



where N is the total number of sequences. A
language model is normally scored by perplexity
(ppl). For a given test corpus wlT = x129...27, the
ppl is calculated as

ppl = P(x])"T 6)

which is a measurement on how likely a given sen-
tence is, according to the prediction of the model.

In the above formulation, we have an embedding
matrix F and a projection matrix W. When the
two matrices are tied and one-hot vectors are used
to represent words, the rows of these matrices are
then the word vectors of the corresponding words.
Particularly, we focus on the norms of the row vec-
tors and study their relationship with word counts
and how to regularize them.

4 Weight Norm Initialization

We first train models on PTB and WT2 as de-
scribed in (Yang et al., 2018) and plot the norms
of learned weight vectors of the embedding matrix
in Figure 1.

When the words are ranked by their counts and
placed on the x-axis from frequent to infrequent,
it can be seen that the word vector norms follow
a downward trend as well. Log unigram counts
are also plotted for comparison. As can be seen,
the norm distribution follows a similar trend as the
log counts. It is important to note, that the logit for
word x;, and context h; is calculated as W h; (see
Equation 3), which can be rewritten as

Wihy = [[Wi | || h¢]| cos(6) ()
where 6 denotes the angle between W and h;.
Therefore, one intuition from the aforementioned
observation is that, for a frequent word, the net-
work tends to learn a weight vector W with a
greater norm to maximize likelihood. This mo-
tivates our approach to initialize the weight norms
with scaled log counts rather than uniformly ran-
dom values in a specific range.

Because we wish to initialize the weight norms
explicitly with scaled logarithm of the word
counts, it is helpful to look at a weight vector’s
magnitude and direction separately. For this pur-
pose, we use a reparameterization technique on
the weight vectors as described in (Salimans and
Kingma, 2016):

UV

[[orll2

Wi = gx (8)
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Figure 1: Word vector norms of fine-tuned MoS
models (Yang et al., 2018), trained on (a) Penn
Treebank and (b) WikiText-2. Words are ranked
by their counts in a descending order and thus fre-
quent words are to the left. Actual logarithm of
word counts are plotted in black, and word vec-
tor norms are grey. We observe that word vector
norms loosely follow the trend of log counts.

where k = 1,2,...,V, g = [[Wkll,, and vy, is
a vector proportional to W. Reparameterizing
the weight vectors makes it easy to implement the
weight norm initialization as

(€))

where c;, denotes unigram word count for word k
and o is a scalar applied to the log counts. We
sample each component of vy from a continuous
uniform distribution in [—r,r|, where r is a hy-
perparameter, specifying the initialization range.
With this, no constraint on the weight vector di-
rection is imposed during initialization.

Additionally, we adopt an adaptive gradient
strategy which regularizes the gradients in gi. As
in

gk = ologey,

oL

87[” dg’

fort <r
(57) =

10
fort >t (10)

{[1 ~(1-7)Y
79,

when epoch ¢ is no greater than a specified epoch



Tokens | Vocab Size
Train | 888k
Penn Treebank | Valid 70k 10k
Test 79k
Train | 2.1M
WikiText-2 Valid | 214k 33k
Test 241k
Table 1:  Statistics of the Penn Treebank and

WikiText-2 datasets.

T, (%)' — the regularized gradient in g, linearly

decays to v (v < 1) times the unregularized gradi-
ent g—ng. Otherwise, we directly use the discounted
gradient. In analogy to learning rate decay, this
adaptive gradient strategy anneals the word vector
norm updates in each step. The intuition for such
a strategy is that after a certain amount of epochs,
the weight norms should not change so drastically

from the initialized scaled log counts.

S Weight Norm Regularization

Weight regularization (WR) is a well established
method to combat overfitting in neural networks,
which is especially important on smaller datasets
(Krogh and Hertz, 1992). The idea is to push
weights in the network to zero, where gradients are
not significant. Typically, WR is implemented by
adding an extra term to the loss function Lg, which
penalizes the norm of all weights in the network.
For example, Lo-regularization is implemented as

A
L=Lo+5 Y (lwl,)?

w

(11)

with the sum going over all weights w in the
network and A being the regularization strength.
However, this method is not perfect, as it affects

every weight in the network equally and may lead
to hidden units’ weights getting stuck near zero.

In this work we add a constraint specifically
on the embedding and projection matrices, whose
weights are shared. Since the row vectors in both
matrices are word vectors, it seems appropriate to
put constraints explicitly on their norms instead of
on each individual weight parameter in the matri-
ces.

We propose to add a regularization term to the
standard loss function Lg in the form of

v
LwT:L0+p Z(HWjH2_V)2

J=1

(12)

where v, p > 0 are two scalars and W is the j-th
row vector of the projection matrix W. The Lo-
norms of the row vectors are pushed towards v,
while p is the regularization strength. This will
punish the row vectors for adopting norms other
than v, in the hope of reducing the effect of over-
fitting on the training data.

The choice of a soft regularization loss term in-
stead of hard-fixing the weight norms in the for-
ward pass is motivated by the weight norm dis-
tribution shown in Figure 1. It can be seen that
NLMs tend to learn non-equal weight norms for
words with different counts. Therefore, hard-
fixing weight norms may limit the network’s abil-
ity to learn.

6 Experiments

6.1 Experiment Setup

The experiments are conducted on two popular
language modeling datasets. The number of to-
kens and size of vocabulary for each dataset are
summarized in Table 1.

Penn Treebank WikiText-2
epoch wni ppl | baseline ppl | ppl reduction (%) | wni ppl | baseline ppl | ppl reduction (%)
1 162.18 180.72 10.26 172.19 192.19 10.41
10 85.92 92.09 6.70 95.90 100.72 4.79
20 73.36 78.94 7.07 85.14 88.21 3.48
30 71.44 73.06 2.22 81.80 82.70 1.09
40 69.27 70.20 1.32 79.28 80.32 1.29

Table 2: Perplexity (ppl) improvement using weight norm initialization (wni) in early epochs on Penn
Treebank and WikiText-2. ppl reduction is around 10% after the first epoch on both tasks, and decays
to approximately 1% after 40 epochs. The wni model has slightly higher perplexities than the baseline

model from around 50 epochs onward.
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Figure 2: Model perplexity on the Penn Treebank
test set as a function of p. The different sym-
bols denote different values of v. Models not de-
picted yield higher perplexity values. The doted
line marks the baseline result (with p = 0) as re-
ported by Yang et al. (2018).

The smaller one is the PTB corpus with prepro-
cessing from Mikolov et al. (2010), which has a
comparatively small vocabulary size of 10k. With
a smaller number of sentences, this dataset is a
good choice for performing optimization of hyper-
parameters. The second corpus WT2, which was
introduced by Merity et al. (2016), has over three
times the vocabulary size of PTB.

We use the network structure introduced by
Yang et al. (2018) with the same hyper-parameter
values to ensure comparability. Several regular-
ization techniques are used in this setup, such as
dropout and weight decay. Furthermore, the em-
bedding and projection matrices are tied by de-
fault. For optimization, we adopt the same strat-
egy as described in (Merity et al., 2017a). That
is, a conservative non-monotonic criterion is used
to switch from stochastic gradient descent (SGD)
to averaged stochastic gradient descent (ASGD)
(Polyak and Juditsky, 1992). For more details of
the network structure refer to (Yang et al., 2018).

6.2 Weight Norm Initialization

We tune the hyperparameter o and use a value of
o = 0.5 to scale the logarithm of word counts.
Initialization range r is set to 0.1 for both the
reparametrized direction vectors and the baseline
word vectors. Empirically, we set v = 0.1 and
7 = 100 for the adaptive gradient method. Per-
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Figure 3: Weight norm distributions of the projec-
tion matrices’ row vectors for the AWD-LSTM-
MoS model from Yang et al. (2018) as well as
for our regularized version (WR). The models are
trained on the (a) Penn Treebank corpus and (b)
WikiText-2 corpus with the resulting test perplex-
ities shown in Table 3 and Table 4 respectively.

plexities on both PTB and WT2 in early epochs,
as well as the relative perplexity improvement over
baseline models are summarized in Table 2.

First, we notice significant improvement after
the first epoch of training using weight norm ini-
tialization. About 10% of perplexity reduction is
achieved on both datasets. This could be bene-
ficial, when one wants to train on large datasets
and/or can only train for a limited number of
epochs. Second, the perplexity improvements de-
cay down to around 1% after 40 epochs. This is
in agreement with our expectation, because apart
from reduced gradient in g, a weight norm ini-
tialized model is not fundamentally different from
the baseline model and no major difference should
be seen if we train for long enough. It is impor-
tant to note that with only weight norm initializa-
tion, both models eventually converge to perplex-
ities that are slightly worse than the baseline. We
also notice that the epochs, after which the opti-
mizer is switched from SGD to ASGD, are differ-
ent in weight norm initialized models and baseline
models.



Model #Params Validation Test
Mikolov and Zweig (2012) - RNN-LDA + KN + cache oM - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal and Ghahramani (2016) - Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) - CharCNN 19M - 78.9
Merity et al. (2016) - Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2017) - LSTM + continuous cache pointerT - - 72.1
Inan et al. (2017) - Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2017) - Variational RHN 24M 75.7 73.2
Zoph and Le (2017) - NAS Cell 25M - 64.0
Melis et al. (2018) - 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017a) - AWD-LSTM 24M 60.0 57.3
Yang et al. (2018) - AWD-LSTM-MoS 22M 56.54 54.44
Ours - AWD-LSTM-MoS with weight norm regularization 22M 55.03 53.16

Table 3:

Single model perplexity on the Penn Treebank test and validation sets. Baseline results are

obtained from (Yang et al., 2018). T indicates the use of dynamic evaluation.

Model #Params Validation Test
Inan et al. (2017) - Variational LSTM + augmented loss 28M 91.5 87.0
Grave et al. (2017) - LSTM + continuous cache pointerT - - 68.9
Melis et al. (2018) - 2-layer skip connection LSTM 24M 69.1 65.9
Merity et al. (2017a) - AWD-LSTM 33M 69.1 66.0
Yang et al. (2018) - AWD-LSTM-MoS 35M 63.88 61.45
Ours - AWD-LSTM-MoS with weight norm regularization 35M 62.67 60.13

Table 4: Single model perplexity on the WikiText-2 test and validation sets. Baseline results are obtained
from (Yang et al., 2018). { indicates the use of dynamic evaluation.

6.3 Weight Norm Regularization

In order to tune the hyperparameters p and v intro-
duced in Section 5, we perform a grid search over
the PTB dataset, the results of which are shown
in Figure 2. If the norm constraint ¥ becomes too
large, perplexity worsens significantly, as seen in
the case of ¥ = 64. A model with a v-value of
2 provides the best result in most cases. We hy-
pothesize that a value of v that is too small results
in the logit being close to zero as shown in Equa-
tion 7. For the regularization strength p, we recog-
nize that p = 1073 gives the best result on the PTB
test data. Larger or smaller values can hurt the
performance of the system, depending also on the
value of v. It should be noted that the optimized
value of p is significantly larger than the scaling
swq of the weight decay term, which was opti-
mized to be 1.2x 1075 by Merity et al. (2017a).

The resulting weight norm distributions of the
projection matrices’ row vectors are shown in Fig-
ure 3a and Figure 3b for models trained on PTB
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and WT2 respectively. Our efforts of pushing the
norms to a value of v = 2.0 resulted in a notice-
ably smaller average norm, as well as in a overall
more narrow distribution.

With the tuned parameter values p = 103 and
v = 2.0 we improve the previous state-of-the-art
result by 1.28 ppl on PTB and by 1.32 ppl on WT2
(without considering dynamic evaluation (Krause
et al., 2018), see Table 3 and Table 4). This is
achieved without increasing the number of train-
able parameters in the network or slowing down
the training process.

7 Conclusion

Word embedding matrix and output projection ma-
trix are important components in LSTM-based
LMs. They are also widely used in other NLP
models where one-hot vectors of words need to
be mapped into lower dimensional space. Given
the one-hot nature of word representations, row
vectors in such matrices are then the correspond-



ing word vectors. We study specifically the norms
of these learned word vectors, the distribution of
the norms, and the relationship with word counts.
We show that with a simple initialization strat-
egy together with a reparametrization technique,
it is possible to get significantly lower perplex-
ity in early epochs during training. By using a
weight norm regularization loss term, we are able
to obtain significant improvements on standard
language modeling tasks — 2.4% ppl reduction on
PTB and 2.1% on WT2.

We propose three directions to investigate fur-
ther. First, in this work we use scaled logarithm of
word counts to initialize the weight norms. It is a
logical next step to use smoothing techniques on
the word counts and study the effects of such ini-
tializations. Second, we currently apply the same
norm constraint on different words. Altering the
loss function and regularizing the weight norms to
word counts (and smoothed word counts) is worth
examining as well. Finally, our focus so far is on
weight norms. It is a more exciting and challeng-
ing task to study the pairwise inner products, and
single out the effects of angular differences.

We also plan to expand our regularization and
initialization techniques to the field of neural ma-
chine translation. Embedding and projection ma-
trices are also present in neural machine trans-
lation networks, which could potentially benefit
from our methods as well. It seems natural to use
our methods on the transformer architecture intro-
duced by Vaswani et al. (2017), in which the em-
bedding matrices at source and target sides, plus
the projection matrix, are three-way tied.
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Abstract

Recent works in neural machine transla-
tion have begun to explore document trans-
lation. However, translating online multi-
speaker conversations is still an open problem.
In this work, we propose the task of trans-
lating Bilingual Multi-Speaker Conversations,
and explore neural architectures which exploit
both source and target-side conversation histo-
ries for this task. To initiate an evaluation for
this task, we introduce datasets extracted from
Europarl v7 and OpenSubtitles2016. Our ex-
periments on four language-pairs confirm the
significance of leveraging conversation his-
tory, both in terms of BLEU and manual eval-
uation.

1 Introduction

Translating a conversation online is ubiquitous in
real life, e.g. in the European Parliament, United
Nations, and customer service chats. This sce-
nario involves leveraging the conversation history
in multiple languages. The goal of this paper is to
propose and explore a simplified version of such
a setting, referred to as Bilingual Multi-Speaker
Machine Translation (Bi-MSMT), where speak-
ers’ turns in the conversation switch the source and
target languages. We investigate neural architec-
tures that exploit the bilingual conversation history
for this scenario, which is a challenging problem
as the history consists of utterances in both lan-
guages.

The ultimate aim of all machine translation
systems for dialogue is to enable a multi-lingual
conversation between multiple speakers. How-
ever, translation of such conversations is not well-
explored in the literature. Recently, there has been
work focusing on using the discourse or docu-
ment context to improve NMT, in an online set-
ting, by using the past context (Jean et al., 2017;
Wang et al., 2017; Bawden et al., 2017; Voita
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et al., 2018), and in an offline setting, using the
past and future context (Maruf and Haffari, 2018).
In this paper, we design and evaluate a conversa-
tional Bi-MSMT model, where we incorporate the
source and target-side conversation histories into a
sentence-based attentional model (Bahdanau et al.,
2015). Here, the source history comprises of sen-
tences in the original language for both languages,
and the target history consists of their correspond-
ing translations. We experiment with different
ways of computing the source context represen-
tation for this task. Furthermore, we present an
effective approach to leverage the target-side con-
text, and also present an intuitive approach for
incorporating both contexts simultaneously. To
evaluate this task, we introduce datasets extracted
from Europarl v7 and OpenSubtitles2016, con-
taining speaker information. Our experiments
on English-French, English-Estonian, English-
German and English-Russian language-pairs show
improvements of +1.44, +1.16, +1.75 and +0.30
BLEU, respectively, for our best model over the
context-free baseline. The results show the im-
pact of conversation history on translation of bilin-
gual multi-speaker conversations and can be used
as benchmark for future work on this task.

2 Related Work

Our research builds upon prior work in the field
of context-based language modelling and context-
based machine translation.

Language Modelling There have been few
works on leveraging context information for lan-
guage modelling. Ji et al. (2015) introduced Doc-
ument Context Language Model (DCLM) which
incorporates inter and intra-sentential contexts.
Hoang et al. (2016) make use of side informa-
tion, e.g. metadata, and Tran et al. (2016) use
inter-document context to boost the performance

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 101-112
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/W18-64011


https://doi.org/10.18653/v1/W18-64011

of RNN language models.

For conversational language modelling, Ji and
Bilmes (2004) propose a statistical multi-speaker
language model (MSLM) that considers words
from other speakers when predicting words from
the current one. By taking the inter-speaker depen-
dency into account using a normal trigram context,
they report significant reduction in perplexity.

Statistical Machine Translation The few SMT-
based attempts to document MT are either restric-
tive or do not lead to significant improvements
upon automatic evaluation. Few of these deal
with specific discourse phenomena, such as re-
solving anaphoric pronouns (Hardmeier and Fed-
erico, 2010) or lexical consistency of translations
(Garcia et al., 2017). Others are based on a two-
pass approach i.e., to improve the translations al-
ready obtained by a sentence-level model (Hard-
meier et al., 2012; Garcia et al., 2014).

Neural Machine Translation Using context-
based neural models for improving online and of-
fline NMT is a popular trend recently. Jean et al.
(2017) extend the vanilla attention-based NMT
model (Bahdanau et al., 2015) by conditioning
the decoder on the previous source sentence via a
separate encoder and attention component. Wang
etal. (2017) generate a summary of three previous
source sentences via a hierarchical RNN, which is
then added as an auxiliary input to the decoder.
Bawden et al. (2017) explore various ways to ex-
ploit context from the previous sentence on the
source and target-side by extending the models
proposed by Jean et al. (2017); Wang et al. (2017).
Apart from being difficult to scale, they report de-
teriorated BLEU scores when using the target-side
context.

Tu et al. (2017) augment the vanilla NMT
model with a continuous cache-like memory,
along the same lines as the cache-based system
for traditional document MT (Gong et al., 2011),
which stores hidden representations of recently
generated words as translation history. The pro-
posed approach shows significant improvements
over all baselines when translating subtitles and
comparable performance for news and TED talks.
Along similar lines, Kuang et al. (2018) propose
dynamic and topic caches to capture contextual
information either from recently translated sen-
tences or the entire document to model coherence
for NMT. Voita et al. (2018) introduce a context-
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aware NMT model in which they control and anal-
yse the flow of information from the extended con-
text to the translation model. They show that us-
ing the previous sentence as context their model is
able to implicitly capture anaphora.

For the offline setting, Maruf and Haffari (2018)
incorporate the global source and target document
contexts into the base NMT model via memory
networks. They report significant improvements
using BLEU and METEOR for the contextual
model over the baseline. To the best of our knowl-
edge, there has been no work on Multi-Speaker
MT or its variation to date.

3 Preliminaries

3.1 Problem Formulation

We are given a dataset that comprises parallel
conversations, and each conversation consists of
turns. Each turn is constituted by sentences spo-
ken by a single speaker, denoted by x or y, if the
sentence is in English or Foreign language, respec-
tively. The goal is to learn a model that is able to
leverage the mixed-language conversation history
in order to produce high quality translations.

3.2 Data

Standard machine translation datasets are inappro-
priate for Bi-MSMT task since they are not com-
posed of conversations or the speaker annotations
are missing. In this section, we describe how we
extract data from raw Europarl v7 (Koehn, 2005)
and OpenSubtitles2016' (Lison and Tiedemann,
2016) for this task®.

Europarl The raw Europarl v7 corpus (Koehn,
2005) contains SPEAKER and LANGUAGE tags
where the latter indicates the language the speaker
was actually using. The individual files are first
split into conversations. The data is tokenised (us-
ing scripts by Koehn (2005)), and cleaned (head-
ings and single token sentences removed). Con-
versations are divided into smaller ones if the
number of speakers is greater than 5.> The cor-
pus is then randomly split into train/dev/test sets
with respect to conversations in ratio 100:2:3. The
English side of the corpus is set as reference, and

"http://www.opensubtitles.org/

’The data is publicly available at https://github.
com/sameenmaruf/Bi-MSMT.git

3Using the conversations as is or setting a higher thresh-
old further reduces the data due to inconsistencies in conver-
sation/turn lengths in the source and target side.



Europarl Subtitles

En-Fr En-Et En-De| En-Ru

# Conversations| 6997 4394 3582 | 23126
# Sentences 246540 174218 109241 291516

Mean Statistics per Conversation

# Sentences 36.24 40.65 31.50 | 13.60
# Turns 477  4.85 4.79 7.12
Turn Length 712 792  6.16 1.68

Table 1: General statistics for training set.

if the language tag is absent, the source language
is English, otherwise Foreign. The sentences in
the source-side of the corpus are kept or swapped
with those in the target-side based on this tag.

We perform the aforementioned steps for
English-French, English-Estonian and English-
German, and obtain the bilingual multi-speaker
corpora for the three language pairs. Before
splitting into train/dev/test sets, we remove con-
versations with sentences having more than 100
tokens for English-French, English-German and
more than 80 tokens for English-Estonian* respec-
tively, to limit the sentence-length for using sub-
words with BPE (Sennrich et al., 2016). The data
statistics are given in Table 1 and Appendix AS.

Subtitles There has been recent work to obtain
speaker labels via automatic turn segmentation for
the OpenSubtitles2016 corpus (Lison and Meena,
2016; van der Wees et al., 2016; Wang et al.,
2016). We obtain the English side of OpenSub-
titles2016 corpus annotated with speaker informa-
tion by Lison and Meena (2016).° To obtain the
parallel corpus, we use the OpenSubtitles align-
ment links to align foreign subtitles to the anno-
tated English ones. For each subtitle, we extract
individual conversations with more than 5 sen-
tences and at least two turns. Conversations with
more than 30 turns are discarded. Finally, since
subtitles are in a single language, we assign lan-
guage tag such that the same language occurs in
alternating turns. We thus obtain the Bi-MSMT
corpus for English-Russian, which is then divided

“Sentence-lengths of 100 tokens result in longer sentences
than what we get for the other two language-pairs.

5 Although the extracted dataset is small but we believe
it to be a realistic setting for a real-world conversation task,
where reference translations are usually not readily available
and expensive to obtain.

The majority of sentences still have missing annotations
(Lison and Meena, 2016) due to changes between the original
script and the actual movie or alignment problems between
scripts and subtitles. As for Wang et al. (2016), their publicly
released data is even smaller than our En-De dataset extracted
from Europarl.
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into training, development and test sets.

3.3 Sentence-based attentional model

Our base model consists of two sentence-based
NMT architectures (Bahdanau et al., 2015), one
for each translation direction. Each of them con-
tains an encoder to read the source sentence and
an attentional decoder to generate the target trans-
lation one token at a time.

Encoder It maps each source word z,, to a
distributed representation h,, which is the con-
catenation of the corresponding hidden states of
two RNNs running in opposite directions over
the source sentence. The forward and backward
RNNs s are taken to be GRUs (gated-recurrent unit;
Cho et al. (2014)) in this work.

Decoder The generation of each target word
Y, 1s conditioned on all the previously generated
words Yy, via the state s,, of the decoder, and the
source sentence via a dynamic context vector ¢

yn ~ softmax(Wy - u, + by)
Un = tanh(sn + Wuc cCn + Wun . ET [ynfl])
Sn GRU(8n—1, E7[Yn-1], €n)

where E7|y,—1] is the embedding of previous tar-
get word y,—1, and {W(.),by} are the parameters.
The fixed-length dynamic context representation
of the source sentence ¢, = Y pmhy, is gen-
erated by an attention mechanism where o spec-
ifies the proportion of relevant information from
each word in the source sentence.

4 Conversational Bi-MSMT Model

Before we delve into the details of how to lever-
age the conversation history, we identify the three
types of context we may encounter in an ongoing
bilingual multi-speaker conversation, as shown in
Figure 1. It comprises of: (i) the previously com-
pleted English turns, (ii) the previously completed
Foreign turns, and (iii) the ongoing turn (English
or Foreign).

We propose a conversational Bi-MSMT model
that is able to incorporate all three types of
context using source, target or dual conversa-
tion histories into the base model. The base
model caters to the speaker’s language transition
by having one sentence-based NMT model (de-
scribed previously) for each translation direction,
English—Foreign and Foreign—English. We now
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Figure 1: Overview of an ongoing conversation while

translating i*" sentence in 2k + 1" turn. let-l and
J

Y|jtj| denote the sentences in previous English and For-
eign turn respectively, and xg denotes the sentence ¢
in ongoing turn j where ¢ € {1, ..., |t;|}. The shaded
turns are observed i.e., source (the speaker utterances),
while the rest are unobserved i.e., the target translations
or the unuttered source sentences for current turn.

describe our approach for extracting relevant in-
formation from the source and target bilingual
conversation history.

4.1 Source-Side History

Suppose we are translating an ongoing conversa-
tion having alternating turns of English and For-
eign. We are currently in the 2k + 1* turn (in En-
glish) and want to translate its i** sentence using
the source-side conversation history represented
by context vector 05, (dimensions H).

Let’s assume that we already have the represen-
tations of previous source sentences in the con-
versation. We pass the source sentence represen-
tations through Turn-RNNs, which are composed
of language-specific bidirectional RNNSs irrespec-
tive of the speaker, as shown in Figure 2, and con-
catenate the last hidden states of the forward and
backward Turn-RNNs to get the final turn repre-
sentation r;, where j denotes the turn index. The
individual turn representations are then combined,
based on language’, to obtain context vectors oy,
and oy, computed in several possible ways (de-
scribed below), which are further amalgamated us-

"For this work, we define the turns based on language and
do not use the speaker information as for real-world chat sce-
narios (e.g., agent-client in a customer service chat), we do
not have multiple speakers based on language. We leave this
for future exploration.
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Figure 2: Architectural overview when translating i'"
sentence in 2k + 1" turn using source history.

ing a gating mechanism so as to give differing im-
portance to each element of the context vector:

a©® 0y + (1 —a)©oyp, (D
J(Uen X Oen, —I—Ufr X Ofr + bg)

Ocn, fr

«

where o is the logistic sigmoid function, U’s are
matrices and by is a vector. Finally, we perform a
dimensionality reduction to obtain:

Ogpe = tanh(WT X O¢p, fr + bT) )

In the remainder of this section, {W, U, b} are
language-specific learned parameters. We propose
five ways of computing the language-specific con-
text representations, O¢,, and oy;..

Direct Transformation The simplest approach
is to combine turn representations using a
language-specific dimensionality reduction trans-
formation:

tanh([Wen; ...; Wen] X [r15...; Port1] + ben)
tanh([Wyr;...; Wyr] X [r2;...;r26] + byr)

Ocn

ofr

Here r;’s are concatenated row-wise.



Hierarchical Gating We propose a language-
specific exponential decay gating based on the in-
tuition that the farther the previous turns are from
the current one, the lesser their impact may be on
the translation of a sentence in an ongoing turn,
similar in spirit to the caching mechanism by Tu
et al. (2017):

Oen = gen(gen(-ngen(gen(rl: 1'3), 1‘5)...), r2k71)a r2k+1)

where

gen(a, b)
o

aGa+(l-a)Ob
U(Ul,en X a+U2,en X b+ben)

o, is computed in a similar way.

Language-Specific Attention The English and
Foreign turn representations are combined sepa-
rately via attention to allow the model to focus on
relevant turns in the English and the Foreign con-
text:

softmax([rl; e r2k+1]T X hl)

Pen = 3)
psr = softmax([ra;...;rax]” X tanh(We, X h; 4 bey))
Ocn = tanh(Wep X ([r1;...;T2k41] X Pen) + ben)

Ofr [r2;...;T2k] X Pyr

Here r;’s are concatenated column-wise, h; is the
concatenation of last hidden state of forward and
backward RNNs in the encoder for current sen-
tence ¢ in turn 2k + 1 (dimensions 2H) and {W,,,
b, } transform the language space to that of the
target language.

Combined Attention This is a language-
independent attention that merges all turn
representations into one. The hypothesis here
is to verify if the model actually benefits from
Language-Specific attention or not.

Pen,sr = softmax([ri,en;r2;...; rng,en]T X
tanh(Wen X h; 4+ ben))
Oen, fr — [rl,en; ra2;...; r2k+1,en] X Pen, fr

Here roktl,en = tanh(Wen X I'og41 + ben)-

Language-Specific Sentence-level Attention
All the previous approaches for computing oy,
and oy, use a single turn-level representation.
We propose to use the sentence information
explicitly via a sentence-level attention to evaluate
the significance of more fine-grained context in
contrast to Language-Specific Attention. We
first concatenate the hidden states of forward
and backward Turn-RNNs for each sentence and
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get a matrix comprising of representations of all
the previous source sentences, i.e., for English
turns, we have [r%;...;r|1t1|;...;r%k“;...;rfffl],
and similarly we have another matrix for all the
previous Foreign sentences. Here, each r is
the representation of source sentence ¢ in turn j
computed by the bidirectional Turn-RNN. The

remaining computations are same as in Eq. 3.

4.2 Target-Side History

Using target-side conversation history is as impor-
tant as that of the source-side since it helps in mak-
ing the translation more faithful to the target lan-
guage. This becomes crucial for translating con-
versations where the previous turns are all in the
same language. For incorporating the target-side
context, we use a sentence-level attention simi-
lar to the one described for the source-side con-
text, i.e., for all previous English source sentences,
we have a matrix R, comprising of the corre-
sponding target sentence representations in For-
eign, and another matrix Ry, of target sentence
representations (in English) for previous Foreign
turns. Here each target sentence representation has
dimensions H. Then,

softmax(RZ,L X tanh(We,en X Dy + bt en))

Pen =

psr = softmax(Rf, X (Wyagen X hi + byaen))
Oen = Ren X Pen

ofr = tanh(Ween X (Rfr X Dfr) + btren)

where {W¢ c;,,bscn} are for dimensionality re-
duction and changing the language space of the
query vector h; and the context vector, while
{Wigen.btien} are only for dimensionality re-
duction. o, and oy, are further combined using
a gating mechanism as in Eq. 1 to obtain the final
target context vector o4 (dimensions H).

4.3 Dual Conversation History

Now that we have explained how to leverage the
source and target conversation history separately,
we explain how they can be utilised simultane-
ously. The simplest way to do this is to incorporate
both context vectors o4 and o4y into the base
model (explained in Sec 4.4), referred as Src-Tgt
dual context.

Another intuitive approach, as evident from Fig-
ure 2, is to separately model English and For-
eign sentences using two separate context vectors
Ocn,m and oy, ,,, where each is constructed from
a mixture of the original source or target trans-
lations, is language-specific and possibly contain



less noise. We refer to this as the Src-Tgt-Mix
dual context. Suppose Ry, contains the mixed
source/target representations for English (the di-
mensions for source representations have been re-
duced to H) and R ¢, ,,, contains the same for For-
eign. Then,

Penym = softmax(R&, m X (Wigen X hy + braen))
Prrm = softmax(R}, , x tanh(Weg en X hy + bz en))
Ocn,m = tanh(Weren X (Ren,m X Pen,m) + Dtr,en)
Ofrm = Ryprm X Prrm

where Wyg ¢, Wi e, and Wy o, are for dimen-
sionality reduction, changing the language space
and both, respectively.

4.4 Incorporating Context into Base Model

The final representations 0. and 04t Or Ocp
and oy, ,,, can be incorporated together or indi-
vidually in the base model by:

e InitDec Using a non-linear transformation to
initialise the decoder, similar to Wang et al.
(2017): s; o = tanh(V x 0; + by), where  is
the sentence index in current turn 2k +1, {V,
b} are encoder-decoder specific parameters
and o; is either a single context vector or a
concatenation (transformed) of the two.

e AddDec As an auxiliary input to the decoder
(similar to Jean et al. (2017); Wang et al.
(2017); Maruf and Haffari (2018)):

Sin = tanh(Ws “Sin—1T W - ET[yi,n] +
Wi - Cin+ Wis - O src 1 Wt - Oi,tgt)

e InitDec+AddDec Combination of previous
two approaches.

4.5 Training and Decoding

The model parameters are trained end-to-end by
maximising the sum of log-likelihood of the bilin-
gual conversations in training set D. For example,
for a conversation having alternating turns of En-
glish and Foreign language, the log-likelihood is:

T
Tl—l [topy1l [tog42l

(Z log Po(yil@i, 00) + ) long(mj|yj,oj))

k=0 i=1 j=1

where ¢, j denote sentences belonging to 2k + 1t
or 2k + 2" turn; 0(,) is a representation of the
conversation history, and |7'| is the total number
of turns (assumed to be even here).
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The best output sequence for a given input se-
quence for the i*" sentence at test time, a.k.a. de-
coding, is produced by:

arg max Py (yi|xi, 0;)

5 Experiments

Implementation and Hyperparameters We
implement our conversational Bi-MSMT model in
C++ using the DyNet library (Neubig et al., 2017).
The base model is built using mantis (Cohn
et al., 2016) which is an implementation of the
generic sentence-level NMT model using DyNet.

The base model has single layer bidirectional
GRUs in the encoder and 2-layer GRU in the de-
coder®. The hidden dimensions and word embed-
ding sizes are set to 256, and the alignment dimen-
sion (for the attention mechanism in the decoder)
is set to 128.

Models and Training We do a stage-wise
training for the base model, ie., we first
train the English—Foreign architecture and
the Foreign—English architecture, using the
sentence-level parallel corpus. Both architectures
have the same vocabulary’ but separate parame-
ters to avoid biasing the embeddings towards the
architecture trained last. The contextual model is
pre-trained similar to training the base model. The
best model is chosen based on minimum overall
perplexity on the bilingual dev set.

For the source context representations, we use
the sentence representations generated by two
sentence-level bidirectional RNNLMs (one each
for English and Foreign) trained offline. For the
target sentence representations, we use the last
hidden states of the decoder generated from the
pre-trained base model'®. At decoding time, how-
ever, we use the last hidden state of the decoder
computed by our model (not the base) as the tar-
get sentence representations. Further training de-
tails are provided in Appendix B.

8We follow Cohn et al. (2016) and Britz et al. (2017) in
choosing hyperparameters for our model.

°For each language-pair, we use BPE (Sennrich et al.,
2016) to obtain a joint vocabulary of size ~30k.

%Even though the paramaters of the base model are up-
dated, the target sentence representations are fixed throughout
training. We experimented with a scheduled updating scheme
in preliminary experiments but it did not yield significant im-
provement.



Europarl Subtitles
En-Fr En-Et En-De En-Ru
Overall En—FrFr—En[Overall En— EtEt—En[Overall En—De De—En[[OverallEn—RuRu—En
Base Model [37.36 38.13 36.03]20.68 18.64 26.65[24.74 2180 27.74 [[19.05 1490 23.04

+Source Context as Lang-Specific Attention via
InitDec 38.40" 39.197 36.867|21.791
AddDec 38.50" 39.357 36.98"|21.657
InitDec+AddDec 38.557 39.34" 37.14%|21.491

19.54" 28.337(26.34" 23.317 29.397 || 18.88 14.89 22.56
19.66" 27.487(26.30" 23.09t 29.527 | 19.34 15.16 23.12
19.43" 27557 |26.257 23.18" 29.30" || 19.35 15.16 23.14

+Source Context via
Direct Tranformation 38.35" 39.13" 36.96"(21.75"
Hierarchical Gating 38.33" 39.14" 36.897|21.62"
Lang-Specific Attention ||38.40" 39.19" 36.86"|21.79"
Combined Attention 38.507 39.367 36.947|21.66
Lang-Specific S-Attention||38.467 39.247 37.067|21.84

19.59" 28.077[26.29" 23.341 29221 19.09 14.89 22.76
19.557 27.647(26.317 23.171 29.45%| 1920 15.10 22.73
19.547 28.337(26.34% 23317 29.397|/19.35 15.16 23.14
19.52F 27.90"|26.387 23317 29.447 || 18.96 14.82 22.92
19.58" 28.43"(26.49" 23.497 29.497 || 19.09 14.59 22.98

+Lang-Specific S-Attention using
Source Context 38.461 39.24" 37.06"|21.84
Target Context 38.76" 39.57" 37.357|21.77"
Dual Context Src-Tgt 38.80" 39.517 37.50"|21.74
Dual Context Src-Tgt-Mix||38.76" 39.52F 37.43%|21.68"

19.58" 28.431(26.49" 23.49" 29.497 || 19.09 14.59 22.98
19.68" 27.86" [26.211 23.16" 29.26" || 19.23 1477 23.23
19.607 27.987(26.39" 23.28" 29.507 || 18.89 14.52 23.06
19.63" 27.711(26.371 23.267 29.487 || 19.26 14.86 23.01

Table 2: BLEU scores for the bilingual test sets. Here all contexts are incorporated as InitDec for Europarl and
InitDec+AddDec for Subtitles unless otherwise specified. bold: Best performance, : Statistically significantly
better than the base model, based on bootstrap resampling (Clark et al., 2011) with p < 0.05.

5.1 Results

Firstly, we evaluate the three strategies for in-
corporating context: InitDec, AddDec, Init-
Dec+AddDec, and report the results for source
context using Language-Specific Attention in Ta-
ble 2. For the Europarl data, we see de-
cent improvements with InitDec for En-Et (+1.11
BLEU) and En-De (+1.60 BLEU), and with Init-
Dec+AddDec for En-Fr (+1.19 BLEU). We also
observe that, for all language-pairs, both transla-
tion directions benefit from context, showing that
our training methodology was indeed effective.
On the other hand, for the Subtitles data, we see
a maximum improvement of +0.30 BLEU for Init-
Dec+AddDec . We narrow down to three major
reasons: (i) the data is noisier when compared to
Europarl, (ii) the sentences are short and generic
with only 1% having more than 27 tokens, and fi-
nally (iii) the turns in OpenSubtitles2016 are short
compared to those in Europarl (see Table 1), and
we show later (Section 5.2) that the context from
current turn is the most important.

The next set of experiments evaluates the five
different approaches for computing the source-
side context. It is evident from Table 2
that for English-Estonian and English-German,
our model indeed benefits from using the fine-
grained sentence-level information (Language-
Specific Sentence-level Attention) as opposed to

just the turn-level one.

Finally, our results with source, target and dual
contexts are reported. Interestingly, just using the
source context is sufficient for English-Estonian
and English-German. For English-French, on the
other hand, we see significant improvements for
the models using the target-side conversation his-
tory over using only the source-side. We attribute
this to the base model being more efficient and
able to generate better translations for En-Fr as it
had been trained on a larger corpus as opposed to
the other two language-pairs. Unlike Europarl, for
Subtitles, we see improvements for our Src-Tgt-
Mix dual context variant over the Src-Tgt one for
En—Ru, showing this to be an effective approach
when the target representations are noisier.

To summarise, for majority of the cases our
Language-Specific Sentence-level Attention is a
winner or a close second. Using the Target Con-
text is useful when the base model generates
reasonable-quality translations; otherwise, using
the Source Context should suffice.

Local Source Context Model Most of the pre-
vious works for online context-based NMT con-
sider only a single previous sentence as context
(Jeanetal., 2017; Bawden et al., 2017; Voita et al.,
2018). Drawing inspiration from these works,
we evaluate our model (trained with Language-
Specific Sentence-Level Attention) on the same
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Europarl Subtitles
En-Fr En-Et En-De| En-Ru
Prev Sent | 38.15 21.70 26.09 | 19.13
Our Model|38.46" 21.84 26.497| 19.09

Table 3: BLEU scores for the bilingual test sets. bold:
Best performance, {: Statistically significantly better
than the contextual baseline.

Type of Context |BLEU
No context (Base Model) 24.74
Current Turn 26.39

Current Language from Previous Turns| 26.21
Other Language from Previous Turns | 26.32
Complete Context 26.49

Table 4: BLEU scores for En-De bilingual test set.

34 ! ! !
[l 0 Base MT ] I BaseMT-+SrcContext
32 3723
) = 9.35 29.75 .
= 30 28 232) ;
A .
m 28| s
26.34
26 | 24.74 |
24 :I\ T

I
I II I

Figure 3: BLEU scores on En-De test set while train-
ing (I) smaller base model with smaller corpus (pre-
vious experiment), (II) smaller base model with larger
corpus, and (IIT) a larger base model with larger corpus.

test set but using only the previous source sentence
as context. This evaluation allows us to hypothe-
sise how much of the gain can be attributed to the
previous sentence. From Table 3, it can be seen
that our model surpasses the local-context base-
line for Europarl showing that the wider context is
indeed beneficial if the turn lengths are longer. For
En-Ru, it can be seen that using previous sentence
is sufficient due to short turns (see Table 1).

5.2 Analysis

Ablation Study We conduct an ablation study
to validate our hypothesis of using the complete
context versus using only one of the three types
of contexts in a bilingual multi-speaker conversa-
tion: (i) current turn, (ii) previous turns in current
language, and (iii) previous turns in the other lan-
guage. The results for En-De are reported in Ta-
ble 4. We see decrease in BLEU for all types of
contexts with significant decrease when consider-
ing only current language from previous turns.The
results show that the current turn has the most in-
fluence on translating a sentence, and we conclude

En—Fr |les; par; est; a; dans; le; en; j’; un; afin; question;
entre; qu’; étre; ces; également; y; depuis; ¢’; ou

Fr—En |this; of; we; issue; europe; by; up; make; united;
does; what; regard; s; must; however; such; whose;
share; like; been

En—Et [eest; vahel; iile; nimel; ja; aastal; aasta; neid; ainult
seepdrast; nagu; kes; komisjoni; tehtud; kiisimuses;
sisserdnde; liikmesriigi; mulla; liibanoni; dawit

Et—En [for; this; of; is; political; important; culture; also; as;
order; are; each; their; only; gender; were; its;
economy; one; market

En—De|daB; auf; und; werden; nicht; miissen; aus; mehr;
konnen; einem; rates; eines; insbesondere; wurden;
habe; mitgliedstaaten; ist; sondern; europa;
gemeinsamen

De—Enfthat; its; say; must; some; therefore; more; countries;
an; favour; public; will; without; particularly;
hankiss; much; increase; eu; them; parliamentary

Table 5: Most frequent tokens correctly generated by
our model when compared to the base model.

that since our model is able to capture the com-
plete context, it is generalisable to any conversa-
tional scenario.

Training base model with more data To anal-
yse if the context is beneficial even when using
more data, we perform an experiment for English-
German where we train the base model with addi-
tional sentence-pairs from the full WMT’ 14 cor-
pus'! (excluding our dev/test sets and filtering sen-
tences with more than 100 tokens). For train-
ing the contextual model, we still use the bilin-
gual multi-speaker corpus. We observe a sig-
nificant improvement of +1.12 for the context-
based model (Figure 3 II), showing the signifi-
cance of conversation history in this experiment
condition.'?

We perform another experiment where we use a
larger base model, having almost double the num-
ber of parameters than our previous base model
(hidden units and word embedding sizes set to
512, and alignment dimension set to 256), to
test if the model parameters are being overesti-
mated due to the additional context. We use the
same WMT’ 14 corpus to train the base model and
achieve significant improvement of +1.48 BLEU
for our context-based model over the larger base-
line (Figure 3 III).

"https://nlp.stanford.edu/projects/nmt/

21t should be noted that the BLEU score for the base
model trained with WMT does not match the published re-
sults exactly as the test set contains both English and German
sentences. It does, however, fall between the scores usually
obtained on WMT’ 14 for En—De and De—En.



Context

nous sommes également favorables au principe d’un systeme de collecte des miles commun pour le parlement
européen, pour que celui-ci puisse bénéficier de billets d’avion moins chers, méme si nous voyons difficilement
comment ce systeéme pourrait &tre déployé en pratique.

enfin, nous ne sommes pas opposés a I’attribution de prix culturels par le parlement européen.

Source

parlement européen a un regard critique.
Target

néanmoins, nous sommes particulierement critiques a I’égard du prix pour le journalisme du parlement européen
et nous ne pensons pas que celui-ci puisse décerner des prix aux journalistes ayant pour mission de soumettre le

however, we are highly critical of parliament’s prize for journalism, and do not believe that it is appropriate for
parliament to award prizes to journalists whose task it is to critically examine the european parliament.

\Base Model

parliament to a critical view.
Our Model

critical view.

nevertheless, we are particularly critical of the price for the european union’s european alism and we do not
believe that it would be able to make a price to the journalists who have been made available to the european

however, we are particularly critical of the price for the european union’s democratic alism and we do not believe]
that it can give rise to the prices for journalists who have been tabled to submit the european parliament to a

Table 6: Example En-Fr sentence translation showing how the context helps our model in generating the appropri-

ate discourse connective.

Context  |oleks hea, kui reitinguagentuurid vastutaksid tulevikus enda tegevuse eest rohkem.
kirjalikult. - (it) kiites heaks wolf klinzi raporti, mille eesmérk on reitinguagentuuride tdhus reguleerimine,
votab parlament jidrjekordse sammu finantsturgude suurema ldbipaistvuse suunas.
mul oli selle dokumendi iile hea meel, sest krediidireitingute valdkonnal on palju probleeme, millest kdige
suuremad on oligopolidele tiipilised struktuurid ning konkurentsi, vastutuse ja labipaistvuse puudumine.
Source selles suhtes tuleb rohutada nende tegevuse suuremal édbipaistvuse pohirolli.
Target in this respect, it is necessary to highlight the central role of increased transparency in their activities.
Base Modellin this regard it must be emphasised in the major role of transparency in which these activities are to be
strengthened.
Our Model |in this regard, it must be stressed in the key role of greater transparency in their activities.

Table 7: Example En-Et translation showing how the wide-range context helps in generating the correct pronoun.
The antecedent and correct pronoun are highlighted in blue.

0.5 0.6 0.7

0.4

Density

0.3

0.2

0.1

0.0

Figure 4: Density of token counts for En—Fr illustrat-
ing where our model is better (+ve x-axis) and where
the base model is better (-ve x-axis).

How is the context helping? The underlying
hypothesis for this work is that discourse phe-
nomenon in a conversation may depend on long-
range dependency and these may be ignored by
the sentence-based NMT models. To analyse if
our contextual model is able to accurately translate
such linguistic phenomenon, we come up with our
own evaluation procedure. We aggregate the to-
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kens correctly generated by our model and those
correctly generated by the baseline over the entire
test set. We then take the difference of these counts
and sort them'3. Table 5 reports the top 20 tokens
where our model is better than the baseline for the
Europarl dataset. Figure 4 gives the density of
counts obtained using our evaluation for En—Fr!4.
Positive counts correspond to correct translations
by our model while the negative counts correspond
to where the base model was better. It can be seen
that for majority of cases our model supersedes
the base model. We observed a similar trend for
other translation directions. In general, the cor-
rectly generated tokens by our model include pro-
nouns (that, this, its, their, them), discourse con-
nectives (e.g., ‘however’, ‘therefore’, ‘also’) and
prepositions (of, for, by).

Table 6 reports an example where our model is
able to generate the correct discourse connective
‘however’ using the context. If we look at the con-

3We do not normalise the counts with the background fre-
quency as it favours rare words. Thus, obscuring the main
reasons of improving the BLEU score.

Qutliers and tokens with equal counts for our model and
the baseline were removed.
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Figure 5: Attention map when translating a conversa-
tion from the Et-En test set.

text of the source sentence in French, we come to
the conclusion that ‘however’ is indeed a perfect
fit in this case, whereas the base model is at a dis-
advantage and completely changes the underlying
meaning of the sentence by generating the inap-
propriate connective ‘nevertheless’.

Table 7 gives an instance where our model is
able to generate the correct pronoun ‘their’. It
should be noted that in this case, the current source
sentence does not contain the antecedent and thus
the context-free baseline is unable to generate the
appropriate pronoun. On the other hand, our con-
textual model is able to do so by giving the high-
est attention weights to sentences containing the
antecedent (observed from the attention map in
Figure 5)'°. Figure 5 also shows that for trans-
lating majority of the sentences, the model attends
to wide-range context rather than just the previous
sentence, hence strengthening the premise of us-
ing the complete context.

6 Conclusion

This work investigates the challenges associated
with translating multilingual multi-speaker con-
versations by exploring a simpler task referred
to as Bilingual Multi-Speaker Conversation MT.
We process Europarl v7 and OpenSubtitles2016
to obtain an introductory dataset for this task.
Compared to models developed for similar tasks,
our work is different in two aspects: (i) the his-
tory captured by our model contains multiple lan-
guages, and (ii) our model captures ‘global’ his-
tory as opposed to ‘local’ history captured in most
previous works. Our experiments demonstrate the

'5For this particular conversation, all previous turns were
in Estonian.

significance of leveraging the bilingual conversa-
tion history in such scenarios. Furthermore, the
analysis shows that using wide-range context, our
model generates appropriate pronouns and dis-
course connectives in some cases. We hope this
work to be a first step towards translating multilin-
gual multi-speaker conversations. Future work on
this task may include optimising the base transla-
tion model and approaches that condition on spe-
cific discourse information in the conversation his-
tory.
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A Data Statistics

Europarl Subtitles
En-Fr En-Et En-De | En-Ru
Dev/Test

# Conversations| 140/209 88/132  70/108 |462/694
# Sentences |4.9k/7.8k 3.2k/5.2k 2.1k/3.3k| 5.9k/9k

Table 8: General statistics for development and test
sets.

B Experiments

Training For the base model, we make use of
stochastic gradient descent (SGD)!® with initial
learning rate of 0.1 and a decay factor of 0.5 af-
ter the fifth epoch for a total of 15 epochs. For
the contextual model, we use SGD with an initial
learning rate of 0.08 and a decay factor of 0.9 after
the first epoch for a total of 30 epochs. To avoid
overfitting, we employ dropout and set its rate to
0.2. To reduce the training time of our contextual
model, we perform computation of one turn at a
time, for instance, when using the source context,
we run the Turn-RNNs for previous turns once and
re-run the Turn-RNN only for sentences in the cur-
rent turn.

'*In our preliminary experiments, we tried SGD, Adam
and Adagrad as optimisers, and found SGD to achieve better
perplexities in lesser number of epochs (Bahar et al., 2017).
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Abstract

We reassess a recent study (Hassan et al.,
2018) that claimed that machine translation
(MT) has reached human parity for the transla-
tion of news from Chinese into English, using
pairwise ranking and considering three vari-
ables that were not taken into account in that
previous study: the language in which the
source side of the test set was originally writ-
ten, the translation proficiency of the evalua-
tors, and the provision of inter-sentential con-
text. If we consider only original source text
(i.e. not translated from another language, or
translationese), then we find evidence showing
that human parity has not been achieved. We
compare the judgments of professional trans-
lators against those of non-experts and dis-
cover that those of the experts result in higher
inter-annotator agreement and better discrim-
ination between human and machine transla-
tions. In addition, we analyse the human trans-
lations of the test set and identify important
translation issues. Finally, based on these find-
ings, we provide a set of recommendations for
future human evaluations of MT.

1 Introduction

Neural machine translation (NMT) has revolu-
tionised the field of MT by overcoming many
of the weaknesses of the previous state-of-the-art
phrase-based machine translation (PBSMT) (Ben-
tivogli et al., 2016; Toral and Sanchez-Cartagena,
2017). In only a few years since the first work-
ing models, this approach has led to a substan-
tial improvement in translation quality, reported
in terms of automatic metrics (Bojar et al., 2016,
2017; Sennrich et al., 2016). This has ignited
higher levels of expectation, fuelled in part by hy-
perbolic claims from large MT developers. First
we saw in Wu et al. (2016) that Google NMT
was “bridging the gap between human and ma-
chine translation [quality]”. This was amplified

Sheila Castilho Ke Hu  Andy Way
ADAPT Centre
Dublin City University
Ireland

firstname.secondname@adaptcentre.ie

recently by the claim by Hassan et al. (2018) that
Microsoft had ”achieved human parity” in terms
of translation quality on news translation from
Chinese to English, and more recently still by
SDL who claimed to have “cracked” Russian-to-
English NMT with “near perfect” translation qual-
ity.! However, when human evaluation is used to
compare NMT and SMT, the results do not always
favour NMT (Castilho et al., 2017a,b).

Accompanying the claims regarding the capa-
bility of the Microsoft Chinese-to-English NMT
system, Hassan et al. (2018) released their exper-
imental data> which permits replicability of their
experiments. In this paper, we provide a detailed
examination of Microsoft’s claim to have reached
human parity for the task of translating news from
Chinese (ZH) to English (EN). They provide two
definitions in this regard, namely:

Definition 1. If a bilingual human judges the
quality of a candidate translation produced by a
human to be equivalent to one produced by a ma-
chine, then the machine has achieved human par-
ity.

Definition 2. If there is no statistically signifi-
cant difference between human quality scores for
a test set of candidate translations from a machine
translation system and the scores for the corre-
sponding human translations then the machine has
achieved human parity.

The remainder of the paper is organised as fol-
lows. First, we identify and discuss three poten-
tial issues in Microsoft’s human evaluation, con-
cerning (i) the language in which the source text
was originally written, (ii) the competence of the
human evaluators with respect to translation, and
(iii) the linguistic context available to these evalu-
ators (Section 2). We then conduct a new modified

"https://www.sdl.com/about/news-media/press/2018/sdl-
cracks-russian-to-english-neural-machine-translation.html
*http://aka.ms/Translator-HumanParityData

113

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 113-123
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/W18-64012


https://doi.org/10.18653/v1/W18-64012

evaluation of their MT system on the same dataset
taking these issues onboard (Section 3). In so do-
ing, we reassess whether human parity has indeed
been achieved following what we consider to be
a fairer evaluation setting. We then take a closer
look at the quality of Microsoft’s dataset with the
help of an English native speaker and a Chinese
native speaker, and discover a number of problems
in this regard (Section 4). Finally, we conclude the
paper (Section 5) with a set of recommendations
for future human evaluations, together with some
remarks on the risks for the whole field of over-
hyping the capability of the systems we build.

2 Potential Issues

2.1 Original Language of the Source Text

The test set used by Hassan et al. (2018)
(newstest2017) was the ZH reference from the
news translation shared task at WMT 2017 (Bo-
jar et al., 2017),> which contains 2,001 sentence
pairs, of which half were originally written in
ZH and the remaining half were originally writ-
ten in EN. Figure 1 represents the WMT test set
and the respective translation. The organisers of
WMT 2017 manually translated each of these two
subsets (files Al and B1 in Figure 1) into the
other language (B2 and A2, respectively) to pro-
duce the resulting parallel test set of 2,001 sen-
tence pairs. Thus, Hassan et al. (2018) machine-
translated 2,001 sentences from ZH into EN, but
only half of them were originally written in ZH
(file D1); the other half were originally written in
EN, then they were translated by a human trans-
lator into ZH (as part of WMT’s organisation),
and this human translation was finally machine-
translated by Microsoft into EN (file D2). Mi-
crosoft also human-translated the ZH reference
file into EN to use as reference translations (file C
- EN REF). Therefore, 50% of their EN reference
comprises EN translations direct from the original
Chinese (file C1), while 50% are EN translations
from the human-translated file from EN into ZH
(file C2), i.e. backtranslation of the original EN
(A1). While their human evaluation is conducted
on three different subsets (referred to as Subset-
2, Subset-3, and Subset-4 in Tables 5d to 5f of
their paper), since all three are randomly sampled
from the whole test set, these subsets still contain
around 50% of sentences originally written in ZH
and around 50% originally written in EN.

*http://www.statmt.org/wmt17/translation-task html
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WMT

A B
EN REF ZH REF
1 1
EN - original \ / ZH - original
2 2
HT HT
ZH original>>EN EN original>>ZH

Ms
ZH>>EN
HT NMT
C D
EN REF NMT Output
1
B1>>EN B1>>EN

INIH
iN

B2>>EN 2>>EN

Figure 1: WMT test set and Microsoft Translation ZH-
to-EN reference and MT output

We hypothesize that the sentences originally
written in EN are easier to translate than those
originally written in ZH, due to the simplification
principle of translationese, namely that translated
sentences tend to be simpler than their original
counterparts (Laviosa-Braithwaite, 1998). Two
additional universal principles of translation, ex-
plicitation and normalisation, would also indicate
that a ZH text originally written in EN would be
easier to translate. Therefore, we explore whether
the inclusion of source ZH sentences originally
written in EN distorts the results, and unfairly
favours MT.

2.2 Human Evaluators

The human evaluation described in Hassan et al.
(2018) was conducted by “bilingual crowd work-
ers”. While the authors implemented a set of qual-
ity controls to “guarantee high quality results”,
no further details are provided on the selection of
evaluators and their linguistic expertise. In addi-
tion, no inter-annotator agreement (IAA) figures
were provided. We acknowledge, however, that
agreement cannot be measured using the conven-



tional Kappa coefficient, since their human evalu-
ation uses a continuous scale (range [0 — 100]).

It has been argued that non-expert translators
lack knowledge of translation and so might not
notice subtle differences that make one transla-
tion better than another. This was observed in
the human evaluation of the TraMOOC project* in
which authors compared the evaluation of MT out-
put of professional translators against crowd work-
ers (Castilho et al., 2017c). Results showed that
for all language pairs (involving 11 languages), the
crowd workers tend to be more accepting of the
MT output by giving higher fluency and adequacy
scores and performing very little post-editing.

With that in mind, we attempt to replicate the
results achieved in Hassan et al. (2018) by redo-
ing the manual evaluation with participants with
different levels of translation proficiency, namely
professional translators (henceforth referred to as
experts) and bilingual speakers with no formal
translation qualifications (henceforth referred to as
non-experts).

2.3 Context

Hassan et al. (2018) evaluated the sentences in
the testset in randomised order, meaning that sen-
tences were evaluated in isolation. However, doc-
uments such as the news stories that make up
the test set contain relations that go beyond the
sentence level. To translate them correctly one
needs to take this inter-sentential context into ac-
count (Voigt and Jurafsky, 2012; Wang et al.,
2017a). The MT system by Hassan et al. (2018)
translates sentences in isolation while humans nat-
urally consider the wider context when conducting
translation.

Our hypothesis is that referential relations that
go beyond the sentence-level were ignored in the
evaluation as its setup considered sentences in iso-
lation (randomised). This probably resulted in
the evaluation missing some errors by the MT
system that might have been caused by its lack
of inter-sentential contextual knowledge. In con-
trast, our revised human evaluation takes inter-
sentential context into account. Sentences are not
randomised but evaluated in the order they appear
in the documents that make up the test set. In
addition, when a sentence is evaluated, the eval-
uator can see both the previous and the next sen-
tence, akin to how a professional translator works

*http://tramooc.eu/
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in practice. In the same spirit, concurrent work by
L&ubli et al. (2018) contrasts the evaluation of sin-
gle sentences and entire documents in the dataset
by Hassan et al. (2018), and shows a stronger
preference for human translation over MT when
evaluating documents as compared to isolated sen-
tences.

3 Evaluation

3.1 Experimental Setup

We conduct a human evaluation in which at the
same time evaluators are shown a source ZH sen-
tence and three EN translations thereof: (i) the hu-
man translation produced by Microsoft (file C in
Figure 1: henceforth referred to as HT), (ii) the
output of Microsoft’s MT system (file D: hence-
forth MS), and the output of a production system,
Google Translate (henceforth GG).> We take these
three translations from the data provided by Has-
san et al. (2018).

Instead of giving evaluators randomly selected
sentences, they see them in order. We randomised
the documents in the test set (169) and prepared
one evaluation task per document, for the first 49
documents (503 sentences). Of these 49 docu-
ments, 41 were originally written in ZH (amount-
ing to 299 sentences, with each document contain-
ing 7.3 sentences on average) and the remaining 8
were originally written in EN (204 sentences, av-
erage of 25.5 sentences per document). Evaluators
were asked to annotate all the sentences of each
document in one go, so that they can take inter-
sentential context into account.

Rather than direct assessment (DA) (Graham
etal., 2015), as in Hassan et al. (2018), we conduct
a relative ranking evaluation. While DA has some
advantages over ranking and has replaced the latter
at the WMT shared task since 2017 (Bojar et al.,
2017), ranking is more appropriate for our eval-
uation due to the fact that we evaluate sentences
in consecutive order (rather than randomly). This
can be accommodated in ranking as we can show
all three translations for each source sentence to-
gether with the previous and next source sentences

>We note that in the study by Hassan et al. (2018), 9 differ-
ent translations were compared: 3 reference translations, and
the output from six MT systems, 4 of which were Microsoft
systems (including one online), plus Google Translate and the
Sogou system (Wang et al., 2017b), the best-performing sys-
tem at WMT-2017. This, together with the fact that we use
different methods, may affect the comparability of the results
obtained to some degree.
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The Olympic commentator of CBS apologized for the expression that Chinese swimmers are "died like a pig".
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CBC Olympic commentator apologizes for Chinese swimmer's "slow like a pig" comment
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CBC Olympics commentator apologises for Chinese swimmer's' slow as a pig ‘comment
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Figure 2: Snapshot from the human evaluation showing the first sentence from the first document, which contains

30 sentences.

at the same time. In contrast, in DA only one trans-
lation is shown at a time, which is of course eval-
uated in isolation. An important advantage of DA
is that the number of annotations required grows
linearly (rather than exponentially with ranking)
with the number of translations to be evaluated;
this is relevant for WMT’s shared task as there
may be many MT systems to be evaluated, but not
for our research as we have only three translations
(HT, MS and GG). In any case, both approaches
have been found to lead to very similar outcomes
as their results correlate very strongly (R > 0.92
in Bojar et al. (2016)).

Our human evaluation is performed with the
Appraise tool (Federmann, 2012).° Figure 2
shows a snapshot of the evaluation. Subsequently,
we derive an overall score for each translation (HT,
MS and GG) based on the rankings. To this end
we use the TrueSkill method adapted to MT eval-
uation (Sakaguchi et al., 2014) following its us-
age at WMTI15,7 i.e. we run 1,000 iterations of
the rankings recorded with Appraise followed by
clustering (significance level o = 0.05).

Five evaluators took part in our evaluation: two
professional Chinese-to-English translators and
three non-experts. Of the two professional transla-
tors, one is a native English speaker with a fluent
level of Chinese, and the other is a Chinese na-
tive speaker with a fluent level of English. The

Shttps://github.com/cfedermann/Appraise
https://github.com/mjpost/wmt15
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three non-expert bilingual participants are Chi-
nese native speakers with an advanced level of En-
glish. These bilingual participants are researchers
in NLP, and so their profile is similar to some of
the human evaluators of WMT, namely MT re-
searchers.®

All evaluators completed all 49 documents, ex-
cept the third non-expert, who completed the first
18. Similarly, all evaluators ranked all the sen-
tences in the documents they evaluated, except the
second professional translator, who skipped 3 sen-
tences. In total we collected 6,675 pairwise judge-
ments.

3.2 Results

3.2.1 Original Language

To find out whether the language in which the
source sentence was originally written has any
effect on the evaluation, we show the resulting
Trueskill scores for each translation taking into ac-
count all the sentences in our test set versus con-
sidering the sentences in two groups according to
the original language (ZH and EN). The results are
shown in Table 1.

Regardless of the original language, GG is the
lowest-ranked translation, thus providing an indi-

81t is an open question as to whether using bilingual NLP
researchers may affect the results obtained. While we fol-
low the practice of WMT here — which differs from the ap-
proach taken by Hassan et al. (2018), who used bilingual
crowd workers — we intend in future work to investigate this
further.



Rank Original language
Both ZH EN
n=06675 | n=3873 | n=2802
1 HT 1.587* | HT 1.939* | MS 1.059
2 MS 1.231*% | MS 1.199* | HT 0.772*
3 GG-2.819 | GG-3.144 | GG -1.832
Table 1: Ranks of the translations given the original

language of the source side of the test set shown with
their Trueskill score (the higher the better). An aster-
isk next to a translation indicates that this translation is
significantly better than the one in the next rank.

cation that the quality obtainable from the MS sys-
tem is a notable improvement over state-of-the-art
NMT systems used in production. We observe that
HT outperforms significantly MS when the origi-
nal language is ZH, but the difference between the
two is not significant when the original language
is EN. Hence, we confirm our hypothesis that the
use of translationese as the source language dis-
torts the results in favour of MS.

Next, we check whether this effect of transla-
tionese is also present in the evaluation by Has-
san et al. (2018). To this end, we concatenate
all their judgments and model them with mixed-
effects regression. Our dependent variable is the
score, scaled down from the original range [0, 100]
to [0, 1], which we aim to predict with one contin-
uous predictor — sentence length — and two fac-
torial independent variables: translation (levels
HT, MS and GG) and original language (levels
ZH and EN). The identifiers of the sentence and
the annotator are included as random effects. We
plot the interaction between the translation and the
original language of the resulting model in Fig-
ure 3. HT outperforms MS by around 0.05 abso-
lute points for sentences whose original language
is ZH. However this gap disappears for source sen-
tences originally written in EN, where we see that
the score for MS is actually slightly higher than
that of HT, though the difference is not signifi-
cant. We observe a clear effect of translationese
(EN): compared to ZH, the scores of both MT sys-
tems increase substantially (GG over 10% abso-
lute and MS over 6% absolute), while the HT score
increases only very slightly.

Our hypothesis was theoretically supported by
the simplification principle of translationese. Ap-
plied to the test data, this would mean that the por-
tion originally written in ZH is more complex than
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Figure 3: Interaction between the MT system (lev-
els HT, MS and GG) and the original language of the
source sentence (levels ZH and EN).

the part originally written in EN. To check whether
this is the case, we compare the two subsets of the
test set using a measure of text complexity, type-
token ratio (TTR). While both subsets contain a
similar number of sentences (1,001 and 1,000),
the ZH subset contains more tokens (26,468) than
its EN counterpart (22,279). We thus take a sub-
set of the ZH (840 sentences) containing a similar
amount of words to the EN data (22,271 words).
We then calculate the TTR for these two sub-
sets using bootstrap resampling. The TTR for ZH
(M = 0.1927, SD = 0.0026, 95% confidence in-
terval [0.1925,0.1928]) is 13% higher than that for
EN (M = 0.1710, SD = 0.0025, 95% confidence
interval [0.1708,0.1711]).

Given the findings of this experiment, in the re-
mainder of the paper we use only the subset of the
test set whose original language is ZH.

3.2.2 Evaluators

To find out whether the translation expertise of
the evaluator has any effect on the evaluation, we
show the resulting Trueskill scores for each trans-
lation resulting from the evaluations by non-expert
versus expert translators. The results are shown in
Table 2. The gap between HT and MS is consid-
erably wider for experts (2.2 vs 1.2) than for non-
experts (1.3 vs 0.9). We link this to our expec-
tation, based on the previous finding by Castilho
et al. (2017c), that non-experts are more lenient
regarding MT errors. In other words, non-experts
disregard translation subtleties in their evaluation,
which leads to the gap between different transla-
tions — in this case HT and MS — being smaller.
In Section 4 we explore this further by means of a
qualitative analysis.



Rank Translators
All Experts | Non-experts
n=3873 | n=1785 | n=2088
1 HT 1.939* | HT 2.247* | HT 1.324
MS 1.199%* | MS 1.197* | MS 0.94*
3 GG -3.144 | GG -3.461 | GG -2.268
Table 2: Ranks and Trueskill scores (the higher the

better) of the three translations for evaluations carried
out by expert versus non-expert translators. An aster-
isk next to a translation indicates that this translation is
significantly better than the one in the next rank.

Trueskill provides not only an overall score for
each translation but also its confidence interval.
We expect these to be wider for the annotations
by non-experts than those annotations given by ex-
perts, which would indicate that there is more un-
certainty in the rankings by non-experts. Figure 4
shows the scores for each translation by experts
and non-experts, i.e. the same values that were
shown in Table 2, now enriched with their 95%
confidence intervals.

The sum of the confidence scores for the three
translations is just 0.33% higher for non-experts
(3.076) than for experts (3.066). However, it is
worth mentioning that, compared to the width of
the intervals for experts, those for non-experts are
considerably wider for HT (16% relative differ-
ence) while they are similar or smaller for MT (1%
and -11% relative differences for GG and MS, re-
spectively).

Trueskill score
N
——1

HT MS GG HT MS GG
Experts Non-experts

Figure 4: Trueskill scores of the three translations by
experts and non-experts together with their confidence
intervals.

We now look at inter-annotator agreement
(IAA) between experts and non-experts. We com-
pute the Kappa (x) coefficient (Cohen, 1960), as
done at WMT 2016 (Bojar et al., 2016, Sec-
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tion 3.3):°

. _ P(4) = P(E)

= I——P(E)
where P(A) represents the proportion of times
that the annotators agree, and P(F) the proportion
of times that the annotators are expected to agree
by chance.

As expected, the IAA between professional
translators (x = 0.254) is notably higher, 95%
relative, than that between non-experts (k =
0.130).! As we have three non-experts, we can
calculate the IAA not only among the three of
them but also between all three pairs of non-expert
annotators; all of the resulting coefficients (0.057,
0.135 and 0.195) are lower than that between ex-
perts (0.254).

To the best of our knowledge, this is the first
time that IAA of professional translators and non-
experts has been compared for the human eval-
uation of MT. In related work, Callison-Burch
(2009) compared the agreement level of two types
of non-expert translators: MT developers (referred
to in that paper as ‘experts’) and crowd work-
ers. He showed that crowd workers can reach the
agreement level of MT researchers using multiple
workers and weighting their judments. That said,
both types of non-experts conducted human eval-
uations for WMT13 (Bojar et al., 2013) and the
IAA rates of the crowd were well below those of
the researchers.

4 Analyses

As mentioned previously, we have examined the
quality of the test sets, both originally written in
ZH and originally written in EN and their respec-
tive translations. An English native speaker anal-
ysed both the original EN version from the WMT
set (file Al in Figure 1) and the human transla-
tion of the set originally written in ZH performed
by Microsoft (file C2). A Chinese native speaker,
who is fluent in English and has experience with
translation from EN into ZH, analysed the original

‘https://github.com/cfedermann/wmt16/
blob/master/scripts/compute_agreement_
scores.py

%Due to the fact that one non-expert evaluated only 18 out
of the 49 documents, the IAA calculations consider only the
first 18 documents. If we consider all 49 documents, the trend
remains the same; the IAA for the two experts is higher than
that for the two non-experts who evaluated all the documents:
0.265 vs 0.196.



ZH versions (file B1) as well as the human transla-
tion of the set originally written in EN performed
by the WMT organisers (file B2).

4.1 Original English

Regarding the English original (file Al in Figure
1), the analysis showed that apart from a few
grammar errors, the test set appeared to be fluent
and grammatical. Examples of grammatical errors
in the original EN files are:

i) “The idiot didn’t realize they were still on the
air”

ii) “Soon after, Scott Russel who was hosting
CBC’s broadcast apologized on-air for Mac-
Donald’s comment, saying: ‘We apologize the

comment on a swim performance made it to air.” ”

In example i) “on air” should be used instead
of “on the air”’, while in the example ii) a missing
“that” should be used after “apologize”. Nonethe-
less, these errors did not affect the ZH translation
(file B2) or the following backtranslation (C2) into
EN. Our hypothesis is that because the test set is
news content, it also contains tweets (such as ex-
ample 1)) and quotes from speech interviews (such
as example ii)), which are more likely to contain
grammatical errors.

4.2 Chinese Translation

Regarding the human translation into ZH per-
formed by WMT (file B2 in Figure 1), most of
the sentences contained grammatical errors and/or
mistranslations of proper nouns. Furthermore,
although some translations were grammatically
correct and accurate, they were not fluent. When
the ZH-translated sentences were compared
against the source (Al), the translations were
mostly accurate. However, when analyzed on
their own without the source, they sound disfluent:

iii)

EN original (A1): A front-row seat to the stunning
architecture of the Los Angeles Central Library
ZH (B2):8 1AL H S B B T ) I B 45 7 ST B
(IS

iv)

EN original (Al): An open, industrial loft in
DTLA gets a cozy makeover

ZH (B2): DTLAKITFRG L AT T —IX
EEIBOE -
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In example iii), although the ZH translation has
fully transferred the meaning of the source text, it
contains word-order errors which makes the trans-
lation disfluent since the verb phrase “5Cig A
(take a look) is placed after the object (library).
One possible translation for that is “J 5% B B4 &
LA S & BV 1) IR #4557 because the ZH
language syntax requires the verb to be placed be-
fore the object.

In example iv), the ZH translation contains a
grammatical error in the word “#f 177, which
would imply that the loft is carrying out a
makeover. In addition, the adjective “&¥ &
#J” (cosy) cannot be used to describe “Zf(i&”
(makeover). One possible translation for the En-
glish sentence is “DTLARFF = Tk (& AL 4%
HUE AR ET 8.

Given this analysis, we speculate that the trans-
lation of the EN original files into ZH might not
have been performed by an experienced translator,
but rather exemplify either human translation per-
formed by an inexperienced translator, or poorly
post-edited MT.

4.3 English Translation

Regarding the EN reference files translated by
Microsoft (file C2 in Figure 1), many of the
sentences contained grammatical errors (such as
word order, verb tense and missing prepositions)
as well as mistranslations.

V)

EN original (A1): A front-row seat to the stunning
architecture of the Los Angeles Central Library
ZH (B2):8 120 A 9 [ 318 I HE 457 Se i
R

EN (C2): Take a look of the astounding architec-
ture of the Los Angeles Central Library.

GG: The stunning structure of the Los Angeles
Central Library

MS: A sneak peek at the stunning architecture of
the Los Angeles Central Library

vi)

EN original (Al): An open, industrial loft in
DTLA gets a cozy makeover

ZH (B2):DTLARIF R LI BT T — Ik
EFE B0 -

EN (C2): A comfortable makeover was provided



to the open factory building design of DTLA.

GG: DTLA’s Open factory loft has a comfortable
makeover.

MS: DTLA’s open-plan factory loft has undergone
a comfortable makeover.

In example v), the EN translation of the ZH
source!! analyzed previously is translated with
the wrong preposition, i.e. ‘look of’ instead of
‘look at’. None of the professional translators
considered the reference worse than the MS
output; while one translator and one non-expert
considered it ‘as good’ as the MS output, the
other considered it better than MS but worse than
GG. Regarding the non-expert assessment, two of
them considered the HT to be as good as MS and
better than GG, and one considered the HT to be
worse than MS but better than GG.

In example vi), the EN translation (C2) of the
ZH source (B2) does not have all the information
expressed in ZH as the word ‘loft’ (& #%) is not
translated. Moreover, the EN translation refers to
an architectural design makeover of the building
rather than an interior makeover of an attic. Both
professional translators considered the EN refer-
ence to be worse than the MS output. As far as
the non-experts are concerned, two of them con-
sidered the HT to be worse than MS, while one
considered it to be ‘as good’. This provides quali-
tative evidence that non-experts may be more tol-
erant of translation errors than professional trans-
lators.

Another example of such behaviour is the
following:

vii)

EN original (A1): Learn more about the history of
downtown’s Central Library as the Society of Ar-
chitectural Historians/Southern California Chap-
ter hosts a salon with Arnold Schwartzman and
Stephen Gee, authors of the new book “Los An-
geles Central Library: A History of its Art and Ar-
chitecture

ZH (B2): SRERF L AR A2 BN R AL
DEE5HH BT REYE. HZAR5#
U7 5D HOVEE BT FU R 2 A0 S0 5% 28

g1

"t is important to note that the translators did not have
access to the original EN (A1) and so the ZH file (B2) was
used as the source.
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EN (C2):A salon will be hosted by Southern
California Branch of Society of Architectural
Historians and the co-authors of Los Angles
Central Museum: Art and Architectural History,
Arnold Schwarzman and Stephen Gee. It will
deliver more knowledge of the Central Library to
the participants

GG: The Southern California branch of the
American Institute of Architectural Historians has
held a salon with Fi[ 15 -Hi FLK = and #5257,
author of the Los Angeles Central Museum:
its art and architectural history. Through this
event, viewers can learn more about the history of
Central Library in the city centre

MS: The Southern California chapter of the
American Society of Architectural Historians and
the authors of a new book, "Los Angeles Central
Museum: Its Art and Architectural History,”
Arnold Schwartzman and Steven Gee, hosted a
salon at which viewers learned more about the
history of the Central Library in the city center

In example vii), regarding the ZH source (B2),
in addition to having the first sentence translated
into past tense — whereas the EN original (Al)
shows the salon event is happening in the near fu-
ture — it also contains a typo ‘¥’ which means
‘continent’ instead of ‘state’ “M|’. Even though
the typo does not affect the EN translation (C2),
it shows that the quality of the ZH translation is
not as high as would be expected of professional
human translators. Regarding the EN translation
(C2), while the first sentence is mostly fluent —
although it contains a typo in ‘Angles’ (Ange-
les) and lacks the article ‘the’ before the proper
noun in the first sentence — the second sentence
lacks fluency and contains errors of omissions and
mistranslations. For example, the words “down-
town” and “history” (7 #7/[> and [/ 5, respec-
tively) were not transferred over to the EN refer-
ence (C2). Furthermore, the word ‘viewers’ in the
ZH translation (W AX 1] ]) was mistranslated as ‘par-
ticipants’. Nonetheless, the EN translation (C2) is
able to capture the correct tense of the sentence
since the second sentence in the ZH translation
(B2) is ambiguous regarding verbal tense. The
MS translation does a better job in keeping the flu-
ency throughout the sentence even though it mis-



translates the tense of the source in the past tense.
Both professional translators assessed the HT as
worse than MS, whereas two of the non-experts
considered it to be as good as MS and better than
GG. The third non-expert considered the HT to be
worse than both MT systems. This example shows
that the level of expertise of the evaluators may
have an effect on the evaluation given that non-
experts are wrongly more tolerant of MT errors.

Similarly to the ZH translation (B2) of the En-
glish original, we speculate that the EN translation
(C2) of the ZH files is more likely a human trans-
lation performed by an inexperienced translator,
or even a poorly post-edited machine translation;
even if the translation was performed by an expe-
rienced translator, such that the ZH source (B2)
contained errors or was disfluent, a professional
translator would surely be more meticulous and
fix such errors before rubber-stamping the trans-
lations.

5 Conclusions and Future Work

This paper has reassessed a recent study that
claimed that MT has reached human parity for
the translation of news from Chinese into English,
considering three variables that were not taken
into account in that previous study: (i) the lan-
guage in which the source side of the test set was
originally written, (ii) the translation proficiency
of the evaluators, and (iii) the provision of inter-
sentential context.

The main findings of this paper are the follow-
ing:

e If we consider the subset of the test set whose
source side was originally written in ZH,
there is evidence that human parity has not
been achieved, i.e. the difference between the
human and the machine translations is signif-
icant. This is the case both in our human eval-
uation and in Microsoft’s.

Having translationese (ZH translated from
EN in our study) as input, compared to hav-
ing original text, results in higher scores for
MT systems in Microsoft’s human evalua-
tion.

Compared to judgments by non-experts,
those by professional translators have a
higher IAA and a wider gap between human
and machine translations.
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e We have identified issues in the human trans-
lations by both WMT and Microsoft. These
indicate that these translations were con-
ducted by non-experts and that were possibly
post-edited MT output.

There is little doubt that human evaluation has
played a very important role in MT research and
development to date. As MT systems improve —
as exemplified by the progress made by Hassan
et al. (2018) over state-of-the-art production sys-
tems — and thus the gap between them and human
translators narrows, we believe that human evalu-
ation, in order to remain useful, needs to be more
discriminative. We suggest that a set of principles
should be adhered to, partly based on our findings,
which we outline here as recommendations:

e The original language in which the source
side of the test sets is written should be the
same as their source language. This will
avoid having spurious effects because of hav-
ing translationese as MT input.

Human evaluations should be conducted by
professional translators. This allows fine-
grained nuances of translations to be taken
into account in the evaluation and should re-
sult in higher inter-annotator agreement.

Human evaluations should proceed taking
the whole document into account rather than
evaluating sentences in isolation. This allows
for intersentential phenomena to be consid-
ered as part of the evaluation.

e Test sets should be translated by experienced
professional translators from scratch.

We are confident that adhering to these princi-
ples is sensible under any translation conditions.
Of course, if the test set is faulty, then in claim-
ing that one’s MT system outperforms one’s com-
petitors, there is a risk that what one is actually
demonstrating is the contrary, as if automatic eval-
uation metrics demonstrate a higher score, what
that could be denoting is that one’s output is actu-
ally closer to the faulty test set than producing bet-
ter output in terms of improved translation quality
per se. Of course, this has consequences not just
for the study in this paper, but for all shared tasks:
past, present, and future.'?

2Ideally, it would be great if multiple references were also



Should material be made available by Google,
SDL or any other MT developers who claim ‘hu-
man parity’ or the like, we would be very happy
to apply these principles in subsequent rigorous
evaluations of actual demonstrable improvements
in translation quality. One thing is certain; as Way
(2018) observes, “those of us who have seen many
paradigms come and go know that overgilding the
lily does none of us any good, especially those of
us who have been trying to build bridges between
MT developers and the translation community for
many years.” We trust that our findings in this pa-
per demonstrate that while MT quality does seem
to be improving quite dramatically, human trans-
lators will continue to find gainful employment for
many years to come, despite somewhat grandiose
claims to the contrary.

On a final note, we acknowledge that our con-
clusions and recommendations are somewhat lim-
ited in that they are derived from experiments
on just one language direction and five evalua-
tors. Therefore we plan as future work to conduct
similar experiments on additional language pairs
with a higher number of evaluators. In the spirit
of Hassan et al. (2018), without which this pa-
per would not have been possible, we too make
publicly available our evaluation materials, the
anonymised human judgments and the statistical
analyses thereof. '
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Appendix: Evaluator Instructions

Given three translations (T1, T2 and T3), the task is to rank
them from best to worst given a source segment:

e Rank a translation T1 higher (rank1) than T2 (rank2),
if the first is better than the second.

e Rank both translations equally, for example translation
T1 rankl and T2 rankl, if they are of the same quality.

e Use the highest rank possible, e.g. if you’ve three
translations T1, T2 and T3, and the quality of T1 and
T2 is equivalent and both are better than T3, then do:
Tl=rankl, T2=rankl, T3=rank2. Do NOT use lower
rankings, e.g.: Tl=rank2, T2=rank2, T3=rank3.

Each task corresponds to one document. Documents contain
up to 50 sentences. If possible please annotate all the sen-
tences of a document in one go.



Freezing Subnetworks to Analyze Domain Adaptation
in Neural Machine Translation

Brian Thompson’ Huda Khayrallah’ Antonios Anastasopoulos
Arya D. McCarthy! Kevin Duhf Rebecca Marvin’ Paul McNamee'
Jeremy Gwinnup® Tim Anderson® and Philipp Koehn'
fJohns Hopkins University, *University of Notre Dame, °Air Force Research Laboratory
{brian.thompson, huda, arya, becky, mcnamee, phi}@jhu.edu,
aanastas@nd.edu, kevinduh@cs. jhu.edu,
{jeremy.gwinnup.1, timothy.anderson.20}@us.af.mil

Abstract

To better understand the effectiveness of con-
tinued training, we analyze the major compo-
nents of a neural machine translation system
(the encoder, decoder, and each embedding
space) and consider each component’s contri-
bution to, and capacity for, domain adaptation.
We find that freezing any single component
during continued training has minimal impact
on performance, and that performance is sur-
prisingly good when a single component is
adapted while holding the rest of the model
fixed. We also find that continued training
does not move the model very far from the
out-of-domain model, compared to a sensitiv-
ity analysis metric, suggesting that the out-of-
domain model can provide a good generic ini-
tialization for the new domain.

1 Introduction

Neural Machine Translation (NMT) has supplanted
Phrase-Based Machine Translation (PBMT) as the
standard for high-resource machine translation.
This has necessitated new domain adaptation meth-
ods, because PBMT adaptation methods primarily
rely on adapting the language model and phrase ta-
ble using interpolation or back-off schemes (see §2).
Continued training (Luong and Manning, 2015;
Freitag and Al-Onaizan, 2016), also referred to as
fine-tuning, is one of the most popular methods for
NMT adaptation, due to its strong performance.

In contrast to the PBMT literature, little research
has focused on why continued training is effective
or on what happens to NMT models during con-
tinued training. Motivated by domain adaptation
analysis in PBMT (Haddow and Koehn, 2012; Duh
et al., 2010; Irvine et al., 2013), this work proposes
a simple freezing subnetworks technique and uses it
to gain insight into how the various components of
an NMT system behave during continued training.
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Figure 1: Visualization of an NMT system seg-
mented into components.

We segment the model into five subnetworks,
which we refer to as components, denoted in Fig-
ure 1: the source embeddings, encoder, decoder
(which includes the attention mechanism), the soft-
max (used to denote the decoder output embed-
dings and biases), and the target embeddings.

We freeze components one at a time during con-
tinued training to see how much the adaptation
depends on each component. We also experiment
with freezing everything except one component to
determine each component’s capacity to adapt to
the new domain on its own.

In order to further analyze continued training, we
examine the magnitude of change in model com-
ponents during continued training of the network,
under both normal and freezing training conditions.
We also conduct sensitivity analysis of each com-
ponent to assist in interpreting these magnitudes.

Our NMT adaptation experiments are performed
across three languages: we translate from German,
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Component Size
Target Embedding  15.1M
Softmax 15.1M
Decoder 6.8M
Encoder 3. M
Source Embedding 15.4M
Total 56.0M

Table 1: Number of parameters in each component.

Korean, and Russian into English. Our out-of-
domain models are trained on WMT and/or subti-
tles corpora, and we adapt each model to translate
patent abstracts.

2 Related Work

Continued training has recently become a standard
for domain or cross-lingual adaptation in several
neural NLP applications. In PBMT, the most promi-
nent methods focus on adapting the language model
component (Moore and Lewis, 2010), and/or the
translation model (Matsoukas et al., 2009; Man-
sour and Ney, 2014; Axelrod et al., 2011), or on
interpolating in-domain and out-of-domain models
(Lu et al., 2007; Foster et al., 2010; Koehn and
Schroeder, 2007).

In contrast, the methods employed in NMT tend
to utilize continued training, which involves initial-
izing the model with pre-trained weights (trained
on out-of-domain data) and training/adapting it
to the in-domain data. Among others, Luong
and Manning (2015) and Freitag and Al-Onaizan
(2016) applied this method for domain adaptation.
Chu et al. (2017) mix in-domain and out-of-domain
data during continued training in order to adapt to
multiple domains. Continued training has also been
applied to cross-lingual transfer learning for NMT,
with Zoph et al. (2016) and Nguyen and Chiang
(2017) using it for transfer between high- and low-
resource language pairs.

Continued training is effective on a range of
data sizes. In-domain gains have been shown with
as few as dozens of in-domain training sentences
(Miceli Barone et al., 2017), and recent work has
explored continued training on single sentences
(Farajian et al., 2017; Kothur et al., 2018).

Similar adaptation techniques are also employed
in the field of Automatic Speech Recognition,
where continued training has been the basis of

Tokens
Dataset Sentences  Source Target
Out-of-domain training sets
Ru-En WMT 25.2M 563.9M 595.9M
Ru-En Subtitles 25.9M 179.8M 212.4M
De-En WMT 5.8M 138.6M 131.8M
De-En Subtitles 22.56M 171.6M 185.8M
Ko-En Subtitles 1.4M 11.5M 11.9M
In-domain training sets
Ru-En WIPO 29k 620 k 812k
De-En WIPO 821k 19M 23M
Ko-En WIPO 81k 2.2M 2.0M
In-domain test sets
Ru-En WIPO 3k 82k 109k
De-En WIPO 3k 132k 162k
Ko-En WIPO 3k 187k 165k

Table 2: Dataset statistics. The number of tokens
is computed before segmentation into subwords.
The in-domain development sets (not shown) have
similar statistics to the test sets.

cross-lingual transfer learning approaches (Grézl
et al., 2014; Kunze et al., 2017). Usually, the lower
layers of the network, which perform acoustic mod-
eling, are frozen and only the upper layers are up-
dated. In a similar vein, other works (Swietojanski
and Renals, 2014; Vilar, 2018) adapt a network to
a new domain by learning additional weights that
re-scale the hidden units.

3 Data

Our experiments are carried out across three lan-
guage pairs, from Russian, Korean, and German
into English. Basic statistics on the datasets used
for our experiments are summarized in Table 2. The
three languages represent three different domain
adaptation scenarios:

e In German, both the in- and out-of-domain
datasets are large.

o In Russian, the in-domain dataset is large but
the out-of-domain dataset is small.

e In Korean, both in- and out-of-domain
datasets are small.



OpenSubtitles

You’re gonna need a bigger boat.

WMT Intensified communication and sharing of information between the project partners
enables the transfer of expertise in rural tourism.
WIPO The films coated therewith, in particular polycarbonate films coated therewith, have

improved properties with regard to scratch resistance, solvent resistance, and reduced
oiling effect, said films thus being especially suitable for use in producing plastic parts

in film insert molding methods.

Table 3: Example sentences to illustrate domain differences.

3.1 Out-of-domain Data

For our out-of-domain dataset we utilize the
OpenSubtitles2018 corpus (Tiedemann, 2016;
Lison and Tiedemann, 2016), which consists of
translated movie subtitles.! For De—En and Ru—
En, we also use data from WMT 2017 (Bojar
et al., 2017),2 which contains data from several
sources: Europarl (parliamentary proceedings)
(Koehn, 2005),®> News Commentary (political and
economic news commentary),* Common Crawl
(web-crawled parallel corpus), and the EU Press
Releases.

We use the final 2500 lines of
OpenSubtitles2018 for the development
set. For German and Russian we also concatenate
newstest2016 as part of the development set.
newstest2016 consists of translated news articles
released by WMT for its shared task. In Korean,
we rely only on the OpenSubtitles2018 data.
See Table 3 for example sentences from WMT and
OpenSubtitles.

3.2 In-domain Data

We perform adaptation into the World International
Property Organization (WIPO) COPPA-V2 dataset
(Junczys-Dowmunt et al., 2016).> The WIPO data
consist of parallel sentences from international
patent application abstracts. We reserve 3000 lines
each for the in-domain development and test sets.
See Table 3 for an example WIPO sentence.

3.3 Data Preprocessing

All our datasets were tokenized using the Moses®
tokenizer. Additionally, Korean text was seg-

'www.opensubtitles.org

2statmt.org/wmt17

3statmt.org/europarl
‘casmacat.eu/corpus/news-commentary.html
5wipo.int/patentscope/en/data
6statmt.org/moses/

mented into words using the KoNLPy wrapper of
the Mecab-Ko segmenter.’

As a final preprocessing step, we train Byte Pair
Encoding (BPE) segmentation models (Sennrich
et al., 2016) on the out-of-domain training corpus.
We train separate BPE models for each language,
each with a vocabulary size of 30,000. For each lan-
guage, BPE is trained on the out-of-domain corpus
only and then applied to the training, development,
and test data for both out-of-domain and in-domain
datasets. This mimics the realistic setting where a
generic, computationally-expensive-to-train NMT
model is trained once. This NMT model is then
adapted to new domains as they emerge, without
retraining on the out-of-domain corpus. Training
BPE on the in-domain data would change the vo-
cabulary and thus require re-building the model.

4 Experimental Setup

For all language pairs, we train systems on the
out-of-domain data and select the best model pa-
rameters based on perplexity on the out-of-domain
development set. We then adapt the systems into
our smaller, in-domain training sets. We select the
best model based on the WIPO development set
perplexity and report results on the WIPO test sets.

4.1 Continued Training

We define continued training as:

1. Train a model until convergence on large out-
of-domain bitext.

2. Initialize a new model with the final parame-
ters of Step 1.

3. Train the model from Step 2 until convergence
on in-domain bitext.

"konlpy.org/en/
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4.2 NMT Implementation and Settings

Our neural machine translation systems are trained
using SOCKEYE (Hieber et al., 2017).8 We use
SOCKEYE’s built-in functionality for freezing pa-
rameters. We build RNN-based encoder—decoder
models with attention (Bahdanau et al., 2015), us-
ing a bidirectional RNN for the encoder. The en-
coder and decoder both have 2 layers with LSTM
hidden sizes of 512. Source and target word vec-
tors are also of size 512. The number of parameters
in each component are given in Table 1.

While training the out-of-domain models, we
apply dropout with 10% probability on the RNN
layers. We apply label smoothing of 0.1. We use
ADAM (Kingma and Ba, 2014) as the optimizer,
using a learning rate of 0.0003 and a learning rate
reduce factor of 0.7. We use a batch size of 4096
words and create a checkpoint every 4000 mini-
batches.

We do not use dropout or label smoothing during
continued training because we do not want regu-
larization to bias our measurements of magnitude
changes during continued training (see §5.3). We
note, however, that each would likely increase in-
domain performance. Our batch size during con-
tinued training is 128 sentences, and we create a
checkpoint every half epoch. Our learning rate re-
duce factor for continued training is 0.5. We run
each continued training experiment over a set of
learning rates (0.1, 0.01, 0.001, 0.0001, 0.00001)
and choose the best result based on the perplex-
ity on the development set, as previous work has
suggested that even when using ADAM, continued
training can be sensitive to learning rate (Farajian
et al., 2017; Li et al., 2018; Kothur et al., 2018).
We use dot product attention (Luong et al., 2015),
which means we do not have a separate attention
component; the attention is implicitly built into the
decoder.

5 Results and Analysis

5.1 Freezing One Component at a Time

Our first set of experiments measure the extent to
which performance depends on updating any given
component in the model. We perform continued
training while freezing a single component (i.e.
keeping that component fixed to the values from
the out-of-domain model used to initialize training
while adapting the rest of the components). The

8github .com/awslabs/sockeye
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Figure 2: BLEU scores when freezing only the de-
noted component (left solid bars) and when freez-
ing all but the denoted component (right striped
bars). The horizontal lines denote baselines: no
adaptation (dashed) and full continued training
(solid). The labels on top of each bar denote the
difference from the full continued training baseline.

results for this setting are shown in the solid left
bars of Figure 2.

For De-En and Ru-En, the out-of-domain mod-
els have reasonable performance on the in-domain
test set. In these language pairs, freezing any single
component has little impact on in-domain BLEU.
The worst change is —0.9 BLEU—when freezing
the De—En encoder—and in some cases we see
small gains of up to 0.4 BLEU. We interpret these
gains as trivial (and possibly the result of variance)
but there may be an NMT continued training sce-
nario in which freezing could increase performance
by acting as a regularizer (see Ghahremani et al.,
2017).

In Ko-En, where the out-of-domain model does
poorly on the in-domain test set, we see more sub-



stantial drops when freezing a component during
continued training. Freezing the decoder and en-
coder does the most harm (—3.8 and —3.3 BLEU,
respectively), followed by the source embeddings
and softmax components (—1.7 and —1.5 BLEU,
respectively).

In all cases, freezing the target embeddings has
very little impact (at most —(0.2 BLEU, in Ko—En),
suggesting that it is relatively unimportant during
adaptation. These results show that the model and
training procedure are very robust; continued train-
ing is able to find a local minimum for the new
domain which has (nearly) equal performance to
the one found in full training, even though an en-
tire component is fixed to the initial out-of-domain
model’s values.

This robustness suggests that caution is in order
when attempting to interpret changes of any single
component—in particular, changes in the surround-
ing components must also be considered. For ex-
ample, it appears that when the source embeddings
are fixed, the encoder is able to compensate for
the non-adapted source embeddings and adapt the
system to interpret source tokens correctly in the
new domain. Conversely, it appears that when the
encoder is fixed, the source embeddings are able to
adapt to produce vectors for source tokens which
are interpreted correctly by the un-adapted encoder.
Note that adaptation to source tokens in the new
domain could theoretically occur in any un-frozen
component, an idea further explored in the next
section.

5.2 Freezing All But One Component

In our second set of experiments, we freeze all but
one component during continued training to see
how much each component, in isolation, is able to
adapt the NMT system to the new domain. The
results are shown in Figure 2 (right striped bars).

We find that only adapting a single component
is—somewhat surprisingly—not catastrophic in
most cases. Adapting only the encoder, for ex-
ample, still gives a gain of 20.1 BLEU over the
out-of-domain model (3.8 BLEU worse than full
continued training) in German and 11.4 BLEU
(0.2 BLEU worse than full continued training) in
Russian.

In De—En and Ko—En, we see that adapting just
the encoder does the best, followed by the decoder,
source embeddings, softmax, and target embed-
dings. The trend in Russian is similar but with the
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Russian German Korean
Softmax 0.0347  0.0578  0.0650
Encoder 0.0236  0.0520 0.0654
Decoder 0.0209 0.0465 0.0594
Source Embed 0.0165 0.0417 0.0414
Target Embed  0.0141  0.0357  0.0422

Table 4: Euclidean distance moved by each compo-
nent when components are adapted jointly.

Russian German Korean
Softmax 0.0345 0.2215 0.1031
Encoder 0.0516  0.2857 0.1494
Decoder 0.0419 0.2751 0.1122
Source Embed 0.0563  0.3045 0.0893
Target Embed  0.0714  0.2940 0.5777

Table 5: Euclidean distance moved by each compo-
nent when components are adapted individually.

decoder and source embeddings switched.

These experiments suggest the encoder is most
able to adapt the model to a new domain in isola-
tion. It is worth noting that the encoder achieves
this despite being the component with the fewest
parameters (3.7M). The target embeddings are least
able to adapt the model to a new domain (consistent
with §5.1).

These experiments also show that the upper
bound for adapting a single component is quite
high, suggesting that the upper bound for adapta-
tion techniques using monolingual data to adapt
individual components could be quite high as well.
Of course, it seems unlikely that techniques us-
ing only monolingual data can achieve the same
level of performance as when directly optimizing
on bitext.

5.3 Magnitude of Changes During Continued

Training

We are interested in the overall magnitude of the
changes experienced by each component during
continued training, (i.e., how far each moves from
the out-of-domain model) and how those changes
compare to the cases where only a single compo-
nent was adapted.

We had two opposing hypotheses that could pre-
dict adaptation behavior when only one component
is being adapted (as in §5.1):



1. The portion of the network producing the com-
ponent’s input is fixed, as is the portion of
the network that interprets the component’s
output. This suggests the component will be
somewhat constrained, in contrast to full con-
tinued training where the components may
adapt jointly over time.

2. Since all other components are fixed, the
adapting component has to bear all the re-
sponsibility for changing the entire model’s
behavior, requiring more drastic changes than
it would have undergone during full continued
training.

The Euclidean distance between each compo-
nent in the initial out-of-domain model and the con-
tinued training model are shown in Table 4 (normal
continued training) and Table 5 (trained individu-
ally).® While further work would be required to
make any definitive statements, the results clearly
favor the second hypothesis. The movement of in-
dividually adapted components tends to be larger
than that of their counterparts in fully adapted mod-
els.

5.4 Sensitivity Analysis

To assist in interpreting the overall magnitude of
changes experienced during continued training, we
perform sensitivity analysis of each component of
the initial, out-of-domain model. In each experi-
ment, zero-mean, independent Gaussian noise with
fixed variance is added to every parameter in a sin-
gle component of the model. By varying noise
levels, we show how much (random) movement
is required to produce a given decrease in perfor-
mance.'”

Figure 3 shows the sensitivity plots for each com-
ponent. Table 6 shows, for each component, the
(linearly interpolated) BLEU score decrease that
would result from adding random noise of the same
magnitude as the change observed in full continued
training.

°To compute this distance, all weights and biases in a given
component are concatenated into a vector (i.e. we compute
the Frobenius norm).

10 Bojar et al. (2010) show that very low BLEU scores are
not trustworthy. Due to the very low BLEU score (2.7) of the
out-of-domain Ko—En system on the in-domain test set, we
use out-of-domain test sets for each language, where BLEU
scores fall between 11 and 30. This means that the BLEU
scores for continued training (computed on the in-domain test
set) are not directly comparable to the BLEU scores produced
for sensitivity analysis. However, as the sensitivity analysis is

used only as an aid in interpreting the general magnitude of
BLEU shifts, we view this as an acceptable compromise.

Russian German Korean
Softmax —1.29 -3.00 —5.49
Encoder —0.05 —0.78 —1.68
Decoder —0.23 —0.52 —1.05
Source Embed —0.12 —-0.10 —0.22
Target Embed —0.08 —-0.02  —-0.04

Table 6: Sensitivity Analysis: Change in BLEU
for random perturbation of magnitude correspond-
ing to the distance each component moved during
standard continued training.

Considering the sensitivity of each component
reveals several patterns. First, the most significant
change in the network, compared to the sensitivity
metric, is in the softmax component for all three
languages. Second, these values are rather small
compared to the overall improvements seen in con-
tinued training (+23.0 in De-En, 4+-24.2 in Ko—En,
and +11.4 in Ru—En). This suggests that the in-
domain model parameters are, on average, fairly
close to the out-of-domain model used to initial-
ize training; even though the out-of-domain model
does not have a particularly high BLEU score, it
is close to a good local minimum in the in-domain
error surface.

6 Conclusions

This work presents and applies a simple freezing
subnetworks method to analyze continued training.

Freezing any single component during contin-
ued training has negligible effect on performance
compared to full continued training. Furthermore,
adapting only a single component via continued
training produces surprisingly strong performance
in most cases, achieving most of the performance
gain of full continued training. That is, continued
training is able to adapt the overall system to a new
domain by modifying only parameters in a single
component. This finding goes against the intuitive
hypothesis that source embeddings must account
for domain changes in the source vocabulary, target
embeddings must account for changes in the target
vocabulary, etc.

We note that the encoder and decoder, despite
having the least parameters (3.7M and 6.8M, re-
spectively, out of 56M), perform strongly across all
languages. This suggests further work on adapting
only a subset of parameters may be warranted (see
also Vilar, 2018; Michel and Neubig, 2018).
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Figure 3: Performance degradation (BLEU) as a
function of noise (standard deviation) added to a
given component.

We also perform sensitivity analysis of compo-
nents and find that continued training does not
move the model very far from the initial out-of-
domain model, in the sense that random pertur-
bations of the same magnitude cause only small
performance drops on the out-of-domain test set.
This suggests that the out-of-domain model, while
not performing very well on the in-domain test set,
is close to a good local minimum on the in-domain
error surface. This finding may explain the recent
success of techniques which regularize a contin-
ued training model using the initial, out-of-domain
model (Miceli Barone et al., 2017; Dakwale and
Monz, 2017; Khayrallah et al., 2018).
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Abstract

Measuring domain relevance of data and iden-
tifying or selecting well-fit domain data for
machine translation (MT) is a well-studied
topic, but denoising is not yet. Denoising is
concerned with a different type of data qual-
ity and tries to reduce the negative impact of
data noise on MT training, in particular, neu-
ral MT (NMT) training. This paper general-
izes methods for measuring and selecting data
for domain MT and applies them to denoising
NMT training. The proposed approach uses
trusted data and a denoising curriculum real-
ized by online data selection. Intrinsic and
extrinsic evaluations of the approach show its
significant effectiveness for NMT to train on
data with severe noise.

1 Introduction

Data noise is an understudied topic in the machine
translation (MT) field. Recent research has found
that data noise has a bigger impact on neural ma-
chine translation (NMT) than on statistical ma-
chine translation (Khayrallah and Koehn, 2018),
but learning what data quality (or noise) means in
NMT and how to make NMT training robust to
data noise remains an open research question.

On the other hand, a rich body of MT data re-
search focuses on domain data relevance and se-
lection for domain adaptation purpose. As a re-
sult, effective and successful methods have been
published and shown to work for both SMT and
NMT. For example, (Axelrod et al., 2011) intro-
duce a metric for measuring the data relevance
to a domain by using n-gram language models
(LM). (van der Wees et al., 2017) employ a neural-
network version of it and propose a gradually-
refining strategy to dynamically schedule data dur-
ing NMT training. In these methods, a large
amount of in-domain data are used to help mea-
sure data domain relevance.
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Data noise is a different quality that has been
shown to affect NMT performance in particular.
In MT, the use of web crawl, automatic methods
for parallel data mining, sentence alignment pro-
vide us with parallel data of variable quality from
many points of view: sentence breaking, poor sen-
tence alignments, translations, domain adequacy,
tokenization and so forth. To deal with such
data noise, a commonly used practice is (static)
data filtering with simple heuristics or classifica-
tion. The NMT community increasingly realizes
that this type of quality matters for general NMT
translation accuracy. For example, (Khayrallah
and Koehn, 2018) studies the types of data noise
and their impact on NMT; WMT 2018 introduces
a Parallel Corpus Filtering task on noisy web-
crawled data.

Unfortunately, the ingredients that made do-
main data selection methods successful have not
been studied in the NMT denoising context.
Specifically,

e How to measure noise?

e How does noise dynamically interact with the
training progress?

e How to denoise the model training with a
small, trusted parallel dataset?

In the denoising scenario, the trusted data would
be the counterpart of in-domain monolingual data
of domain data selection. Trusted data can be hu-
man translations, a small amount of which can be
easily available as a development set or validation
set from a normal MT setup.

We use the example in Table 1 to illustrate the
challenges in the NMT denoising problem, as well
as the issue of directly applying existing domain
methods as is for this purpose. Both sentences in
the example appear to be relevant to travel con-
versations, but the sentence pair is “noisy” in that,

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 133-143
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zh gongche zhan zai nali?
zh-gloss  bus stop is where?
en Where is the bus stop? For bus 81.

Table 1: A noisy sentence pair.

a part of the English sentence does not align to
anything on the Chinese side, yet the pair con-
tains some translation and the sentences are flu-
ent. An LM-based domain-data selection method
would generally treat it as a suitable domain ex-
ample for building a travel NMT model and may
not consider this noise.

A simple data filtering method based on length
or a bilingual dictionary can easily filter it, but, in-
tuitively, the example may still be useful for train-
ing the NMT model, especially in a data-scarce
scenario — the Chinese sentence and the first half
of the English sentence are still a translation pair.
This suggests the subtlety in identifying noisy data
for MT — It is not a simple binary problem: Some
training samples may be partially useful to train-
ing a model, and their usefulness may also change
as training progresses.

An NMT model alone may be incapable of
identifying noise. Under a conditional seq2seq
NMT model that translates Chinese into English,
aword, e.g., 81, in the extra English fragment may
receive a low probability (or a high loss), but that
could as well mean that is hard but still correct
translation. Here is then where the trusted data can
play a role — It can help produce a (slightly) bet-
ter model for the first model to compare against to
be able to distinguish informative hard examples
from harmful noisy ones.

In this paper, we propose an approach to denois-
ing online NMT training. It uses a small amount
of trusted data to help models measure noise in a
sentence pair. The noise is defined based on com-
parison between a pair of a noisy NMT model and
another, slightly denoised NMT model, inspired
by the contrastive in-domain LM vs out-of-domain
LM idea. It employs online data selection to sort
sentence pairs by noise level so that the model is
trained on gradually noise-reduced data batches.
We show that language model based domain data
selection method as is does not work well whereas
the proposed approach is quite effective in denois-
ing NMT training.

2 Related Research

One line of research that is related to our work
is data selection for machine translation. It has
been mostly studied in the domain adaptation con-
text. Under this context, a popular metric to mea-
sure domain relevance of data is based on cross
entropy difference (CED) between an in-domain
and an out-of-domain language models. For ex-
ample, (Moore and Lewis, 2010) selects LM train-
ing data with CED according to an in-domain LM
and a generic LM. (Axelrod et al., 2011) propose
the contrastive data selection idea to select par-
allel domain data. It ranks data by the bilingual
CED that is computed, for each language, with a
generic n-gram LM and a domain one. Even more
recently, (van der Wees et al., 2017) employ a
neural-network version of it along with a dynamic
data selection idea and achieve better domain data
selection outcome. (Mansour et al., 2011) com-
pute the CED using IBM translation Model 1 and
achieve the best domain data selection/filtering ef-
fect for SMT combined with LM selection; The
case of partial or misalignments with a bilingual
scoring mechanism rather than LMs is also dis-
cussed.

Another effective method to distinguish domain
relevance is to build a classifier. A small amount
of trusted parallel data is used in classifier training.
For example, (Chen and Huang, 2016) use semi-
supervised convolutional neural networks (CNNs)
as LMs to select domain data. Trusted data is used
to adapt the classifier/selector. (Chen et al., 2016)
introduce a bilingual data selection method that
uses CNNs on bitokens; The method uses parallel
trusted data and is targeted at selecting data to im-
prove SMT; In addition to domain relevance, the
work also examines its noise-screening capability;
The method is tried on NMT and does not seem to
improve.

Previous work on domain data selection has
shown that the order in which data are scheduled
matters a lot for NMT training, a research that
is relevant to curriculum learning (Bengio et al.,
2009) in machine learning literature. (van der
Wees et al., 2017) show the effectiveness of a nice
“gradually-refining” dynamic data schedule. (Saj-
jad et al., 2017) find the usefulness of a simi-
lar idea, called model stacking for NMT domain
adaptation. Data ordering could be viewed as a
way of data weighting, which can be also done
by example weighting/mixing, e.g., (Wang et al.,

134



2017; Britz et al., 2017; Matsoukas et al., 2009).
In the context of denoising, the quality that the or-
dering uses would be the amount of noise in a sen-
tence pair, not (only) how much the data fits the
domain of interest.

SMT models tend to be fairly robust to data
noise and denoising in SMT seems to have been
a lightly studied topic. For example, (Mediani,
2017) uses a small, clean seed corpus and designs
classifier filter to identify noisy data with lexical
features; and also there is a nice list of works ac-
cumulated over years, compiled on the SMT Re-
search Survey Wiki!.

The importance of NMT denoising has been
increasingly realized. (Khayrallah and Koehn,
2018) study the impact of five types of artificial
noise in parallel data on NMT training and find
that NMT is less robust to data noise. (Vyas et al.,
2018) select well-translated examples by identify-
ing semantic divergences in parallel data. (Lample
et al., 2017) bootstrap backtranslations with a de-
noising loss term, in an unsupervised NMT con-
text. Label noise is also a generally studied topic,
e.g., (Natarajan et al., 2013).

In a sense, our approach is an application of ac-
tive learning (Settles, 2010). Active learning is
usually employed for the model to interactively
choose novel examples to obtain labels for fur-
ther training a given model. In our case we use
the idea to select the already labeled data that the
model finds useful at a given point during training.
The usefulness signal is guided by a small trusted
dataset.

3 Online NMT Training

We usually train NMT models with online opti-
mization, e.g., stochastic gradient descent. At a
time step ¢, we have an NMT model p(y|x;6;)
translating from sentence z to y with parame-
terization 6;. The model choice could be, for
example, RNN-based (Wu et al., 2016), CNN-
based (Gehring et al., 2017), Transformer model
(Vaswani et al., 2017) or RNMT+ (Chen et al.,
2018). To move p(y|z;6;) to next step, t + 1, a
random data batch b; is normally used to compute
the cross entropy loss. The prediction accuracy of
p(y|x; ;) does not depend on the data of this batch
alone, but on all data the model has seen so far.

"http://www.statmt.org/survey/Topic/
CorpusCleaning
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4 The Denoising Problem

The problem we address in the paper is as follows.
We have a large, noisy, mixed-domain dataset D
whose size is on the order of hundreds of millions
of sentence pairs or larger. An NMT model trained
on this noisy data may suffer from low transla-
tion accuracy or severe translation errors. We also
have a small trusted dataset D consisting of sev-
eral thousand sentence pairs or even less. We ad-
dress the denoising scenario where the trust frac-
tion | D|/|D| < 1 (| D| being the size of D).

Trusted data can be human translations or any
other source of parallel data of higher quality
than the translations produced by our model. The
trusted data we use in experiments contains noise,
too. We think that, for the trusted data to improve,
it needs to be stronger than the translation quality
from the model we are improving, and as we will
show, we define the noise level of a sentence pair
relative to a model.

We are concerned with a method for select-
ing noise-reduced data batches to train the NMT
model using online training. The trusted data is
used to help measure data noise in a sentence pair.
Training data is digested by training in terms of
(cross entropy) loss, thus selecting noise-reduced
sentence pairs to train on would be equivalent to
denoising the training loss term (thus the training
process).

5 Our Approach

We first define how to measure noise with the help
of the small trusted dataset. Then we use it to con-
trol the schedule of the data batches to train the
NMT model.

5.1 Incremental denoising with trusted data

Given a model p(y|x; ) trained on noisy data D,
a practical way to denoise it with a small amount
of trusted data D would be to simply fine-tune the
model on the trusted data, considering that a small
trusted dataset alone is not enough to reliably train
an NMT model from scratch. Fine-tuning has
been used in NMT domain adaptation to adapt
an existing NMT model on a small amount of in-
domain data, for example, in (van der Wees et al.,
2017). We hypothesize that it would be effective
for denoising, too, which will be verified by our
experiments.

To facilitate the introduction of our denoising
method, we introduce a denoise function that de-



noises a model, p(y|z; ), on the trusted data D by
fune-tuning:

p(y|; 6)

denoise (p(y\a:; 5), lA)) D

Eq 1 represents that model p(y|z; ) with initial
parameterization 0 is fine-tuned on the trusted data
D to yield a denoised model, p(y|z;6). With a
small trusted dataset, the fine-tuning may take a
small number of training steps.

5.2 Definition of data noise

MT training samples can be noisy in many ways,
and different types of noise might have different
impact on NMT. Furthermore, human’s definition
of data noise may not be completely consistent
with NMT model’s perspective. Therefore, in-
stead of defining noise in these aspects, we sim-
ply use model probabilities and rely on the quality
of the trusted data. After all, data needs to be in-
gested by model training via (cross-entropy) loss.
Supposed we are given a noisy model, p(y|z, 0),
that has been trained on noisy data and a denoised
model, p(y|z,8), obtained by Eq 1, with the de-
noised model being a slightly more accurate prob-
ability distribution than the noisy version. For a
sentence pair (z,y) of a source sentence z and its
target translation y, we can compute its “noisy log-
prob” under the noisy model:
(2)

L log p(y|z, )

plylz.0)
We can also compute its “denoised logprob” under
the denoised model:

3)

L log p(y|, 6)

p(y|z.0)
We then define the noise level of a sentence pair
(z,y) as the difference of a noisy model score over
a denoised model score:

noise(x, y; 0, 5) Lp(y|x;§t) - Lp(ylr;ﬁt) @)

The noise level of a sentence pair is the sum of
the per-word noise over all the target words (under
conditional translation models). Noise(z, y,& 9)
could also be normalized by the length of sen-
tence y empirically. The bigger noise(x, y; 0, 5)
is, the higher noise level the sentence pair has. A
negative value of noise(z, y; 0, 0) means that the
sentence pair has more information to learn from
(cleaner).
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The noise in a sentence pair is defined in terms
of the comparison between two models: the noisy
model, 6, and the denoised model, §. Under
this definition, noise is relative — A sentence pair
could have negative noise(x,y;#,6) (not noise)
for weeker models (i.e., an earlier checkpoint of
f in an NMT training), but could become noisy
(positive value) for stronger models (i.e., a later
checkpoint of #). This would address one of the
issues we illustrated in Section 1 with the example
in Table 1.

Notice that this definition of noise is a gener-
alization of the bilingual cross-entropy difference
(CED) defined and used in (Axelrod et al., 2011;
van der Wees et al., 2017) to measure domain rel-
evance of a sentence pair. We use seq2seq NMT
models to directly model a sentence pair, while
previous works use language models to model
monolingual sentences independently. A language
model corresponds just to the decoder compo-
nent of a translation model and thus cannot model
the translation quality. The lack of the encoder
component (thus translation) makes the LM-based
method unsuitable for denoising, as we show in
experiments. Additionally, we use a small, bilin-
gual trusted dataset (semi-supervision) rather than
lots of in-domain data (heavier supervision).

5.3 Denoising by online data selection

5.3.1 Theidea

Our main idea for online denoising of NMT train-
ing is to train an NMT model on a progressively-
denoised curriculum (data batches). As a re-
sult, the entire training becomes a continuous
fine-tuning. We realize the denoising curriculum
through dynamic data selection to “anneal” the
noise level in data batches over training steps.
Therefore, our method tries to control the way
how noise dynamically interacts with training loss
by data selection, instead of directly altering per-
example loss. The assumption is that D contains
good examples to select, which is usally true with
a big enough training dataset D.

More concretely, at each step with an initial (po-
tentially still noisy) model, p(y|z; 6;), the method
denoises it (by Eq 1) with the trusted data Dintoa
slightly better model p(y|x; 0;) for that step. With
this pair of noisy and denoised models, we then
compute noise scores for examples in a buffer
and"m that is randomly drawn from D per step
and maintained during training. We sort the noise



Algorithm 1: Denoising NMT training
with trusted data and online data selection.

Input: Noisy data D, trusted data D

Output: A denoised, better model
= 0; Randomly initialize 6.

while ¢ < T do B
plylw: 0;) + denoise(p(ylz; 6;), D).
Randomly draw B{2om from D,

A A R o e

Eq 4.

Sort E{a“dom by noise scores.

Sample b; from top r; of above sorted
buffer. B

Train p(y|z; 6;) on b; to produce new
model p(y|z; 0¢41). N
11:  Discard the denoised model p(y|z; ;).
122 t+«t+1.

13: end while

° x

10:

scores. The final, actual data batch b; is then ran-
domly sampled from the top r; portion of Bindom
based on the sorted scores, where r;, called se-
lection ratio, is increasingly tightened. Averaged
noise level of examples in the top r; portion ex-
pects to become less over time. As a result, the
data batches b;’s that are actually fed to train the
final model are gradually denoised. Algorithm 1
summarizes the idea. It is worth pointing out that
this denoising method is realized by a bootstrap-
ping process, in which, gt and 5,5 iteratively boot-
strap each other by interacting with the trusted
data and selected denoised data.

We choose to use the following exponential de-
caying function for selection ratio, 74, to anneal
data noise by data selection’:

re = 0.5 (5)
It keeps decreasing/tightening over time ¢. The en-
tire training thus becomes a continuous fine-tuning
process, in a self-paced learning (Kumar et al.,
2010) fashion.

In Equation 5, H is a hyper-parameter control-
ling the decaying pace: It halves r; every H steps.
For instance, H = 10° means that, at step 1 mil-
lion, data batch b; will be drawn from the top-50%
out of sorted buffer.

2We simply use one of the ways to anneal learning rate as the
decaying function to anneal training data selection.

Compute noise for examples in E{a“dom by
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In practice, it may be desirable to set a floor
value for r; (e.g., 0.2) to avoid potential selection
bias. Bndom peeds also to be big enough such
that there are enough examples in the top 7 range
to select from to form the final training batch by,
which is usally a constant size — It needs to con-
tain at least |b¢|/raoor examples.

The noise annealing is inspired by (van der
Wees et al., 2017), but we anneal data quality
at per step to make the approach more friendly
to NMT online optimization, instead of per data
epoch. Compared to static selection, the noise
annealing idea also makes every training exam-
ple useful, by digesting noisy examples earlier and
fine-tuning on good-quality examples later on.

Note that there are two reasons that this process
does not overfit on the trusted data, even though
it is kept being used to denoise the initial model
at every step. First, the noisy model, p(y|z;6)
being trained over steps is never trained on the
trusted data — It is the denoised model, p(y|x; 5),
that is trained on it and then gets discarded at the
end of that step. Second, the online data selection
progressively anneals from noisy examples to less
noisy ones, instead of greedily keeping selecting
out of the least noisy examples.

5.3.2 Data selection per-step overhead

Compared to normal NMT training, there is a per-
step data selection overhead in Algorithm 1. The
overhead includes (1) training the denoised model
on a small trusted dataset, which requires a small
number of training steps; and (2) scoring all ex-
amples in the random buffer Bf"°™ with both
the noisy model and the denoised model. Both
cases will in general depend on model size, but
will probably depend even more on model type
and configuration.

5.3.3 Lightweight implementation

We make Algorithm 1 more lightweight by decou-
pling model training from example noise scoring:
We score all examples in D offline and use scores
for online data selection.

Algorithm 2 shows the details of this idea. To
enable offline scoring, we train the noisy model
and the denoised model prior to the final, target
training, on the noisy data D and the trusted data
D, respectively. We then use this pair of models to
score all examples in D and save the scores. In tar-
get model training, the example are retrieved into
the buffer with scores, without the need of com-



Algorithm 2: Lightweight implementa-
tion of Algorithm 1. Actually used in ex-
periments.

1: Input: Noisy data D, trusted data D
Output: A denoised, better model with
learned parameters ©. o
Train p(y|z; 0) with small 6 on D.

p(y|z; 67) + denoise (p(y\x; 5), ﬁ).

Score D with § and §by Eq 4.

¢ = 0; Randomly initialize O.

while ¢ < T do
Randomly sample E;a“dom from D.
Sort Brandom by offline-computed noise
scores.
Sample b; from top r; of above sorted
buffer. B
Train p(y|x; ©;) on b; to produce new
model p(y|z; O11).
tt+1.

: end while

s 0w

XD

10:

puting on the fly. Then the remaining is similar
to Algorithm 1. This effectively turns the per-step
data selection overhead in Algorithm 1 into con-
stant overhead.

We can also use smaller parameterization for
the noisy model and denoised model than the
target model. This may not affect their noise-
discerning capability as long as they are still
seq2seq models, the same as the target model.
This is because we define the noise score in terms
of logprob difference and use the scores for rank-
ing/selection (e.g., via top 1),

In summary, here is the lightweight method
that we eventually use to denoise NMT train-
ing with trusted data and online data selection:
Train p(y|z;0) on noisy data D with a small
parametrization. Denoise p(y|z; 6) on trusted data
D to produce denoised model p(ylx; 6) (Eq 1).
Score the entire noisy data D with the above two
models by Eq 4. Train the target model with the
above online, dynamic data selection. Algorithm 2
describes the idea.

We are going to use this implementation in ex-
periments. Note, however, that we find that the
general method in Algorithm 1 is very useful in
understanding the nature of the denoising problem
and thus cannot be ignored in the context. For ex-
ample, it makes us realize the denoising problem
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is about how to (actively) meet what the model
needs, i.e., not standalone filtering. And also, the
bootstrapping behavior in Algorithm 1 further mo-
tivates the use of the noise-annealing online data
selection strategy and helps refine the lightweight
implementation.

6 Experiments

6.1 Setup

We carry out experiments for en/fr with two train-
ing datasets (D), respectively. Paracrawl® en/fr
training raw data has 4 billion sentence pairs. Af-
ter removing identities and empty source/target,
about 300 million (M) sentence pairs are left.
WMT 2014 en/fr training data has about 36M sen-
tence pairs, with provided sentence alignment.

WMT newstest 2012-2013 is used as the de-
velopment set for early stopping of training. We
use three test sets: WMT (n)ewstest 2014 (n2014),
news (d)iscussion test 2015 (d2015), and a 2000-
line patent test set (patent)*. More test sets
than just n2014 are used in order to confirm that
the gain obtained is not only from news domain
adaptation but cross-domain, general accuracy im-
provement.

The WMT newstest 2010-2011 is used as the
trusted data. It contains 5500 sentence pairs. We
acknowledge that ideal trusted data would proba-
bly be both well-translated and domain-matched,
but we leave the study of trusted data properties to
future research.

We compute the detokenized and mixed-cased
BLEU scores against the original references (per
(Post, 2018)) with an in-house implementation of
scriptmteval-v14.pl.

We use an RNN-based NMT architecture sim-
ilar to (Wu et al., 2016). Our final model has 8
layers of encoder/decoder, 1024 dimensions with
512-dimension attention. The smaller selector
(noisy and denoised) models (in Algorithm 2) are
of 3 layers and 512 dimensions.

Denoising a model on the small trusted dataset
is done by fine-tuning on it by SGD. The train-
ing is terminated with early stopping by checking
the perplexity on the development set. It is a tiny
dataset, but as we will show, its denoising impact
is quite impressive and surprising. Training on

Shttp://statmt.org/paracrawl

*Obtained from https://www.epo.org.

SEven smaller models like 2-layer x 256-dimension works,
too, when we examined on an internal dataset.



such a small data can easily overfit, we thus use
a very small learning rate 5e-5 so that the training
progresses slow enough for us to reliably catch a
good checkpoint before training stops.

In Paracrawl trainings, we train for 3M steps
using SGD with learning rate 0.5 and start to an-
neal/reduce the learning rate at step 2M by halving
it every 200k steps. In WMT training, we train for
2M steps with learning rate 0.5 but start to anneal
learning rate at step 1.2M with the same pace. We
use dropout 0.2 for the WMT training. We did not
use dropout for Paracrawl training due to its large
training data amount.

To dynamically anneal the data batch quality
(Eq 5), we set hyper-parameter H to step 1.1M.
0.2 is used as the floor selection ratio, r;. The ra-
tionale for the choice of H is so that when learning
rate annealing happens, r; is close to its minimum
value to ensure the training is indeed trained on the
desired, best selected data.

6.2 Training data cleanness

To measure how noisy the datasets are, we ran-
domly sample 2000 sentence pairs from the WMT
dataset. Human raters were asked to label each
sentence pair with scales in Table 2.

These ratings generally reflect how well-
translated a sentence pair is, however, a rating 4
does not necessarily mean that is exactly the type
of data a model needs — Model’s perspective on
good data may not completely consistent with hu-
man, because these ratings are not necessarily con-
nected to data loss of a model. We use these rat-
ings mainly to assess if our noise definition corre-
lates to these ratings to some extent, but the noise
definition could do more. The rater agreement on
good (>= 3) or bad (< 3) is 70% and we find
the averaged rating is very reliable and stable to
measure a small sentence pair sample.

Table 3 shows that WMT 2014 data is relatively
clean: it has 40% rated as perfect; its averaged
rating is 3.0 (4 being perfect). Noise introduced
by sentence alignment accounts for part of the low
ratings. We did not rate a Paracrawl sample, since
just eyeballing a sample of the data reveals that it
was noisy consisting of many boilerplates, wrong
language identification, wrong translations.

6.3 Noise score vs human rating

We expect the noise definition (Eq 4) to correlate
with the averaged cleanness of selected data and
the dynamic scheduling method schedules data
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Avg human rating score
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top x% selection based on noise score
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Figure 1: Noise-discerning capability of different noise
scoring models. Curves are drawn by selecting, ac-
cording to Eq 4, top 2% (x-axis) out of a rated sample
of 2000 random sentence pairs from the WMT en/fr
dataset. WMT: noise scoring models trained on WMT
training data, and trusted data. Paracrawl: noise scor-
ing models trained on Paracrawl data, and trusted data.
NNLM: neural net based LM selection models trained
on Paracrawl data, and trusted data. Trusted data are
the same dataset.

from noisy to clean. We verify this on the sam-
ple with human ratings.

We carry out steps 1 and 2 of the practical im-
plementation in Section 5.3.3 to produce the small
noisy model and its denoised model. Recall that
they are used to compute the noise in each sen-
tence pair by Eq 4. We repeat this on the Paracrawl
data and the WMT data, respectively, and thus we
have two pairs of models, one for each dataset.

We apply each pair of models to score the rated
WMT sample, sort the sentence pairs by noise
scores. We then select 2% least noisy sentence
pairs. Each x% corresponds to a subset and we
compute the averaged human rating for that sub-
set. In Figure 1, x-axis shows 2%, the percentage
out of the entire sample; y-axis shows the averaged
human rating for the 2% selection subset. Going
from right to left, data indeed becomes cleaner as
selection becomes tighter for the scoring models
in our proposed method: WMT is noise scoring
models trained on WMT training data, and trusted
data. Paracrawl is the noise scoring models trained
on Paracrawl data, and trusted data. Trusted data
are the same dataset. We explain the dot-dashed
line in a later experiment (Section 6.6).

Ranking capability of the Paracrawl selector



Rating scale  Explanation

4 (Perfect)

3 (Good)

2 (Not good)
1 (Bad)

0 (Poor)

Almost all information (90-100%) in the sentences is conveyed in each other.

Most information (70-90%) in the sentences is conveyed.

Some (30-70%) information in the sentences is conveyed, but some is not.

(10-30%) A large amount of information in the sentences is lost or misinterpreted.
(0-10%) The two sentences are nearly or completely unrelated, or in wrong languages.

Table 2: Scales for human rating sentence pairs. Percentage ranges refer to the amount of words well translated

across sentences in a pair.

4
47%

3
31%

2
10%

1
3%

0
9%

Rating scale
WMT

Table 3: Rating stats on an en/fr WMT training data
sample of 2000 sentence pairs.

System n2014 d2015 patent
Paracrawl dataset

P1 Paracrawl baseline  31.6 30.7 37.2
P2 Incr-denoise P1 34.0 33.7 447
P3 Online denoised 35.2 35.6 46.9
WMT dataset

W1 WMT baseline 36.2 35.8 45.7
W2 Incr-denoise W1 36.2 35.8 45.7
W3 Online denoised 36.9 36.4 46.1

Table 4: BLEU scores of Denoising experiments with
en/fr Paracrawl data and WMT data. “Incr-denoise
P1” refers to applying the incremental denoising on the
noisy baseline P1 with method in Section 5.1. Similarly
for “incr-denoise W1”. Under paired bootstrapped test
at p < 0.05, P3 is significantly better than P2, P3 than
P1, P2 than P1, on all test sets. W3 is significantly bet-
ter than W1 on n2014.

seems slightly better than the WMT one in dis-
cerning noisier sentence pairs. We speculate this
is because the noisy Paracrawl data “amplifies” the
contrastive effect of the pair of models.

6.4 BLEU scores

BLEU scores in Table 4 show the impact of de-
noising. For each training dataset, we have three
experiments: baseline, noisy training with random
data batch selection (P1 and W1); Denoising base-
line with trusted data by fine-tuning the baseline
on it (Eq 1) (P2 and W2); Training a model from
scratch with online training by dynamic, gradually
noise-reduced data selection (P3 and W3).

First of all, P1 vs P2, it is impressive that just
fine-tuning a noisy baseline on a small trusted
dataset yiels a big impact. P2 improves P1 by
+2.4 BLEU on n2014, +3 BLEU on d2015 and
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+7.5 BLEU on patent. The Paracrawl experiments
and the above rating ranking curves (Figure 1) in-
dicate the power of simple incremental denoising
on trusted data (Section 5.1) when the background
data is very noisy. In NMT domain adaptation
literature (e.g., (van der Wees et al., 2017)), it is
known that fine-tuning on domain data improves
domain test sets, but it is also known that it may
hurt test sets that are out of domain (forgetting).
We think our experiments are the first to report
the incremental denoising power of fine-tuning on
a tiny trusted data. Notice incremental denoising
does not improve on WMT data (W1 vs W2) prob-
ably because WMT data is relatively cleaner. This,
however, would indicate that the gain for P1 vs P2
is less likely a domain adaptation effect.

P2 vs P3 shows that the online denoising ap-
proach reduced the training noise further more and
gains +1.2 n2014 BLEU, +1.9 d2015 BLEU and
+2.2 patent BLEU, on top of incremental denois-
ing on trusted data. On the WMT dataset, W2 vs
W3 shows that, even though the trusted data does
not directly help, the online denoising helps by
+0.7 n2014 BLEU, +0.6 d2015 BLEU and +0.4
patent BLEU. We carried out paired bootstrapped
statistical significance test (Koehn, 2004) between
systems, at p < 0.05, P3 is significantly better
than P2, P3 than P1, P2 than P1, across all test
sets; W3 is significantly better than W1 only on
n2014.

We also would like to note the strength of the
WMT baseline system (W1). Its n2014 BLEU is
36.2, detokenized, case-sensitive. Published lit-
eratures tend to report tokenized, case-sensitive
BLEU scores, for which W1 BLEU becomes 40.2
on the same test set. This is a strong score with a
standard LSTM RNN network, compared to pub-
lished results for this task.



System

n2014 d2015 patent

Paracrawl dataset

P1 Random order 31.6 30.7 37.2
P3 Online denoised 35.2 35.6 46.9
P4 Reverse order of P3  32.6 31.1 40.9

Subset n2014 d2015 patent
P1 31.6 30.7 37.2
P5  Sgoy 33.1 32.3 44.3
P6 Sy 33.9 344 45.1
P7 Sy 344 34.6 45.6

Table 5: Online denoising: NMT trained on data sorted
according to noisiness level. P3 is trained on noisier to
cleaner data order. Reversely, P4 is trained on cleaner
to noisier data order.

6.5 Data order

Our online denoising method dynamically selects
data batches whose noise is gradually reduced to
train the target model. We carry out two sets of
experiments to prove that this is necessary for de-
noising.

In the first experiment, we compare P3 (in pro-
posed data order) to the “reverse” of P3, where
data batches are dynamically scheduled in a re-
verse, noise gradually increasing order such that
the model is trained on cleaner data earlier and
then noisier data later (i.e., by simply flipping the
sign of Eq 4) — The entire training then becomes a
continuous reverse fine-tuning. Table 5 shows that
the reverse order (P4) clearly does not work as ef-
fective for denoising, even though P4 still slightly
improves the baseline with random data selection
(P1 in Table 4).

In another experiment, we select 3 data subsets
based on the amount of noise in each sentence pair,
each subset being noise-reduced to different de-
gree. For example, we select top 80% least noisy
sentence pairs (denoted as Sgyy,) out the entire
Paracrawl data. Then we select the top half of
Sgoo, Which is essentially 40% of the Paracrawl
data. We denote it as Sy, similarly, Syq9;, there-
fore Sggo;, D Sao O Sagy. And we expect the
averaged noise in the smaller percentage would be
less according to Figure 1. Then we fine-tune P1
(noisy baseline) on Sgyy, with early stopping on
devset, followed by the fine-tuning on S,py and
then Sy, Table 6 shows that each stricter subset
is able to boost the previous training across all test
sets, by further denoising. This also confirms the
importance of the right data order in denoising.

P3 vs P4 seems to confirm the spirit of Curricu-
lum Learning (Bengio et al., 2009) — CL promotes
ordering data to gradually focus on those most im-
portant examples, and here the training has a better
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Table 6: Nested datasets: Data order is important for
denoising. Sggy, O Si0% D S20y With stricter/smaller
set less noisy.

outcome (P3) by training on progressively noised-
reduced data.

6.6 Language model selection

The proposed method uses seq2seq NMT models
for online data selection. We can replace them
with neural network language models (NNLM)
with everything else the same, to confirm that the
LM based method that is popular for domain data
selection is not designed for denoising.

We first check if the NNLM selection scores
correlate with human ratings. As shown by the
dot-dashed line (red) in Figure 1, it does not seem
to — As we tighten the selection percentage (from
right to left), the averaged rating of sentence pairs
falling into that percentage does not increase, but
the method that employs the seq2seq models to
compute noise scores (Eq 4) does.

We also compare the BLEU scores of the
NNLM selection and the NMT selection. To that
end, we select top 20% data and use it to fine-tune
the noisy Paracrawl baseline (P1), for the NNLM
method and the proposed method, respectively.

We had to resolve an issue in the NNLM se-
lection experiment. Recall that the trusted data
we use is from WMT newstest 2010-2011 and the
development set we use for stopping the training
is WMT newstest 2012-2013. WMT newstests
across years do not seem to be in the same do-
main, as a result, the perplexity on devset never
drops in training with trusted data. This would be
additional evidence that improvements from our
proposed denoising approach is unlikely from do-
main adaptation. In the end, we had to extract ran-
domly 1000 lines out of the trusted data as the de-
vset for early stopping and use the remaining as
the trusted data when training the denoised model
0 that is used to compute the noise scores (or data
relevance in the NNLM case) by Eq 4.

The BLEU scores in Table 7 show the clear
difference. The NNLM method does not dis-
cern noise and thus the top selection would be



System n2014 d2015 patent

P1 Paracrawl baseline  31.6 30.7 37.2
P8 P1+NMT 20% 34.3 34.7 45.8
P9 P1+NNLM 20% 31.8 30.5 354

Table 7: LM method does not denoise, but NMT
method (proposed) does; and a denoised model has im-
proved general translation accuracy. P1+NMT 20%:
fine-tune P1 with top 20% selection by NMT method.
P1+NNLM 20%: fine-tune P1 with top 20% selection
by NNLM method.

as noisy as the baseline data. As a result, fine-
tuning the noisy baseline (P1) would not improve.
As a matter of fact, the patent BLEU drops over
baseline, probably indicating that domain data se-
lection causes data bias. The proposed method,
on the other hand, performs clearly better (PS8),
for example, compared to P9, +2.5 BLEU on
n2014, +3.8 BLEU on d2015 and +10.4 BLEU
on patent. These prove the effectiveness of the
proposed method in producing better systems on
noisy data.

6.7 Discussion

The research in (van der Wees et al., 2017) that
selects data with neural language models show
that dynamically selected parallel data for domain
adaptation improves domain test sets, but it can
hurt test sets that are out of domain. It also shows
that the dynamic online selection still underper-
forms the fine-tuning on domain parallel data. In
our denoising results, the online denoising (e.g.,
P3) can significantly outperform the simple fine-
tuning (e.g., P2).

We clarify that our method could potentially
work with other data filtering methods. For exam-
ple, if the underlying noisy data has already been
filtered, applying online denoising with trusted
data could potentially bring even further improve-
ment than no pre-filtering.

7 Conclusion and Future Research

Domain data selection and domain adaptation for
machine translation is a well-studied topic, but de-
noising training data or MT training is not yet, es-
pecially for NMT training. In this paper, we gener-
alize the recipes of effective domain data research
to address a different and important data quality
for NMT - data noise. We define how to mea-
sure noise and how to select noise-reduced data
batches to train NMT models online. We show that
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the noise we define correlates with human ratings
and that the proposed approach yields significantly
better NMT models.

The method probably can be tried to denoising
for other seq2seq tasks like parsing, image label-
ing. It seems interesting to study and understand
the properties that trusted data should have. It also
sounds an interesting research to discover better
data orders.
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Abstract

Neural Machine Translation (MT) has radi-
cally changed the way systems are developed.
A major difference with the previous gener-
ation (Phrase-Based MT) is the way mono-
lingual target data, which often abounds, is
used in these two paradigms. While Phrase-
Based MT can seamlessly integrate very large
language models trained on billions of sen-
tences, the best option for Neural MT devel-
opers seems to be the generation of artificial
parallel data through back-translation - a tech-
nique that fails to fully take advantage of exist-
ing datasets. In this paper, we conduct a sys-
tematic study of back-translation, comparing
alternative uses of monolingual data, as well
as multiple data generation procedures. Our
findings confirm that back-translation is very
effective and give new explanations as to why
this is the case. We also introduce new data
simulation techniques that are almost as effec-
tive, yet much cheaper to implement.

1 Introduction

The new generation of Neural Machine Transla-
tion (NMT) systems is known to be extremely data
hungry (Koehn and Knowles, 2017). Yet, most ex-
isting NMT training pipelines fail to fully take ad-
vantage of the very large volume of monolingual
source and/or parallel data that is often available.
Making a better use of data is particularly criti-
cal in domain adaptation scenarios, where paral-
lel adaptation data is usually assumed to be small
in comparison to out-of-domain parallel data, or
to in-domain monolingual texts. This situation
sharply contrasts with the previous generation of
statistical MT engines (Koehn, 2010), which could
seamlessly integrate very large amounts of non-
parallel documents, usually with a large positive
effect on translation quality.

Such observations have been made repeatedly
and have led to many innovative techniques to in-

Francois Yvon
LIMSI, CNRS, Université Paris Saclay
Campus Universitaire d’Orsay
F-91 403 Orsay Cédex

francois.yvon@limsi.fr

tegrate monolingual data in NMT, that we review
shortly. The most successful approach to date
is the proposal of Sennrich et al. (2016a), who
use monolingual target texts to generate artificial
parallel data via backward translation (BT). This
technique has since proven effective in many sub-
sequent studies. It is however very computation-
ally costly, typically requiring to translate large
sets of data. Determining the “right” amount (and
quality) of BT data is another open issue, but we
observe that experiments reported in the literature
only use a subset of the available monolingual re-
sources. This suggests that standard recipes for
BT might be sub-optimal.

This paper aims to better understand the
strengths and weaknesses of BT and to design
more principled techniques to improve its effects.
More specifically, we seek to answer the following
questions: since there are many ways to generate
pseudo parallel corpora, how important is the qual-
ity of this data for MT performance? Which prop-
erties of back-translated sentences actually matter
for MT quality? Does BT act as some kind of
regularizer (Domhan and Hieber, 2017)? Can BT
be efficiently simulated? Does BT data play the
same role as a target-side language modeling, or
are they complementary? BT is often used for do-
main adaptation: can the effect of having more in-
domain data be sorted out from the mere increase
of training material (Sennrich et al., 2016a)? For
studies related to the impact of varying the size of
BT data, we refer the readers to the recent work of
Poncelas et al. (2018).

To answer these questions, we have reimple-
mented several strategies to use monolingual data
in NMT and have run experiments on two lan-
guage pairs in a very controlled setting (see § 2).
Our main results (see § 4 and § 5) suggest promis-
ing directions for efficient domain adaptation with
cheaper techniques than conventional BT.
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Out-of-domain In-domain
Sents Token Sents Token
en-fr 4.0M 86.8M/97.8M | 1.9M  46.0M/50.6M
en-de 4.1M 84.5M/77.8M | 1.8M  45.5M/43.4M

Table 1: Size of parallel corpora

2 Experimental Setup

2.1 In-domain and out-of-domain data

We are mostly interested with the following train-
ing scenario: a large out-of-domain parallel cor-
pus, and limited monolingual in-domain data. We
focus here on the Europarl domain, for which
we have ample data in several languages, and
use as in-domain training data the Europarl cor-
pus1 (Koehn, 2005) for two translation directions:
English—German and English—French. As we
study the benefits of monolingual data, most of
our experiments only use the target side of this
corpus. The rationale for choosing this domain is
to (i) to perform large scale comparisons of syn-
thetic and natural parallel corpora; (ii) to study the
effect of BT in a well-defined domain-adaptation
scenario. For both language pairs, we use the
Europarl tests from 2007 and 20082 for evalua-
tion purposes, keeping test 2006 for development.
When measuring out-of-domain performance, we
will use the WMT newstest 2014.

2.2 NMT setups and performance

Our baseline NMT system implements the atten-
tional encoder-decoder approach (Cho et al., 2014;
Bahdanau et al., 2015) as implemented in Nematus
(Sennrich et al., 2017) on 4 million out-of-domain
parallel sentences. For French we use samples
from News-Commentary-11 and Wikipedia from
WMT 2014 shared translation task, as well as
the Multi-UN (Eisele and Chen, 2010) and EU-
Bookshop (Skadins et al., 2014) corpora. For Ger-
man, we use samples from News-Commentary-11,
Rapid, Common-Crawl (WMT 2017) and Multi-
UN (see table 1). Bilingual BPE units (Sennrich
et al., 2016b) are learned with 50k merge opera-
tions, yielding vocabularies of about respectively
32k and 36k for English—French and 32k and 44k
for English—German.

Both systems use 512-dimensional word em-
beddings and a single hidden layer with 1024 cells.
They are optimized using Adam (Kingma and Ba,

"Version 7, see www . statmt .org/europarl/.
Zwww.statmt .org/wmt08.
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2014) and early stopped according to the valida-
tion performance. Training lasted for about three
weeks on an Nvidia K80 GPU card.

Systems generating back-translated data are
trained using the same out-of-domain corpus,
where we simply exchange the source and target
sides. They are further documented in § 3.1.

For the sake of comparison, we also train a sys-
tem that has access to a large batch of in-domain
parallel data following the strategy often referred
to as “fine-tuning”: upon convergence of the base-
line model, we resume training with a 2M sentence
in-domain corpus mixed with an equal amount
of randomly selected out-of-domain natural sen-
tences, with the same architecture and training pa-
rameters, running validation every 2000 updates
with a patience of 10. Since BPE units are selected
based only on the out-of-domain statistics, fine-
tuning is performed on sentences that are slightly
longer (ie. they contain more units) than for the
initial training. This system defines an upper-
bound of the translation performance and is de-
noted below as natural.

Our baseline and topline results are in Table 2,
where we measure translation performance using
BLEU (Papineni et al., 2002), BEER (Stanojevi¢
and Sima’an, 2014) (higher is better) and char-
acTER (Wang et al., 2016) (smaller is better).
As they are trained from much smaller amounts
of data than current systems, these baselines are
not quite competitive to today’s best system, but
still represent serious baselines for these datasets.
Given our setups, fine-tuning with in-domain nat-
ural data improves BLEU by almost 4 points for
both translation directions on in-domain tests; it
also improves, albeit by a smaller margin, the
BLEU score of the out-of-domain tests.

3 Using artificial parallel data in NMT

A simple way to use monolingual data in MT is to
turn it into synthetic parallel data and let the train-
ing procedure run as usual (Bojar and Tamchyna,
2011). In this section, we explore various ways
to implement this strategy. We first reproduce re-
sults of Sennrich et al. (2016a) with BT of various
qualities, that we then analyze thoroughly.

3.1 The quality of Back-Translation

3.1.1 Setups

BT requires the availability of an MT system in
the reverse translation direction. We consider here



English—French

test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 3125 6214 51.89 | 32.17 6235 50.79 | 33.06 6197 48.56
backtrans-bad 31.55 6239 51.50 | 31.89 6223 51.73 | 31.99 61.59 48.86
backtrans—-good 3299 6343  49.58 33.25 63.08 4929 | 3352 62.62 4723
backtrans—-nmt 3330 6333 50.02 | 3339 63.09 4948 | 34.11 62.76  46.94
fwdtrans—-nmt 3193 6255 50.84 | 3262 62.66 49.83 | 33.56 6244  47.65
backfwdtrans—-nmt 33.09 63.19 50.08 | 33.70 63.25 48.83 | 34.00 6276  47.22
natural 3510 6471 4833 | 3529 6452 4826 | 3496 63.08 46.67

English—German

test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 2136  57.08 6332 | 21.27 57.11 60.67 | 2249 5779 55.64
backtrans-bad 21.84 5785 6124 | 21.04 5744 5977 | 2228 5770 55.49
backtrans—good 23.33 59.03 58.84 | 23.11 57.14  57.14 22.87 58.09 54091
backtrans—nmt 23.00 59.12 58.31 23.10 5885 56.67 | 22091 58.12  54.67
fwdtrans—-nmt 2197 5746 6199 | 21.89 57.53 59.71 22.52 5793 5513
backfwdtrans-nmt 2299 5837 6045 | 22.82 58.14 5880 | 23.04 58.17 54.96
natural 26.74  61.14 56.19 | 26.16 60.64 5476 | 23.84 58.64 5423

Table 2: Performance wrt. different BT qualities
French— English German— English

test-07  test-08 nt-14 unk test-07  test-08 nt-14 unk

backtrans-bad 18.86 19.27 2049 322% 14.66 1462 1507 1.45%

backtrans—-good  29.71 29.51 32,10 0.24% | 24.19 24.19 2575 0.73%

backtrans—-nmt 31.10 3143 3127 0.0% 26.02 26.03 2698 0.0%

Table 3: BLEU scores for (backward) translation into English

three MT systems of increasing quality:

1. backtrans-bad: this is a very poor SMT
system trained using only 50k parallel sen-
tences from the out-of-domain data, and no
additional monolingual data. For this system
as for the next one, we use Moses (Koehn
et al., 2007) out-of-the-box, computing align-
ments with Fastalign (Dyer et al., 2013), with
a minimal pre-processing (basic tokeniza-
tion). This setting provides us with a pes-
simistic estimate of what we could get in low-
resource conditions.

2. backtrans—good: these are much larger
SMT systems, which use the same parallel
data as the baseline NMTs (see § 2.2) and
all the English monolingual data available for
the WMT 2017 shared tasks, totalling ap-
proximately 174M sentences. These systems
are strong, yet relatively cheap to build.

3. backtrans—-nmt: these are the best NMT
systems we could train, using settings that
replicate the forward translation NMTs.

Note that we do not use any in-domain (Eu-
roparl) data to train these systems. Their perfor-
mance is reported in Table 3, where we observe a

12 BLEU points gap between the worst and best
systems (for both languages).

As noted eg. in (Park et al., 2017; Crego and
Senellart, 2016), artificial parallel data obtained
through forward-translation (FT) can also prove
advantageous and we also consider a FT system
(fwdtrans—nmt): in this case the target side of
the corpus is artificial and is generated using the
baseline NMT applied to a natural source.

3.1.2 BT quality does matter

Our results (see Table 2) replicate the findings of
(Sennrich et al., 2016a): large gains can be ob-
tained from BT (nearly +2 BLEU in French and
German); better artificial data yields better trans-
lation systems. Interestingly, our best Moses sys-
tem is almost as good as the NMT and an order of
magnitude faster to train. Improvements obtained
with the bad system are much smaller; contrary to
the better MTs, this system is even detrimental for
the out-of-domain test.

Gains with forward translation are significant,
as in (Chinea-Rios et al., 2017), albeit about half
as good as with BT, and result in small improve-
ments for the in-domain and for the out-of-domain
tests. Experiments combining forward and back-
ward translation (backfwdtrans—-nmt), each
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Figure 1: Learning curves from backtrans—-nmt and natural. Artificial parallel data is more prone to over-

fitting than natural data.

using a half of the available artificial data, do not
outperform the best BT results.

We finally note the large remaining difference
between BT data and natural data, even though
they only differ in their source side. This shows
that at least in our domain-adaptation settings, BT
does not really act as a regularizer, contrarily to
the findings of (Poncelas et al., 2018; Sennrich
et al., 2016b). Figure 3.1.1 displays the learn-
ing curves of these two systems. We observe that
backtrans—-nmt improves quickly in the ear-
liest updates and then stays horizontal, whereas
natural continues improving, even after 400k
updates. Therefore BT does not help to avoid over-
fitting, it actually encourages it, which may be due
“easier” training examples (cf. § 3.2).

3.2 Properties of back-translated data

Comparing the natural and artificial sources of our
parallel data wrt. several linguistic and distribu-
tional properties, we observe that (see Fig. 2 - 3):

(i) artificial sources are on average shorter than
natural ones: when using BT, cases where
the source is shorter than the target are rarer;
cases when they have the same length are
more frequent.

(i1) automatic word alignments between artificial

sources tend to be more monotonic than when

using natural sources, as measured by the av-
erage Kendall 7 of source-target alignments

(Birch and Osborne, 2010): for French-

English the respective numbers are 0.048

(natural) and 0.018 (artificial); for German-

English 0.068 and 0.053. Using more mono-
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tonic sentence pairs turns out to be a facilitat-
ing factor for NMT, as also noted by Crego
and Senellart (2016).
(iii) syntactically, artificial sources are simpler
than real data; We observe significant differ-
ences in the distributions of tree depths.’
(iv) distributionally, plain word occurrences in ar-
tificial sources are more concentrated; this
also translates into both a slower increase of
the number of types wrt. the number of sen-
tences and a smaller number of rare events.

The intuition is that properties (i) and (ii) should
help translation as compared to natural source,
while property (iv) should be detrimental. We
checked (ii) by building systems with only 10M
words from the natural parallel data selecting these
data either randomly or based on the regularity of
their word alignments. Results in Table 4 show
that the latter is much preferable for the overall
performance. This might explain that the mostly
monotonic BT from Moses are almost as good as
the fluid BT from NMT and that both boost the
baseline.

4 Stupid Back-Translation

We now analyze the effect of using much simpler
data generation schemes, which do not require the
availability of a backward translation engine.

3Parses were automatically computed with CoreNLP
(Manning et al., 2014).
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Figure 2: Properties of pseudo-English data obtained with backtrans—nmt from French. The synthetic source
contains shorter sentences (a) and slightly simpler syntax (b). The vocabulary growth wrt. an increasing number
of observed sentences (c) and the token-type correlation (d) suggest that the natural source is lexically richer.

test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
random 32.08 62.98 50.78 32.66 62.86 49.99 23.05 55.38 58.51
monotonic ~ 33.52 63.75 49.51 33.73 63.59 48.91 32.16 61.75 48.64
Table 4: Selection strategies for BT data (English-French)
4.1 Setups copies without having to deal with OOVs is to

We use the following cheap ways to generate
pseudo-source texts:

1. copy: in this setting, the source side is a

augment the source vocabulary with a copy of
the target vocabulary. In this setup, Ha et al.
(2016) ensure that both vocabularies never
overlap by marking the target word copies

mere copy of the target-side data. Since the
source vocabulary of the NMT is fixed, copy-
ing the target sentences can cause the occur-
rence of OOVs. To avoid this situation, Cur-
rey et al. (2017) decompose the target words
into source-side units to make the copy look
like source sentences. Each OOV found in
the copy is split into smaller units until all the
resulting chunks are in the source vocabulary.

2. copy-marked: another way to integrate
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. copy—-dummies:

with a special language identifier. Therefore
the English word resume cannot be confused
with the homographic French word, which is
marked @fr@ resume.

instead of using actual
copies, we replace each word with “dummy”
tokens. We use this unrealistic setup to ob-
serve the training over noisy and hardly in-
formative source sentences.
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Figure 3: Properties of pseudo-English data obtained with backtrans—nmt (back-translated from German).
Tendencies similar to English-French can be observed and difference in syntax complexity is even more visible.

We then use the procedures described in § 2.2,
except that the pseudo-source embeddings in the
copy-marked setup are pretrained for three
epochs on the in-domain data, while all remaining
parameters are frozen. This prevents random pa-
rameters from hurting the already trained model.

4.2 Copy+marking+noise is not so stupid

We observe that the copy setup has only a small
impact on the English-French system, for which
the baseline is already strong. This is less true for
English-German where simple copies yield a sig-
nificant improvement. Performance drops for both
language pairs in the copy—dummies setup.

We achieve our best gains with the
copy-marked setup, which is the best way to
use a copy of the target (although the performance
on the out-of-domain tests is at most the same as
the baseline). Such gains may look surprising,
since the NMT model does not need to learn to
translate but only to copy the source. This is

indeed what happens: to confirm this, we built a
fake test set having identical source and target side
(in French). The average cross-entropy for this
test set is 0.33, very close to 0, to be compared
with an average cost of 58.52 when we process
an actual source (in English). This means that the
model has learned to copy words from source to
target with no difficulty, even for sentences not
seen in training. A follow-up question is whether
training a copying task instead of a translation
task limits the improvement: would the NMT
learn better if the task was harder? To measure
this, we introduce noise in the target sentences
copied onto the source, following the procedure
of Lample et al. (2017): it deletes random words
and performs a small random permutation of
the remaining words. Results (+ Source noise)
show no difference for the French in-domain
test sets, but bring the out-of-domain score to
the level of the baseline. Finally, we observe a
significant improvement on German in-domain
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English—French

test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 31.25 62.14  51.89 32.17 62.35  50.79 33.06 6197 48.56
copy 31.65 62.45  52.09 32.23 62.37 5220 | 32.80 6199 49.05
copy—dummies 30.89 62.06 52.07 31.51 61.98 51.46 31.43 60.92  50.58
copy-marked 32.01 62.66 51.57 32.31 62.52 5146 32.33 61.55 49.44
+ Source noise 31.87 62.52  52.69 32.64 6255 51.63 33.04  62.11 48.47

English—German

test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 2136  57.08 63.32 | 21.27 57.11 60.67 | 22.49 5779  55.64
copy 22.15 5795 6149 | 2195 5772 59.58 | 22,59 57.83 5544
copy—-dummies 21.73 57.84  61.35 21.38 5738 60.10 | 21.12  56.81 57.21
copy-marked 22.58 5823  61.10 | 2247 5797 59.24 | 22.53 57.54 55.85
+ Source noise 2292 58.62 60.27 | 22.83 58.36 5848 | 2234 5747 5572

Table 5: Performance wrt. various stupid BTs

test sets, compared to the baseline (about +1.5
BLEU). This last setup is even almost as good as
the backtrans—-nmt condition (see § 3.1) for
German. This shows that learning to reorder and
predict missing words can more effectively serve
our purposes than simply learning to copy.

5 Towards more natural pseudo-sources

Integrating monolingual data into NMT can be as
easy as copying the target into the source, which
already gives some improvement; adding noise
makes things even better. We now study ways
to make pseudo-sources look more like natural
data, using the framework of Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014), an
idea borrowed from Lample et al. (2017)*.

5.1 GAN setups

In our setups, we use a marked target copy, viewed
as a fake source, which a generator encodes so as
to fool a discriminator trained to distinguish a fake
from a natural source. Our architecture contains
two distinct encoders, one for the natural source
and one for the pseudo-source. The latter acts as
the generator (G) in the GAN framework, com-
puting a representation of the pseudo-source that
is then input to a discriminator (D), which has to
sort natural from artificial encodings. D assigns a
probability of a sentence being natural.

During training, the cost of the discriminator
is computed over two batches, one with natu-
ral (out-of-domain) sentences X and one with (in-
domain) pseudo-sentences x’. The discriminator is

*Our implementation is available at
https://github.com/franckbrl/

nmt-pseudo-source—-discriminator
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a bidirectional-Recurrent Neural Network (RNN)
of dimension 1024. Averaged states are passed to
a single feed-forward layer, to which a sigmoid
is applied. It inputs encodings of natural (F(x))
and pseudo-sentences (G(x')) and is trained to op-
timize:

1
JD) = _ 5 Expi 108 D(E(x))
1
_ §EX,Nppheudo log(1 — D(G(X)))

G’s parameters are updated to maximally fool
D, thus the loss .J(@):

J@ = _E, log D(G(x'))

Finally, we keep the usual MT objective. (sis a
real or pseudo-sentence):

JMT) — log p(yls) = —Esp,, log MT(s)

We thus need to train three sets of parame-
ters: 0(P) 9(G) and HMT) (MT parameters), with
9@ e gMT) " The pseudo-source encoder and
embeddings are updated wrt. both J(&) and JMT),
Following (Goyal et al., 2016), 0(%) is updated
only when D’s accuracy exceeds 75%. On the
other hand, 6 is not updated when its accu-
racy exceeds 99%. At each update, two batches
are generated for each type of data, which are en-
coded with the real or pseudo-encoder. The en-
coder outputs serve to compute J(?) and J(). Fi-
nally, the pseudo-source is encoded again (once
G is updated), both encoders are plugged into
the translation model and the MT cost is back-
propagated down to the real and pseudo-word em-
beddings. Pseudo-encoder and discriminator pa-
rameters are pre-trained for 10k updates. At test
time, the pseudo-encoder is ignored and inference
is run as usual.

~Ppseudo



English—French

test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 3125 62.14 51.89 | 32.17 6235 50.79 | 33.06 6197 48.56
copy-marked 32.01 62.66  51.57 | 32.31 62.52 5146 | 3233 61.55 4944
+ GANSs 3195 6255 52.87 | 3224 6247 52.16 | 32.86 6190 48.97
copy-marked +noise 31.87 6252 52.69 | 32.64 6255 51.63 | 33.04 62.11 4847
+ GANSs 3241 62.78 5225 | 32.79 62.72 5092 | 33.01 61.98 48.37
backtrans—-nmt 3330 6333  50.02 | 3339 63.09 4948 | 3411 62.76 46.94
+ Distinct encoders 3229 62.83 51.55 | 3298 6291 51.19 | 33.60 6243 48.06
+ GANs 3291 63.08 51.17 | 3324 6293 50.82 | 3377 6242 47.80
natural 35,10 6471 4833 | 3529 6452 4826 | 3496 63.08 46.67
English—German
test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 2136 57.08 6332 | 2127 57.11 60.67 | 2249 5779 55.64
copy-marked 22.58 5823 61.10 | 2247 5797 5924 | 2253 5754 55.85
+ GANs 22.71 5825 61.25 | 2244 5786 59.28 | 22.81 57.54 5599
copy-marked +noise 2292 58.62 60.27 | 2283 5836 5848 | 2234 5747 5572
+ GANSs 23.01 58.66 60.22 | 2253 58.16 58.65 | 22.64 57770 55.48
backtrans—-nmt 23.00 59.12 58.31 | 23.10 58.85 56.67 | 2291 58.12  54.67
+ Distinct encoders 23.62 58.83 5974 | 23.10 58.50 58.19 | 2282 5791 5496
+ GANSs 23.65 58.85 59.70 | 23.20 5850 5822 | 23.00 57.89 55.15
natural 2674  61.14 56.19 | 26.16 60.64 5476 | 23.84 58.64 54.23
Table 6: Performance wrt. different GAN setups
English—French
test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 31.25 62.14 51.89 | 32.17 6235 50.79 | 33.06 6197 48.56
deep-fusion 31.85 6252 5227 | 3225 6240 51.64 | 33.65 62.40 48.24
copy-marked + noise + GANs 3241  62.78 5225 | 32.79 62.72 5092 | 33.01 61.98  48.37
+deep-fusion 3196 62,59 5196 | 3259 6259 51.65 | 3296 6195 4895
English—German
test-07 test-08 newstest-14
BLEU BEER CTER | BLEU BEER CTER | BLEU BEER CTER
Baseline 2136  57.08 63.32 | 21.27 57.11 60.67 | 2249 5779 55.64
deep-fusion 21.65 5757 6238 | 21.33 5733 60.54 | 23.10 58.06 55.33
copy-marked + noise + GANs  23.01 58.66 60.22 | 22,53 58.16 58.65 | 22.64 5770 5548
+deep-fusion 23.07 5850 6047 | 22.86 58.18 58.76 | 22.64 5746  55.85

Table 7: Deep-fusion model

5.2 GANSs can help

Results are in Table 6, assuming the same fine-
tuning procedure as above. On top of the
copy—marked setup, our GANs do not provide
any improvement in both language pairs, with the
exception of a small improvement for English-
French on the out-of-domain test, which we un-
derstand as a sign that the model is more ro-
bust to domain variations, just like when adding
pseudo-source noise. When combined with noise,
the French model yields the best performance we
could obtain with stupid BT on the in-domain
tests, at least in terms of BLEU and BEER. On
the News domain, we remain close to the baseline
level, with slight improvements in German.

A first observation is that this method brings
stupid BT models closer to conventional BT, at a

greatly reduced computational cost. While French
still remains 0.4 to 1.0 BLEU below very good
backtranslation, both approaches are in the same
ballpark for German - may be because BT are bet-
ter for the former system than for the latter.

Finally note that the GAN architecture has two
differences with basic copy—-marked: (a) a dis-
tinct encoder for real and pseudo-sentence; (b) a
different training regime for these encoders. To
sort out the effects of (a) and (b), we reproduce the
GAN setup with BT sentences, instead of copies.
Using a separate encoder for the pseudo-source
in the backtrans—-nmt setup can be detrimen-
tal to performance (see Table 6): translation de-
grades in French for all metrics. Adding GANs on
top of the pseudo-encoder was not able to make
up for the degradation observed in French, but al-
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lowed the German system to slightly outperform
backtrans—nmt. Even though this setup is un-
realistic and overly costly, it shows that GANs are
actually helping even good systems.

6 Using Target Language Models

In this section, we compare the previous meth-
ods with the use of a target side Language Model
(LM). Several proposals exist in the literature to
integrate LMs in NMT: for instance, Domhan and
Hieber (2017) strengthen the decoder by integrat-
ing an extra, source independent, RNN layer in a
conventional NMT architecture. Training is per-
formed either with parallel, or monolingual data.
In the latter case, word prediction only relies on
the source independent part of the network.

6.1 LM Setup

We have followed Gulcehre et al. (2017) and reim-
plemented’ their deep-fusion technique. It re-
quires to first independently learn a RNN-LM on
the in-domain target data with a cross-entropy ob-
jective; then to train the optimal combination of
the translation and the language models by adding
the hidden state of the RNN-LM as an additional
input to the softmax layer of the decoder.

Our RNN-LMs are trained using dl4mt® with
the target side of the parallel data and the Europarl
corpus (about 6M sentences for both French and
German), using a one-layer GRU with the same
dimension as the MT decoder (1024).

6.2 LM Results

Results are in Table 7. They show that
deep-fusion hardly improves the Europarl re-
sults, while we obtain about +0.6 BLEU over
the baseline on newstest-2014 for both languages.
deep-fusion differs from stupid BT in that
the model is not directly optimized on the in-
domain data, but uses the LM trained on Europarl
to maximize the likelihood of the out-of-domain
training data. Therefore, no specific improve-
ment is to be expected in terms of domain adap-
tation, and the performance increases in the more
general domain. Combining deep-fusion and

SOur implementation is part of the Nematus

toolkit (theano branch): https://github.com/
EdinburghNLP/nematus/blob/theano/doc/
deep_fusion_lm.md

*https://github.com/nyu-dl/
dl4mt-tutorial
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copy-marked + noise + GANS brings slight im-
provements on the German in-domain test sets,
and performance out of the domain remains near
the baseline level.

7 Re-analyzing the effects of BT

As a follow up of previous discussions, we analyze
the effect of BT on the internals of the network.
Arguably, using a copy of the target sentence in-
stead of a natural source should not be helpful for
the encoder, but is it also the case with a strong
BT? What are the effects on the attention model?

7.1 Parameter freezing protocol

To investigate these questions, we run the
same fine-tuning using the copy-marked,
backtrans—-nmt and backtrans-nmt se-
tups. Note that except for the last one, all train-
ing scenarios have access to same target training
data. We intend to see whether the overall perfor-
mance of the NMT system degrades when we se-
lectively freeze certain sets of parameters, mean-
ing that they are not updated during fine-tuning.

7.2 Results

BLEU scores are in Table 8. The
backtrans—-nmt setup is hardly impacted
by selective updates: updating the only decoder
leads to a degradation of at most 0.2 BLEU. For
copy-marked, we were not able to freeze the
source embeddings, since these are initialized
when fine-tuning begins and therefore need to
be trained. We observe that freezing the encoder
and/or the attention parameters has no impact on
the English-German system, whereas it slightly
degrades the English-French one. This suggests
that using artificial sources, even of the poorest
quality, has a positive impact on all the compo-
nents of the network, which makes another big
difference with the LM integration scenario.

The largest degradation is for natural, where
the model is prevented from learning from infor-
mative source sentences, which leads to a decrease
of 0.4 to over 1.0 BLEU. We assume from these
experiments that BT impacts most of all the de-
coder, and learning to encode a pseudo-source,
be it a copy or an actual back-translation, only
marginally helps to significantly improve the qual-
ity. Finally, in the fwdt rans—-nmt setup, freez-
ing the decoder does not seem to harm learning
with a natural source.



English—French English—German

test-07  test-08 nt-14 | test-07 test-08 nt-14
Baseline 31.25 32.17 33.06 | 21.36 21.27 2249
backtrans—nmt 33.30 3339  34.11 23.00 23.10 2291
+ Freeze source embedd. 33.20 33.24 34.16 22.84 22.85 23.00
+ Freeze encoder 33.17 33.25 33.73 22.72 22.74  22.64
+ Freeze attention 33.13 33.22 33.47 23.03 23.01 22.85
copy-marked 32.01 32.31 32.33 22.58 2247 2253
+ Freeze encoder 31.70 3239 3290 | 22.59 2230 22.81
+ Freeze attention 31.59 32.39 32.54 22.55 22.13 22.69
fwdtrans—-nmt 31.93 32,62 33,56 | 21.97 21.89 2252
+ Freeze decoder 31.84 32.62  33.35 21.91 21.65 13.61
natural 35.10 3529 3496 | 26.74 26.16  23.84
+ Freeze encoder 34.02 34.25 34.09 24.95 25.08 23.44
+ Freeze attention 34.13 34.42 34.19 25.13 24.97 23.35

Table 8: BLEU scores with selective parameter freezing

8 Related work

The literature devoted to the use of monolingual
data is large, and quickly expanding. We already
alluded to several possible ways to use such data:
using back- or forward-translation or using a target
language model. The former approach is mostly
documented in (Sennrich et al., 2016a), and re-
cently analyzed in (Park et al., 2017), which focus
on fully artificial settings as well as pivot-based
artificial data; and (Poncelas et al., 2018), which
studies the effects of increasing the size of BT
data. The studies of Crego and Senellart (2016);
Park et al. (2017) also consider forward translation
and Chinea-Rios et al. (2017) expand these results
to domain adaptation scenarios. Our results are
complementary to these earlier studies.

As shown above, many alternatives to BT exist.
The most obvious is to use target LMs (Domhan
and Hieber, 2017; Gulcehre et al., 2017), as we
have also done here; but attempts to improve
the encoder using multi-task learning also exist
(Zhang and Zong, 2016).

This investigation is also related to recent at-
tempts to consider supplementary data with a valid
target side, such as multi-lingual NMT (Firat et al.,
2016), where source texts in several languages are
fed in the same encoder-decoder architecture, with
partial sharing of the layers. This is another re-
alistic scenario where additional resources can be
used to selectively improve parts of the model.

Round trip training is another important source
of inspiration, as it can be viewed as a way to use
BT to perform semi-unsupervised (Cheng et al.,
2016) or unsupervised (He et al., 2016) training of
NMT. The most convincing attempt to date along
these lines has been proposed by Lample et al.
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(2017), who propose to use GANs to mitigate the
difference between artificial and natural data.

9 Conclusion

In this paper, we have analyzed various ways to
integrate monolingual data in an NMT framework,
focusing on their impact on quality and domain
adaptation. While confirming the effectiveness of
BT, our study also proposed significantly cheaper
ways to improve the baseline performance, using
a slightly modified copy of the target, instead of
its full BT. When no high quality BT is available,
using GANs to make the pseudo-source sentences
closer to natural source sentences is an efficient
solution for domain adaptation.

To recap our answers to our initial questions:
the quality of BT actually matters for NMT (cf.
§ 3.1) and it seems that, even though artificial
source are lexically less diverse and syntactically
complex than real sentence, their monotonicity is
a facilitating factor. We have studied cheaper alter-
natives and found out that copies of the target, if
properly noised (§ 4), and even better, if used with
GAN:Ss, could be almost as good as low quality BTs
(§ 5): BT is only worth its cost when good BT can
be generated. Finally, BT seems preferable to in-
tegrating external LM - at least in our data condi-
tion (§ 6). Further experiments with larger LMs
are needed to confirm this observation, and also
to evaluate the complementarity of both strategies.
More work is needed to better understand the im-
pact of BT on subparts of the network (§ 7).

In future work, we plan to investigate other
cheap ways to generate artificial data. The experi-
mental setup we proposed may also benefit from a
refining of the data selection strategies to focus on
the most useful monolingual sentences.
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Abstract

Both research and commercial machine trans-
lation have so far neglected the importance
of properly handling the spelling, lexical and
grammar divergences occurring among lan-
guage varieties. Notable cases are standard
national varieties such as Brazilian and Euro-
pean Portuguese, and Canadian and European
French, which popular online machine transla-
tion services are not keeping distinct. We show
that an evident side effect of modeling such va-
rieties as unique classes is the generation of
inconsistent translations. In this work, we in-
vestigate the problem of training neural ma-
chine translation from English to specific pairs
of language varieties, assuming both labeled
and unlabeled parallel texts, and low-resource
conditions. We report experiments from En-
glish to two pairs of dialects, European-
Brazilian Portuguese and European-Canadian
French, and two pairs of standardized vari-
eties, Croatian-Serbian and Indonesian-Malay.
We show significant BLEU score improve-
ments over baseline systems when translation
into similar languages is learned as a multilin-
gual task with shared representations.

1 Introduction

The field of machine translation (MT) is making
amazing progress, thanks to the advent of neural
models and deep learning. While just few years
ago research in MT was struggling to achieve use-
ful translations for the most requested and high-
resourced languages, the level of translation qual-
ity reached today has raised the demand and in-
terest for less-resourced languages and the so-
Iution of more subtle and interesting translation
tasks (Bentivogli et al., 2018). If the goal of
machine translation is to help worldwide com-
munication, then the time has come to also cope
with dialects or more generally language vari-
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eties!. Remarkably, up to now, even standard na-
tional language varieties, such as Brazilian and
European Portuguese, or Canadian and European
French, which are used by relatively large pop-
ulations have been quite neglected both by re-
search and industry. Prominent online commer-
cial MT services, such as Google Translate and
Bing, are currently not offering any variety of Por-
tuguese and French. Even worse, systems offering
such languages tend to produce inconsistent out-
puts, like mixing lexical items from different Por-
tuguese (see for instance the translations shown in
Table 1). Clearly, in the perspective of delivering
high-quality MT to professional post-editors and
final users, this problem urges to be fixed.

While machine translation from many to one
varieties is intuitively simpler to approach?, it is
the opposite direction that presents the most rel-
evant problems. First, languages varieties such
as dialects might significantly overlap thus mak-
ing differences among their texts quite subtle (e.g.,
particular grammatical constructs or lexical diver-
gences like the ones reported in the example). Sec-
ond, parallel data are not always labeled at the
level of language variety, making it hard to de-
velop specific NMT engines. Finally, training data
might be very unbalanced among different vari-
eties, due to the population sizes of their respec-
tive speakers or for other reasons. This clearly
makes it harder to model the lower-resourced va-
rieties (Koehn and Knowles, 2017).

In this work we present our initial effort to
systematically investigate ways to approach NMT
from English into four pairs of language varieties:

'"In sociolinguistics, a variety is a specific form of lan-
guage, that may include dialects, registers, styles, and other
forms of language, as well as a standard language. See Ward-
haugh (2006) for a more comprehensive introduction.

2We will focus on this problem in future work and disre-
gard possible varieties in the source side, such as American
and British English, in this work.
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English (source)

I’'m going to the gym before breakfast. No, I'm not going to the gym.

pt (Google Translate)
pt-BR (M-C2)

pt-EU (M-C2)

pt-BR (M-C2_L)
pt-PT (M-C2_L)

Eu estou indo para a academia antes do café da manha. Nao, eu ndo vou ao gindsio.
Eu vou 4 academia antes do café da manha. Néo, eu ndo vou a academia.

Vou para o gindsio antes do pequeno-almog¢o. Ndo, ndo vou para o ginasio.

Vou a academia antes do café da manha. Nao, ndo vou a academia.

Vou ao gindsio antes do pequeno-almoco. Nio, ndo vou ao gindsio.

Table 1: MT from English into Portuguese varieties. Example of mixed translations generated by Google Translate
(as of 20th July, 2018) and translations generated by our variety-specific models. For the underlined English terms
both their Brazilian and European translation variants are shown.

Portuguese European - Portuguese Brazilian, Eu-
ropean French - Canadian French, Serbian - Croa-
tian, and Indonesian - Malay?. For each couple of
varieties, we assume to have both parallel text la-
beled with the corresponding couple member, and
parallel text without such information. Moreover,
the considered target pairs, while all being mu-
tually intelligible, present different levels of lin-
guistic similarity and also different proportions of
available training data. For our tasks we rely on
the WIT? TED Talks collection®, used for the In-
ternational Workshop of Spoken Language Trans-
lation, and OpenSubtitles2018, a corpus of subti-
tles available from the OPUS collection’.

After presenting related work (Section 2) on
NLP and MT of dialects and related languages,
we introduce (in Section 3) baseline NMT sys-
tems, either language/dialect specific or generic,
and multilingual NMT systems, either trained with
fully supervised (or labeled) data or with partially
supervised data. In Section 4, we introduce our
datasets, NMT set-ups based on the Transformer
architecture, and then present the results for each
evaluated system. We conclude the paper with a
discussion and conclusion in Sections 5 and 6.

2 Related work
2.1

Most of the works on translation between and
from/to written language varieties involve rule-
based transformations, e.g., for European and
Brazilian Portuguese (Marujo et al., 2011), In-
donesian and Malay (Tan et al., 2012), Turkish
and Crimean Tatar (Altintas and Cicekli, 2002); or
phrase-based statistical MT (SMT) systems, e.g.,
for Croatian, Serbian, and Slovenian (Popovi¢

Machine Translation of Varieties

3 According to Wikipedia, Brazilian Portuguese is a di-
alect of European Portuguese, Canadian French is a dialect
of European French, Serbian and Croatian are standardized
registers of Serbo-Croatian, and Indonesian is a standardized
register of Malay.

*“http://wit3.fok.eu/

>http://opus.nlpl.eu/
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etal., 2016), Hindi and Urdu (Durrani et al., 2010),
or Arabic dialects (Harrat et al., 2017). Notably,
Pourdamghani and Knight (2017) build an unsu-
pervised deciphering model to translate between
closely related languages without parallel data.
Salloum et al. (2014) handle mixed Arabic dialect
input in MT by using a sentence-level classifier
to select the most suitable model from an ensem-
ble of multiple SMT systems. In NMT, however,
there have been fewer studies addressing language
varieties. It is reported that an RNN model out-
performs SMT when translating from Catalan to
Spanish (Costa-jussa, 2017) and from European
to Brazilian Portuguese (Costa-Jussa et al., 2018).
Hassan et al. (2017) propose a technique to aug-
ment training data for under-resourced dialects via
projecting word embeddings from a resource-rich
related language, thus enabling training of dialect-
specific NMT systems. The authors generate spo-
ken Levantine-English data from larger Arabic-
English corpora and report improvement in BLEU
scores compared to a low-resourced NMT model.

2.2 Dialect Identification

A large body of research in dialect identifica-
tion stems from the DSL shared tasks (Zampieri
et al., 2014, 2015; Malmasi et al., 2016; Zampieri
etal., 2017). Currently, the best-performing meth-
ods include linear machine learning algorithms
such as SVM, naive Bayes, or logistic regression,
which use character and word n-grams as features
and are usually combined into ensembles (Jauhi-
ainen et al., 2018). Tiedemann and Ljubesi (2012)
present the idea of leveraging parallel corpora for
language identification: content comparability al-
lows capturing subtle linguistic differences be-
tween dialects while avoiding content-related bi-
ases. The problem of ambiguous sentences, i.e.,
those for which it is impossible to decide upon the
dialect tag, has been demonstrated for Portuguese
by Goutte et al. (2016) through inspection of dis-
agreement between human annotators.



2.3

In a one-to-many multilingual translation scenario,
Dong et al. (2015) proposed a multi-task learn-
ing approach that utilizes a single encoder for
source languages and separate attention mecha-
nisms and decoders for every target language. Lu-
ong et al. (2015) used distinct encoder and decoder
networks for modeling language pairs in a many-
to-many setting. Firat et al. (2016) introduced a
way to share the attention mechanism across mul-
tiple languages. A simplified and efficient mul-
tilingual NMT approach is proposed by Johnson
et al. (2016) and Ha et al. (2016) by prepend-
ing language tokens to the input string. This ap-
proach has greatly simplified multi-lingual NMT,
by eliminating the need of having separate en-
coder/decoder networks and attention mechanism
for every new language pair. In this work we fol-
low a similar strategy, by incorporating an artifi-
cial token as a unique variety flag.

Multilingual NMT

3 NMT into Language Varieties

Our assumption is to translate from language F
(English) into each of two varieties A and B. We
assume to have parallel training data Dg_, 4 and
Dpg_, p for each variety as well as unlabeled data
Dg_,aup. For the sake of experimentation we
consider three application scenarios in which a
fixed amount of parallel training data F-A and E-
B is partitioned in different ways:

e Supervised: all sentence pairs are respec-
tively put in Dg_,4 and Dg_,p, leaving
DEg_ aup empty;

Unsupervised: all sentence pairs are jointly
putin Dg_, ouB, leaving Dg_, 4 and Dg_,p
empty;

Semi-supervised: two-third of E-A and E-B
are, respectively, put in Dg_, 4 and Dg_,p,
and the remaining sentence pairs are put in
Dg—auB.

Supervised and Unsupervised Baselines. For
each translation direction we compare three base-
line NMT systems. The first system is an un-
supervised generic (Gen) system trained on the
union of the language varieties training data. No-
tice that Gen makes no distinction between A
and B and uses all data in an unsupervised way.
The second is a supervised variety-specific system
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(Spec) trained on the corresponding language va-
riety training set. The third system (Ada) is ob-
tained by adapting the Gen system to a specific va-
riety.> Adaptation is carried out by simply restart-
ing the training process from the generic model us-
ing all the available variety specific training data.
Supervised Multilingual NMT. We build on the
idea of multilingual NMT (Mul), where one single
NMT system is trained on the union of Dg_, 4 and
Dpg_, p. Each source sentence both at training and
inference time is prepended with the correspond-
ing target language variety label (A or B). Notice
that the multilingual architecture leverages the tar-
get forcing symbol both as input to the encoder to
build its states, and as initial input to the decoder
to trigger the first target word.

Semi-Supervised Multilingual NMT. We con-
sider here multilingual NMT models that make
also use of unlabeled data Dg_,oup. The first
model we propose, named M—U, uses the available
data Dg_, o, Dgp_,p and DEg_, o p as they are, by
not specifying any label at training time for entries
from Dg_, 4up. The second model, named M—-C2,
works similarly to Mul, but relying on a language
variety identification module (trained on the target
data of Dg_, 4 and Dg_.p) that maps each unla-
beled data point either to A or B. The third model,
named M-C3, can be seen as an enhancement of
M-U, as the unlabeled data is automatically classi-
fied into one of three classes: A, B, or AU B. For
the third class, like with M-U, no label is applied
on the source sentence.

4 Experimental Set-up

4.1 Dataset and Preprocessing

The experimental setting consists of eight target
varieties and English as source. We use pub-
licly available datasets from the WIT? TED cor-
pus (Cettolo et al., 2012). The summary of the
partitioned training, dev, and test sets are given in
Table 2, where Tr. 2/3 is the labeled portion of the
training set used to train the semi-supervised mod-
els, while the other 1/3 are either held out as un-
labeled (M-U) or classified automatically (M-C2,
M-C3). In the preprocessing stages, we tokenize
the corpora and remove lines longer than 70 to-
kens. The Serbian corpus written in Cyrillic is
transliterated into Latin script with CyrTranslit’.
In addition, to also run a large-data experiment,

SWe test this system only on the Portuguese varieties.
"https://pypi.org/project/cyrtranslit



Train Ratio (%) Tr.2/3  Dev  Test pt s-hr - fr id-ms pt.L
pt-BR 234K 58.23 156K 1567 1454 ROC AUC 8229 88.12 80.99 8199 52.75
__PEU_ 168K 4777 _ 56K 1565 1124
fr-CA 18K 10.26 12K 1608 1012 Table 3: Performance of language identification on the
__frEU_ 160K 8974 106K 1567 1362  |ow-resource and high-resource (pt_L) settings
hr 110K 54.20 73K 1745 1222
o___S__ 23K 4580 62K 1725 1214
id 105k 96.71 70K 932 1448 . . .
ms 36K 3.9 2k 1024 738 4.3 Language Variety Identification
pt-BRL  47.2M 6491  314M 1567 1454  To automatically identify the language variety of
pt-EU_L  25.5M 35.10 17M 1565 1124

Table 2: Number of parallel sentences of the TED Talks
used for training, development and testing. At the bot-
tom, the large-data set-up which uses the OpenSubtitles
(pt-BR_L and pt-PT_L) as additional training set.

we expand the English—European/Brazilian Por-
tuguese data with the corresponding OpenSubti-
tles2018 datasets from the OPUS corpus. Table 2
summarizes the augmented training data, while
keeping the same dev and test sets.

4.2 Experimental Settings

We trained all systems using the Transformer
model® (Vaswani et al., 2018). We use the Adam
optimizer (Kingma and Ba, 2014) with an ini-
tial learning rate of 0.2 and a dropout also set to
0.2. A shared source and target vocabulary of size
16k is generated via sub-word segmentation (Wu
et al., 2016). The choice for the vocabulary size
follows the recommendations in Denkowski and
Neubig (2017) regarding training of NMT systems
on TED Talks data. Overall we use a uniform set-
ting for all our models, with a 512 embedding di-
mension and hidden units, and 6 layers of self-
attention encoder-decoder network. The training
batch size is of 6144 sub-word tokens and the max
length after segmentation is set to 70. Follow-
ing Vaswani et al. (2017) and for a fair compari-
son, experiments are run for 100k training steps,
i.e., in the low-resource settings all models are ob-
served to converge within these steps. Adapta-
tion experiments are run to convergence, which re-
quires roughly half of the steps (i.e., 50k) required
to train the generic low-resource model. On the
other hand, large-data systems are trained for up
to 800k steps, which also showed to be a conver-
gence point. For the final evaluation we take the
best performing checkpoint on the dev set. All
models are trained using Tesla V100-pcie-16gb on
a single GPU.

8https://github.com/tensorflow/tensor2tensor
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unlabeled target sentences, we train a fastText
model (Joulin et al., 2017), a simple yet efficient
linear bag of words classifier. We use both word-
and character-level n-grams as features. In the
low-resource condition, we train the classifier on
the 2/3 portion of the labeled training data. For
the large-data experiment, instead, we used a rel-
atively smaller and independent corpus consisting
of 3.3 million pt-BR—pt-EU parallel sentences ex-
tracted from OpenSubtitles2018 after filtering out
identical sentences pairs and sentences occurring
(in any of the two varieties) in the NMT train-
ing data. Additionally, low-resource training sen-
tences (fr-CA and ms) are randomly oversampled
to mitigate class imbalance.

For each pair of varieties, we train five base
classifiers differing in random initialization. In the
M-C2 experiments, prediction is determined based
on soft fusion voting, i.e., the final label is the
argmax of the sum of class probabilities. Due to
class skewness in the evaluation set, we report bi-
nary classification performance in terms of ROC
AUC (Fawcett, 20006) instead of accuracy in Ta-
ble 3. For M-C3 models, we handle ambiguous
examples using the majority voting scheme: in or-
der for a label to be assigned, its softmax probabil-
ity should be strictly higher than fifty percents ac-
cording to the majority of the base classifiers, oth-
erwise no tag is applied. On average, this resulted
in <1% of unlabeled sentences for the small data
condition, and about 2% of unlabeled sentences
for the large data condition.

5 Results and Discussion

We run experiments with all the systems intro-
duced in Section 3, on four pairs of languages va-
rieties. Results are reported in Table 4 for the low-
resource setting and in Table 5 for the large data
setting.

5.1 Low-resource setting

Among the supervised models, which are using
all the available training data, the multilingual
NMT model Mul outperforms the variety-specific



pt-BR  pt-EU  average

Unsuper.  Gen $36.52  [33.75 35.14
Supervis. Spec  |35.85 |35.84 35.85
” Ada  [36.54 [36.59 36.57

” Mul 37.86  38.42 38.14
Semi-sup. M-U  [37.09 37.59 37.34
” M-C2 37.70  38.35 38.03

” M-C3 3759 38.31 37.95
fr-EU  fr-CA average

Unsuper.  Gen 3391 30091 32.41
Supervis.  Spec 33.52 |17.13 25.33
” Mul 3340 37.37 35.39
Semi-sup. M-U 33.28  37.96 35.62
” M-C2  33.79 138.60 36.20

” M-C3 134.16 139.30 36.73

hr sr average

Unsuper.  Gen 12171 [19.20 20.46
Supervis.  Spec  |22.50 |19.92 21.21
” Mul 2399 2137 22.68
Semi-sup. M-U 2430 21.53 2291
” M-C2 24.14 21.26 22.70

” M-C3 2422 2197 23.10

id ms average

Unsuper.  Gen 26.56 |13.86 20.21
Supervis.  Spec 2620 |2.73 14.47
” Mul 26.66 15.77 21.22
Semi-sup. M-U 26.52 1558 21.05
” M-C2 2636 16.31 21.34

” M-C3 2640 15.23 20.82

Table 4: BLEU scores of the presented models, trained
with unsupervised, supervised and semi-supervised
data, from English to Brazilian Portuguese (pt-BR) and
European Portuguese (pt-EU), Canadian French (fr-
CA) and European French (fr-EU), Croatian (hr) and
Serbian (sr), and Indonesian (id) and Malay (ms). Ar-
rows |1 indicate statistically significant differences cal-
culated against Mul using bootstrap resampling with
a = 0.05 (Koehn, 2004).

models on all considered directions. Remarkably,
the Mul model also outperforms the adapted Ada
model on the available translation directions. The
unsupervised generic model Gen, that mixes to-
gether all the available data, as expected tends to
perform better than the supervised specific mod-
els of the less resourced varieties. Particularly,
this improvement is observed for Malay (ms) and
Canadian French (fr-CA), which respectively rep-
resent the 3.3% and 10% of the overall training
data used by their corresponding (Gen) systems.
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On the contrary, a degradation is observed for Eu-
ropean Portuguese (pt-Eu) and Serbian (sr), which
represent 42% and 45% of their respective train-
ing sets. Even though very low-resourced varieties
can benefit from the mix, it is also evident that the
Gen model can easily get biased because of the
imbalance between the datasets.

In the semi-supervised scenario, we report re-
sults with three multilingual systems that integrate
the 1/3 of unlabeled data to the training corpus
in three different ways: (i) without labels (M-U),
(ii) with automatic labels forcing one of two pos-
sible classes (M—C2), (iii) with automatic labels of
one of the two options or no label in case of low
confidence of the classifier (M-C3).

Results show that on average automatic tag-
ging of the unlabeled data is better than leaving
them unlabeled, although M-U still remains a bet-
ter choice than using specialized and generic sys-
tems. The best between M—-C2 and M—C3 performs
on average from very close to better than the best
supervised method.

If we look at the single language variety, the
obtained figures are not showing a coherent pic-
ture. In particular, in the Croatian-Serbian and
Indonesian-Malay pairs the best resourced lan-
guage seems to benefit more from keeping the
data unlabeled (M-U). Interestingly, even the worst
semi-supervised model performs very close or
even better than the best supervised model, which
suggests the importance of taking advantage of all
available data even if they are not labeled.

Focusing on the statistically significant im-
provements, the best supervised (Mul) is better
than the unsupervised (Gen), whereas the best
semi-supervised (M-C2 or M—-C3) is either com-
parable or better than the best supervised.

5.2 High-resource setting

Unlike what observed in the low-resource setting,
where Mul outperforms Spec in the supervised
scenario, in the large data condition, variety spe-
cific models apparently seem the best choice. No-
tice, however, that the supervised multilingual sys-
tem Mul provides just a slightly lower level of
performance with a simpler architecture (one net-
work in place of two). The unsupervised generic
model Gen, trained with the mix of the two va-
rieties datasets, performs significantly worse than
the other two supervised approaches, this is par-
ticularly visible for the pt-EU direction. Very



pt-BR  pt-EU average pt-BR  pt-EU average
Unsuper.  Gen | 39.78 [36.13 3796  Unsuper. M-C2 4150 40.21 40.86
Supervis.  Spec 41.54 40.42 40.98 ” M-C3 41.66 40.13 40.90
? Mul 41.28 40.28 40.7
Semi-sup MU 4121 3988 4055 Table 6: BLEU scores on the test set by large scale
, ' ' ' ' multi-lingual models trained under an unsupervised
. ﬁ_gi iigg igg; igg; condition, where all the training data are labeled au-

Table 5: BLEU score on the test set of models trained
with large-scale data, from English to Brazilian Por-
tuguese (pt-BR) and European Portuguese (pt-EU). Ar-
rows |1 indicate statistically significant differences cal-
culated against the Mul model.

likely, in addition to the ambiguities that arise
from naively mixing the data of the two different
dialects, there is also a bias effect towards pt-BR
which is due to the very unbalanced proportions of
data between the two dialects (almost 1:2).

Hence, in the considered high-resource setting,
the Spec and Mul models result as best possi-
ble solutions against which comparing our semi-
supervised approaches.

In the semi-supervised scenario, the obtained
results confirm that our approach of automatically
classifying the unlabeled data Dg_, 4p improves
over using the data as they are (M-U). Neverthe-
less, M~-U still confirms to perform better than the
fully unlabeled Gen model. In both translation di-
rections, M-C2 and M—C3 get quite close to the
performance of the supervised Spec model. In
particular, M—C3 shows to outperform the M-C2
model, and even outperforms on average the su-
pervised Mul model. In other words, the semi-
supervised model leveraging three-class automatic
labels (of Dg_, aup) seems to perform better than
the supervised model with two dialect labels. Be-
sides the comparable BLEU scores, the supervised
(Spec and Mul) perform in statistically insignifi-
cant way against the best semi-supervised (M-C3),
although outperforming the unsupervised (Gen)
model.

This result raises the question if relabeling all
the training data can be a better option than using a
combination of manual and automatic labels. This
issue is investigated in the next subsection.

Unsupervised Multilingual Models

As discussed in Section 4.3, the language classifier
for the large-data condition is trained on dialect-
to-dialect parallel data that does not overlap with
the NMT training data. This condition permits
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tomatically.

hence to investigate a fully unsupervised training
condition. In particular, we assume that all the
available training data is unlabeled and create au-
tomatic language labels for all 47.2M sentences
of pt-BR and 25.5M sentences of pt-EU (see Ta-
ble 2). In a similar way as in Table 5, we keep the
experimental setting of M-C2 and M—C3 models.

Table 6 reports the results of the multilingual
models trained under the above described unsu-
pervised condition. In comparison with the semi-
supervised condition, both M-C2 and M-C3 show
a slight performance improvement. In particular,
the three-label M—C3 performs on average slightly
better than the two-label M-C2 model. Actually,
the little difference is justified by the fact that the
classifier used the “third” label only for 6% of the
data. Remarkably, despite the relatively low per-
formance of the classifier, average score of the best
unsupervised model M-C2 is almost on par with
the supervised model Mul.

5.3 Translation Examples

Finally, in Table 7, we show an additional trans-
lation example produced by our semi-supervised
multilingual models (both under low and high re-
source conditions) translating into the Portuguese
varieties. For comparison we also include out-
put from Google Translate which offers only a
generic English-Portuguese direction. In partic-
ular, the examples contain the word refrigerator
that has specific dialect variants. All our variety-
specific systems show to generate consistent trans-
lations of this term, while Google Translate prefers
to use the Brazilian translation variants for these
sentences.

6 Conclusions

We presented initial work on neural machine
translation from English into dialects and related
languages. We discussed both situations where
parallel data is supplied or not supplied with tar-
get language/dialect labels. We introduced and
compared different neural MT models that can be



English (source) We offer a considerable number of different refrigerator models. We have also developed a new

type of refrigerator. These include American-style side-by-side refrigerators.

pt (Google Translate) ferecemos um nimero considerdvel de modelos diferentes de refrigeradores. N6s também
desenvolvemos um novo tipo de geladeira. Estes incluem refrigeradores lado a lado estilo
americano.

Low-resource models

pt-BR (M-C2) Nos oferecemos um nimero consideravel de diferentes modelos de refrigerador. Também de-
senvolvemos um novo tipo de refrigerador. Eles incluem o estilo americano nas geladeiras lado
a lado.

pt-EU (M-C2) Oferecemos um nimero considerdvel de modelos de refrigeracdo diferentes. Também desen-

volvemos um novo tipo de frigorifico. Também desenvolvemos um novo tipo de frigorifico.
High-resource models

Spec-pt-BR Oferecemos um nmero considerdvel de modelos de geladeira diferentes. Também desenvolve-
mos um novo tipo de geladeira. Isso inclui o estilo americano lado a lado refrigeradores.
Spec-pt-PT Oferecemos um numero considerdavel de modelos de frigorifico diferentes. Também desen-

volvemos um novo tipo de frigorfico. Estes incluem frigorificos americanos lado a lado.

pt-BR (M-C3_L) Oferecemos um nimero consideravel de diferentes modelos de geladeira. Também desenvolve-

mos um novo tipo de geladeira. Estes incluem estilo americano lado a lado, geladeiras.

pt-PT (M-C3_L) Oferecemos um nimero consideravel de diferentes modelos frigorificos. Também desenvolve-

mos um novo tipo de frigorfico. Estes incluem estilo americano lado a lado frigorificos.

Table 7: English to Portuguese translation generated by Google Translate (as of 20th July, 2018) and translations
into Brazilian and European Portuguese generated by our semi-supervised multilingual (M-C2 and M-C3_L) and
supervised Spec models. For the underlined English terms both their Brazilian and European translation variants
are shown.
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Abstract

This paper presents an effective approach for
parallel corpus mining using bilingual sen-
tence embeddings. Our embedding models are
trained to produce similar representations ex-
clusively for bilingual sentence pairs that are
translations of each other. This is achieved
using a novel training method that introduces
hard negatives consisting of sentences that are
not translations but have some degree of se-
mantic similarity. The quality of the result-
ing embeddings are evaluated on parallel cor-
pus reconstruction and by assessing machine
translation systems trained on gold vs. mined
sentence pairs. We find that the sentence em-
beddings can be used to reconstruct the United
Nations Parallel Corpus (Ziemski et al., 2016)
at the sentence-level with a precision of 48.9%
for en-fr and 54.9% for en-es. When adapted
to document-level matching, we achieve a par-
allel document matching accuracy that is com-
parable to the significantly more computa-
tionally intensive approach of Uszkoreit et al.
(2010). Using reconstructed parallel data, we
are able to train NMT models that perform
nearly as well as models trained on the orig-
inal data (within 1-2 BLEU).

1 Introduction

Volumes of quality parallel training data are criti-
cal to neural machine translation (NMT) systems.
While large distributed systems have proven use-
ful for mining parallel documents (Uszkoreit et al.,
2010; Antonova and Misyurev, 2011), these ap-
proaches are computationally intensive and rely on
heavily engineered subsystems. Recent work has
approached the problem by training lightweight
end-to-end models based on word and sentence-
level embeddings (Grégoire and Langlais, 2017;
Bouamor and Sajjad, 2018; Schwenk, 2018).
We propose a novel method for training bilin-
gual sentence embeddings that proves useful for
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sentence-level mining of parallel data. Sen-
tences are encoded using Deep Averaging Net-
works (DANs) (Iyyer et al., 2015), a simple bag
of n-grams architecture that has been shown to
provide surprisingly competitive performance on
a number of tasks including sentence classifica-
tion (Iyyer et al., 2015; Cer et al., 2018), conversa-
tion input-response prediction (Yang et al., 2018),
and email response prediction (Henderson et al.,
2017). Separate encoders are used for each lan-
guage with candidate source and target sentences
being paired based on the dot-product of their em-
bedded representations. Training maximizes the
dot-product score of sentence pairs that are trans-
lations of each other at the expense of sampled
negatives. We contrast using random negatives
with carefully selected hard negatives that chal-
lenge the model to distinguish between true trans-
lation pairs versus non-translation pairs that ex-
hibit some degree of semantic similarity.

The efficiency of the sentence encoders and the
use of a dot-product operation to score candidate
sentence pairs is well suited for parallel corpus
mining. Efficient encoders reduce the amount of
computational resources required to obtain sen-
tence embeddings for a large collection of un-
paired sentences. Once the sentence embeddings
are available, efficient nearest neighbour search
(Vanderkam et al., 2013; Johnson et al., 2017) can
be used to identify candidate translation pairs.

The language pairs English-French (en-fr) and
English-Spanish (en-es) are used in our experi-
ments. Our results show that introducing hard neg-
ative sentence pairs, which are semantically simi-
lar but that are not translations of each other, sys-
tematically outperforms using randomly selected
negatives. Our method can be used to reconstruct
the United Nations Parallel Corpus (Ziemski et al.,
2016) at the sentence-level with a level of preci-
sion of 48.9% P@1 for en-fr and 54.9% P@1 for
en-es. When we adapt our method to document-
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level pairings we achieve a matching accuracy that
is comparable to that of the much heavier weight
and more computationally intensive approach of
Uszkoreit et al. (2010). Training an NMT model
using the reconstructed corpus results in models
that perform nearly as well as those trained on
the original parallel corpus (within 1-2 BLEU).
Finally, our method has a modest degree of cor-
relation with the pair quality scores provided by
Zipporah (Xu and Koehn, 2017). However, our
method has higher agreement with human judg-
ments, and our approach to filter the ParaCrawl
corpus results in NMT systems with higher BLEU
scores.

2 Approach

This section introduces our bilingual sentence em-
bedding model and the translation candidate rank-
ing task we use for training. We then present
our method for selecting hard negative sentence
pairs that are not translations of each other but
have some degree of semantic similarity. Finally,
we detail the use of our bilingual sentence em-
beddings to search for sentences that are transla-
tions of each other, as well as an adaptation to the
matching process to parallel documents.

2.1 Translation Candidates Ranking Task

Given a pair of sentences that are translations of
each other x and y, the translation candidate rank-
ing task attempts to rank the true translation y over
all other sentences, ), in the given language. This
can be accomplished by modeling the translation
probability distribution P(y | ). Provided with a
scoring function ¢ that assesses the compatibility
between x and vy, the distribution can be expressed
as the following log-linear model:

e®(x,y)

de v @¢($1?7)
To avoid summing over all possible target sen-
tences, the normalization term is approximated by
summing over the compatibility score for match-
ing z to K —1 sampled negatives together with the
compatibility score for the positive candidate:

Py |z) = (D

e?(@y)
Zszl ed)(zvyk)

This formulation is similar to early work on dis-
criminative training of log-linear translation de-
coding models (Och and Ney, 2002). However,

Popprox(y | ) = ()
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rather than using a weighted sum of manually
engineered features, we define ¢ to be the dot-
product of sentence embeddings for the source, u,
and target, v, with ¢(x,3) =u' -v. A similar
log-linear sentence embedding based formulation
of P(y|x) has been previously used for conver-
sation and e-mail response prediction (Henderson
et al., 2017; Yang et al., 2018).

2.2 Bilingual Sentence Embeddings

Bilingual sentence embeddings are obtained us-
ing the dual-encoder architecture illustrated in
Figure 1. We use Deep Averaging Networks
(DANSs) (Iyyer et al., 2015) to compute sentence-
level embedding vectors by first averaging word
and bi-gram level embeddings, denoted as ¥(x)
and ¥(y), for the source and target sentences, re-
spectively. ! The word and bi-gram level embed-
dings are not pretrained but are rather learned dur-
ing training of the sentence encoders. The aver-
aged representation is provided to a feedforward
deep neural network (DNN). Across hidden layers
we include residual connections with a skip level
of 1. The final bilingual sentence embeddings are
u and v, which are taken from the last layer of
the source and target encoders, respectively. The
dot-product of the sentence embeddings, u’ - v, is
used to compute the translation score, ¢(x, y).

hidden layer hidden layer
u v

hidden layer hidden layer
hidden layer hidden layer
hidden layer hidden layer

Figure 1: Dual-encoder architecture, where a group of
hidden layers encodes source sentence x to u and a sepa-
rate group encodes target sentence y to v such that the score
¢(x, y) is the dot-product u” - v.

The dual-encoders are trained for the translation
candidate ranking task by maximizing the log like-
lihood of P,ppr0.. This objective is particularly

'Our implementation sums the word and bi-gram embed-
dings and then divides the result by sqrt(n), where n is the
sentence length. The intuition behind dividing by sqrt(n)
is as follows: We want our input embeddings to be sensitive
to length. However, we also want to ensure that, for short
sequences, the relative differences in the representations are
not dominated by sentence length effects.



Source (Target)

Negatives

How to display and access shared files

(Comment afficher et accéder aux fichiers partagés)

Sa respiration devient laborieuse
Benoit Faucon Lieu London

Acces I’environment des fichiers partagés

en-fr Hard Des éléments comme des fichiers de dossiers
Random RCS 871, ou le juge Fauteux explique
The General Delegation for Armaments | — Avissurleshétels |
(La délégation générale pour 1’armement) Hard La 9e armée , commandée par le général Foch
La délégation militaire hongroise composée de ...
Random Alquiler mensual desde : 890 USD
Oil and gas investments (Qué mas se deja para preguntar?
(Inversiones en petréleo y gas) [ - 7 Petréleoy gas” ~ T T T T 7
Hard . P P
Petréleo y Gas Petroquimica pagina
en-es -
Random Ve el perfil completo de Fleishman
In Spain, it has clearly chosen the gratuity Ledn de montafia en roca
(En Espaiia, se ha elegido claramente la gratuidad) | — Ijla; J ~ "Dejar propina €s una costumbre chilena ~ ~ ]

Este es un tipico restaurante espaiiol de Espaiia

Table 1: Example of random negatives and hard negatives for en-fr and en-es.

well suited for mini-batch training. As illustrated
in Figure 2, within a batch, each source and tar-
get translation pair serves as a positive example
for that particular pairing with alternative pairings
within the same batch treated as negative exam-
ples. Given an ordered collection of embeddings
for source and target translation pairs, all of the
dot-product scores necessary to compute Pypprox
can be determined using a single matrix multipli-
cation of the encoding matrices, U and V"2 Af-
ter the matrix multiplication the scores assigned
to true translation pairs can be found on the di-
agonal while the scores for incorrect pairings are
oft-diagonal.

Within our experiments, models differ in their
selection of the K — 1 sampled negatives. Our
preliminary models make use of the random sam-
pling strategy that has been proven successful in
prior work (Henderson et al., 2017; Yang et al.,
2018). Using this strategy consists of randomly
composing batches of translation pairs and us-
ing the matrix multiplication approach described
above to obtain within batch negatives for each in-
correct pairing We employ random shuffling dur-
ing training resulting in different random negatives
for each u; across epochs. As described below
we also explore introducing additional hard neg-
atives. This is achieved by extending the target
embeddings matrix 'V with the sentence embed-
dings for the hard negatives, which introduces ad-
ditional off-diagonal values within the matrix of
dot-product scores.

>The encoding matrices are composed of the ordered
sentence embeddings for all of the source and target sen-
tences within a batch, U = (uo,u1,...,ux—1) and V =
(VQ7 Vi, ...y Vk:—l)-
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2.9,0.1,00,..
0.1,1.8,0.1, ..
0.0,0.0,09, ...

Dot Product Scores
(Size K x K)

Multiply

@, 0, o
51, WO,
23,09, ..

Tl (2 oo
UoTls W15 oce

Encodings
21,11, ...

(Size Kx D)

Encode

Hello
Ilike to ...
It's cold today

Bonjour
j'aime faire
il fait froid ...

Input Batch
(Size K)

Figure 2: Matrix multiply trick for dot product model with
random sampling.

2.3 Semantically Similar Hard Negatives

As illustrated in Table 1, randomly selected neg-
atives result in many pairings that are obviously
incorrect without requiring a careful assessment
of whether the source and randomly sampled tar-
gets are true translations. Within a mini-batch, the
model could likely achieve a reasonable level of
performance by simply identifying which source
and target sentences are on the same topic or are
otherwise semantically related. However, when
mining for parallel data, extracting sentence pairs
that are not translations of each other but that are
rather merely topically related is expected to harm
downstream MT systems that are trained on the
erroneous pairs. Given the increased sensitivity
of NMT models to data quality issues, perfor-




mance might even be harmed by including seman-
tically similar sentences with sufficient differences
in meaning between them. 3

We improve the mining of true translation
pairs by making model training more challenging
through the introduction of hard negatives — se-
mantically similar translations that are close but
not quite identical to the correct translation. The
hard negatives are selected using a baseline model
trained with randomly sampled negatives. For
each source sentence, we identify M hard nega-
tives with target embeddings that achieve high dot-
product scores with the source sentence embed-
ding but that are not the correct translation. Exam-
ples of hard negatives extracted using the baseline
model are provided in Table 1. Compared to the
random negatives, hard negatives are semantically
more similar to the correct target translation.

As described above, the hard negatives are ap-
pended to the target embedding matrix V. There-
fore, instead of training with K candidates, each
translation input will be compared with K + K+ M
candidates, where K is the batch size. In practice,
getting hard negatives for the entire dataset is very
time consuming. We only obtain hard negatives
for 20% of the data and use random negative sam-
pling for the remainder of the training set.

24

One approach to mining parallel data with bilin-
gual sentence-level embeddings is to indepen-
dently pair individual source and target candidates
based on the similarity of their embeddings. Prior
work that explored this approach found that the re-
sulting mined sentence pairs produced poor BLEU
scores when used for MT training unless they
were combined with traditional human translated
corpora with known alignments (Schwenk, 2018).
We explore both sentence-level and document-
level mining of parallel corpora. For document-
level mining, we introduce a novel selection crite-
rion that takes into account the confidence of sen-
tence alignments within a document and sentence
position information.

Mining Parallel Data

2.4.1 Document Matching

Parallel documents are identified as follows: For
a given source document, we first run an approxi-
mate nearest neighbor (ANN) search for each sen-
tence in the document. This gives us [V target sen-

3e.g., adding or removing important details according to
the sentence similarity scale proposed by Agirre et al. (2012).
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tences for each source sentence (ranked in order
of closest match). Let Y be the bag of all tar-
get sentences that appear as a match for at least
one source sentence. Then for each sentence in
Y, we look up the document from which they
came. We score each candidate document using
Eq 3.* This scoring function takes into account the
sentence-level nearest neighbor rank of the match
for source sentence x to target sentence y in the
document being scored, r(z,y). The match rank
is linearly combined with a normalized confidence
score, f1(z,y), for the match between x and y as
well as the absolute difference between the sen-
tence position index of the source and target sen-
tences, fa(x,y). The sum of the scoring terms is
weighted by the hyperparameters, w; and ws.

§ —r(z,y) + w1 * fi(z,y) + w2 * fo(z,y)
yeDNY
3)

2.4.2 Calibrated Confidence Score

The raw dot product score, ¢(x,y), is a poor
choice for the confidence score, fi(x,y). The
score from ¢(x,y) provides a relative metric of a
translated sentence’s match quality with respect to
the source sentence, but it is not a globally consis-
tent measurement of how good a translation pair
is. Scores are not necessarily in the same range
nor do they have comparable relative values for
different input source sentences. As a result, if we
choose ¢(x, y) to score confidence, there is no sin-
gle threshold we can use to filter out bad results.
In order to obtain more consistent confidence
scores, we propose a novel score normalization
model based on dynamic scaling and shifting of
the dot product scores. As illustrated in Figure 3,
the dynamic scaling and shifting values are com-
puted from the source embedding, u, and a point-
wise squaring of the values within the source em-
bedding, u?. The vectors u and u® are concate-
nated. The scale and bias terms are computed as

“Selecting the target document that appears the most in
Y should give us a rough idea of which target document is
most likely to be the translation of a source document. How-
ever, this approach is quite naive since we are ignoring many
pieces of information: 1. The rank at which each target sen-
tence appeared, 2. The dot product score between the target
sentence and the source sentence, and 3. The indices of the
target sentence and the source sentence (i.e. the position of
the sentences within their respective documents). Since the
first two factors indicate the model’s confidence in the sen-
tence match, it is desirable to incorporate this information
into our scoring of document matches.



a weighted sum of the concatenated vectors val-
ues. After the dynamic scaling and bias terms are
used to calibrate the dot-product score, the result-
ing calibrated dot-product is passed to a sigmoid
in order to obtain a final confidence value between
0 and 1. The weights used to compute the scale
and bias terms are trained on held out supervised
data.

(—(scale * ¢(x,y) + bias
hidden layer hidden layer
scale bias

= llTV

¢(,y)
[hidden layer} [hidden layer]

u \4

Figure 3:

ture.

Scoring model based on dual-encoder architec-

It is worth noting that because the hidden lay-
ers for scale and bias only use features from the
source embeddings, it will not affect the ranking
of targets. Thus, we still always use dot-product
similarity, ¢(z,y), to retrieve targets via nearest
neighbor search. For document-level matching,
we convert the dot-product values into the cali-
brated confidence scores, f1(z,y), without need-
ing to reinspect the target embeddings.

3 Experiments

We train our proposed model on two language
pairs: English-French (en-fr) and English-Spanish
(en-es). First, we evaluate the performance on the
translation candidate ranking task, comparing the
dual-encoder architectures with random negative
sampling versus using hard negatives. Then, we
present results for document-level matching using
Uszkoreit et al. (2010)’s method as a strong base-
line. We explore training NMT systems using our
method to both filter and re-construct parallel cor-
pora. Finally, we assess the level or agreement be-
tween our method and human judgments.

3.1 Data

For training the model, we construct a parallel
corpus using a system similar to the approach
described in Uszkoreit et al. (2010). The final
constructed corpus contains around 600M en-fr
sentence pairs and 470M en-es sentence pairs.
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To assess the quality of the parallel corpus, we
ask human annotators to manually evaluate the
constructed pairs. The human annotators judge
whether 200 randomly selected sentence pairs for
both en-fr and en-es are GOOD or BAD transla-
tions. We find that the GOOD translation rate is
around 80% for both language pairs. The con-
structed parallel corpus is split into two parts: a
training set (90%) and a held-out dev set (10%),
with the held-out dev set being used for our pre-
liminary reconstruction experiments.

The UN corpus (Ziemski et al., 2016) is used for
additional corpus reconstruction experiments. The
corpus consists of 800k manually translated UN
documents from 1990 to 2014 for the six official
UN languages. 86k of these documents are fully
aligned at the sentence-level for all 15 language
pairs. We make use of the fully aligned en-fr and
en-es document pairs and extract all aligned sen-
tence pairs from those document pairs. There are
a total of 11.3 million aligned sentence pairs each
for en-fr and en-es. Assuming that we have no
knowledge about which documents and sentences
are aligned, the task is to reconstruct the document
and sentence pairs.

We evaluate trained translation models on
wmtl3 (Bojar et al., 2013) and wmtl4 (Bojar
et al., 2014) for en-es and en-fr, respectively.
Translation models are trained using data taken
from the parallel corpus described above that
was constructed using Uszkoreit et al. (2010)’s
method. Additional translation experiments make
use of ParaCrawl’, a dataset containing 4 billion
noisy translation pairs for en-fr and 2 billion pairs
for en-es. Within Paracrawl, each pair contains
pre-computed scores by Zipporah (Xu and Koehn,
2017) and the Bicleaner tool, which estimates the
translation quality of the pair. We make use of
the Zipporah scores to compare translation models
trained on filtered versions of the corpus selected
using Zipporah versus our method.

3.2 Experimental Configuration

Model configuration and hyperparameters for our
sentence embedding models are set mostly based
on defaults taken from prior work with very min-
imal tuning on the held-out dev set. For each lan-
guage, we build a vocabulary consisting of 200
thousands unigram and 200 thousands bi-gram to-
kens. All inputs are tokenized and normalized be-

Shttps://paracrawl.eu



fore being fed to the model. We employ an SGD
optimizer with a batch size of 128. The learning
rate is set to 0.01 with a learning decay of 0.96 ev-
ery 5 million steps. We train for 50 million steps.

For each encoder layer, we employ a four-layer
DNN model which contains 320, 320, 500 and 500
hidden units for each layer respectively. We apply
a ReLU activation in the first three layers and no
activation in the final layer. We enable residual
connections between layers with a skip level of 1.
There is no parameter sharing between the source
and target encoder layers. The size of the unigram
and bi-gram embeddings is set to 320 and the em-
beddings are updated during the training process.
The sentence embedding size is set to 512 for both
source and target languages.

The calibrated confidence score is trained
jointly with the translation candidate ranking task
but with a stop gradient that prevents the con-
fidence task from modifying the bilingual sen-
tence encoders. The tasks are trained in a mul-
titask framework with multiple workers, where
90% of the workers optimize the translation can-
didate ranking task and the remaining 10% opti-
mize the confidence task. We use the same config-
uration for confidence as when training the trans-
lation candidate ranking task. Both use the same
batch size 128, meaning there is 1 positive and 127
negative candidates selected for each pass over an
example. We apply a dropout of 0.4 before feed-
ing the feature vector [u, u?] into the hidden layers
that calculate scale and bias.

3.3 Dev Set Sentence-level Matching

We first evaluate the trained models on the trans-
lation target retrieval task and use precision at N
(P@N) as our evaluation metric. For every source
sentence in the dev set, we run the model and find
the nearest neighbors from a set of possible tar-
get sentences. Previous work (Henderson et al.,
2017; Yang et al., 2018) usually evaluated P@N
from 100 examples (1 positive and 99 negatives).
We find that this does not work well for the trans-
lation target ranking task. Rather, the P@N of 100
metric goes up to 99.9% quickly and provides no
differentiation between models trained with differ-
ent configurations.

In this work, we evaluate the P@N from the
true target sentence (positive) and 10 million ran-
dom selected target (negatives) given a source sen-
tence. We score all selected targets using the trans-
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lation pair scoring model and rank them accord-
ingly. The P@N score evaluates if the true trans-
lation target (positive) is in the top N target candi-
dates. We evaluate the model with random sam-
pling and M hard negatives for M=5, 10, 20.
Recall that the number of negatives is equal to
the batch size for the models trained with random
sampling. The number of negatives for hard neg-
ative models, however, is K + K x M where K
is the batch size. To make a fair comparison, we
also evaluate a model trained with additional ran-
dom samples, by augmenting the number of ran-
dom negatives to K + K * 20.

Table 2 shows the P@N results of the proposed
models for N=1, 3, 10. The model with random
negatives provides a strong baseline for finding
the right translation target, with a P@1 metric of
70.49% for en-fr and 67.81% for en-es. The aug-
mented random negative model performs better
than the base random negative model for en-es.
However, the hard negative models outperform the
random negative models across all metrics. Even
with only 5 hard negatives, the P@1 metrics im-
proved by 8% for en-fr and 3% for en-es. The ad-
dition of more hard negatives, however, does not
always further improve performance.

4 Reconstructing the United Nations
Corpus

In this section, we demonstrate that the proposed
model can be used to efficiently reconstruct the
United Nations (UN) Parallel Corpus (Ziemski
et al., 2016).

4.1 UN Sentence-level Matching

We first apply the dual-encoder model to mine
target candidates at the sentence-level. As men-
tioned in section 1, one of the advantages of the
dual-encoder model is that it is straightforward
to use it to encode the source and target sen-
tences separately. Taking advantage of this prop-
erty, we first pre-encode all target sentences into
a target database, and then we iterate through the
source sentences to retrieve the potential targets
for each one of them using an approximated near-
est neighbour (ANN) search (Vanderkam et al.,
2013). The target sentence retrieval pipeline us-
ing ANN search is shown in Figure 4.

Once again we first use P@N as the evaluation
metric for target retrieval, for N=1, 3, 10. We
evaluate the two random sampling models and a



. . en-fr en-es
Negative Selection Approach P@l P@3 P@i0 | P@l P@3 P@I0
Random Negatives 70.49 80.03 86.39 || 67.81 77.37 84.42
Random Negatives (Augmented) | 70.67 79.99 86.14 || 70.47 79.79 86.33
(5) Hard Negatives 78.31 85.30 89.52 || 73.46 82.37 87.75
(10) Hard Negatives 77.06 84.04 88.70 || 74.92 8329 88.14
(20) Hard Negatives 7829 85.06 89.58 || 74.84 82.86 88.23

Table 2: Precision at N (P@N) results on the evaluation set for models built using the random negatives
and (M) hard negatives. Models attempt to select the true translation target for a source sentence against

10M randomly selected targets.

source sentence x

|

[ encode source sentence ]

Approximated
Nearest
Neighbour
(ANN) Search

Pre-encoded

- - -| target sentences
Y

Selected targets
(Y1, Yk)

Figure 4: Target sentence retrieval pipeline.

hard negative model with 20 hard negatives for
each example. As shown in table 3, with ran-
dom negatives, the P@1 metric is 34.83% for en-
fr and 44.89% for en-es. Adding hard negatives
boosts the performance on all metrics, improving
the P@1 metric more than 10% absolute in both
en-fr and en-es — 48.9% for en-fr and 54.9% for
en-es.

4.2 UN Document-level Matching

In our final reconstruction experiment, we make
use of the document-level matching method out-
lined in section 2.4.1. The hyperparameters IV,
wy, and we are set to 10, 5, and —2, respectively,
based on prior experiments with the translation
matching task on the dev set. We compare using
the document matching score proposed by Eq. (3)
to scoring document pairs by counting the num-
ber of Viterbi aligned sentences linking the two
together. As a strong baseline, we also include the

application of Uszkoreit et al. (2010)’s method to
the UN dataset.

Table 4 shows the document matching accura-
cies. Using Eq. (3) to score document matches
outperforms counting mutually aligned sentences.
Moreover, while our approach is simpler and less
computationally intensive than Uszkoreit et al.
(2010)’s, it obtains a promising level of perfor-
mance.

5 [Evaluation Using a Translation Model

As a proof of concept on using our mined trans-
lation pairs as training data, we train translation
models with original versus mined parallel sen-
tence pairs from UN corpus, and with filtered
ParaCrawl data using Zipporah score versus us-
ing our model’s confidence score. We evaluate
on wmtl3 (Bojar et al., 2013) and wmt14 (Bo-
jar et al.,, 2014) testing sets for en-es and en-
fr, respectively, with performance assessed using
BLEU (Papineni et al., 2002).

The translation models are based on Trans-
former architecture (Vaswani et al., 2017), and
make use of a model dimension of 512 and a
hidden dimension of 2048, with 6 layers and 8
attention heads. The models use the Adam op-
timizer with the training schedule described in
Vaswani et al. (2017). For each language pair, sen-
tence pairs are segmented using a shared 32,000
wordpiece vocabulary (Schuster and Nakajima,
2012). Sentence pairs are then batched together
by approximate sequence length with variable
batch sizes based on sequence length. The aver-
age batch size per step is 120 pairs per batch.
We train each model until convergence (approxi-
mately 120K steps).
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. . en-fr en-es
Negative Selection Approach P@l P@3 P@i0 | P@l P@3 P@I0
Random Negative 3483 4799 61.20 || 44.89 58.13 70.36
Random Negative (Augmented) | 36.51 49.07 6137 || 47.08 5955 71.34
(20) Hard Negative 4890 62.26 73.03 || 5494 67.78 78.06

Table 3: Precision at N (P@N) of target sentence retrieval on the UN corpus. Models attempt to select the
true translation target for a source sentence from the entire corpus (11.3 million aligned sentence pairs.)

Matching method en-fr | en-es
Alignment Counts 82.1 | 85.1
Our approach Eq. (3) | 89.0 | 90.4
Uszkoreit et al. (2010) | 93.4 | 944

Table 4: Accuracy of document matching on UN
corpus.

5.1 Mined UN Corpus

We compare translation models trained on the re-
constructed UN corpora for en-fr and en-es with
models trained on the original UN pairs, which we
use as Oracle models.

We examine two versions of the reconstructed
corpora. In the first version, we take the highest
scoring match at the sentence-level as the mined
parallel sentence pairs and these pairs are then fil-
tered by their calibrated confidence score® with
default threshold 0.5. In the second version, we
perform document-level matching over the UN
dataset. Within paired documents, we follow
Uszkoreit et al. (2010) and employ a dynamic pro-
gramming sentence alignment algorithm informed
by sentence length and multilingual probabilistic
dictionaries. In both versions, we drop sentence
pairs where both sides are either identical or a lan-
guage detector declares them to be in the wrong
language. As a post-processing step, the resulting
translations are resegmented using the Moses to-
kenizer and true-cased before evaluation (Koehn
et al., 2007).

Table 5 shows the results obtained from the
models trained on the different variations of the
parallel data. The models trained with mined pairs
perform very close to the Oracle model, demon-
strating the effectiveness of the proposed parallel
corpus mining approach. Training on the mined
sentence-level pairs even does slightly better than
using the Oracle data for en-es. This is presum-

The confidence model is trained with a dev set which
consist of 1/10 of UN corpora, these data are removed from
training.

en-fr en-es

(wmtl4) | (wmtl3)
Mined sentence-level 29.63 29.03
Mined document-level 30.05 27.09
Oracle 30.96 28.81

Table 5: BLEU scores on WMT testing sets of the
NMT models trained on original UN pairs (Ora-
cle) and on two versions of mined UN corpora.

en-fr en-es

(wmtl4) | (wmtl3)
WMT 38.38 32.69
Our data 39.81 33.75
Zipporah 39.29 33.58
WMT + Our data 40.30 34.15
WMT + Zipporah 39.29 34.07
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Table 6: BLEU scores on WMT testing sets of the
NMT models trained on different data: 1) WMT
training sets, 2) filtered ParaCrawl data, and 3)
combined data of WMT and filtered ParaCrawl.

ably because the mined pairs are cleaner due to
the filtering step. We notice, however, that training
on the UN corpus gives translation results that are
much lower than the state-of-the-art on the WMT
evaluation sets. This is likely due to the fact that
the UN parallel corpus is small and drawn from a
particularly restricted domain.

5.2 Filtered ParaCrawl data

We compare the performance of training trans-
lation models’ on ParaCrawl data filtered using
Zipporah scores versus our scoring method. For
this experiment, our confidence score is fine-
tuned on the ParaCrawl corpus using an addi-
tional 900k positive and 900k negative exam-
ples selected based on having extreme Zipporah

"Using the same model parameters as earlier experiments.



scores.® With Zipporah, we select all examples

from ParaCrawl with a Zipporah score greater than
or equal to 0, which is the threshold used in the of-
ficial release. There are 43 million such pairs in
en-fr and 24 million in en-es. We then select the
same number of pairs from the ParaCrawl data that
have the highest scores from our fine-tuned model.
As illustrated in Table 6, the performance achieved
by the ParaCrawl trained models on the WMT
test data is quite high, both achieves better perfor-
mance comparing with the baseline model trained
on WMT training set. This suggests that fil-
tered ParaCrawl data is a good source of general-
purpose training material. Models trained on our
filtered data slightly outperform those trained on
data filtered by Zipporah. Row 4 and 5 also show
the performance of models trained on the com-
bined data of WMT and our filtered ParaCrawl and
combined data of WMT and Zipporah filtered data
respectively’. Combining the datasets further im-
proves the translation performance about 0.5 blue
score, and model trained on WMT and our filtered
ParaCrawl data achieves the best performance.

5.3 Qualitative Analysis of Filtered
ParaCrawl Data

On the ParaCrawl corpus we find that the Pear-
son’s r between Zipporah and our calibrated con-
fidence scores is only 0.4. This correlation is
quiet low given the level of translation perfor-
mance achieved by both methods when they are
used to select training pairs for an NMT system
and suggests that the two methods may provide
complementary information.

We access the agreement of the two methods
on extreme score values.'” We sample a balanced
data set consisting of 100k pairs with extreme pos-
itive Zipphora values and 100k pairs with extreme
negative values. At a threshold of 0.5 and with-
out an fine-tuning, our method agrees with the ex-
treme Zipporah scores with an accuracy of 78.2%
for en-fr and 80.5% for en-es. However, using the
confidence scores fine-tuned to ParaCrawl from

8Extreme positive score values from Zipporah are consid-
ered to be those in the top 1% of the agreement scores found
in the ParaCrawl corpus. Extreme negative score values are
considered to be agreement scores in the bottom 50% of the
Zipporah scores for ParaCrawl.

The sizes of WMT training set and filtered ParaCrawl are
very close, so we simply mix the data together without any up
sampling or down sampling.

!0For this analysis we use the same definition of extreme
Zipporah scores as in section 5.2
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en-fr | en-es
zipporah | 72.0 | 74.0
our model | 76.0 | 74.5

Table 7: GOOD translation rate (%) annotated by
translation professionals.

section 5.2, we achieve a high level of agreement
of 98.4% for en-fr and 98.6% with fine-tuning.

We perform an evaluation using human judg-
ments comparing our scoring model against Zip-
porah scores on the ParaCrawl data. As in the fil-
tering experiments, we select all examples from
ParaCrawl with a Zipporah score greater than or
equal to zero and then select a matching number
of pairs with the highest scores from our model.
We then sample 200 examples from each set and
send them to translation professionals for evalua-
tion. Each example is examined by one annota-
tor that labels the pair as either a GOOD or BAD
translation. A GOOD translation means more than
70% of a sentence is correctly translated in the
paired sentences, meaning most of the information
is conveyed.

Table 7 shows the GOOD translation rate for
each sampled subset. The performance between
the two approaches is close for en-es and the pro-
posed score normalization model is 4% better for
en-fr. In our analysis of the BAD translation pairs,
one common failure pattern from the proposed
model is that one of the sentences is only partially
translated in the other sentence. This is likely be-
cause we are still missing enough of these types
of hard negatives in the training data. We also
find our model produces more pairs where the sen-
tences on both sides are identical. These identical
pairs are mostly labeled as BAD translations be-
cause they are unlikely to be actual translations.

6 Related Work

The problem of obtaining high-quality parallel
corpora, or bitexts, is one of the most critical is-
sues in machine translation. One longstanding ap-
proach for extracting parallel corpora is to mine
documents from the web (Resnik, 1999). Much
of the previous work on parallel document min-
ing has relied on using metadata, such as docu-
ment titles (Yang and Li, 2002), publication dates
(Munteanu and Marcu, 2005, 2006) or document
structure (Chen and Nie, 2000; Resnik and Smith,
2003; Shi et al., 2006), to identify bitexts.



Another direction, however, is to identify bi-
texts using only textual information, as the meta-
data associated with documents can often be
sparse or unreliable (Uszkoreit et al., 2010). Some
text-based approaches for identifying bitexts rely
on methods such as n-gram scoring (Uszkor-
eit et al., 2010), named entity matching (Do
et al., 2009), and cross-language information re-
trieval (Utiyama and Isahara, 2003; Munteanu and
Marcu, 2005).

There is active research on using embedding-
based approaches where texts are mapped to an
embedding space in order to determine whether
they are bitexts. Grégoire and Langlais (2017) use
a Siamese network (Yin et al., 2015) to map source
and target language sentences into the same space,
then classify whether the sentences are parallel
based on labelled data. Hassan et al. (2018) ob-
tain English and Chinese sentence embeddings in
a shared space by averaging encoder states from a
bilingual shared encoder NMT system. The cosine
similarity between these sentence embeddings is
then used as a measure of cross-lingual similarity
between the sentences, which can then be used to
filter out noisy sentence pairs. Schwenk (2018)
use a similar approach but learn a joint embedding
over nine languages. Our model differs from pre-
vious approaches, as it uses a dual-encoder archi-
tecture instead of an encoder-decoder architecture.
Not only is the dual-encoder architecture is more
efficient (Henderson et al., 2017), it also allows
us to directly train toward extracting parallel sen-
tences from a collection of candidates.

7 Conclusion

In this paper, we present an effective parallel cor-
pus mining approach using sentence embeddings
produced by a bilingual dual-encoder model. The
proposed model encodes source sentences and tar-
get sentences into sentence embeddings separately
and then calculates the dot-product score for these
two embedding vectors to assess translation pair
quality. We propose the selection of hard negatives
that consist of semantically similar sentence pairs
that are not translations of each other. Our exper-
iments reveal that using hard negatives improves
the ability of our model to identify true translation
pairs. We find the proposed method to be useful
for both mining and filtering parallel data. Our
method compares favorably to Zipporah for filter-
ing, while for mining it provides a lightweight al-
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ternative to Uszkoreit et al. (2010)’s method.
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Abstract

This work investigates the alignment prob-
lem in state-of-the-art multi-head attention
models based on the transformer architecture.
We demonstrate that alignment extraction in
transformer models can be improved by aug-
menting an additional alignment head to the
multi-head source-to-target attention compo-
nent. This is used to compute sharper atten-
tion weights. We describe how to use the
alignment head to achieve competitive per-
formance. To study the effect of adding the
alignment head, we simulate a dictionary-
guided translation task, where the user wants
to guide translation using pre-defined dictio-
nary entries. Using the proposed approach,
we achieve up to 3.8% BLEU improvement
when using the dictionary, in comparison to
2.4% BLEU in the baseline case. We also
propose alignment pruning to speed up decod-
ing in alignment-based neural machine trans-
lation (ANMT), which speeds up translation
by a factor of 1.8 without loss in translation
performance. We carry out experiments on the
shared WMT 2016 English—Romanian news
task and the BOLT Chinese—English discus-
sion forum task.

1 Introduction

Attention-based neural machine translation
(NMT) (Bahdanau et al., 2015) uses an atten-
tion layer to determine which part of the input
sequence to focus on during decoding. This com-
ponent eliminates the need for explicit alignment
modeling. In conventional phrase-based statistical
machine translation (Koehn et al., 2003), word
alignment is modeled explicitly, making it clear
which word or phrase is being translated. The
lack of explicit alignment use in attention-based
models makes it harder to determine which target
words are generated using which source words.
While this is not necessarily needed for trans-
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lation itself, alignments can be useful in certain
applications, e.g. when the customer wants to
enforce specific translation of certain words.

One simple solution is to use maximum atten-
tion weights to extract the alignment, but this can
result in wrong alignments in the case where the
maximum attention weight is not pointing to the
word being translated. Such cases are not uncom-
mon in NMT, making the use of attention weights
as alignment replacement non-trivial (Chatterjee
et al., 2017; Hasler et al., 2018). Alignment ex-
traction is even less clear for transformer models
(Vaswani et al., 2017), which currently produce
state-of-the-art results. These models use multiple
attention components for each of the stacked de-
coder layers. In this work we focus our study on
these models since they usually outperform single-
attention-head recurrent neural network (RNN) at-
tention models. '

Alignment-based NMT (Alkhouli et al., 2016)
uses neural models trained using explicit hard
alignments to generate translation. These systems
include explicit alignment modeling, making them
more convenient for tasks where the source-to-
target alignment is needed. However, it is not clear
whether these systems are able to compete with
strong attention-based NMT systems. Alkhouli
and Ney (2017) present results for alignment-
based neural machine translation (ANMT) using
models trained on CPUs, limiting them to small
models of 200-node layers, and they only inves-
tigate RNN models. Wang et al. (2018) present
results using only one RNN encoder layer, and do
not include attention layers in their models. In this
work, we investigate the performance of large and
deep state-of-the-art transformer models. We keep
the multi-head attention component and propose
to augment it with an additional alignment head, to

!The transformer models won in most of the WMT 2018
news translation tasks: http://matrix.statmt.org.
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Figure 1: An example from the Chinese—English system. The figures illustrate the accumulated attention
weights of the baseline transformer model (left), the alignment-assisted transformer model (middle),
and the alignment-assisted model guided by a dictionary entry. We simulate a scenario where the user
wants to translate the Chinese word “5% K to “powerful”. Both the baseline and alignment-assisted
transformer models generate the translation “strong” instead. To enforce the translation, we use the
maximum attention weight to determine the source word being translated. Left: The maximum attention
of the baseline case incorrectly points to the sentence end when translating the designated Chinese word,
therefore we cannot enforce the translation in this case. Middle: The alignment looks sharper because the
system has an augmented alignment head. In this case the maximum attention is pointing to the correct
Chinese word. Right: using the maximum attention, the translation “strong” is successfully replaced with
the translation “powerful” as suggested by the user using our proposed alignment-assisted transformer.

combine the benefits of the two. We demonstrate
that we can train these models to achieve compet-
itive results in comparison to strong state-of-the-
art baselines. Moreover, we demonstrate that this
variant has clear advantage in tasks that require
alignments such as dictionary-guided translation.

Translation in NMT can be performed without
explicit alignment. However, there are tasks where
translation needs to be constrained given spe-
cific user requirements. Examples include interac-
tive machine translation, and scenarios where cus-
tomers demand domain-specific words or phrases
to be translated according to a pre-defined dic-
tionary. We demonstrate that the explicit use of
alignment in ANMT can be leveraged to gener-
ate guided translation. Figure (1) illustrates an ex-
ample. The figures are generated using attention
weights averaged over all attention components in
each system.

The contribution of this work is as follows.
First, we propose a method to integrate alignment
information into the multi-head attention compo-
nent of the transformer model (Section 3.1). We
describe how such models can be trained to main-
tain the strong baseline performance while also us-
ing external alignment information (Section 3.3).
We also introduce alignment models that use self-
attentive layers for faster evaluation (Section 3.2).
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Second, we introduce alignment pruning during
search to speed up evaluation without affecting
translation quality (Section 4). Third, we de-
scribe how to extract alignments from multi-head
attention models (Section 5), and demonstrate that
alignment-assisted transformer systems perform
better than baseline systems in dictionary-guided
translation tasks (Section 7). We present speed and
performance results in Section 6.

2 Related Work

Alignment-based neural models have explicit de-
pendence on the alignment information either at
the input or at the output of the network. They
have been extensively and successfully applied on
top of conventional phrase-based systems (Sun-
dermeyer et al., 2014; Tamura et al., 2014; Devlin
et al., 2014). In this work, we focus on using the
models directly to perform standalone neural ma-
chine translation.

Alignment-based neural models were proposed
in (Alkhouli et al., 2016) to perform neural ma-
chine translation. They mainly used feedfor-
ward alignment and lexical models in decoding.
Alkhouli and Ney (2017) used recurrent models
instead, and presented an attention component bi-
ased using external alignment information. In this



work, we explore the use of transformer models in
ANMT instead of recurrent models.

Deriving neural models for translation based on
the hidden Markov model (HMM) framework can
also be found in (Yang et al., 2013; Yu et al,,
2017). Alignment-based neural models were also
applied to perform summarization and morpho-
logical inflection (Yu et al., 2016). Their work
used a monotonous alignment model, where train-
ing was done by marginalizing over the align-
ment hidden variables, which is computationally
expensive. In this work, we use non-monotonous
alignment models. In addition, we train using
pre-computed Viterbi alignments which speeds up
neural training. In (Yu et al., 2017), alignment-
based neural models were used to model align-
ment and translation from the target to the source
side (inverse direction), and a language model was
included in addition. They showed results on a
small translation task. In this work, we present re-
sults on translation tasks containing tens of mil-
lions of words. We do not include a language
model in any of our systems.

There is plenty of work on modifying atten-
tion models to capture more complex dependen-
cies. Cohn et al. (2016) introduce structural biases
from word-based alignment concepts like fertility
and Markov conditioning. These are internal mod-
ifications that leave the model self-contained. Our
modifications introduce alignments as external in-
formation to the model. Arthur et al. (2016) in-
clude lexical probabilities to bias attention. Chen
et al. (2016) and Mi et al. (2016) add an extra term
dependent on the alignments to the training objec-
tive function to guide neural training. This is only
applied during training but not during decoding.
Our work makes use of alignments during training
and also during decoding.

There are several approaches to perform con-
strained translation. One possibility is includ-
ing this information in training, but this requires
knowing the constraints at training time (Crego
et al.,, 2016). Post-processing the hypotheses is
another possibility, but this comes with the down-
side that offline modification of the hypotheses
happens out of context. A third possibility is to
do constrained decoding (Hokamp and Liu, 2017;
Chatterjee et al., 2017; Hasler et al., 2018; Post
and Vilar, 2018). This does not require knowledge
of the constraints at training time, and it also al-
lows dynamic changes of the rest of the hypothe-
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sis when the constraints are activated. We perform
experiments where the translation is guided on-
line during decoding. We focus on the case where
translation suggestions are to be used when a word
in the source sentence matches the source side
of a pre-defined dictionary entry. We show that
alignment-assisted transformer-based NMT out-
performs standard transformer models in such a
task.

3 Alignment-Based Neural Machine
Translation

Alignment-based NMT divides translation into
two steps: (1) alignment and (2) word genera-
tion. The system is composed of an alignment
model and a lexical model that can be trained
jointly or separately. During translation, the align-
ment is hypothesized first, and the lexical score is
computed next using the hypothesized alignment
(Alkhouli et al., 2016). Hence, each translation
hypothesis has an underlying alignment used to
generate it. The alignment model scores the align-
ment path.

Formally, given a source sentence fi]
fi...fj...fs, a target sentence e{ = e1...6;...€J,
and an alignment sequence b{ by...b;...by,
where j = b; € {1,2, ..., J} is the source position
aligned to the target position i € {1,2,...,1}, we
model translation using an alignment model and a
lexical model:

plefl ) = plel, bl f]) (1)
bI

I

~ i—1
A2 max I |p(e¢|bi,b1 ,€
bl -

1 4=1

i—1
1 )

i)

~~

lexical model

pbilbi ™ e £

Vv
alignment model

Both the lexical model and the alignment model
have rich dependencies including the full source
context flJ , the full alignment history b’i_l, and the
full target history elfl. The lexical model has an
extra dependence on the current source position b;.

While previous work focused on RNN struc-
tures for the lexical and alignment models
(Alkhouli and Ney, 2017), we use multi-head self-
attentive transformer model structures instead.
The next two subsections describe the structural
details of these models.



3.1 Transformer-Based Lexical Model

In this work we propose to use lexical models
based on the transformer architecture (Vaswani
et al., 2017). This architecture has the following
main components:

e self-attentive layers replacing recurrent lay-
ers. These layers are parallelizable due to the
lack of sequential dependencies that recurrent
layers have.

multi-head source-to-target attention: sev-
eral attention heads are used to attend to the
source side. Each attention head computes a
normalized probability distribution over the
source positions. The attention heads are
concatenated. Each decoder layer in the
model has its own multi-head attention com-
ponent.

We propose to condition the lexical model on
the alignment information. We add a special align-
ment head

a(jbi) = {

defined for the source positions j,b; €
{1,2,...,J}. This is a one-hot distribution
that has a value of 1 at position j that matches
the aligned position b;. This head is then con-
catenated to the rest of the attention heads as
shown in Figure (2). The one-hot alignment
distribution is used similar to attention weights
to weight the encoded source representations,
effectively selecting the representation hj, which
corresponds to the aligned word.

1,
03

it j =0

otherwise.

3.2 Self-Attentive Alignment Model

In this work we use self-attentive layers instead
of RNN layers in the alignment model. This re-
moves the sequential dependency of computing
RNN activations and allows for parallelization.
We replace the bidirectional RNN encoder of the
alignment model by multi-head self-attentive lay-
ers as described in (Vaswani et al., 2017). We also
use multi-head self-attentive layers to replace the
RNN layers in the decoder part of the network.
There are two main differences when comparing
this self-attentive alignment model to the trans-
former architecture described in (Vaswani et al.,
2017). (1) The output is a probability distribution
over possible source jumps A; = b; — b;_1, that
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Figure 2: Alignment-assisted multi-head attention
component. hi,hs, ..., hy: the encoder states at
all J source positions, hy,: the encoder state at
the aligned source position b;, 7;—1: the previ-
ous decoder state, &: number of attention heads.
Removing the alignment block results in the de-
fault multi-head source-to-target attention compo-
nent of (Vaswani et al., 2017).

is, the model predicts the likelihood of jumping
from the previous source position b;_; to the cur-
rent source position b;. (2) There is no multi-head
source-to-target attention layer as in the trans-
former network. Rather, we use a single-head hard
attention layer. This layer is not computed like at-
tention weights, but it is constructed using the pre-
vious alignment point b;_; using

a(jlbi-1) = {

defined for the source positions j,b;—1 €
{1,2,...,J}. When multiplied by the source en-
codings, « effectively selects the source encoding
hp, , of the previous aligned position. This is then
summed up with the decoder state r;_;.

1,
07

it j=0b_1

otherwise.

3.3 Training

Our attempts to train the alignment-assisted trans-
former lexical model from scratch achieved sub-
optimal results. This could happen because the
model could choose to over-rely on the alignment
information, risking that the remaining attention
heads would become useless, especially during the
early stages of training. To overcome this, we
first trained the transformer baseline parameters
without the alignment information until conver-
gence, and used the trained parameters to initial-



Algorithm 1 Alignment-Based Pruned Decoding

1: procedure TRANSLATE(f{, beamSize, threshold)
2 hyps< initHyp
3 while GETBEST(hyps) not terminated do
4:
5: alignDists <~ ALIGNMENTDIST(hyps)
6:
7 activePos «+ {}
8: for pos From 1 to J do
9:
10:
11: for b From 1 to beamSize do
12: if alignDists[b, pos] > threshold then
13: active Pos. Append(pos)
14: break
15:
16: if activePos is empty then
17: activePos < {1,...J}
18:
19:
20: lexDists < LEXICALDIST(hyps, active Pos)
21:
22: hyps < Combine(lexDists, alignDists)
23:
24: hyps < Prune(hyps, beamSize)
25:
26:  return GETBEST(hyps)

ize the alignment-assisted model training. This re-
sulted in better systems compared to training from
scratch. We were able to see significant perplex-
ity improvements in the second stage of training
indicating that the model was making use of the
newly introduced information. Further details are
discussed in Section 6.1.

4 Alignment Pruning

Alignment-based decoding requires hypothesizing
alignment positions in addition to word transla-
tions. The algorithm is shown in Algorithm (1).
Each lexical hypothesis has an underlying align-
ment hypothesis (active Pos) that is used to com-
pute it (line 20). This is done as a part of beam
search. To speed up decoding, we compute the
alignment model output first for all beam entries
(line 5). This gives a distribution over the next
possible source positions. We prune all source
positions that have a probability below a fixed
threshold (lines 12-14 ). We only evaluate the
lexical model for those positions that survive the
threshold. If the pruning threshold is too aggres-
sive to let any of the source positions survive,
pruning is disabled for that time step (lines 16—
17).

181

5 Alignment Extraction

We use attention weights to extract the alignments
at each time step during decoding. We look up the
source word having the maximum accumulated at-

tention weight

where K is the number of attention heads per de-
coder layer, L is the number of decoder layers,
o%k,l(j) is the attention weight at source position
je {1,..., J} for target position i of the k-th head
computed for the the [-th decoder layer. This is
an extension of using maximum attention weights
in single-head attention models (Chatterjee et al.,
2017). In the alignment-assisted transformer, the

aligned position is given by:

(kziai,k,xj) " a(ﬂj'))}

where j' € {1,...,J} is the hypothesized source
position during search, and a(j|j’) is the align-
ment indicator which is equal to 1 if j = 5" and
zero otherwise. This effectively gives a prefer-
ence for the hypothesized position over all other
positions. Note that the hypothesized positions
are scored during translation using the alignment
model described in Section 3.2.

Z Z ai,k,l(i)

=1 k=1

j(i) = argmax

L K
je{r..Jy U=

L

po

lf

(i, j') = argmax
je{1..J}

6 Experiments

We run experiments on the WMT 2016
English—Romanian news task,”> and on BOLT
Chinese—English which is a discussion forum
task. The corpora statistics are shown in Table (1).

All transformer models use 6 encoder and 6 de-
coder self-attentive layers. We use 8 scaled dot
product attention heads and augment an additional
alignment head to the source-to-target attention
component. We use an embedding size of 512.
The size of feedforward layers is 2048 nodes. We
use source and target weight tying for the WMT
English—+Romanian task, and no tying for BOLT
Chinese—English.

The structure of the RNN models is as follows.
The English—Romanian lexical and alignment
models use 1 bidirectional encoder layer. The

Mttp://www.statmt.org/wmt16/



WMT 2016 BOLT
English Romanian | Chinese English
Train sentence pairs 604K 4.1M
Train running words 15.5M 15.8M 8OM 88M
Dev sentence pairs 1000 1845
Test sentence pairs 1999 1124
Vocabulary 92K 128K 380K 815K
Neural network vocabulary 50K 50K 50K 50K
Table 1: Corpora statistics.
WMT En—Ro BOLT Zh—En
newstest2016 test
#|System Layer size| PPL|BLEU"" TER"”|PPL|BLEU" TER™
baselines
1|Attention baseline 1000 (10.2| 24.7 589 8.0 20.0 65.6
2 |Transformer baseline 2048 6.2| 279 546 |6.0| 225 62.1
3|(Alkhouli and Ney, 2017) 200 - 24.8 581 | - - -
this work
4|RNN Attention align.-biased| 1000 |7.2| 264 56.1 [5.6| 19.6 62.3
5|Align.-assisted Transformer | 2048 |5.0 | 28.1 543 [ 4.7| 227 61.8

Table 2: Translation results for the WMT 2016 English—Romanian task and the BOLT Chinese—English

task. We include the lexical model perplexities.

Chinese— English models have 1 bidirectional en-
coder and 3 stacked unidirectional encoder lay-
ers. All models use 2 decoder layers. The base-
line attention models have similar structures. We
use LSTM layers of 1000 nodes and embeddings
of size 620. We train using the Adam optimizer
(Kingma and Ba, 2015). All alignment models
predict source jumps of maximum width of 100
source positions (forward and backward).

The alignments used during training are the re-
sult of IBM1/HMM/IBM4 training using GIZA++
(Och and Ney, 2003). All results are measured
in case-insensitive BLEU[%] (Papineni et al.,
2002). TER[%] scores are computed with TER-
Com (Snover et al., 2006). We implement the
models in Sockeye (Hieber et al., 2017), which al-
lows efficient training of large models on GPUs.

6.1 Performance Comparison

Table (2) presents results on the two tasks. The
RNN attention (row 1) and transformer (row 2)
baselines are shown. The transformer baseline
outperforms the attention baseline by a large mar-
gin. We also include the English—Romanian
system of Alkhouli and Ney (2017). This is
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an alignment-based RNN attention system which
uses 200-node layers. =~ We also trained our
own alignment-based RNN attention system us-
ing larger layers of 1000 nodes. This is shown
in row 4. Our RNN system outperforms the pre-
viously published alignment-based results (row 3)
by 1.6% BLEU and 2.0% TER. This is due to the
increase in model size.

Our proposed alignment-assisted transformer
system is shown in row 5. This system out-
performs the RNN alignment-based system of
row 4 by 1.7% BLEU on the English—Romanian
task, establishing a new state-of-the-art result for
alignment-based neural machine translation. We
also achieve 3.1% BLEU improvement over our
RNN alignment-biased attention system on the
Chinese—English task. In comparison to the
transformer baseline (row 2), the proposed sys-
tem achieves similar performance on both tasks.
We compare the development perplexity to check
whether the lexical model makes use of the align-
ment information. Indeed, the baseline trans-
former development perplexity drops from 6.2 to
5.0 on English—Romanian and from 6.0 to 4.7



WMT En—Ro BOLT Zh—En
#| Alignment #entries BLEU"” TER" |#entries BLEU"" TER"
1 |Transformer baseline - 27.3 55.6 - 24.2 61.5
2|+ dictionary 3.1K 29.7 554 | 4.6K 25.5 61.0
3|Alignment-assisted Transformer - 27.2 55.5 - 24.2 60.8
4|+ dictionary 3.1K 31.0 53.0 4.6K 26.4 58.6

Table 3: Improvements after using the dictionary of the development sets. The tokenized references of
the English—Romanian and Chinese—English development sets have 26.7K and 46.6K running words

respectively.
2.7 28
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Figure 3: Speed up and translation quality in
BLEU vs. pruning threshold on the WMT

English—Romanian task.

on Chinese—English, indicating that the model is
making use of the alignment information.

6.2 Decoding Speed Up

Figure (3) shows the speed-up factor and perfor-
mance in BLEU over different threshold values.
The speed-up factor is computed against the no-
pruning case (i.e. threshold 0). The batch size
used in these experiments is 5. We speed up trans-
lation by a factor of 1.8 without loss in translation
quality at threshold 0.15. Higher threshold val-
ues result in more aggressive pruning and hence a
degradation in translation quality. It is interesting
to note that at threshold 0.05 we achieve a speed up
of 1.7, implying that significant pruning happens
at low threshold values. At high threshold values,
speed starts to go down, since we have more cases
where no alignment points survive the threshold,
in which case pruning is disabled as discussed in
Algorithm (1, lines 16-17).
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7 Dictionary Suggestions

We evaluate the use of attention weights as align-
ments in a dictionary suggestion task, where a pre-
defined dictionary of suggested one-to-one trans-
lations is given. We perform a relaxed form of
constrained translation, i.e. we do not ensure
that the suggestion will make it to the translation.
To this end, we use attention weights to extract
the alignments at each time step during decod-
ing as described in Section 5. We look up the
source word f;(;) having the maximum accumu-
lated attention weight in the dictionary. If the word
matches the source-side of a dictionary entry, we
enforce the translation to match the dictionary sug-
gestion e(f;(;)) by setting an infinite cost for all
but the suggested word.

We create a simulated dictionary using the ref-
erence side of the development set. We map the
reference to the source words using IBM4 align-
ment. The development set is concatenated with
the training data to obtain good-quality alignment.
We exclude English stop words,> and only use
source words aligned one-to-one to target words.
We include up to 4 dictionary entries per sentence,
and add reference translations only if they are not
part of the baseline (i.e. unconstrained) transla-
tion, similar to (Hasler et al., 2018).

Table (3) shows results for the dictionary sug-
gestions task described in Section (7). The
English—Romanian dictionary covers 11.6% of
the reference set, while the Chinese—English dic-
tionary has 9.9% coverage. We observe larger
improvement when using the dictionary entries
in the alignment-assisted transformer system in
comparison to the transformer baseline systems.
Our system improves BLEU by 3.8%, while the
baseline is improved only by 2.4% BLEU on the
English—Romanian task. We also observe larger

3Long stop list: https://www.ranks.nl/stopwords



improvements in the Chinese—English case. This
suggests that the maximum attention weights in
alignment-assisted systems can point more accu-
rately to the word being translated, allowing the
use of more dictionary entries. As shown in Fig-
ure (1), the accumulated attention weights are
sharper when the system has an augmented align-
ment head. This explains the larger improvements
our systems achieve.

8 Conclusion

We proposed augmenting transformer models with
an alignment head to help extract alignments
in scenarios such as dictionary-guided transla-
tion. We demonstrated that the alignment-
assisted systems can achieve competitive per-
formance compared to strong transformer base-
lines. We also showed that the alignment-assisted
systems outperformed standard transformer mod-
els when used for dictionary-guided translation
on two tasks. Finally, we achieved a speed-
up factor of 1.8 by pruning alignment hypothe-
ses in alignment-based decoding while maintain-
ing translation quality. In future work we plan
to investigate alternative pruning methods like
histogram pruning. We also plan to investigate
the performance of alignment-assisted transformer
models in constrained decoding settings, where
the user demands specific translation of certain
words.
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A Call for Clarity in Reporting BLEU Scores

Matt Post
Amazon Research
Berlin, Germany

Abstract

The field of machine translation faces an
under-recognized problem because of incon-
sistency in the reporting of scores from its
dominant metric. Although people refer to
“the” BLEU score, BLEU is in fact a param-
eterized metric whose values can vary wildly
with changes to these parameters. These pa-
rameters are often not reported or are hard
to find, and consequently, BLEU scores be-
tween papers cannot be directly compared. I
quantify this variation, finding differences as
high as 1.8 between commonly used configu-
rations. The main culprit is different tokeniza-
tion and normalization schemes applied to the
reference. Pointing to the success of the pars-
ing community, I suggest machine translation
researchers settle upon the BLEU scheme used
by the annual Conference on Machine Trans-
lation (WMT), which does not allow for user-
supplied reference processing, and provide a
new tool, SACREBLEU,! to facilitate this.

1 Introduction

Science is the process of formulating hypothe-
ses, making predictions, and measuring their out-
comes. In machine translation research, the pre-
dictions are made by models whose development
is the focus of the research, and the measurement,
more often than not, is done via BLEU (Papineni
et al., 2002). BLEU’s relative language indepen-
dence, its ease of computation, and its reason-
able correlation with human judgments have led
to its adoption as the dominant metric for ma-
chine translation research. On the whole, it has
been a boon to the community, providing a fast
and cheap way for researchers to gauge the perfor-
mance of their models. Together with larger-scale
controlled manual evaluations, BLEU has shep-

'nttps://github.com/awslabs/sockeye/
tree/master/contrib/sacrebleu
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herded the field through a decade and a half of
quality improvements (Graham et al., 2014).

This is of course not to claim there are no
problems with BLEU. Its weaknesses abound, and
much has been written about them (cf. Callison-
Burch et al. (2006); Reiter (2018)). This paper is
not, however, concerned with the shortcomings of
BLEU as a proxy for human evaluation of quality;
instead, our goal is to bring attention to the rela-
tively narrower problem of the reporting of BLEU
scores. This problem can be summarized as fol-
lows:

e BLEU is not a single metric, but requires a
number of parameters (§2.1).

Preprocessing schemes have a large effect
on scores (§2.2). Importantly, BLEU scores
computed against differently-processed ref-
erences are not comparable.

Papers vary in the hidden parameters and
schemes they use, yet often do not report
them (§2.3). Even when they do, it can be
hard to discover the details.

Together, these issues make it difficult to evaluate
and compare BLEU scores across papers, which
impedes comparison and replication. I quantify
these issues and show that they are serious, with
variances bigger than many reported gains. Af-
ter introducing the notion of user- versus metric-
supplied tokenization, I identify user-supplied ref-
erence tokenization as the main cause of this in-
compatibility. In response, I suggest the com-
munity use only metric-supplied reference tok-
enization when sharing scores,? following the an-
nual Conference on Machine Translation (Bojar
et al., 2017, WMT). In support of this, I release a

ZSometimes referred to as detokenized BLEU, since it re-
quires that system output be detokenized prior to scoring.
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Python package, SACREBLEU,? which automati-
cally downloads and stores references for common
test sets, thus introducing a “protective layer” be-
tween them and the user. It also provides a number
of other features, such as reporting a version string
which records the parameters used and which can
be included in published papers.

2 Problem Description

2.1 Problem: BLEU is underspecified

“BLEU” does not signify a single concrete
method, but a constellation of parameterized
methods. Among these parameters are:

e The number of references used;

o for multi-reference settings, the computation
of the length penalty;

e the maximum n-gram length; and
e smoothing applied to 0-count n-grams.

Many of these are not common problems in prac-
tice. Most often, there is only one reference, and
the length penalty calculation is therefore moot.
The maximum n-gram length is virtually always
set to four, and since BLEU is corpus level, it is
rare that there are any zero counts.

But it is also true that people use BLEU scores
as very rough guides to MT performance across
test sets and languages (comparing, for example,
translation performance into English from Ger-
man and Chinese). Apart from the wide intra-
language scores between test sets, the number of
references included with a test set has a large
effect that is often not given enough attention.
For example, WMT 2017 includes two references
for English—Finnish. Scoring the online-B sys-
tem with one reference produces a BLEU score of
22.04, and with two, 25.25. As another example,
the NIST OpenMT Arabic—English and Chinese—
English test sets* provided four references and
consequently yielded BLEU scores in the high 40s
(and now, low 50s). Since these numbers are all
gathered together under the label “BLEU”, over
time, they leave an impression in people’s minds
of very high BLEU scores for some language pairs
or test sets relative to others, but without this crit-
ical distinguishing detail.

3pip3 install sacrebleu

*nttps://catalog.ldc.upenn.edu/
LDC2010T21

2.2 Problem: Different reference
preprocessings cannot be compared

The first problem dealt with parameters used in
BLEU scores, and was more theoretical. A second
problem, that of preprocessing, exists in practice.

Preprocessing includes input text modifications
such as normalization (e.g., collapsing punc-
tuation, removing special characters), tokeniza-
tion (e.g., splitting off punctuation), compound-
splitting, the removal of case, and so on. Its gen-
eral goal is to deliver meaningful white-space de-
limited tokens to the MT system. Of these, to-
kenization is one of the most important and cen-
tral. This is because BLEU is a precision metric,
and changing the reference processing changes the
set of n-grams against which system n-gram pre-
cision is computed. Rehbein and Genabith (2007)
showed that the analogous use in the parsing com-
munity of Fy scores as rough estimates of cross-
lingual parsing difficulty were unreliable, for this
exact reason. BLEU scores are often reported as
being fokenized or detokenized. But for comput-
ing BLEU, both the system output and reference
are always tokenized; what this distinction refers
to is whether the reference preprocessing is user-
supplied or metric-internal (i.e., handled by the
code implementing the metric), respectively. And
since BLEU scores can only be compared when
the reference processing is the same, user-supplied
preprocessing is error-prone and inadequate for
comparing across papers.

Table 1 demonstrates the effect of computing
BLEU scores with different reference tokeniza-
tions. This table presents BLEU scores where a
single WMT 2017 system (online-B) and the ref-
erence translation were both processed in the fol-
lowing ways:

e basic. User-supplied preprocessing with the
MOSES tokenizer (Koehn et al., 2007).’

e split. Splitting compounds, as in Luong et al.
(2015a):° e.g., rich-text — rich - text.

e unk. All word types not appearing at least
twice in the target side of the WMT training
data (with “basic” tokenization) are mapped
to UNK. This hypothetical scenario could

5Arguments —g —no—escape -protected
basic-protected-patterns -1 LANG.

Their use of compound splitting is not mentioned in
the paper, but only here: http://nlp.stanford.edu/
projects/nmt.



English— « * —English
config | en-cs en-de en-fi en-lv en-ru en-tr | cs-en de-en fi-en Ilv-en ru-en tr-en
basic 207 258 222 169 333 185 | 268 312 266 21.1 364 244
split 207 261 226 17.0 333 187 | 269 31.7 269 213 367 247
unk 209 265 254 187 338 206 | 269 314 276 227 375 252
metric 20.1 266 220 179 320 199 | 274 330 276 220 369 256
range 0.6 0.8 0.6 1.0 1.3 14 0.6 1.8 1.0 0.9 0.5 1.2
basic, 212 263 225 174 333 189 | 27.7 325 275 220 373 252
split;. 213 266 229 175 334 19.1| 278 329 278 222 375 254
unk;, 214 270 256 191 338 21.0| 27.8 326 283 236 383 259
metric;. | 20.6 272 224 185 328 204 | 284 342 285 230 378 264
rangej. 0.6 09 05 1.1 06 1.5 0.7 1.7 1.0 1.0 0.5 1.2

Table 1: BLEU score variation across WMT’ 17 language arcs for cased (top) and uncased (bottom) BLEU. Each
column varies the processing of the “online-B” system output and its references. basic denotes basic user-supplied
tokenization, split adds compound splitting, unk replaces words not appearing at least twice in the training data
with UNK, and metric denotes the metric-supplied tokenization used by WMT. The range row lists the difference

between the smallest and largest scores, excluding unk.

easily happen if this common user-supplied
preprocessing were inadvertently applied to
the reference.

e metric. Only the metric-internal tokeniza-
tion of the official WMT scoring script,
mteval-vl3a.pl,is applied.”

The changes in each column show the effect
these different schemes have, as high as 1.8 for
one arc, and averaging around 1.0. The biggest
is the treatment of case, which is well known, yet
many papers are not clear about whether they re-
port cased or case-insensitive BLEU.

Allowing the user to handle pre-processing of
the reference has other traps. For example, many
systems (particularly before sub-word splitting
(Sennrich et al., 2016) was proposed) limited the
vocabulary in their attempt to deal with unknown
words. It’s possible that these papers applied this
same unknown-word masking to the references,
too, which would artificially inflate BLEU scores.
Such mistakes are easy to introduce in researcher
pipelines.®

2.3 Problem: Details are hard to come by

User-supplied reference processing precludes di-
rect comparison of published numbers, but if
enough detail is specified in the paper, it is at

"https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/mteval-vl3a.pl

8This paper’s observations stem in part from an early ver-
sion of a research workflow I was using, which applied pre-
processing to the reference, affecting scores by half a point.

paper \ configuration

Chiang (2005) metricy,.

Bahdanau et al. (2014) | (unclear)

Luong et al. (2015b) user or metric (unclear)
Jean et al. (2015) user

Wu et al. (2016)
Vaswani et al. (2017)
Gehring et al. (2017)

user or user;. (unclear)
user or user;. (unclear)
user, metric

Table 2: Benchmarks set by well-cited papers use dif-
ferent BLEU configurations (Table 1). Which one was
used is often difficult to determine.

least possible to reconstruct comparable numbers.
Unfortunately, this is not the trend, and even for
meticulous researchers, it is often unwieldy to in-
clude this level of technical detail. In any case,
it creates uncertainty and work for the reader. One
has to read the experiments section, scour the foot-
notes, and look for other clues which are some-
times scattered throughout the paper. Figuring out
what another team did is not easy.

The variations in Table 1 are only some of the
possible configurations, since there is no limit to
the preprocessing that a group could apply. But
assuming these represent common, concrete con-
figurations, one might wonder how easy it is to de-
termine which of them was used by a particular
paper. Table 2 presents an attempt to recover this
information from a handful of influential papers in
the literature. Not only are systems not compa-
rable due to different schemes, in many cases, no
easy determination can be made.
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Figure 1: The proper pipeline for computing reported
BLEU scores. White boxes denote user-supplied pro-
cessing, and the black box, metric-supplied. The user
should not touch the reference, while the metric applies
its own processing to the system output and reference.

2.4 Problem: Dataset specification

Other tricky details exist in the management of
datasets. It has been common over the past few
years to report results on the English—German
arc of the WMT’ 14 dataset. It is unfortunate,
therefore, that for this track (and this track alone),
there are actually rwo such datasets. One of them,
released for the evaluation, has only 2,737 sen-
tences, having removed about 10% of the origi-
nal data after problems were discovered during the
evaluation. The second, released after the evalu-
ation, restores this missing data (after correcting
the problem) and has 3,004 sentences. Many re-
searchers are unaware of this fact, and do not spec-
ify which version they use when reporting, which
itself contributes to variance.

2.5 Summary

Figure 1 depicts the ideal process for comput-
ing sharable scores. Reference tokenization must
identical in order for scores to be comparable. The
widespread use of user-supplied reference pre-
processing prevents this, needlessly complicating
comparisons. The lack of details about prepro-
cessing pipelines exacerbates this problem. This
situation should be fixed.

3 A way forward
3.1 The example of PARSEVAL

An instructive comparison comes from the eval-
uation of English parsing scores, where num-
bers have been safely compared across papers for
decades using the PARSEVAL metric (Black et al.,
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1991). PARSEVAL works by taking labeled spans
of the form (N,i,j) representing a nonterminal
N spanning a constituent from word ¢ to word
j. These are extracted from the parser output and
used to compute precision and recall against the
gold-standard set taken from the correct parse tree.
Precision and recall are then combined to compute
the F; metric that is commonly reported and com-
pared across parsing papers.

Computing parser F; comes with its own set
of hidden parameters and edge cases. Should
one count the TOP (ROOT) node? What about
~NONE- nodes? Punctuation? Should any la-
bels be considered equivalent? These boundary
cases are resolved by that community’s adoption
of a standard codebase, evalb,’ which included
a parameters file that answers each of these ques-
tions.!? This has facilitated almost thirty years of
comparisons on treebanks such as the Wall Street
Journal portion of the Penn Treebank (Marcus
etal., 1993).

3.2 Existing scripts

MosES'! has a number of scoring scripts. Un-
fortunately, each of them has problems. Moses’
multi-bleu.perl cannot be used because it
requires user-supplied preprocessing. The same
is true of another evaluation framework, MultEval
(Clark et al., 2011), which explicitly advocates for
user-supplied tokenization.'> A good candidate
is Moses’ mteval-v13a.pl, which makes use
of metric-internal preprocessing and is used in the
annual WMT evaluations. However, this script in-
conveniently requires the data to be wrapped into
XML. Nematus (Sennrich et al., 2017) contains a
version (multi-bleu-detok.perl) that re-
moves the XML requirement. This is a good idea,
but it still requires the user to manually handle the
reference translations. A better approach is to keep
the reference away from the user entirely.

3.3 SACREBLEU

SACREBLEU is a Python script that aims to treat
BLEU with a bit more reverence:

e It expects detokenized outputs, applying its
own metric-internal preprocessing, and pro-
duces the same values as WMT;

*http://nlp.cs.nyu.edu/evalb/

0The configuration file, COLLINS.PRM, answers these
questions as no, no, no, and ADVP=PRT.

Uhttp://statmt.org/moses

Phttps://github.com/jhclark/multeval



e it automatically downloads and stores WMT
(2008-2018) and IWSLT 2017 (Cettolo et al.,
2017) test sets, obviating the need for the user
to handle the references at all; and

e it produces a short version string that docu-
ments the settings used.

SACREBLEU can be installed via the Python
package management system:

pip3 install sacrebleu

It can then be used to download the source
side of test sets as decoder input—all WMT test
sets are available, as well as recent IWSLT test
sets, and others are being added. After decoding
and detokenization, it can then used to produce
BLEU scores.'?> The following command selects
the WMT’14 EN-DE dataset used in the official
evaluation:

cat output.detok \

| sacrebleu -t wmtl4d -1 en-de

(The restored version that was released after
the evaluation (§2.4) can be selected by us-
ing -t wmtl14/full.) It prints out a version
string recording all the parameters as '+ de-
limited KEY.VALUE pairs (here shortened with
——-short):

BLEU+c.mixed+1l.en—-de+#.1+s.exp
+t.wmtl4+tok.13a+v.1.2.10

recording:
e mixed case evaluation
e on EN-DE
e with one reference
e and exponential smoothing
e on the WMT14 dataset
e using the WMT standard ’13a’ tokenization
e with SACREBLEU 1.2.10.

SACREBLEU is open source software released
under the Apache 2.0 license.

'3The CHRF metric is also available via the —m flag.

4 Summary

Research in machine translation benefits from the
regular introduction of test sets for many different
language arcs, from academic, government, and
industry sources. It is a shame, therefore, that we
are in a situation where it is difficult to directly
compare scores across these test sets. One might
be tempted to shrug this off as an unimportant de-
tail, but as was shown here, these differences are in
fact quite important, resulting in large variances in
the score that are often much higher than the gains
reported by a new method.

Fixing the problem is relatively simple. Re-
search groups should only report BLEU computed
using a metric-internal tokenization and prepro-
cessing scheme for the reference, and they should
be explicit about the BLEU parameterization they
use. With this, scores can be directly compared.
For backwards compatibility with WMT results, 1
recommend the processing scheme used by WMT,
and provide a new tool that makes it easy to do so.
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Abstract

A popular application of machine translation
MT) is gisting: MT is consumed as is to
make sense of text in a foreign language.
Evaluation of the usefulness of MT for gist-
ing is surprisingly uncommon. The classical
method uses reading comprehension question-
naires (RCQ), in which informants are asked
to answer professionally-written questions in
their language about a foreign text that has
been machine-translated into their language.
Recently, gap-filling (GF), a form of cloze test-
ing, has been proposed as a cheaper alter-
native to RCQ. In GF, certain words are re-
moved from reference translations and read-
ers are asked to fill the gaps left using the
machine-translated text as a hint. This paper
reports, for the first time, a comparative evalu-
ation, using both RCQ and GF, of translations
from multiple MT systems for the same for-
eign texts, and a systematic study on the effect
of variables such as gap density, gap-selection
strategies, and document context in GF. The
main findings of the study are: (a) both RCQ
and GF clearly identify MT to be useful; (b)
global RCQ and GF rankings for the MT sys-
tems are mostly in agreement; (c) GF scores
vary very widely across informants, making
comparisons among MT systems hard, and (d)
unlike RCQ, which is framed around docu-
ments, GF evaluation can be framed at the sen-
tence level. These findings support the use of
GF as a cheaper alternative to RCQ.

1 Introduction

1.1 Machine translation for gisting

Machine translation (MT) applications fall in two
main groups: assimilation or gisting, and dissem-
ination. Assimilation refers to the use of the raw
MT output to make sense of foreign texts. Dis-
semination refers to the use of the MT output as
a draft translation that can be post-edited into a
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publishable translation. The needs of both groups
of applications are quite different; for instance,
an otherwise perfect Russian to English transla-
tion but with no articles (some, a, the), is likely to
be fine for assimilation, but would need substan-
tial post-editing for dissemination. State-of-the-art
MT systems are however usually evaluated —even
if manually— (and optimized) with respect to their
ability to produce translations that resemble refer-
ences, regardless of the intended application for
the system.

Assimilation is by far the main use of MT
in number of words translated. It is either ex-
plicitly invoked, for instance, by visiting web-
pages such as Google Translate, or integrated into
browsers and social networks. Raw MT may
sometimes be the only feasible option,' for in-
stance when dealing with user-generated content
or ephemeral material (such as product descrip-
tions in e-commerce).

1.2 Evaluation of MT for gisting

A straightforward (but costly) way to evaluate MT
for gisting measures the performance of target-
language readers in a text-mediated task —for
instance, a software installation task (Castilho
et al., 2014)— by using raw MT and compares it
with the performance reached using a professional
translation of the text.

However, there may be scenarios without an ob-
vious associated task: news, product and service
reviews, or literature. On the other hand, even
with a clear associated task, task completion eval-
uation is also quite expensive. It is therefore desir-
able to have alternative objective indicators which
work as good surrogates for actual task-oriented

"Twenty-five years ago, (Sager, 1993, p. 261) already
hinted at MT-only scenarios: “there may, indeed, be no single
situation in which either human or machine would be equally
suitable.”

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 192-203
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
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success.

Some authors have proposed eye-tracking (Do-
herty and O’Brien, 2009; Doherty et al., 2010;
Stymne et al., 2012; Doherty and O’Brien, 2014;
Castilho et al., 2014; Klerke et al., 2015; Castilho
and O’Brien, 2016; Sajjad et al., 2016) as a mea-
sure of machine translation usefulness, but the
technique is expensive and the evidence gathered
is rather indirect and does not have a straightfor-
ward interpretation in terms of usefulness.

There are many methods in which informants
are asked to judge the quality of machine-
translated sentences, usually as regards their
monolingual fluency (nativeness, grammaticality),
their bilingual adequacy (how much of the infor-
mation in the source sentence is present in the
machine-translated sentence), or even monolin-
gual adequacy (how much of the information in
the reference sentence is present in the machine-
translated sentence); informants may be asked ei-
ther to directly assess MT outputs by giving values
to these indicators in a predetermined scale or to
rank a number of MT outputs for the same source
sentence (sometimes being asked to consider as-
pects such as adequacy, fluency, or both). Direct
assessments of adequacy and MT ranking are the
official evaluation procedure for the most recent
WMT translation shared task campaigns (Bojar
etal., 2016, 2017). Other researchers use post-task
questionnaires (Stymne et al., 2012; Doherty and
O’Brien, 2014; Klerke et al., 2015; Castilho and
O’Brien, 2016) to assess the perceived usefulness
of MT output.

Direct assessment, ranking or post-task ques-
tionnaire evaluation methods are clearly subjec-
tive and require informants to make “in vitro”
Jjudgements about the quality of MT outputs, with-
out considering their usefulness for a specific “in
vivo”, real-world application.

1.3 Reading comprehension questionnaires

Reading comprehension questionnaires (RCQ), as
used in the assessment of foreign-language learn-
ing, are the standard approach to evaluate MT for
gisting that measures reader performance in re-
sponse to MT. Readers answer questions using
either a machine-translated or a professionally-
translated version of the source text and their per-
formance on the tests (i.e. to what extent they an-
swer questions correctly) using the two sets of
texts is then compared. RCQ are however quite
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costly: a human translation is needed for a con-
trol group and questions need to be professionally
written and often manually marked.

RCQ has a long history as an MT evalua-
tion method. Tomita et al. (1993), Fuji (1999),
and Fuji et al. (2001) evaluate the informative-
ness or usefulness of English-Japanese MT by
using standardized English-as-a-foreign-language
RCQs (TOEFL, TOEIC) which have been ma-
chine translated into Japanese and they are some-
times capable of distinguishing MT systems.
Jones et al. (2005b), Jones et al. (2005a), Jones
et al. (2007), and Jones et al. (2009) use the struc-
ture of standardized language proficiency tests
(Defence Language Proficiency Test, Interagency
Language Roundtable) to evaluate the readabil-
ity of Arabic-English MT texts. MT’ed docu-
ments are found to be harder to understand than
professional translations, and that they may be
assigned an intermediate level of English profi-
ciency. Berka et al. (2011) collected a set of En-
glish short paragraphs in various domains, created
yes/no questions in Czech about them, and ma-
chine translated the English paragraphs into Czech
with different MT systems. They found that out-
puts produced by different MT systems lead to dif-
ferent accuracy in the annotators’ answers. Weiss
and Ahrenberg (2012) evaluate comprehension of
Polish-English translations using RCQ tests and
found that a text with more MT errors have less
correct answers than a text with fewer MT errors.
Finally, Stymne et al. (2012) use RCQ to vali-
date eye-tracking as a tool for MT error analy-
sis for English—-Swedish. Interestingly, for one of
their systems, the number of correct answers in the
RCQ tests were higher than for the human transla-
tion. However, test takers were more confident in
answering questions about the human translations
than about the MT outputs.

In this paper we explore RCQ as a measure of
MT quality by using the CREG-mt-eval corpus
(Scarton and Specia, 2016). In contrast to previ-
ous work, this paper presents an evaluation of MT
quality based on open questions that have different
levels of difficulty (as presented in Section 2) for
a considerable amount of documents (36 in con-
trast to only 2 analysed by Weiss and Ahrenberg
(2012)).



1.4 An alternative: evaluation via gap-filling

An alternative approach to RCQs, gap filling
(GF), has been recently proposed (Trosterud and
Unhammer, 2012; O’Regan and Forcada, 2013;
Ageeva et al., 2015; Jordan-Nunez et al., 2017)
based on another typical way of measuring reading
comprehension: cloze (or closure) testing (Taylor,
1953). Instead of a question, readers get an incom-
plete sentence with one or more words replaced
by gaps, and are asked to fill the gaps. Indeed,
GF may be seen as equivalent to the answering of
simple reading comprehension questions: for in-
stance, a question like Who was the president of
the Green Party in 20117 would be equivalent to
the sentence with one gap In 2011,
the president of the Green Party.

GF tasks are prepared by automatically punch-
ing gaps in reference sentences taken from a pro-
fessional translation of the source text. Infor-
mants are given the machine-translated sentence
as a “hint” for the gap-filling task; therefore, we
may view GF as a way of automatically generating
questions to evaluate the MT output. The evalua-
tion measure is the proportion of gaps that can be
successfully filled using MT as a hint. This can be
compared with the success rate in the case where
no hint (MT) is provided, to give an estimate of
the usefulness of MT output.

Note that cloze testing evaluation of machine
translation was attempted decades ago in a com-
pletely different readability setting: gaps were
then punched in machine-translated output and in-
formants tried to complete them without any fur-
ther hint (Crook and Bishop, 1965; Sinaiko and
Klare, 1972). This work was reviewed and ex-
tended later by Somers and Wild (2000). But fill-
ing gaps in machine-translated output may be un-
necessarily challenging and therefore make eval-
uation less adequate: for instance, informants
would sometimes have to fill gaps in disfluent or
ungrammatical text, which is much harder than
filling them in a fluent, professionally translated
reference, or, even in fluent output, a crucial con-
tent word that has been removed may be very hard
to guess unless the surrounding text is very redun-
dant. Moreover, the GF method described here has
an easier interpretation in terms of its analogy to
RCQ.

This paper systematically builds upon previous
work on GF to obtain experimental evidence that
gap-filling is a viable, lower-cost alternative to
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RCQ evaluation. Its main contributions are:

e While Trosterud and Unhammer (2012),
O’Regan and Forcada (2013), and Ageeva et
al. (2015) used GF just to demonstrate the
usefulness of a single rule-based MT system
for each language pair studied, this paper,
like Jordan et al.’s (2017), performs a com-
parison of several MT systems for the same
language pair.

Previous work (Trosterud and Unhammer,
2012; O’Regan and Forcada, 2013; Ageeva
et al., 2015; Jordan-Nuiiez et al., 2017) sim-
ply assumes the validity of GF as an evalu-
ation method for MT gisting, in some cases
arguing about its equivalence to RCQ. Ours
is the first work to actually compare GF and
RCQ evaluation of the same MT systems.

Previous work used sentences (Trosterud and
Unhammer, 2012; O’Regan and Forcada,
2013; Ageeva et al., 2015) or short excerpts
of text (Jordan-Nuifez et al., 2017), but did
not study the influence of a larger, document-
level machine-translated context around the
target sentence, as it is done here.

This paper explores for the first time a gap-
positioning strategy based on an approximate
computation of gap entropy, and compares it
to random placing of gaps.

The paper is organized as follows: section 2
describes the design and implementation of both
evaluation methods, RCQ and GF; then section 3
reports and discusses the results obtained; and, fi-
nally, concluding remarks (section 4) close the pa-
per.

2 Methodology

2.1 Data and informants

We use an extended version of CREG-mt-eval
(Scarton and Specia, 2016), a version of the
expert-built CREG reading comprehension cor-
pus (Ott et al., 2012) for 2nd-language learners of
German. CREG was originally created to build
and evaluate systems that automatically correct
answers to open questions. CREG-mt-eval con-
tains 108 source (German) documents with differ-
ent domains, including literature, news, job ad-
verts, and others (on average 372 words and 33
sentences per document). The original documents



were machine-translated in December 2015 into
English using four systems: an in-house baseline?
statistical phrase-based Moses (Koehn et al., 2007)
system trained on WMT 2015 data (Bojar et al.,
2015), Google Translate,” Bing* and Systran.’
CREG-mt-eval also contains professional transla-
tions of a subset of 36 documents (90—1500 words)
as a control group to check whether the questions
are adequate for the task. All questions from the
CREG original questionnaires (in German) were
professionally translated to English. On average,
there are 8.8 questions per document.

The questions in CREG-mt-eval are classified
(Meurers et al., 2011) as: literal, when they can
be answered directly from the text and refer to
explicit knowledge, such as names, dates (79%
of the total number of questions); reorganization,
also based on literal text understanding, but requir-
ing the combination of information from different
parts of the text (12% of the total number of ques-
tions); and inference, which involve combining lit-
eral information with world knowledge (9% of the
total number of questions).

Following Scarton and Specia (2016), test tak-
ers (informants) for both GF and RCQ were fluent
English-speaking volunteers, staff and students at
the University of Sheffield, who were paid (with
a 10 GBP online gift certificate) to complete the
task.

2.2 Reading comprehension questionnaire
task

For the version of CREG-mt-eval used herein,
thirty informants were given a set of six doc-
uments each and answered three to five ques-
tions per document, using only the English doc-
ument (either machine- or human-translated) pro-
vided. Therefore, for each of the 36 original doc-
uments, questions were answered using each ma-
chine translation system or the human translation.
Each document was only evaluated by one infor-
mant. The original German document was not
given. The guidelines were similar to those used
in other reading comprehension tests: test takers
were asked to answer the questions based on the

http://www.statmt.org/moses/?n=moses.
baseline

*http://translate.google.co.uk/, presum-
ably a statistical system at that time.

‘nttps://www.bing.com/translator/,
presumably a statistical system at that time.

‘http://www.systransoft.com/, presumably a
hybrid rule-based / statistical system at that time.

also
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document provided. They were also advised to
read the questions first and then look for the infor-
mation required on the text in order to speed up the
task. Questions in CREG-mt-eval were marked as
proposed by Ott et al. (2012): correct answer (1
mark), if the answer is correct and complete; extra
concept (0.75 marks), when incorrect additional
concepts are added; missing concept (0.5 marks),
when important concepts are missing; blend (0.25
marks) when there are both extra and missing con-
cepts; and incorrect (0 marks), when the answer is
incorrect or missing.

Given the marks and the type of question, RCQ
overall scores (f) are calculated as:

Nl 1 Nr 1 Nz’
—a-—3 1 L R N
f=a lez:; K+ B Nrkzzjlrwr’y Nig::llk,

where NV}, N, and V; are the number of literal, re-
organization and inference questions, respectively,
I, Ty and 7;, are real values between 0 and 1, ac-
cording to the mark of question k, and «, 5 and ~
are weights for the different types of questions.

We experiment with three different types of
scores: simple (same weight for all question types:
a = 8 =~ = 1.0), i.e. marks are averaged giv-
ing all questions the same importance; weighted,
i.e. marks are averaged using different weights for
different types of question (« 1, 6 = 2 and
v = 3):6 and literal, where only marks for literal
questions are used to compute the average qual-
ity score (o« = 1, 8 = v = 0). The last score is
interesting because literal questions are the most
similar to gap-filling problems and correspond to
almost 80% of the corpus and they should be eas-
ier to answer than other types. Therefore, prob-
lems in answering a literal question may be a sign
of a bad quality translation.

Figure 1 shows an example of the question-
naires presented to the test takers. In this example,
the first, second and last questions are inference
questions, whilst the third and fourth questions are
literal questions.

2.3 Gap filling task

Twenty different kinds of configurations were
used in problems posed to informants. Sixteen
configurations used the four MT systems to gen-
erate hints, in two modalities (showing the full

These values reflect the expected relative difficulty of

questions: inference harder than reorganization, and reorga-
nization harder than literal.



Questionnaire 4

*Required

at the end of the street surrounded by single-family houses you achieve your new home .
from the door step in the top of this wonderful accommodation unit, the owners very
carefully and with love for detail removiert .
on the ground floor there is a bathroom with daylight, guest WC, the kitchen and a very
spacious living / dining room with a fascinating view of the well-kept garden .

down the stairs are another bathroom with shower - not yet used - as well as two rooms,
both with a view to the beautiful garden and the adjacent forests .

the rooms in this area are in high quality laminate .

if you like to stay at the same time , only a family environment , this apartment for you right

KU-38.1: For whom is this apartment ideal?

KU-38.3: Is the apartment in a new building or an old building?

KU-38.4: Name two rooms on the ground floor.

KU-38.5: Where is the apartment?.

KU-38.8: How many rooms are in the basement?

Figure 1: A screenshot of a RCQ questionnaire.

machine-translated document, or just the prob-
lem sentence) and with two different gap densities
(10% or 20%). We added 4 additional configura-
tions with no hint, using the same two gap den-
sities, and with two different gap-selection strate-
gies (statistical language model entropy and ran-
dom).

The gap entropy at position k of sentence w
given by,

H(k,wi)

N

s

— > plafw?, k) logs p(z|wi, k),
zeV

with V the target vocabulary (including the un-
known word UNK), and with

p(wi™

- > p(w

eV

N
xwk—i—l)
k—1_1 N
1 T Wg

p(x|wy’, k)

9

)

estimated using a 3-gram language model trained
trained using KenLM (Heafield, 2011) on the En-
glish NewsCommentary version 8 corpus.” Gaps

http://www.statmt.org/wmt13
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are punched in order of decreasing entropy, disal-
lowing gaps at stop-words or punctuation, and en-
suring that two gaps are never consecutive or sep-
arated only by stop-words or punctuation.

To select important sentences for the test, for
each of the reference documents, the best single-
sentence summary was selected as the problem
sentence using GenSim.3

Each of 60 informants was given exactly one
problem per document. Problem configurations
were assigned such that each informant tackled at
least one problem in each configuration, and each
document was evaluated 3 times in each configu-
ration. The mean time per problem was about 1
minute.

To create the user interface for the task we mod-
ified’ Ageeva et al.’s (2015) version of an older

8https ://rare-technologies.com/
text-summarization-with-gensim/; the per-
centage of text to be kept in the summary is reduced until it
contains a single sentence.

*https://github.com/mlforcada/Appraise



version (2014) of Federmann’s (2012) Appraise.10
Each problem was presented in Appraise in a sin-
gle screen, divided in three sections. The top of
each screen reminded informants about the objec-
tive of the task. Immediately below, a machine-
translated Hint text is provided for those 16 con-
figurations that have one. The sentence in the
hint text corresponding to the problem sentence
is highlighted when a complete document is pro-
vided. At the bottom of the screen, the Problem
sentence containing the gaps to be filled is pro-
vided. Figure 2 shows a screenshot of the inter-
face, where a whole machine-translated document
is shown as a hint, with the key sentence high-
lighted. The score for each problem and config-
uration is simply the ratio of correctly filled gaps.

3 Results

Table 1 shows, for each system, the averaged in-
formant performance (see Appendix A for details)
for the GF and RCQ quality scores explained pre-
viously; BLEU and NIST scores are also given as
a reference. In view that score distributions are
actually very far from normality, the usual signif-
icance tests (such as Welch’s t-test) are not ap-
plicable; therefore, statistical significances of dif-
ferences between RCQ and GF scores will be re-
ported throughout using the distribution-agnostic
Kolmogorov—Smirnov test.!! Note that previous
work in RCQ did not provide statistical signif-
icance when comparing different hinting condi-
tions, and that only Jordan et al. (2017) provided
that information for GF.

3.1 Reading comprehension questionnaire
scores

According to all three variations of RCQ scores,
and contrary to BLEU and NIST, Systran appears
to be better than the homebrew Moses. The RCQ
scores for the professionally translated documents
(CHuman’ row on the table) are higher than those
for the best MT system, which shows that the
questions are answerable from the texts and that
informants did follow the guidelines as expected.
We also report the statistical significance of
score differences and find (a) the only statisti-
cally significant difference at o < 0.05 between
MT systems for any score type is between Google

Uhttps://github.com/cfedermann/
Appraise

"https://en.wikipedia.org/wiki/
Kolmogorov-Smirnov_test
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and the homebrew Moses; (b) all three scores
of Bing, Google and Systran are statistically in-
distinguishable among them; (c) some (but not
all) scores obtained with the professional transla-
tion are not statistically different from those ob-
tained with Google, Bing or Systran MT output;
and (d) all three scores obtained with the profes-
sional translation are statistically distinguishable
from those with Moses output.

3.2 Gap-filling

Gap placement strategy: Filling of gaps in the
absence of a hint was done in two configurations:
one where gaps were punched at random, and one
where gaps were punched where LM entropy was
maximum. Entropy appears to make gap filling
more difficult in the absence of hints (19.6% vs.
25.8% success rate) The value of pkg 0.081,
above the customary o = 0.05 significance thresh-
old, would however tentatively support our use of
entropy-selected gaps in all situations where MT
was used as a hint.

Comparing MT systems: Taking all MT sys-
tems together, one can see that the success rate
(58%) is, as expected, 3 times larger than that ob-
tained without MT using the entropy-driven gap
placing strategy (19%) and this difference is statis-
tically significant. The homebrew Moses system is
the least helpful (55.9%), and Bing the most help-
ful (62.6%), but the only statistically significant
difference is between these two (pxg = 0.005)
and between Bing and Systran (pxg = 0.044).
Even with 432 problems solved for each system,
MT systems were hard to distinguish by success
rate (Jordan et al. (2017) report clearer differ-
ences between systems, but the paper does not
clarify whether they are running the same prob-
lems through all MT systems to ensure the inde-
pendence of their comparisons).

Figure 3 shows box-and-whisker plots of the
distribution of performance across all 60 infor-
mants for each MT system. The large overlap ob-
served among the four MT systems illustrates how
hard it is to simply average gap-filling scores to
evaluate them.

Even if annotators are quite different, each one
of them may still be consistent in the relative
scores they give to different MT systems. Plot-
ting the average score each informant gives to
each MT system against their average score for all
systems after removing four clearly outlying in-



Instructions: Fill each one of the gaps in the "problem sentence” at the bottom with the most fitting single word, using only information

from the hint text (if there is one).

Hint text: (you might need to scroll to find some highlighted text)

The Federal Republic of Germany after 1945 experienced a huge economic boom, which was the economic basis for a stable

democracy.

In the German Democratic Republic the socialist one-party dictatorship of the SED and the socialist planned economy have

been introduced at the same time.
Until 1989, the GDR had therefore great economic problems.
The consequences had a major impact on life in the GDR.

Problem sentence: At the same time in the German Democratic Republic , the socialist one-party dictatorship of the SED and

state-planned

" Submit

were introduced .

Figure 2: A screenshot of the gap-filling evaluation interface, showing a whole machine-translated document as a hint (with

the key sentence highlighted).

BLEU | NIST RCQ scores GF scores

Simple | Weighted | Literal | Overall | 10% 20%

Google 0.306 | 4.66 | 0.753 0.748 0.776 | 0.592 | 0.565 | 0.619

Bing 0.281 | 4.40 | 0.709 0.695 0.734 | 0.618 | 0.595 | 0.640

Homebrew 0.241 | 4.51 | 0.594 0.577 0.608 | 0.550 | 0.547 | 0.553

Systran 0.203 | 3.05 | 0.680 0.670 0.701 | 0.569 | 0.544 | 0.595

MT Average 0.684 0.673 0.705 | 0.582 | 0.563 | 0.602
Human 1.000 | 10.0 | 0.813 0.810 0.872

No hint (random) 0.258 | 0.302 | 0.213

No hint (entropy) 0.193 | 0.191 | 0.195

No hint (average) 0.225 | 0.247 | 0.204

Table 1: A comparison of BLEU and NIST scores, RCQ marks in the three possible weightings, and GF success rates at

different densities.

formants, Pearson correlations are only moderate
(ranging between 0.47 and 0.73), and the slopes
asystem Of line fits of the form score(system) =
agystemScore(all) show the same ranking as aver-
age SCores: dnomebrew = 0.99, agystran = 0.97,
AGoogle = 1.00, aping = 1.06, but are very close
to each other and their confidence intervals over-
lap substantially.

Effect of context: In half of the configurations
with MT hints, a single machine-translated sen-
tence was shown; in the other half, the whole
machine-translated document was shown as a hint.
The results indicate that extended context, instead
of helping, seems to make the task slightly more
difficult (58.3% vs. 59.5% success rate), but dif-
ferences are not statistically significant; therefore,
GF scores in Table 1 are average scores obtained
with and without context. This supports evaluation

through simpler GF tasks based on single-sentence
hints.

Effect of gap density: Gaps were punched with
two different densities, 10% and 20%, to check
if a higher gap density would make the problem
harder. Contrary to intuition, the task becomes
easier when gap density is higher, and the result
is statistically significant (pxg < 0.001). This
unexpected result is however easily explained as
follows: problems with 20% gap density contain
all of the high-entropy gaps present in 10% prob-
lems, plus additional lower-entropy gaps, which
are easier to fill successfully, and therefore, the
average success rate rises. In the no-hint situa-
tion, however, as shown in Table 1, higher densi-
ties would seem to make the problem harder, per-
haps because the only information available to fill
the gaps comes from the problem sentence itself,
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Distribution of scores across 60 informants

0.8

0.6

0.2

NONE Homebrew

Systran

Google Bing

Figure 3: Box-and-whisker plots of the distribution of informant performance for each MT system.

and higher gap densities substantially reduce the
number of available content words in the sentence.
However, the differences are not statistically sig-
nificant.

Gap density and MT evaluation: When com-
paring MT systems using only the 10% gap den-
sity problems, no differences are found to be sta-
tistically significant. This means that for very hard
gaps, systems would appear to behave similarly.
When selecting a value of 20% for the gap density
(some easier gaps are included), Bing and Google
do appear to be significantly better than the home-
brew Moses.

Inter-annotator agreement: As 3 different in-
formants filled the gaps for exactly the same set
of problems and configurations, with 20 such sets
available, we studied the pairwise Pearson corre-
lation r of their GF success in each of the 36 prob-
lems.'? All values of  were found to be positive,
averaging around 0.58, a sign of rather good inter-
annotator agreement. After removing two outlying
informants (r < 0.1), results did not appreciably
change.

Allowing for synonyms: The GF success scores
reported thus far have been computed by giving
credit only to exact matches. We have studied
giving credit to synonyms observed in informant
work, namely to those appearing at least twice (in
the work of all informants) that, according to one

"2The usual Fleiss’ kappa statistic cannot be applied here
because the labels are not nominal or taken from a discrete
set, but rather numerical success rates.
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of the authors, preserved the meaning of the prob-
lem sentence, or were trivial spelling or case vari-
ations. A total of 124 frequent valid substitutions
were considered. As expected, GF success rates
(see table 2) increase considerably, for example,
from 22.7% to 32.2% for no hint, or from 58.9% to
75.5% for all systems averaged. The relative rank-
ing of MT systems is maintained; the statistical
significance of the homebrew Moses results ver-
sus Bing results is maintained, and two additional
statistically significant differences appear: Google
vs. homebrew Moses and Systran vs. homebrew
Moses. The statistical significance of the effect
of gap density disappears when allowing for syn-
onyms. This indicates that it would be beneficial
to assign credit to synonyms if the necessary lan-
guage resources are available or if further analysis
of actual GF results is feasible.

3.3 Correlation between GF and RCQ

One of our main goals was to explore whether
GF would be able to reproduce the results of the
established method in the field, RCQ. Table 1
shows reasonable agreement between RCQ and
GF scores: both give the homebrew Moses system
the worst score, and commercial statistical sys-
tems (Bing and Google) get the best scores. Also,
as commonly found for subjective judgements (for
example, Callison-Burch et al. (2006)), BLEU and
NIST penalize the rule-based Systran system with
respect to the statistical homebrew system, while
measurements of human performance do not, but
the differences observed are however not statisti-
cally significant.



GF scores with synonyms | GF scores without synonyms

System Overall | 10% 20% | Overall | 10% 20%
Google 0.757 | 0.711 | 0.776 | 0.592 | 0.565 0.619
Bing 0.795 | 0.785 | 0.804 | 0.618 | 0.595 | 0.640
Homebrew 0.704 | 0.711 | 0.697 | 0.550 | 0.547 0.553
Systran 0.765 | 0.750 | 0.781 | 0.569 | 0.544 0.595

MT Average 0.755 | 0.746 | 0.765 | 0.582 | 0.563 0.602
No hint (random) | 0.339 | 0.379 | 0.299 | 0.258 | 0.302 0.213
No hint (entropy) | 0.306 | 0.322 | 0.290 | 0.193 | 0.191 0.195
No hint (average) | 0.322 | 0.350 | 0.294 | 0.225 | 0.247 0.204

Table 2: Effect in success rates of allowing for synonyms in GF

On the other hand, GF and RCQ scores assigned
to specific (document, MT system) pairs show low
correlation. This may be due to the scarcity of
RCQ data (only one data point per document-MT
system pair, as compared to of 12 data points for
GF), or to the fact that, while RCQ takes the whole
document into account, GF only looks at a specific
sentence. In addition, the RCQ tests and the sen-
tence selected for GF for a given document may
not directly correspond, i.e. the information re-
quired from the document to answer the RCQ tests
may differ from the information required to fill the
gaps in a given sentence. This happens because
the comprehension questions may target different
parts of the text and do not require the sentence
selected by our GF approach. A natural follow up
of this work is to use sentences for GF directly re-
lated to the RCQ tests.

4 Concluding remarks

We have compared two methods for the evalu-
ation of MT in gisting applications: the well-
established method using reading comprehension
questionnaires and an alternative method: gap fill-
ing. While RCQ require the manual preparation
of questionnaires for each document, and grading
of answers to open questions, GF is cheaper, as
it only needs reference translations for one or a
few sentences in each document and both ques-
tions and scores can be obtained automatically. GF
is fast and easily crowdsourceable.

In GF, without a hint, we found that entropy-
selected gaps appear to be harder than random
gaps. We therefore recommend using entropy-
selected gaps to discourage guesswork and incen-
tivize annotators to rely on the MT hints. Provid-
ing the whole machine-translated document as a
hint does not seem to help as compared with pro-

viding only the machine-translated version of the
problem sentence. This would suggest the possi-
bility of framing GF evaluation around single sen-
tences.

RCQ scores obtained using a machine-
translated text range between 70% and 95% of the
scores obtained using a professionally-translated
text. In GF, the presence of a machine-translated
text clearly improves performance (by about
3 times). Both results are a clear indication of the
usefulness of raw MT in gisting applications.

Both RCQ and GF rank a low-quality home-
brew Moses system worst, but differ as regards the
best MT system, although differences are not al-
ways statistically significant. It would seem as if
informants make do with any MT system regard-
less of small differences in quality. The discrimi-
native power of RCQ and GF evaluations is, how-
ever, quite low; this may be due to the scarcity
of data; if one expects that the collection of larger
amounts of human evaluation data (like the crowd-
sourced direct assessment (judgement) results de-
scribed by Bojar et al. (2016)) would increase the
discriminative power of the evaluation method,
this would be much more feasible using GF, than
the more costly RCQ.
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A Supplemental material

Raw gap-filling results for 2159 prob-
lems,’> 60 informants, 36 documents, and
20 configurations, are available for down-
load at the following address: http:
//www.dlsi.ua.es/~mlf/wmt2018/
raw-gap-filling-results.csv.

Raw reading comprehension test results
for 36 documents, four different MT systems
(Google, Bing, Moses and Systran) and one
human reference are available, totalling 180
documents. Each document was assessed by one
test taker. The markings for questions available
in each document and the final document scores

BShould have been 2160 = 36 x 60, but data for one

specific document, informant and configuration, was lost due
to a bug in the Appraise system.



used in this paper (namely simple, weighted or
literal) are available for download at: http:
//www.dlsi.ua.es/~mlf/wmt2018/

raw—reading-comprehension-results.
csv.
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Abstract

Neural Machine Translation (NMT) typically
leverages monolingual data in training through
backtranslation. We investigate an alterna-
tive simple method to use monolingual data
for NMT training: We combine the scores of
a pre-trained and fixed language model (LM)
with the scores of a translation model (TM)
while the TM is trained from scratch. To
achieve that, we train the translation model to
predict the residual probability of the train-
ing data added to the prediction of the LM.
This enables the TM to focus its capacity on
modeling the source sentence since it can rely
on the LM for fluency. We show that our
method outperforms previous approaches to
integrate LMs into NMT while the architec-
ture is simpler as it does not require gating
networks to balance TM and LM. We observe
gains of between +0.24 and +2.36 BLEU on
all four test sets (English-Turkish, Turkish-
English, Estonian-English, Xhosa-English) on
top of ensembles without LM. We compare
our method with alternative ways to uti-
lize monolingual data such as backtranslation,
shallow fusion, and cold fusion.

1 Introduction

Machine translation (MT) relies on parallel train-
ing data, which is difficult to acquire. In contrast,
monolingual data is abundant for most languages
and domains. Traditional statistical machine trans-
lation (SMT) effectively leverages monolingual
data using language models (LMs) (Brants et al.,
2007). The combination of LM and TM in SMT
can be traced back to the noisy-channel model
which applies the Bayes rule to decompose a

OThis work was done when the first author was on an in-
ternship at Facebook.
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translation system (Brown et al., 1993):

y =argmax P(y|x)
y

= argmax Pry(x|y) Pra(y)
y

ey

where x = (z1,...,,,) is the source sentence,
y (y1,...,yn) is the target sentence, and
Prys(-) and Ppyy(+) are translation model and lan-
guage model probabilities.

In contrast, NMT (Sutskever et al., 2014; Bah-
danau et al., 2014) uses a discriminative model and
learns the distribution P(y|x) directly end-to-end.
Therefore, the vanilla training regimen for NMT is
not amenable to integrating an LM or monoglin-
gual data in a straightforward manner.

An early attempt to use LMs for NMT, also
known as shallow fusion, combines LM and
NMT scores at inference time in a log-linear
model (Gulcehre et al., 2015, 2017). In contrast,
we integrate the LM scores during NMT train-
ing. Our training procedure first trains an LM on
a large monolingual corpus. We then hold the LM
fixed and train the NMT system to optimize the
combined score of LM and NMT on the parallel
training set. This allows the NMT model to fo-
cus on modeling the source sentence, while the
LM handles the generation based on the target-
side history. Sriram et al. (2017) explored a simi-
lar idea for speech recognition using a gating net-
work for controlling the relative contribution of
the LM. We show that our simpler architecture
without an explicit control mechanism is effective
for machine translation. We observe gains of up to
more than 2 BLEU points from adding the LM to
TM training. We also show that our method can
be combined with backtranslation (Sennrich et al.,
2016a), yielding further gains over systems with-
out LM.

Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 204-211
Belgium, Brussels, October 31 - Novermber 1, 2018. (©)2018 Association for Computational Linguistics
https://doi.org/10.18653/v1/W18-64021
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2 Related Work

2.1 Inference-time Combination

Shallow fusion (Gulcehre et al., 2015) integrates
an LM by changing the decoding objective to:

y = argmax log Prm(y|x) + Alog Pom(y). (2)
y

Pim(+) is produced by an LSTM-based RNN-
LM (Mikolov et al., 2010) which has been
trained on monolingual target language data.
Pry(+) can be a typical encoder-decoder Seq2Seq
model (Sutskever et al., 2014; Bahdanau et al.,
2014; Luong et al., 2015a). A is a hyper-parameter
which is tuned on the development set.

2.2 Cold Fusion

Shallow fusion combines a fixed TM with a fixed
LM at inference time. Sriram et al. (2017) pro-
posed to keep the LM fixed, but train a sequence
to sequence (Seq2Seq) NMT model from scratch
which includes the LM as a fixed part of the net-
work. They argue that this approach allows the
Seq2Seq network to use its model capacity for the
conditioning on the source sequence since the lan-
guage modeling aspect is already covered by the
LM. Their cold fusion architecture includes a gat-
ing network which learns to regulate the contribu-
tions of the LM at each time step. They demon-
strated superior performance of cold fusion on a
speech recognition task.

2.3 Other Approaches

Gulcehre et al. (2015, 2017) suggest to combine a
pre-trained RNN-LM with a pre-trained NMT sys-
tem using a controller network that dynamically
adjusts the weights between RNN-LM and NMT
at each time step (deep fusion). Both deep fusion
and n-best reranking with count-based LMs have
been used in WMT evaluation systems (Jean et al.,
2015; Wang et al., 2017). An important limitation
of these approaches is that LM and TM are trained
independently.

A second line of research augments the parallel
training data with additional synthetic data from a
monolingual corpus in the target language. The
source sentences can be generated with a sepa-
rate translation system (Schwenk, 2008; Sennrich
et al., 2016a) (backtranslation), or simply copied
over from the target side (Currey et al., 2017).
Since data augmentation methods rely on some
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balance between real and synthetic data (Sennrich
et al., 2016a; Currey et al., 2017; Poncelas et al.,
2018), they can often only use a small fraction of
the available monolingual data. A third class of
approaches change the NMT training loss func-
tion to incorporate monolingual data. For exam-
ple, Cheng et al. (2016); Tu et al. (2017) pro-
posed to add autoencoder terms to the training
objective which capture how well a sentence can
be reconstructed from its translated representation.
However, training with respect to the new loss is
often computationally intensive and requires ap-
proximations. Alternatively, multi-task learning
has been used to incorporate source-side (Zhang
and Zong, 2016) and target-side (Domhan and
Hieber, 2017) monolingual data. Another way
of utilizing monolingual data in both source and
target language is to warm start Seq2Seq train-
ing from pre-trained encoder and decoder net-
works (Ramachandran et al., 2017; Skorokhodov
etal., 2018). We note that pre-training can be used
in combination with our approach.

An extreme form of leveraging monolingual
training data is unsupervised NMT (Lample et al.,
2017; Artetxe et al., 2017) which removes the need
for parallel training data entirely. In this work, we
assume to have access to some amount of parallel
training data, but aim to improve the translation
quality even further by using a language model.

3 Translation Model Training under
Language Model Predictions

In spirit of the cold fusion technique of Sriram
etal. (2017) we also keep the LM fixed when train-
ing the translation network. However, we greatly
simplify the architecture by removing the need for
a gating network. We follow the usual left-to-right
factorization in NMT:

n

P(y[x) = [ Pwelyi™" %)
t=1

3)

Let Stm(y:|yi ', x) be the output of the TM
projection layer without softmax, i.e., what we
would normally call the logits. We investigate
two different ways to parameterize P(y;|yi ™!, x)
using STM(yt|yi_1,x) and a fixed and pre-
trained language model P (-): POSTNORM and
PRENORM.

POSTNORM This variant is directly inspired by
shallow fusion (Eq. 2) as we turn Stv (v |yt *, x)



into a probability distribution using a softmax
layer, and sum its log-probabilities with the log-
probabilities of the LM, i.e. multiply their proba-
bilities:

t—1

171, x) =softmax(Stm(ytly; ', %))

P(ytly
4
Pov(ye|yih).

PRENORM Another option is to apply normal-
ization after combining the raw Stm(y:|yi ™!, x)
scores with the LM log-probability:

P(yely;™" %) =softmax (Srw(yelyi™",x)
&)

+log PLM(ytIyTl))-

3.1 Theoretical Discussion of POSTNORM
and PRENORM

Note that P(y;|y'™',x) might not represent a
valid probability distribution under the POST-
NORM criterion since, as component-wise prod-
uct of two distributions, it is not guaranteed to
sum to 1. A way to fix this issue would be to
combine TM and LM probabilities in the proba-
bility space rather than in the log space. However,
we have found that probability space combination
does not work as well as POSTNORM in our exper-
iments. We can describe Stm(y:|yi™ ', x) under
POSTNORM informally as the residual probability
added to the prediction of the LM.

It is interesting to investigate what signal is
actually propagated into Stm(y:|yi™',x) when
training with the PRENORM strategy. We can

rewrite P(y;|yi ™!, x) as:

Py, i x)
P(yi %)

_ Ply x|yt ")

P(yelyi™ %) =

1
P(xlyi™)

:P(X’yt’yi_l)P(yt\yifl).
P(x[y)

(6)

t—1
1

Alternatively, we can decompose P(y; |y ™', x) as
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Language pair # Sentences
Turkish-English (WMT) 207.7K
Estonian-English (WMT) 2,178.0K
Xhosa-English (INTERNAL) 739.2K

Table 1: Parallel training data.

Language # Sentences | LM Perplexity
dev test
English (WMT) 26.9M 91.16 87.77
Turkish (WMT) 3.0M | 59.19 | 70.46
English (INTERNAL) 20.0M | 105.28 | 108.19

Table 2: Monolingual training data.

follows using Eq. 5:

Py |yi_1, x) =softmax <STM(yt |y§_1, X)
+ log PLM(yt!y'i_l))

X exp (STM(yt|y§71» x)

(7)
+ log PLM(yt!yf_l))
= exp(Stm(yely; ', %))
- Pov(yelyt ™).
Combining Eq. 6 and Eq. 7 leads to:
- P(x]y})
exp(Stv(yelyy ' x)) o< = (8)
! P(xlyi)
This means that STM(yt]yﬁ_l, x)  under

PRENORM is trained to predict how much
more likely the source sentence becomes when a
particular target token y; is revealed.

4 Experimental Setup

We evaluate our method on a variety of pub-
licly available and proprietary data sets. For
our Turkish-English (tr-en), English-Turkish (en-
tr), and Estonian-English (et-en) experiments we
use all available parallel data from the WMT18
evaluation campaign to train the translation mod-
els. Our language models are trained on News
Crawl 2017. We use news-test2017 as develop-
ment (“dev”) set and news-test2018 as test set.

Additionally, we collected our own proprietary
corpus of public posts on Facebook. We refer to
it as ‘INTERNAL’ data set. This corpus consists
of monolingual English in-domain sentences and
parallel data in Xhosa-English. Training set sizes
are summarized in Tables 1 and 2.

Our preprocessing consists of lower-casing, to-
kenization, and subword-segmentation using joint



Architecture Hyperparameters

Source vocab size (BPE) 16,000
Target vocab size (BPE) 16,000
Embedding size (all) 256
Encoder LSTM units 512
Encoder layers 2
Decoder LSTM units 512
Decoder layers 2

Attention type dot product
Training Settings

Optimization Vanilla SGD
Learning rate 0.5
Batch size 32
Label smoothing € 0.1
Checkpoint averaging Last 10

Table 3: Summary of NMT settings for all models.

byte pair encoding (Sennrich et al., 2016b) with
16K merge operations. On Turkish, we addition-
ally remove diacritics from the text.

On WMT we wuse lower-cased Sacre-
BLEU! (Post, 2018) to be comparable with
the literature.> On our internal data we report
tokenized BLEU scores.

Our Seq2Seq models are encoder-decoder ar-
chitectures (Sutskever et al., 2014; Bahdanau
et al.,, 2014) with dot-product attention (Luong
et al., 2015b) trained with our PyTorch Trans-
late library.> Both decoder and encoder consist
of two 512-dimensional LSTM layers and 256-
dimensional embeddings. The first encoder layer
is bidirectional, the second one runs from right to
left. Our training and architecture hyperparame-
ters are summarized in Tab. 3. Our LSTM-based
LMs have the same size and architecture as the de-
coder networks, but do not use attention and do not
condition on the source sentence. We run beam
search with beam size of 6 in all our experiments.

For each setup we train five models using SGD
(batch size of 32 sentences) with learning rate
decay and label smoothing, and either select the
best one (single system) or ensemble the four best
models based on dev set BLEU score.

5 Results

Tab. 4 compares our methods PRENORM and
POSTNORM on the tested language pairs. Shal-
low fusion (Sec. 2.1) often leads to minor im-
provements over the baseline for both single sys-
tems and ensembles. We also reimplemented the
!'SacreBLEU signature for tr-en test-2017:
BLEU+c.lc+Ltr-en+#.1+s.exp+t.wmtl7+tok.13a+v.1.2.10
?For translation into Turkish we evaluate after diacritics

removal.
Shttps://github.com/pytorch/translate
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English-Turkish (WMT)

Method Single 4-Ensemble
dev | test | dev test
Baseline (no LM) 12.23 | 11.56 | 14.17 | 13.35
Shallow fusion 1245 | 11.61 | 14.43 | 13.51
Cold fusion 12.39 | 11.54 | 14.20 | 13.23
This work: PRENORM | 12.82 | 11.93 | 14.78 | 13.41
This work: POSTNORM | 13.30 | 12.27 | 14.77 | 13.61
Turkish-English (WMT)
Method Single 4-Ensemble
dev | test | dev test
Baseline (no LM) 16.14 | 16.60 | 18.01 | 18.67
Shallow fusion 16.11 | 16.70 | 18.01 | 18.67
Cold fusion 16.25| 16.21 | 17.99 | 18.40
This work: PRENORM | 15.88 | 16.39 | 17.95 | 18.40
This work: POSTNORM| 16.59 | 17.03 | 18.38 | 19.17
Estonian-English (WMT)
Method Single 4-Ensemble
dev | test | dev test
Baseline (no LM) 16.02 | 16.57 | 16.83 | 17.91
Shallow fusion 16.02 | 16.57 | 16.83 | 17.91
Cold fusion 15.40 | 15.99 | 16.48 | 17.79
This work: PRENORM | 16.80 | 17.44 | 17.78 | 19.01
This work: POSTNORM| 16.43 | 17.10 | 17.62 | 18.63
Xhosa-English (INTERNAL)
Method Single 4-Ensemble
dev | test | dev test
Baseline (no LM) 10.39 | 11.49 | 13.87 | 15.43
Shallow fusion 10.69 | 11.65 | 14.06 | 15.54
Cold fusion 10.72 | 11.29 | 13.66 | 15.13
This work: PRENORM | 11.06 | 12.13 | 14.50 | 16.07
This work: POSTNORM | 12.34 | 13.27 | 1545 | 17.79

Table 4: Comparison of our PRENORM and POST-
NORM combination strategies with shallow fu-
sion (Gulcehre et al., 2015) and cold fusion (Sriram
et al., 2017) under an RNN-LM.

cold fusion technique (Sec. 2.2) for comparison.
For our machine translation experiments we re-
port mixed results with cold fusion, with per-
formance ranging between 0.33 BLEU gain on
Xhosa-English and slight BLEU degradation in
most of our Turkish-English experiments.

Both of our methods, PRENORM and POST-
NORM yield significant improvements in BLEU
across the board. We report more consistent gains
with POSTNORM than with PRENORM. All our
POSTNORM systems outperform both shallow fu-
sion and cold fusion on all language pairs, yielding
test set gains of up to +2.36 BLEU (Xhosa-English
ensembles).

6 Discussion and Analysis

Backtranslation A very popular technique to
use monolingual data for NMT is backtransla-
tion (Sennrich et al.,, 2016a). Backtranslation
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Figure 1: Performance using backtranslation on

English-Turkish. Synthetic sentences are mixed at a
ratio of 1:n where n is plotted on the x-axis.
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Figure 2: Convergence of NMT training with and with-
out LM on English-Turkish.

uses a reverse NMT system to translate mono-
lingual target language sentences into the source
language, and adds the newly generated sentence
pairs to the training data. The amount of monolin-
gual data which can be used for backtranslation is
usually limited by the size of the parallel corpus
as the translation quality suffers when the mix-
ing ratio between synthetic and real source sen-
tences is too large (Poncelas et al., 2018). This
is a severe limitation particularly for low-resource
MT. Fig. 1 shows that both our baseline system
without LM and our POSTNORM system benefit
greatly from backtranslation up to a mixing ratio
of 1:8, but degrade slightly if this ratio is exceeded.
POSTNORM is significantly better than the base-
line even when using it in combination with back-
translation.

Training convergence We have found that
training converges faster under the POSTNORM
loss. Fig. 2 plots the training curves of our sys-
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English-Turkish (WMT, single system)

Method Dev set Test set
FFN [ RNN | FFN [ RNN
Baseline (no LM) 12.23 11.56
Shallow fusion 12.25]12.45| 11.53 | 11.61
Cold fusion 12.33112.39 | 11.51 | 11.54
This work: PRENORM | 12.76 | 12.82 | 11.82 | 11.93
This work: POSTNORM| 12.65 | 13.30 | 11.79 | 12.27

Table 5: Comparison between using a recurrent LM
(RNN) and an n-gram based feedforward LM (FFN)
on English-Turkish.

English-Turkish (WMT), POSTNORM strategy

LM type Single 4-Ensemble
FFN | RNN dev test dev test
1223 | 11.56 | 14.17 | 13.35
v 12.65 | 11.79 | 1436 | 13.48
v 13.30 | 12.27 | 14.77 | 13.61
v v 12.86 | 12.02 | 14.72 | 13.70

Table 6: Combining an RNN-LM and a feedforward
LM with the translation model using the POSTNORM
strategy.

tems. The baseline (orange curve) reaches its max-
imum of 19.39 BLEU after 28 training epochs.
POSTNORM surpasses this BLEU score already
after 12 epochs.

Language model type So far we have used re-
current neural network language models (Mikolov
et al., 2010, RNN-LM) with LSTM cells in all
our experiments. We can also parameterize an
n-gram language model with a feedforward neu-
ral network (Bengio et al., 2003, FFN-LM). In
order to compare both language model types we
trained a 4-gram feedforward LM with two 512-
dimensional hidden layers and 256-dimensional
embeddings on Turkish monolingual data. Tab. 5
shows that the PRENORM strategy works particu-
larly well for the n-gram LM. However, using an
RNN-LM with the POSTNORM strategy still gives
the best overall performance. Using both RNN
and n-gram LM at the same time does not improve
translation quality any further (Tab. 6).

Impact on the TM distribution With the POST-
NORM strategy, the TM still produces a distribu-
tion over the target vocabulary as the scores are

Method Perplexity | Average entropy
Baseline (no LM) 23.46 3.19
RNN-LM 59.19 4.66
TM under POSTNORM 113.69 1.82

Table 7: Perplexity and average entropies of the dis-
tributions generated by our systems on the English-
Turkish dev set.



Method BLEU Precisions BP
1-gram | 2-gram | 3-gram 4-gram

Baseline (no LM) 17.91 53.0 237 12.3 6.6 || 0.996

This work: PRENORM 19.01 54.0 249 13.4 7.4 | 1.000

Relative improvement +6.14% || +1.89% | +5.06% | +8.94% | +12.12% -

Table 8: BLEU n-gram precisions for Estonian-English.

Source Eestis ja Hispaanias peeti kinni neli Kemerovo grupeeringu liiget
Reference Four members of the Kemerovo group arrested in Estonia and Spain
Baseline (no LM) In Estonia and Spain, four kemerovo groups were held

This work (PRENORM) | Four Kemerovo group members were held in Estonia and Spain
Source Ta tleb, et elab aastaid hiljem endiselt hirmus.

Reference He says that years later, he still lives in fear.

Baseline (no LM) He says that, for years, he still lives in fear.

This work (PRENORM) | He says that many years later he still lives in fear.

Source “Ma kardan,” tleb ta.

Reference “I’'m afraid,” he says.

Baseline (no LM) “I fear,” says he.

This work (PRENORM) | “I am afraid,” he says.

Table 9: Translation samples from the Estonian-English test set.

normalized before the combination with the LM.
This raises a natural question: How different are
the distributions generated by a TM trained un-
der POSTNORM loss from the distributions of the
baseline system without LM? Tab. 7 gives some
insight to that question. As expected, the RNN-
LM has higher perplexity than the baseline as it is
a weaker model of translation. The RNN-LM also
has a higher average entropy which indicates that
the LM distributions are smoother than those from
the baseline translation model. The TM trained
under POSTNORM loss has a much higher per-
plexity which suggests that it strongly relies on the
LM predictions and performs poorly when it is not
combined with it. However, the average entropy is
much lower (1.82) than both other models, i.e. it
produces much sharper distributions.

Language models improve fluency A tradi-
tional interpretation of the role of an LM in MT
is that it is (also) responsible for the fluency of
translations (Koehn, 2009). Thus, we would ex-
pect more fluent translations from our method than
from a system without LM. Tab. 8 breaks down
the BLEU score of the baseline and the PRENORM
ensembles on Estonian-English into n-gram preci-
sions. Most of the BLEU gains can be attributed to
the increase in precision of higher order n-grams,
indicating improvements in fluency. Tab. 9 shows
some examples where our PRENORM system pro-
duces a more fluent translation than the baseline.

Training set size We artificially reduced the size
of the English-Turkish training set even further
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Figure 3: English-Turkish BLEU over training set size.

to investigate how well our method performs in
low-resource settings (Fig. 3). Our POSTNORM
strategy outperforms the baseline regardless of the
number of training sentences, but the gains are
smaller on very small training sets.

7 Conclusion

We have presented a simple yet very effective
method to use language models in NMT which in-
corporates the LM already into NMT training. We
reported significant and consistent gains from us-
ing our method in four language directions over
two alternative ways to integrate LMs into NMT
(shallow fusion and cold fusion) and showed that
our approach works well even in combination with
backtranslation and on top of ensembles. Our
method leads to faster training convergence and
more fluent translations than a baseline system
without LM.
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Abstract

We study two problems in neural machine
translation (NMT). First, in beam search,
whereas a wider beam should in principle help
translation, it often hurts NMT. Second, NMT
has a tendency to produce translations that are
too short. Here, we argue that these prob-
lems are closely related and both rooted in la-
bel bias. We show that correcting the brevity
problem almost eliminates the beam problem;
we compare some commonly-used methods
for doing this, finding that a simple per-word
reward works well; and we introduce a simple
and quick way to tune this reward using the
perceptron algorithm.

1 Introduction

Although highly successful, neural machine trans-
lation (NMT) systems continue to be plagued by a
number of problems. We focus on two here: the
beam problem and the brevity problem.

First, machine translation systems rely on
heuristics to search through the intractably large
space of possible translations. Most commonly,
beam search is used during the decoding process.
Traditional statistical machine translation systems
often rely on large beams to find good translations.
However, in neural machine translation, increas-
ing the beam size has been shown to degrade per-
formance. This is the last of the six challenges
identified by Koehn and Knowles (2017).

The second problem, noted by several authors,
is that NMT tends to generate translations that
are too short. Jean et al. (2015) and Koehn
and Knowles address this by dividing translation
scores by their length, inspired by work on au-
dio chords (Boulanger-Lewandowski et al., 2013).
A similar method is also used by Google’s pro-
duction system (Wu et al., 2016). A third sim-
ple method used by various authors (Och and Ney,
2002; He et al., 2016; Neubig, 2016) is a tunable
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reward added for each output word. Huang et al.
(2017) and Yang et al. (2018) propose variations
of this reward that enable better guarantees during
search.

In this paper, we argue that these two problems
are related (as hinted at by Koehn and Knowles)
and that both stem from label bias, an undesirable
property of models that generate sentences word
by word instead of all at once.

The typical solution is to introduce a sentence-
level correction to the model. We show that mak-
ing such a correction almost completely eliminates
the beam problem. We compare two commonly-
used corrections, length normalization and a word
reward, and show that the word reward is slightly
better.

Finally, instead of tuning the word reward using
grid search, we introduce a way to learn it using a
perceptron-like tuning method. We show that the
optimal value is sensitive both to task and beam
size, implying that it is important to tune for every
model trained. Fortunately, tuning is a quick post-
training step.

2 Problem

Current neural machine translation models are ex-
amples of locally normalized models, which es-
timate the probability of generating an output se-
quence ¢ = €], as

Pler) = | | Pleil evion).
i=1

For any partial output sequence e1.;, let us call
P(¢’ | e1.;), where ¢’ ranges over all possible com-
pletions of ey.;, the suffix distribution of e;.;. The
suffix distribution must sum to one, so if the model
overestimates P(ey.;), there is no way for the suf-
fix distribution to downgrade it. This is known as
label bias (Bottou, 1991; Lafferty et al., 2001).
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Figure 1: Label bias causes this toy word-by-word
translation model to translate French un hélicoptere in-
correctly to an autogyro.

2.1 Label bias in sequence labeling

Label bias was originally identified in the con-
text of HMMs and MEMMs for sequence-labeling
tasks, where the input sequence f and output se-
quence e have the same length, and P(ey.;) is con-
ditioned only on the partial input sequence f.;. In
this case, since P(e;.;) has no knowledge of future
inputs, it’s much more likely to be incorrectly es-
timated. For example, suppose we had to trans-
late, word-by-word, un hélicoptére to a helicopter
(Figure 1). Given just the partial input un, there is
no way to know whether to translate it as a or an.
Therefore, the probability for the incorrect transla-
tion P(an) will turn out to be an overestimate. As a
result, the model will overweight translations be-
ginning with an, regardless of the next input word.
This effect is most noticeable when the suffix
distribution has low entropy, because even when
new input (hélicoptére) is revealed, the model
will tend to ignore it. For example, suppose that
the available translations for hélicoptére are heli-
copter, chopper, whirlybird, and autogyro. The
partial translation a must divide its probability
mass among the three translations that start with a
consonant, while an gives all its probability mass
to autogyro, causing the incorrect translation an
autogyro to end up with the highest probability.
In this example, P(an), even though overesti-
mated, is still lower than P(a), and wins only be-
cause its suffixes have higher probability. Greedy
search would prune the incorrect prefix an and
yield the correct output. In general, then, we might
expect greedy or beam search to alleviate some
symptoms of label bias. Namely, a prefix with
a low-entropy suffix distribution can be pruned if
its probability is, even though overestimated, not
among the highest probabilities. Such an observa-
tion was made by Zhang and Nivre (2012) in the
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context of dependency parsing, and we will see
next that precisely such a situation affects output
length in NMT.

2.2 Length bias in NMT

In NMT, unlike the word-by-word translation ex-
ample in the previous section, each output symbol
is conditioned on the entire input sequence. Nev-
ertheless, it’s still possible to overestimate or un-
derestimate p(ey.;), so the possibility of label bias
still exists. We expect that it will be more visi-
ble with weaker models, that is, with less training
data.

Moreover, in NMT, the output sequence is of
variable length, and generation of the output se-
quence stops when </s> is generated. In effect,
for any prefix ending with </s>, the suffix dis-
tribution has zero entropy. This situation paral-
lels example of the previous section closely: if the
model overestimates the probability of outputting
</s>, it may proceed to ignore the rest of the input
and generate a truncated translation.

Figure 2 illustrates how this can happen. Al-
though the model can learn not to prefer shorter
translations by predicting a low probability for
</s> early on, at each time step, the score of </s>
puts a limit on the total remaining score a transla-
tion can have; in the figure, the empty translation
has score —10.1, so that no translation can have
score lower than —10.1. This lays a heavy burden
on the model to correctly guess the total score of
the whole translation at the outset.

As in our label-bias example, greedy search
would prune the incorrect empty translation. More
generally, consider beam search: at time step f,
only the top k partial or complete translations are
retained while the rest are pruned. (Implementa-
tions of beam search vary in the details, but this
variant is simplest for the sake of argument.) Even
if a translation ending at time ¢ scores higher than a
longer translation, as long as it does not fall within
the top k when compared with partial translations
of length ¢ (or complete translations of length at
most ¢), it will be pruned and unable to block
the longer translation. But if we widen the beam
(k), then translation accuracy will suffer. We call
this problem (which is Koehn and Knowles’s sixth
challenge) the beam problem. Our claim, hinted at
by Koehn and Knowles (2017), is that the brevity
problem and the beam problem are essentially the
same, and that solving one will solve the other.
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Figure 2: A locally normalized model must determine,
at each time step, a “budget” for the total remaining
log-probability. In this example sentence, “The British
women won Olymp ic gold in p airs row ing,” the empty
translation has initial position 622 in the beam. Already
by the third step of decoding, the correct translation
has a lower score than the empty translation. However,
using greedy search, a nonempty translation would be
returned.

3 Correcting Length

To address the brevity problem, many designers of
NMT systems add corrections to the model. These
corrections are often presented as modifications to
the search procedure. But, in our view, the brevity
problem is essentially a modeling problem, and
these corrections should be seen as modifications
to the model (Section 3.1). Furthermore, since
the root of the problem is local normalization, our
view is that these modifications should be trained
as globally-normalized models (Section 3.2).

3.1 Models

Without any length correction, the standard model
score (higher is better) is:

s(e) = Z log P(e; | e1:)).

i=1

To our knowledge, there are three methods in
common use for adjusting the model to favor
longer sentences.

Length normalization divides the score by m
(Koehn and Knowles, 2017; Jean et al., 2015;
Boulanger-Lewandowski et al., 2013):

s'(e) = s(e) | m.
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Google’s NMT system (Wu et al., 2016) relies
on a more complicated correction:
, S +m)*
N (6) = S(é‘)/ m
Finally, some systems add a constant word re-
ward (He et al., 2016):

s'(e) = s(e) + ym.

If y = 0, this reduces to the baseline model. The
advantage of this simple reward is that it can be
computed on partial translations, making it easier
to integrate into beam search.

3.2 Training

All of the above modifications can be viewed as
modifications to the base model so that it is no
longer a locally-normalized probability model.

To train this model, in principle, we should use
something like the globally-normalized negative
log-likelihood:

exp s’ (e*)

L=l 5@

where e is the reference translation. However, op-
timizing this is expensive, as it requires perform-
ing inference on every training example or heuris-
tic approximations (Andor et al., 2016; Shen et al.,
2016).

Alternatively, we can adopt a two-tiered model,
familiar from phrase-based translation (Och and
Ney, 2002), first training s and then training s’
while keeping the parameters of s fixed, possibly
on a smaller dataset. A variety of methods, like
minimum error rate training (Och, 2003; He et al.,
2016), are possible, but keeping with the globally-
normalized negative log-likelihood, we obtain, for
the constant word reward, the gradient:

Z—L = —le*| + E[lel].
Y
If we approximate the expectation using the mode
of the distribution, we get

oL

—— ~ —le’| + e

dy
where é is the 1-best translation. Then the stochas-
tic gradient descent update is just the familiar per-

ceptron rule:

y — vy +n(e|-1e,



although below, we update on a batch of sentences
rather than a single sentence. Since there is only
one parameter to train, we can train it on a rela-
tively small dataset.

Length normalization does not have any addi-
tional parameters, with the result (in our opin-
ion, strange) that a change is made to the model
without any corresponding change to training. We
could use gradient-based methods to tune the « in
the GNMT correction, but the perceptron approx-
imation turns out to drive @ to oo, so a different
method would be needed.

4 Experiments

We compare the above methods in four set-
tings, a high-resource German—English system,
a medium-resource Russian—-English system, and
two low-resource French—English and English—
French systems. For all settings, we show that
larger beams lead to large BLEU and METEOR
drops if not corrected. We also show that the opti-
mal parameters can depend on the task, language
pair, training data size, as well as the beam size.
These values can affect performance strongly.

4.1 Data and settings

Most of the experimental settings below follow
the recommendations of Denkowski and Neubig
(2017). Our high-resource, German—English data
is from the 2016 WMT shared task (Bojar et al.,
2016). We use a bidirectional encoder-decoder
model with attention (Bahdanau et al., 2015).!
Our word representation layer has 512 hidden
units, while other hidden layers have 1024 nodes.
Our model is trained using Adam with a learning
rate of 0.0002. We use 32k byte-pair encoding
(BPE) operations learned on the combined source
and target training data (Sennrich et al., 2016).
We train on minibatches of size 2012 words and
validate every 100k sentences, selecting the final
model based on development perplexity.

Our medium-resource, Russian—English system
uses data from the 2017 WMT translation task,
which consists of roughly 1 million training sen-
tences (Bojar et al., 2017). We use the same archi-
tecture as our German—English system, but only
have 512 nodes in all layers. We use 16k BPE
operations and dropout of 0.2. We train on mini-

"We use Lamtram (Neubig, 2015) for all experiments and
our modifications have been added to the project.
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batches of 512 words and validate every 50k sen-
tences.

Our low-resource systems use French and En-
glish data from the 2010 IWSLT TALK shared
task (Paul et al., 2010). We build both French—
English and English-French systems. These net-
works are the same as for the medium Russian-
English task, but use only 6k BPE operations. We
train on minibatches of 512 words and validate ev-
ery 30k sentences, restarting Adam when the de-
velopment perplexity goes up.

To tune our correction parameters, we use 1000
sentences from the German—English development
dataset, 1000 sentences from the Russian—English
development dataset, and the entire development
dataset for French—English (892 sentences)’. We
initialize the parameter, y = 0.2. We use batch
gradient descent, which we found to be much more
stable than stochastic gradient descent, and use a
learning rate of n = 0.2, clipping gradients for y
to 0.5. Training stops if all parameters have an
update of less than 0.03 or a max of 25 epochs
was reached.

4.2 Solving the length problem solves the
beam problem

Here, we first show that the beam problem is in-
deed the brevity problem. We then demonstrate
that solving the length problem does solve the
beam problem. Tables 1, 2, and 3 show the re-
sults of our German—-English, Russian—English,
and French-English systems respectively. Each
table looks at the impact on BLEU, METEOR,
and the ratio of the lengths of generated sentences
compared to the gold lengths (Papineni et al.,
2002; Denkowski and Lavie, 2014). The baseline
method is a standard model without any length
correction. The reward method is the tuned con-
stant word reward discussed in the previous sec-
tion. Norm refers to the normalization method,
where a hypothesis’ score is divided by its length.

4.2.1 Baseline

The top sections of Tables 1, 2, 3 illustrate the
brevity and beam problems in the baseline mod-
els. As beam size increases, the BLEU and ME-
TEOR scores drop significantly. This is due to
the brevity problem, which is illustrated by the
length ratio numbers that also drop with increased
mmugh preliminary experiments that this size

of dev subset was an adequate trade-off between tuning speed
and performance.



Russian—-English (medium) Beam Size
10 50 75 100 150 1000
baseline BLEU 249 238 236 233 225 3.7
METEOR 309 300 29.7 294 288 128
length 090 08 085 0.84 081 031
reward BLEU 265 266 26,5 265 265 257
METEOR 320 320 319 319 319 312
length 098 098 098 098 098 1.02
b% 0.716 0.643 0.640 0.633 0.617 0.562
norm BLEU 262 263 263 263 263 253
METEOR 31.8 31.8 31.8 31.7 31.7 312
length 096 096 096 096 097 1.02

Table 1: Results of the Russian—English translation system. We report BLEU and METEOR scores, as well as the
ratio of the length of generated sentences compared to the correct translations (length). y is the word reward score
discovered during training. Here, we examine a much larger beam (1000). The beam problem is more pronounced
at this scale, with the baseline system losing over 20 BLEU points when increasing the beam from size 10 to 1000.
However, both our tuned length reward score and length normalization recover most of this loss.

German—English (large) Beam Size
10 50 75
baseline BLEU 29.6 28.6 28.2
METEOR 340 33.1 328
length 095 090 0.89
reward  BLEU 303 30.6 30.6
METEOR 349 348 349
length 1.02 1.00 1.00
vy 0.67 0.57 0.58
norm BLEU 30.7 31.0 309
METEOR 349 350 350
length 1.00 1.00 1.00

Table 2: Results of the high-resource German—English system. Rows: BLEU, METEOR, length = ratio of output
to reference length; y = learned parameter value. While baseline performance decreases with beam size due to the
brevity problem, other methods perform more consistently across beam sizes. Length normalization (norm) gets
the best BLEU scores, but similar METEOR scores to the word reward.
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French—English (small) Beam Size
10 50 100 150 200
baseline BLEU 300 289 254 219 194
METEOR 324 313 28,6 259 241
length 094 089 080 071 0.64
reward BLEU 294 297 297 298 298
METEOR 328 329 329 329 329
length 1.03 1.03 1.03 1.03 1.03
vy 120 1.05 1.01 099 097
norm BLEU 30.7 30.8 30.7 30.7 307
METEOR 32.8 328 328 327 327
length 097 097 097 096 0.96
English—French (small) Beam Size
10 50 100 150 200
baseline BLEU 258 26.1 26.1 255 243
METEOR 478 475 472 463 442
length 1.03 1.01 1.00 097 092
reward BLEU 255 255 255 255 255
METEOR 483 48,5 485 485 484
length 1.05 1.05 1.05 1.05 1.05
0% 0.353 0.444 0465 0474 0475
norm BLEU 254 255 255 255 255
METEOR 484 484 484 484 484
length 1.06 1.05 1.05 105 1.05

Table 3: Results of low-resource French—-English and English—-French systems. Rows: BLEU, METEOR, length =
ratio of output to reference length; y = learned parameter value. While baseline performance decreases with beam
size due to the brevity problem, other methods perform more consistently across beam sizes. Word reward gets the
best scores in both directions on METEOR. Length normalization (norm) gets the best BLEU scores in Fra-Eng
due to the slight bias of BLEU towards shorter translations.

beam | 10 50 75 100 150 200

French—English (small) 69 272 524 71.1 1059 176.6
English-French (small) | 12.6 442 673 88.1 107.5 111.2
German-English (large) | 6.8 132.6 1066

Table 4: Tuning time on top of baseline training time. Times are in minutes on 1000 dev examples (German—
English) or 892 dev examples (French—English). Due to the much larger model size, we only looked at beam sizes
up to 75 for German—English.
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beam size. For larger beam sizes, the length of
the generated output sentences are a fraction of
the lengths of the correct translations. For the
lower-resource French—English task, the drop is
more than 8 BLEU when increasing the beam size
from 10 to 150. The issue is even more evident
in our Russian-English system where we increase
the beam to 1000 and BLEU scores drop by more
than 20 points.

4.2.2 Word reward

The results of tuning the word reward, vy, as de-
scribed in Section 3.2, is shown in the second sec-
tion of Tables 1, 2, and 3. In contrast to our base-
line systems, our tuned word reward always fixes
the brevity problem (length ratios are approxi-
mately 1.0), and generally fixes the beam problem.
An optimized word reward score always leads to
improvements in METEOR scores over any of the
best baselines. Across all language pairs, reward
and norm have close METEOR scores, though the
reward method wins out slightly. BLEU scores for
reward and norm also increase over the baseline in
most cases, despite BLEU’s inherent bias towards
shorter sentences. Most notably, whereas the base-
line Russian—English system lost more than 20
BLEU points when the beam was increased to
1000, our tuned reward score resulted in a BLEU
gain over any baseline beam size. Whereas in our
baseline systems, the length ratio decreases with
larger beam sizes, our tuned word reward results
in length ratios of nearly 1.0 across all language
pairs, mitigating many of the issues of the brevity
problem.

4.2.3 Wider beam

We note that the beam problem in NMT exists
for relatively small beam sizes — especially when
compared to traditional beam sizes in SMT sys-
tems. On our medium-resource Russian—English
system, we investigate the full impact of this prob-
lem using a much larger beam size of 1000. In Ta-
ble 1, we can see that the beam problem is particu-
larly pronounced. The first row of the table shows
the uncorrected, baseline score. From a beam of
10 to a beam of 1000, the drop in BLEU scores is
over 20 points. This is largely due to the brevity
problem discussed earlier. The second row of the
table shows the length of the translated outputs
compared to the lengths of the correct translations.
Though the problem persists even at a beam size
of 10, at a beam size of 1000, our baseline system
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generates less than one third the number of words
that are in the correct translations. Furthermore,
37.3% of our translated outputs have sentences of
length 0. In other words, the most likely transla-
tion is to immediately generate the stop symbol.
This is the problem visualized in Figure 2.

However, when we tune our word reward score
with a beam of 1000, the problem mostly goes
away. Over the uncorrected baseline, we see a
22.0 BLEU point difference for a beam of 1000.
Over the uncorrected baseline with a beam of 10,
the corrected beam of 1000 gets a BLEU gain of
0.8 BLEU. However, the beam of 1000 still sees
a drop of less than 1.0 BLEU over the best cor-
rected version. The word reward method beats the
uncorrected baseline and the length normalization
correction in almost all cases.

4.2.4 Short sentences

Another way to demonstrate that the beam prob-
lem is the same as the brevity problem is to look
at the translations generated by baseline systems
on shorter sentences. Figure 3 shows the BLEU
scores of the Russian—-English system for beams of
size 10 and 1000 on sentences of varying lengths,
with and without correcting lengths. The x-axes of
the figure are cumulative: length 20 includes sen-
tences of length 0-20, while length 10 includes 0—
10. It is worth noting that BLEU is a word-level
metric, but the systems were built using BPE; so
the sequences actually generated are longer than
the x-axes would suggest.

The baseline system on sentences with 10 words
or less still has relatively high BLEU scores—even
for a beam of 1000. Though there is a slight drop
in BLEU (less than 2), it is not nearly as severe as
when looking at the entire test set (more than 20).
When correcting for length with normalization or
word reward, the problem nearly disappears when
considering the entire test set, with reward do-
ing slightly better. For comparison, the rightmost
points in each of the subplots correspond to the
BLEU scores in columns 10 and 1000 of Table 1.
This suggests that the beam problem is strongly
related to the brevity problem.

4.2.5 Length ratio

The interaction between the length problem and
the beam problem can be visualized in the his-
tograms of Figure 4 on the Russian—English sys-
tem. In the upper left plot, the uncorrected model
with beam 10 has the majority of the generated



Figure 3: Impact of beam size on BLEU score when varying reference sentence lengths (in words) for Russian—
English. The x-axis is cumulative moving right; length 20 includes sentences of length 0-20, while length 10
includes 0-10. As reference length increases, the BLEU scores of a baseline system with beam size of 10 remain
nearly constant. However, a baseline system with beam 1000 has a high BLEU score for shorter sentences, but a
very low score when the entire test set is used. Our tuned reward and normalized models do not suffer from this
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sentences with a length ratio close to 1.0, the gold
lengths. Going down the column, as the beam size
increases, the distribution of length ratios skews
closer to 0. By a beam size of 1000, 37% of the
sentences have a length of 0. However, both the
word reward and the normalized models remain
very peaked around a length ratio of 1.0 even as
the beam size increases.

4.3 Tuning word reward

Above, we have shown that fixing the length prob-
lem with a word reward score fixes the beam prob-
lem. However these results are contingent upon
choosing an adequate word reward score, which
we have done in our experiments by optimization
using a perceptron loss. Here, we show the sen-
sitivity of systems to the value of this penalty, as
well as the fact that there is not one correct penalty
for all tasks. It is dependent on a myriad of factors
including, beam size, dataset, and language pair.

4.3.1 Sensitivity to y

In order to investigate how sensitive a system is
to the reward score, we varied values of y from 0
to 1.2 on both our German—English and Russian—
English systems with a beam size of 50. BLEU
scores and length ratios on 1000 heldout devel-
opment sentences are shown in Figure 5. The
length ratio is correlated with the word reward
as expected, and the BLEU score varies by more
than 5 points for German—English and over 4.5
points for Russian—English. On German—-English,
our method found a value of vy = 0.57, which is
slightly higher than optimal; this is because the
heldout sentences have a slightly shorter length
ratio than the training sentences. Conversely, on
Russian—English, our found value of y = 0.64 is
slightly lower than optimal as these heldout sen-
tences have a slightly higher length ratio than the
sentences used in training.

4.3.2 Optimized y values

Tuning the reward penalty using the method de-
scribed in Section 3.2 resulted in consistent im-
provements in METEOR scores and length ratios
across all of our systems and language pairs. Ta-
bles 1, 2, and 3 show the optimized value of y for
each beam size. Within a language pair, the op-
timal value of vy is different for every beam size.
Likewise, for a given beam size, the optimal value
is different for every system. Our French-English
and English—French systems in Table 3 have the
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Figure 5: Effect of word penalty on BLEU and hy-
pothesis length for Russian—English (top) and German-
English (bottom) on 1000 unseen dev examples with
beams of 50. Note that the vertical bars represent the
word reward that was found during tuning.

exact same architecture, data, and training criteria.
Yet, even for the same beam size, the tuned word
reward scores are very different.

Training dataset size Low-resource neural ma-
chine translation performs significantly worse than
high-resource machine translation (Koehn and
Knowles, 2017). Table 5 looks at the impact of
training data size on BLEU scores and the beam
problem by using 10% and 50% of the available
Russian-English data. Once again, the optimal
value of vy is different across all systems and beam
sizes. Interestingly, as the amount of training data
decreases, the gains in BLEU using a tuned reward
penalty increase with larger beam sizes. This sug-
gests that the beam problem is more prevalent in
lower-resource settings, likely due to the fact that
less training data can increase the effects of label
bias.
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Russian—English (medium) Beam Size
Dataset Size 10 50 75 100 150
baseline | 249 238 236 233 225
100% reward | 265 266 265 265 265
v | 0716 0.643 0.640 0.633 0.617
baseline | 22.8 214 208 204 19.2
50% reward | 24.7 250 249 249 250
v 0.697 0.645 0.638 0.636 0.646
baseline 17.0 16.2 15.8 15.6 15.1
10% reward 17.6 18.0 18.0 18.0 18.1
v 10892 0.835 0.773 0.750 0.800

Table 5: Varying the size of the Russian—English training dataset results in different optimal word reward scores
(). In all settings, the tuned score alleviates the beam problem. As the datasets get smaller, using a tuned larger
beam improves the BLEU score over a smaller tuned beam. This suggests that lower-resource systems are more

susceptible to the beam problem.

4.3.3 Tuning time

Fortunately, the tuning process is very inexpen-
sive. Although it requires decoding on a develop-
ment dataset multiple times, we only need a small
dataset. The time required for tuning our French—
English and German—English systems is shown in
Table 4. These experiments were run on an Nvidia
GeForce GTX 1080Ti. The tuning usually takes
a few minutes to hours, which is just a fraction of
the overall training time. We note that there are nu-
merous optimizations that could be taken to speed
this up even more, such as storing the decoding
lattice for partial reuse. However, we leave this
for future work.

4.4 Word reward vs. length normalization

Tuning the word reward score generally had
higher METEOR scores than length normaliza-
tion across all of our settings. With BLEU, length
normalization beat the word reward on German-
English and French—English, but tied on English-
French and lost on Russian—English. For the
largest beam of 1000, the tuned word reward had
a higher BLEU than length normalization. Over-
all, the two methods have relatively similar per-
formance, but the tuned word reward has the more
theoretically justified, globally-normalized deriva-
tion — especially in the context of label bias’ influ-
ence on the brevity problem.

5 Conclusion

We have explored simple and effective ways to al-
leviate or eliminate the beam problem. We showed
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that the beam problem can largely be explained
by the brevity problem, which results from the
locally-normalized structure of the model. We
compared two corrections to the model and intro-
duced a method to learn the parameters of these
corrections. Because this method is helpful and
easy, we hope to see it included to make stronger
baseline NMT systems.

We have argued that the brevity problem is an
example of label bias, and that the solution is a
very limited form of globally-normalized model.
These can be seen as the simplest case of the more
general problem of label bias and the more general
solution of globally-normalized models for NMT
(Wiseman and Rush, 2016; Venkatraman et al.,
2015; Ranzato et al., 2015; Shen et al., 2016).
Some questions for future research are:

e Solving the brevity problem leads to signif-
icant BLEU gains; how much, if any, im-
provement remains to be gained by solving
label bias in general?

Our solution to the brevity problem re-
quires globally-normalized training on only
a small dataset; can more general globally-
normalized models be trained in a similarly
inexpensive way?
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Abstract

Data selection is a process used in select-
ing a subset of parallel data for the training
of machine translation (MT) systems, so that
1) resources for training might be reduced,
2) trained models could perform better than
those trained with the whole corpus, and/or 3)
trained models are more tailored to specific do-
mains. It has been shown that for statistical
MT (SMT), the use of data selection helps im-
prove the MT performance significantly. In
this study, we reviewed three data selection
approaches for MT, namely Term Frequency—
Inverse Document Frequency, Cross-Entropy
Difference and Feature Decay Algorithm, and
conducted experiments on Neural Machine
Translation (NMT) with the selected data us-
ing the three approaches. The results showed
that for NMT systems, using data selection
also improved the performance, though the
gain is not as much as for SMT systems.

1 Introduction

Data selection is a technology used to improve
Machine Translation (MT) performance by choos-
ing a subset of the corpus for the training of MT
systems (Chen et al., 2016). There are additional
benefits using subsets instead of the whole corpus
for MT training. Firstly, the training time could
be reduced significantly. In some application sce-
narios, a much shorter training time would be very
useful. Secondly, we could select data with the
aim to make trained systems perform well for spe-
cific domains. In MT, models built with in-domain
data perform better, as the vocabulary and sentence
structures used in one domain (e.g. legal) differs
from another unrelated domain (e.g. biotechnol-
0gy).

There are several studies on data selection meth-
ods for SMT, showing good improvements over the
baselines in which the whole corpora were used

andy.way}@adaptcentre.ie

for training (Chen et al., 2016). A popular data
selection method is cross-entropy difference (CED)
(Moore and Lewis, 2010). In particular its bilingual
variant (Axelrod et al., 2011) showed a positive im-
pact of data selection for MT.

Term Frequency-Inverse Document Frequency
(TF-IDF) (Salton and Yang, 1973) has also been
used as a baseline data selection method in the liter-
ature. Data selection with cleaning was proposed to
improve the robustness of training with divergent
sentences (Carpuat et al., 2017).

Feature Decay Algorithms (FDA) are data se-
lection methods that try to extract the subset of
sentences by which the coverage of target language
features is maximized (Bicici and Yuret, 2011). It
has been used to select sentences from parallel data
for SMT and NMT (Poncelas et al., 2018) in order
to obtain a subset of data that is more tailored to a
given test set.

Most of these results focused on comparing train-
ing of models from scratch for use in specific do-
mains. The aforementioned papers do not include
a focus on the impact of such techniques in fine-
tuning the resulting trained model, which could be
useful in the case where a baseline model works
as an initialization and can be reused for any do-
main and thus reduce the time required to train the
models for specific domains (van der Wees et al.,
2017).

In this paper we evaluate the impact of data se-
lection methods on Neural Machine Translation
(NMT) systems. We would like to answer the fol-
lowing questions: Do data selection approaches
improve domain NMT performance? Which of the
three commonly used methods delivers the best
results on data selection for NMT? How does the
size of the seed and the selected training sentences
affect the performance?

The paper is organised as follows. In Section 2,
we give an overview of data selection approaches.
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Experimental setup and results are presented in
Section 3 and Section 4. Conclusions and future
work are given in Section 5.

2 Data Selection Methods

In order to train an MT model for a specific domain,
it is best to use those sentences in a data set that are
the most related to that domain. We use different
data selection techniques to retrieve the sentences.
These techniques aim to extract a subset of data
from large datasets. The application of these tech-
niques can be used to limit the amount of resource
consumption, removing noise and/or adapting the
data to a particular domain.

Among different data selection techniques
(Eetemadi et al., 2015), in this work, we focus on
three particular methods: Cross Entropy Difference
(Section 2.1), TF-IDF Data Selection (Section 2.2),
and Feature Decay Algorithms (Section 2.3).

2.1 Cross Entropy Difference

The Cross Entropy Difference method was first
introduced by (Moore and Lewis, 2010) as a way to
build more accurate in-domain Language Models
for use in several tasks. The method is a variant
of scoring by perplexity, since cross-entropy and
perplexity are tightly coupled as shown in 1, where
b is the used base.

p— 2. P(@)logg(z) _ pH(p,q) (1)

Given a general language model LMg, built
with out-of-domain data, and an in-domain
language-model LM p, the method ranks sentences
s using the cross-entropy difference in both lan-
guage models, as in (2):

CED(s) = Hp(s) — Hg(s) ()

Although different ranking methods have been
introduced, this method still remains popular
among data selection approaches, having been used
in recent work such as for the selection of mono-
lingual data (Junczys-Dowmunt and Grundkiewicz,
2016), and for the selection of conversational data
(Lewis and Federmann, 2015). Some work was
also published on the use of neural language mod-
els for this purpose, such as Duh et al. (2013), but
this applied to Statistical Machine Translation.

In our experiments, we built n-gram language
models of order 5 using the KenLLM tool' (Heafield,

"https://github.com/kpu/kenlm
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2011). We then use the language model probability
scores normalized by sentence length to compute
the cross-entropy difference and rank the entire
generic corpus.

2.2 TF-IDF data selection

The TF-IDF (Salton and Yang, 1973) method is
widely known for its use in several information
retrieval applications. It is defined in (3), where
tf; 4 is the term frequency in the document, i.e. the
ratio between the number of times the term appears
in the sentence and the total number of terms, and
idf; 4 is the inverse document frequency, the ratio
between the total number of documents and the
number of documents containing the term.

tf-idf, g = tf; 4 - é\fl 3)

To compute the TF-IDF measure in our experi-
ments, we apply tokenization, remove punctuation
and common stopwords in the texts, and finally
truecase the sentences. We then consider every sen-
tence in the domain corpus as a query sentence, and
every sentence in the generic corpus as a document.
Then, we obtain for each query a ranking of the
documents, computed with cosine-similarity.

This ranking is stored for every query sentence
and used to retrieve the K-nearest neighbours
(KNN) necessary to obtain different data selection
sizes.

2.3 Feature Decay Algorithms

Feature Decay Algorithms (FDA) (Bicici and Yuret,
2011; Bigici, 2013) are methods of data selection
that try to extract, from a set of sentences, those
that better represent a seed. It has been used in
SMT to extract sentences from parallel corpora in
order to obtain a subset of data more adapted to
a given test set. These methods select sentences
based on two criteria: a) the similarity with the
seed (the more sequence of words it shares with the
seed the better); and b) the variability of the words
(the occurrences of the words shared with the seed
should be well distributed, and avoid having too
many occurrences of a few words).

These algorithms extract the n-grams from the
seed as features. Each feature is assigned an initial
value, indicating the relevance of being selected,
and the sentences are scored as the normalized
sum of values of contained features. Then, the
sentences are iteratively selected. Each time a sen-
tence is selected, the values of contained features



are decayed. Accordingly, it promotes selecting
features that have not been previously selected in
the process.

The decay function is defined in Equation (4):

dCrL(f)
1+ CL(f)°

where L is the set of selected sentences and C,( f)
is the count of the feature f in L. init(f) is an
initialization function. The variables d € (0, 1] and
¢ € [0, 00) are parameters that regulate how much
the value of the feature f should decay. These
values are by default (Bigici and Yuret, 2011) 0.5
and 0.0 for d and c¢, respectively (so, by using de-
fault values the decay function in Equation (4) is
decay(f) = init(f)0.5°2()). There are alterna-
tive ways of setting the values (Poncelas et al.,
2016, 2017) that can obtain better results. However,
in this work we used the default configuration of
d = 0.5, ¢ = 0.0 and used trigrams as features.

decay(f) = init(f) 4)

3 Experimental Setup

3.1 Data description

For the experiments we use English—French par-
allel data from two different domains/corpora:
EMEA? and DGT? from the Open Parallel Cor-
pus (OPUS) (Tiedemann, 2009). The first consists
of medical data and the second a translation mem-
ory in the legal domain. We chose these domains in
particular because they are categories more distant
from the generic data, which is comprised of news
data. The MultiUN corpus (Ziemski et al., 2016) is
used for the training of generic models. Moreover,
we use only its 6-way subset corpora, to be able to
run the experiments in a more comparable setting.

3.2 Seed preparation

Although each data selection method has provided
its own approach to select subsets from large cor-
pora, in practice they would better perform if given
a good initial subset (i.e. seed) to start with.

To prepare such an initial seed (the same seed
is used in the three data selection algorithms), we
remove noisy sentences considering punctuation
and numerical character. In particular, we remove
sentences where:

1. a source (or target) sentence contains fewer
than ¢.p4,s nOn-punctuation characters,

>http://opus.nlpl.eu/EMEA.php
3http://opus.nlpl.eu/DGT.php

2. a source (or target) sentence contains fewer
than t,,,,qs words,

3. the source (or target) sentence ratio between
punctuation characters and non-punctuation
characters is above t,4t0.

where t.parss twords and trq4, are thresholds.
For both domains and language pairs, tcpqrs=3,
twords=2 and t,q+;,=0.5 are used. We then removed
duplicates using the source as reference and com-
pile the remaining sentences into three parts: a val-
idation set (2000 lines); a test set (2000 lines); and
the remaining lines comprise the seed domain data.
The EMEA domain corpus gave rise to a seed with
238K lines, and the DGT was truncated to a similar
size, 250K, to keep experiments comparable.

3.3 Neural Machine Translation

The aim of this work is to assess the impact of data
selection techniques on NMT. For this purpose,
we use the Marian framework* (Junczys-Dowmunt
et al., 2018) to train models using the attention-
based encoder—decoder architecture as described
in Sennrich et al. (2017).

For all experiments a preprocessing routine sim-
ilar to the one in Moses® (Koehn et al., 2007) is
used. The preprocessing consists of the following
steps: entity replacement (on numbers, emails, urls
and alphanumeric entities), tokenisation, truecas-
ing and Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) with 89,500 merge operations.

4 Experiments

We present MT results using the three data selec-
tion methods and then use the best of the three
methods to conduct a series of experiments to as-
sess the impact of data selection on NMT mod-
els. We present two evaluation scores, BLEU
(Papineni et al., 2002) and Translation Error Rate
(TER) (Snover et al., 2006), in the tables. These
scores give an estimation of how good the trans-
lation is: For BLEU, higher scores indicate better
translations, while for TER, as it measures an error
rate, lower scores indicate better translation perfor-
mance.
We performed three different experiments:

e A comparison of the three data selection meth-
ods introduced in this paper (Section 4.1).

“https://marian-nmt.github.io/
Shttp://www.statmt.org/moses/
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TF-IDF CED FDA
BLEU+ TERJ | BLEUt TER| | BLEUt TER |
Seed 384 535 384 535 384 535
+240K (1:1) | 417 506 409 513 439 487
+480K (1:1) | 433 497 422 497 441 484
+480K (2:1) | 453 470 443 483 464 467
+1M (1:1) 443 A77 433 493 445 476
+ 1M (4:1) 466 470 456 473 477 457
+2M (1:1) 449 479 440 483 452 469
+2M (8:1) 488 445 479 453 491 446

Table 1: Results of running three different data selection methods on different selection sizes for EMEA EN—FR. Both BLEU
and TER are presented. The top result for each slice of selected data is presented in bold.

e A comparison of the data selection methods
using different seeds (Section 4.2).

e The impact of the best data selection method
in NMT (Section 4.3)

4.1 Comparison of methods

We start by comparing the three methods for the
EMEA domain for English-French. Several exper-
iments are run with different data selection sizes,
between 250K and 2M lines, from the MultiUN
corpus. We create different sizes of selected data
in between these values, corresponding to a factor
of 1, 2, 4 and 8 in relation to the size of the original
seed. The comparison is not extended to larger se-
lection sizes since a bigger slice, for example 4M,
would already represent almost half of the total
data available.

Table 1 shows the results of the three methods
for models trained from scratch using seed data and
different selected data. We present two approaches
of combining the data. The first is a simple con-
catenation of the seed and the selected data. The
second tries to balance the seed and the selected
data in terms of the number of sentences used for
training, by oversampling the seed a number of
times such that there are approximately the same
number of sentences in the selected data.

Two visible outcomes are shown in these experi-
ments. The first is the overall gain of the Feature
Decay Algorithm technique over its two counter-
parts. For every test (corresponding to a line in
the table), the BLEU scores are better using the
FDA method, followed by TF-IDF, with the CED
method showing lower NMT performance. This
result is interesting, since CED is one of the most
common used methods for data selection and it has
shown good results in several data selection experi-

ments. However, these results are typically related
to SMT, and in fact previous work in data selection
has shown that these methods do not achieve the
same performance for NMT.

The second result is that best performance was
obtained when balancing the seed data with the
selected data. We use this knowledge to guide the
following experiments. Finally, in all experiments
TER is also computed, and the results are consistent
with those shown in BLEU scores.

4.2 Seed size variation

In previous experiments we used all the domain
data available that passed our quality threshold,
described in Section 3.2, and selected from the
MultiUN corpus, which has little relation to the
domain data. We conduct further experiments to
analyse whether the previous results are dependent
on the initial seed size and also to what extend the
seed size impacts or limits the data selection gains.

We start with a seed of about 240K lines. To
study the impact of the seed size we retrieve two
subsets from the original seed with 50K lines and
100K lines. For each subset, we randomly sample
the amount of lines from the original seed three
different times and keep only the best subset, where
the quality is evaluated by running a baseline MT
experiment. Taking advantage of this preliminary
experiment, we guarantee that the seed we choose
from is not the worst to start with, increasing the
reliability of these experiments.

Regarding our first goal, we can conclude that
the previous results are not dependent on the ini-
tial seed size, from the results presented in Ta-
ble 2, which consistently show that FDA performs
best for all seeds. All experiments were run using
balanced data since this showed enhanced perfor-
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TF-IDF CED FDA
BLEUT TER] | BLEUT TER| | BLEUT TER ]
240K 384 535 384 535 384 535
+240K | 417 506 409 513 439 487
+480K | 453 470 443 483 464 467
+1M 466 470 456 473 477 457
100K 306 613 306 613 306 613
+240K | 394 520 361 550 .396 523
+480K | 419 507 396 533 425 498
+1M 430 498 420 505 432 489
50K 219 685 219 685 219 685
+240K | 368 554 296 633 370 552
+480K | 379 545 339 595 390 537
+ 1M 391 531 384 547 394 535

Table 2: Results of running different data selection methods on different seed sizes for EMEA EN—FR. The top result for
each seed size and slice of data selected is presented in bold. The ratio in the parentheses indicate the number of times seed was

oversampled

mance, as mentioned in the previous section.

For the impact of the seed size on the data selec-
tion gains, the results show that for similar selected
data, the score decreases with the seed, which is
visible from the seed score to the 1M data selection.
This is an intuitive result, since the amount of infor-
mation contained in the full size seed is obviously
larger than its counterparts.

However, it also shows that the gains from the
baseline to the data selection are actually bigger
for smaller seeds, with around 5-9 BLEU points
increase for the full seed, 9—13 for the 100K sample
and 16-18 points for the smaller 50K sample. This
is consistent with the fact that the amount of data
used has a bigger impact in NMT, especially when
compared with previous knowledge about these
methods in SMT.

4.3 Impact of data selection in NMT

Using the previous results as starting points, we
focus now only on the FDA method for data selec-
tion and use oversampling of the seed to obtain a
balanced training set.

4.3.1 Full training

Several experiments are run for both domains,
EMEA and DGT. To increase the confidence in
our results, we repeat the experiment for English-
Spanish, by selecting the corresponding Spanish
sentences in both domain datasets.® All experi-

8Both the DGT and EMEA datasets are available in EN—
FR, EN-ES, and ES-FR, where part of the lines are aligned
across the three languages.
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ments for each language pair share the same seed
data, oversampled to obtain a balanced corpus.
The results presented in Table 3 seem to support
some of the previous conclusions that data selec-
tion does not yield as much gain for the NMT as
it did for SMT. The best results are mostly data
selection of 2M or 4M. However, the values are
very close to the baseline obtained with the en-
tire MultiUN data combined with the seed, which
is balanced in the same way as the data selection
methods. The results with 6M are also very close
or slightly higher than the baseline, showing that
more data helps almost as much as selected data.

4.3.2 Adaptation from generic models

To try and separate the impact of the huge amount
of data the generic model represents, we ran the
same experiments in a fine-tuning scenario. In
this context, a model is firstly trained with all the
generic data until convergence, without any added
domain knowledge. Then, a new training pass is
ran until convergence with the domain data, where
we add the selected data to the seed as pseudo-
domain data. We mean to compare these selections
with a baseline using only the seed, since using the
full data here is redundant.

The data selection performed in the fine-tuning
scenario has a negative impact, as shown in Table
4, where most of the data selection sets used ob-
tain scores lower than the original seed baseline.
One possible factor is that the MultiUN data con-
tains very little domain data. As mentioned in the
previous section, this experiment would gain from



EMEAEN s FrR DGTeNn—Fr EMEAENEs DGTen—Es
BLEU{ TER| BLEUT TERJ | BLEUT TER) BLEUt TER |
Seed 384 535 427 469 432 485 413 453
+ 250K 439 487 438 436 486 434 458 410
+ 500K 464 467 464 417 S11 418 476 .397
+ 1M AT7 457 472 409 525 403 .494 382
+2M 491 446 482 403 531 396 496 383
+4M 492 441 478 404 535 398 495 379
+ 6M 489 448 434 453 534 .399 494 .385
+ all data (11M) 487 454 482 405 495 449 493 .384

Table 3: BLEU and TER scores for NMT training with different slices of selected data, using FDA for data selection. The top
two results for each column are shaded, with the top result presented in bold

gathering a larger and more diverse generic corpus.

Moreover, all fine-tuning results are below the
fully trained models with all data from the previ-
ous section. The most important factor here seems
to be the highly technical vocabulary the models
can have access to. While the model trained with
all data has access to both the generic and domain
vocabulary, the fine-tuned models are built on top
of the generic vocabulary only. Thus, the model’s
input vocabulary of the first contains the most rele-
vant domain words, while in the second these are
split into subwords, as would happen to rare words.

4.3.3 Human evaluation

We also conducted a human evaluation using Un-
babel’s quality control system. For each language
pair, translation direction and domain, 150 sen-
tences were chosen randomly for evaluation. We
then shuffled the content and provided it to evalu-
ators ( professional linguists) for Fluency and Ad-
equacy assessment. This assessment is done by
rating each sentence from 1 to 5, and then com-
puting the average for each model. The evaluators
were not provided with the information as to which
model was used to generate sentences. The defi-
nitions of Fluency and Adequacy, as used by the
Unbabel Quality Team, are as follows.

Fluency addresses the linguistic well-
formedness and naturalness of the text. Fluency
errors include grammar, spelling or unintelligible
text, sentence structure and word order issues, etc.
In sum, these errors affect the reading and the
comprehension of the text. The evaluation is done
on the resulting translations without revealing their
source sentences to the evaluators, to avoid biasing
Fluency scores.

Adequacy addresses the relationship of the tar-
get text to the source text and can only be assessed
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by providing both translations and their source sen-
tences to the editors. In other words, Adequacy ad-
dresses the extent to which a target text accurately
renders the meaning of a source text. Adequacy er-
rors include changes in intended meaning, addition
and omission of content or any type of mistransla-
tion, etc. In sum, Adequacy measures if the target
text accurately reflect the meaning conveyed in the
source text (Way, 2018).

The results of human evaluation on Fluency and
Adequacy are presented in Table 5. The figures in
the table correspond to the top scores in Tables 3
and 4. The results show that with fine-tuning of the
training of models, Fluency is improved, especially
for the EMEA models. Adequacy is also signifi-
cantly improved in both EN-to-FR and EN-to-ES
models. It shows very clear that data selection does
improve the performance of all MT systems evalu-
ated in this paper, in both Adequacy and Fluency.

It was also shown in Table 4 and Table 5 that
for EN-to-FR, BLEU .452 of MT translated French
sentences approximately corresponds to Fluency
4.25, and for EN-to-ES, BLEU .485 of MT trans-
lated Spanish sentences approximately corresponds
to Fluency 4.50. In the future, we would like to
make more comparisons between human evalua-
tion metrics, e.g. Adequacy and Fluency as defined
by Unbabel Quality Team, with commonly used
MT performance metrics, e.g. BLEU and TER.

5 Conclusions

In this paper, we reviewed three commonly used
data selection methods, i.e. TF-IDF, CED and FDA,
for NMT. These methods improve the performance
significantly for SMT. The results showed that FDA
outperformed the other two methods. Although
the gain in MT performance is not as much as



EMEAEN s FrR DGTeNn—Fr EMEAEN Es DGTeN—Es
BLEU{ TER| BLEUT TER/ |BLEUT TER) BLEUt TER |
MultiUN .208 .699 338 528 247 .657 361 495
Seed 438 481 476 413 486 432 487 388
+ 250K 429 485 462 418 469 442 473 .399
+ 500K 439 476 462 416 471 438 476 .396
+ 1M 436 478 465 414 478 440 A77 .397

Table 4: Fine-tuning approach for NMT training with data selection. The top two results for each column are shaded, with the
top result presented in bold

Models trained EMEAEN*}FR DGTEN%FR EMEAEN%ES DGTENHES
AD1 FLt ADt FLt|ADt FLt AD?t FL?

Seed 1.02 401 328 399 | 382 406 3.61 399

From Scratch + best slice 418 395 387 439 | 425 442 422 450
+all data (11M) | 4.1 395 378 429 | 399 433 419 447

With Fine-tuning Seed 417 403 396 428 | 441 451 429 453
+ best slice 422 405 412 445 | 443 450 430 452

Table 5: Human evaluation of Adequacy (AD) and Fluency (FL) for top scores in previous experiments in Tables 3 and 4

that in SMT systems, our experiments showed that
using EMEA and MultiUN corpora, NMT systems
trained with FDA-selected data still outperform
systems trained with the whole corpus, in terms of
both BLEU and TER.

In addition to using data selection, training with
fine-tuning from pre-trained models is also em-
ployed to further improve MT performance. We
conducted human evaluation by professional lin-
guists, in which Adequacy and Fluency are as-
sessed. The results show that models trained with
selected data constantly outperformed those trained
with the whole corpus, in both human evaluation
measures. By employing fine-tuning on top of data
selection, MT performance is further improved sig-
nificantly in both Adequacy and Fluency.
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Abstract

‘We work on translation from rich-resource lan-
guages to low-resource languages. The main
challenges we identify are the lack of low-
resource language data, effective methods for
cross-lingual transfer, and the variable-binding
problem that is common in neural systems.
We build a translation system that addresses
these challenges using eight European lan-
guage families as our test ground. Firstly, we
add the source and the target family labels
and study intra-family and inter-family influ-
ences for effective cross-lingual transfer. We
achieve an improvement of +9.9 in BLEU
score for English-Swedish translation using
eight families compared to the single-family
multi-source multi-target baseline. Moreover,
we find that training on two neighboring fam-
ilies closest to the low-resource language is
often enough. Secondly, we construct an ab-
lation study and find that reasonably good
results can be achieved even with consid-
erably less target data. Thirdly, we address
the variable-binding problem by building
an order-preserving named entity translation
model. We obtain 60.6% accuracy in qualita-
tive evaluation where our translations are akin
to human translations in a preliminary study.

1 Introduction

We work on translation from a rich-resource lan-
guage to a low-resource language. There is usu-
ally little low-resource language data, much less
parallel data available (Duong et al., 2016; Anas-
tasopoulos et al., 2017); Despite of the challenges
of little data and few human experts, it has many
useful applications. Applications include translat-
ing water, sanitation and hygiene (WASH) guide-
lines to protect Indian tribal children against water-
borne diseases, introducing earthquake prepared-
ness techniques to Indonesian tribal groups liv-
ing near volcanoes and delivering information to
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the disabled or the elderly in low-resource lan-
guage communities (Reddy et al., 2017; Barrett,
2005; Anastasiou and Schiler, 2010; Perry and
Bird, 2017). These are useful examples of trans-
lating a closed text known in advance to the low-
resource language.

There are three main challenges. Firstly, most of
previous works research on individual languages
instead of collective families. Cross-lingual im-
pacts and similarities are very helpful when there
is little data in low-resource language (Shoemark
et al., 2016; Sapir, 1921; Odlin, 1989; Cenoz,
2001; Toral and Way, 2018; De Raad et al., 1997;
Hermans, 2003; Specia et al., 2016). Secondly,
most of the multilingual Neural Machine Trans-
lation (NMT) works assume the same amount of
training data for all languages. In the low-resource
case, it is important to exploit low or partial data
in low-resource language to produce high quality
translation. The third issue is the variable-binding
problem that is common in neural systems, where
“John calls Mary” is treated the same way as
“Mary calls John” (Fodor and Pylyshyn, 1988;
Graves et al., 2014). It is more challenging when
both “Mary” and “John” are rare words. Solving
the binding problem is crucial because the mis-
takes in named entities change the meaning of the
translation. It is especially challenging in the low-
resource case because many words are rare words.

Our contribution in addressing these issues
is three-fold, extending from multi-source multi-
target attentional NMT. Firstly, to examine intra-
family and inter-family influences, we add source
and target language family labels in training.
Training on multiple families improves BLEU
score significantly; moreover, we find training
on two neighboring families closest to the low-
resource language gives reasonably good BLEU
scores, and we define neighboring families closely
in Section 3.2. Secondly, we conduct an ablation
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study to explore how generalization changes with
different amounts of data and find that we only
need a small amount of low-resource language
data to produce reasonably good BLEU scores.
We use full data except for the ablation study. Fi-
nally, to address the variable-binding problem, we
build a parallel lexicon table across twenty-three
European languages and devise a novel method of
order-preserving named entity translation method.
Our method works in translation of any text with
a fixed set of named entities known in advance.
Our goal is to minimize manual labor, but not to
fully automate to ensure the correct translation of
named entities and their ordering.

In this paper, we begin with introduction and re-
lated work in Section 1 and 2. We introduce our
methods in addressing three issues that are impor-
tant for translation into low-resource language in
Section 3.2, as proposed extensions to our base-
line in Section 3.1. Finally, we present our results
in Section 4 and conclude in Section 5.

2 Related Work

2.1 Multilingual Attentional NMT

Attentional NMT is trained directly in an end-to-
end system and has flourished recently (Wu et al.,
2016; Sennrich et al., 2016; Ling et al., 2015). Ma-
chine polyglotism, training machines to be pro-
ficient in many languages, is a new paradigm of
multilingual NMT (Johnson et al., 2017; Ha et al.,
2016; Firat et al., 2016; Zoph and Knight, 2016;
Dong et al., 2015; Gillick et al., 2016; Al-Rfou
etal., 2013; Tsvetkov et al., 2016). Many multilin-
gual NMT systems involve multiple encoders and
decoders, and it is hard to combine attention for
quadratic language pairs bypassing quadratic at-
tention mechanisms (Firat et al., 2016). In multi-
source scenarios, multiple encoders share a com-
bined attention mechanism (Zoph and Knight,
2016). In multi-target scenarios, every decoder
handles its own attention with parameter shar-
ing (Dong et al., 2015). Attention combination
schemes include simple combination and hierar-
chical combination (Libovicky and Helcl, 2017).
The state-of-the-art of multilingual NMT is
adding source and target language labels in train-
ing a universal model with a single attention
scheme, and Byte-Pair Encoding (BPE) is used at
preprocessing stage (Ha et al., 2016). This method
is elegant in its simplicity and its advancement
in low-resource language translation as well as

233

zero-shot translation using pivot-based translation
scheme (Johnson et al., 2017). However, these
works have training data that increases quadrati-
cally with the number of languages (Dong et al.,
2015; Gillick et al., 2016), rendering training on
massively parallel corpora difficult.

2.2 Sub-word Level NMT

Many NMT systems lack robustness with out-
of-vocabulary words (OOVs) (Wu et al., 2016).
Most OOVs are treated as unknowns ($UNKS)
uniformly, even though they are semantically im-
portant and different (Ling et al., 2015; Sennrich
et al.,, 2016). To tackle the OOV problem, re-
searchers work on byte-level (Gillick et al., 2016)
and character-level models (Ling et al., 2015;
Chung et al., 2016). Many character-level mod-
els do not work as well as word-level models, and
do not produce optimal alignments (Tiedemann,
2012). As a result, many researchers shift to sub-
word level modeling between character-level and
word-level. One prominent direction is BPE which
iteratively learns subword units and balances se-
quence length and expressiveness with robustness
(Sennrich et al., 2016).

2.3 Lexiconized NMT

Much research is done in translating lexicons and
named entities in NMT (Nguyen and Chiang,
2017; Wang et al., 2017; Arthur et al., 2016).
Some researchers create a separate character-level
named entity model and mark all named entities as
STERM:S to train (Wang et al., 2017). This method
learns people’s names well but does not improve
BLEU scores (Wang et al., 2017). It is time-
consuming and adds to the system complexity.
Other researchers attempt to build lexicon trans-
lation seamlessly with attentional NMT by us-
ing an affine transformation of attentional weights
(Nguyen and Chiang, 2017; Arthur et al., 2016).
Some also attempt to embed cross-lingual lexicons
into the same vector space for transfer of informa-
tion (Duong et al., 2017).

3 Translation System

3.1 Baseline Translation System

Our baseline is multi-source multi-target atten-
tional NMT within one language family through
adding source and target language labels with a
single unified attentional scheme, with BPE used
at the preprocessing stage. The source and target
vocabulary are not shared.



Families [ Languages

|

Germanic | German (de) Danish (dn) Dutch (dt) Norwe-
gian (no) Swedish (sw) English (en)

Slavic Croatian (cr) Czech (cz) Polish (po) Russian
(ru) Ukrainian (ur) Bulgarian (bg)

Romance | Spanish (es) French (fr) Italian (it) Portuguese
(po) Romanian (ro)

Albanian | Albanian (ab)

Hellenic | Greek (gk)

Italic Latin (In) [descendants: Romance languages]

Uralic Finnish (fn) Hungarian (hg)

Celtic Welsh (ws)

Table 1: Language families. Language codes are in brackets.

3.2 Proposed Extensions

We present our methods in solving three issues rel-
evant to translation into low-resource language as
our proposed extensions.

3.2.1 Language Families and Cross-lingual
Learning

Cross-lingual and cross-cultural influences and
similarities are important in linguistics (Shoe-
mark et al., 2016; Levin et al., 1998; Sapir, 1921;
Odlin, 1989; Cenoz, 2001; Toral and Way, 2018;
De Raad et al.,, 1997; Hermans, 2003; Specia
et al., 2016). The English word, “Beleaguer” orig-
inates from the Dutch word “belegeren”; “fidget”
originates from the Nordic word “fikja”. English
and Dutch belong to the same family and their
proximity has effect on each other (Harding and
Sokal, 1988; Ross et al., 2006). Furthermore, lan-
guages that do not belong to the same family affect
each other too (Sapir, 1921; Ammon, 2001; Toral
and Way, 2018). “Somatic” stems from the Greek
word “soma”; “J/\ 5" (Japanese), “33 11" (Korean),
“Quang cdo”(Vietnamese) are closely related to
the Traditional Chinese word “J% 4. Indeed,
many cross-lingual similarities are present.

In this paper, we use the language phylogenetic
tree as the measure of closeness of languages and
language families (Petroni and Serva, 2008). The
distance measure of language families is the col-
lective of all of the component languages. Lan-
guage families that are next to each other in the
language phylogenetic tree are treated as neigh-
boring families in our paper, like Germanic family
and Romance family. In our discussion in this pa-
per, we will often refer to closely related families
in the language phylogenetic tree as neighboring
families.

We prepend the source and target family labels,
in addition to the source and target language labels
to the source sentence to improve convergence
rate and increase translation performance. For ex-
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ample, all French-to-English translation pairs are
prepended with four labels, the source and target
family labels and the source and target languages
labels, i.e., _ opt_family_src_romance
__opt_family tgt_germanic

_ _opt_src_fr _ opt_tgt_en. In Sec-
tion 4, we examine intra-family and inter-family
effects more closely.

3.2.2 Ablation Study on Target Training data

To achieve high information transfer from rich-
resource language to low-resource target language,
we would like to find out how much target training
data is needed to produce reasonably good per-
formance. We vary the amount of low-resource
training data to examine how to achieve reason-
ably good BLEU score using limited low-resource
data. In the era of Statistical Machine Translation
(SMT), researchers have worked on data sampling
and sorting measures (Eck et al., 2005; Axelrod
etal., 2011).

To rigorously determine how much low-
resource target language is needed for reasonably
good results, we do a range of control experiments
by drawing samples from the low-resource lan-
guage data randomly with replacement and dupli-
cate them if necessary to ensure all experiments
carry the same number of training sentences. We
keep the amount of training data in rich-resource
languages the same, and vary the amount of train-
ing data in low-resource language to conduct rig-
orous control experiments. Our data selection pro-
cess is different from prior research in that only
the low-resource training data is reduced, simulat-
ing the real world scenario of having little data in
low-resource language. By comparing results from
control experiments, we determine how much low-
resource data is needed.

3.2.3 Order-preserving Lexiconized NMT

The variable-binding problem is an inherent is-
sue in connectionist architectures (Fodor and
Pylyshyn, 1988; Graves et al., 2014). “John calls
Mary” is not equivalent to “Mary calls John”, but
neural networks cannot distinguish the two easily
(Fodor and Pylyshyn, 1988; Graves et al., 2014).
The failure of traditional NMT to distinguish the
subject and the object of a sentence is detrimental.
For example, in the narration “John told his son
Ryan to help David, the brother of Mary”, it is a se-
rious mistake if we reverse John and Ryan’s father-
son relationships or confuse Ryan’s and David’s



[lan [de [dn [dt [en [no [sw |
de N.A. 37.5 43.4 45.1 41.1 35.8
dn 39.0 N.A. 37.1 41.1 42.6 37.4
dt 43.5 36.3 N.A. 45.1 39.0 343
en 40.4 34.5 41.1 N.A. 37.1 34.0
no 40.5 4277 40.4 42.8 N.A. | 40.6
SW 39.4 38.9 37.5 40.4 43.0 N.A.

Table 2: (Baseline model) Germanic family multi-source
multi-target translation. Each row represents source, each col-
umn represents target. Language codes follow Table 1.

relationships with Mary.

In our research on translation, we focus mainly
on text with a fixed set of named entities known
in advance. We assume that experts help to trans-
late a given list of named entities into low-resource
language first before attempting to translate any
text. Under this assumption, we propose an order-
preserving named entity translation mechanism.
Our solution is to first create a parallel lexicon
table for all twenty-three European languages us-
ing a seed English lexicon table and fast-aligning
it with the rest (Dyer et al., 2013). Instead of using
S$UNK:s to replace the named entities, we use $NES
to distinguish them from the other unknowns. We
also sequentially tag named entities in a sentence
as $NE1, $NE2, .. ., to preserve their ordering. For
every sentence pair in the multilingual training, we
build a target named entity decoding dictionary
by using all target lexicons from our lexicon ta-
ble that matches with those appeared in the source
sentence. During the evaluation stage, we replace
all the numbered $NEs using the target named en-
tity decoding dictionary to present our final trans-
lation. This method improves translation accuracy
greatly and preserves the order.

As a result of our contribution, the experts only
need to translate a few lexicons and a small amount
of low-resource text before passing the task to our
system to obtain good results. Post-editing and mi-
nor changes may be required to achieve 100% ac-
curacy before the releasing the translation to the
low-resource language communities.

4 Experiments and Results

We choose the Bible corpus as a test ground for
our proposed extensions because the Bible is the
most translated text that exists and is freely acces-
sible. Though it has limitations, it does not have
copyright issues like most of literary works that
are translated into many languages do. There are
many research works done using the Bible (Naai-
jer and Roorda, 1993; Mayer and Cysouw, 2014;
Scannell, 2006; Dufter and Schiitze, 2018; Resnik
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et al., 1999; Chan and Pollard, 2001; Banchs
and Costa-Jussa, 2011; Christodouloupoulos and
Steedman, 2015; Beale et al., 2005). Unlike many
past research works where only New Testament is
used (Dufter and Schiitze, 2018), we use both Old
Testament and New Testament in our Bible cor-
pus. We align all Bible verses across different lan-
guages.

We train our proposed model on twenty-three
European languages across eight families on a
parallel Bible corpus. For our purpose, we treat
Swedish as our hypothetical low-resource target
language, English as our rich-resource language
in the single-source single-target case and all
other Germanic languages as our rich-resource
languages in the multi-source multi-target case.

Firstly, we present our data and training pa-
rameters. Secondly, we add family tags in differ-
ent configurations of language families showing
intra-family and inter-family effects. Thirdly, we
conduct an ablation study and plot the general-
ization curves by varying the amount of training
data in Swedish, and we show that training on
one fifth of the data give reasonably good BLEU
scores. Lastly, we devise an order-preserving lexi-
con translation method by building a parallel lexi-
con table across twenty-three European languages
and tagging named entities in order.

4.1 Data and Training Parameters

We clean and align the Bible in twenty-three Eu-
ropean languages in Table 1. We randomly sam-
ple the training, validation and test sets according
to the 0.75, 0.15, 0.10 ratio. Our training set con-
tains 23K verses, but is massively parallel. In our
control experiments, we also use the experiment
training on the WMT’14 French-English dataset
together with French and English Bibles to com-
pare with our results. Note that our WMT baseline
contains French and English Bibles in addition to
the WMT’ 14 data, and is used to contrast our re-
sults with the effect of increasing data.

In all our experiments, we use a minibatch size
of 64, dropout rate of 0.3, 4 RNN layers of size
1000, a word vector size of 600, learning rate of
0.8 across all LSTM-based multilingual experi-
ments. For single-source single-target translation,
we use 2 RNN layers of size 500, a word vector
size of 500, and learning rate of 1.0. All learning
rates are decaying at the rate of 0.7 if the valida-
tion score is not improving or it is past epoch 9. We
use SGD as our learning algorithm. We build our



[expt [S [ G [GS [GR [3F [8F | [expt S [ G [ GSI [ GRI [3F [B8F |
de2sw| 4.0 358 | 42.0 | 422 | 425 | 428 de2sw| 4.0 358 | 41.8 | 422 | 425 | 443
dn2sw| 16.9 | 374 | 434 | 41.8 | 427 | 41.7 dn2sw| 16.9 | 374 | 43.0 | 415 | 425 | 428
dt2sw | 4.8 343 | 414 | 41.6 | 42.8 | 425 dt2sw | 4.8 343 | 414 | 41.8 | 42.7 | 423
en2sw| 6.9 340 | 403 | 40.2 | 41.8 | 42.1 en2sw| 6.9 340 | 409 | 404 | 41.7 | 439
no2sw| 16.8 | 40.6 | 43.6 | 440 | 445 | 43.1 no2sw| 16.8 | 40.6 | 4377 | 443 | 442 | 44.7

Table 3: Inter-family and intra-family effects on BLEU
scores with respect to increasing addition of language fam-
ilies.

S: single-source single-target NMT.

G: training on Germanic family.

GS: training on Germanic, Slavic family.

GR: training on Germanic, Romance family.

3F: training on Germanic, Slavic, Romance family.

8F: training on all 8 European families together.

== de2sw

S 22 =& dn2sw
= dt2sw
@ 20 e €N2SW
15 === N02SW
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Number of Language Families
Figure 1: Intra-family and inter-family effects on BLEU
scores with respect to increasing addition of language fam-
ilies.

code based on OpenNMT (Klein et al., 2017). For
the ablation study, we train on BLEU scores di-

rectly until the Generalization Loss (GL) exceeds a
threshold of o = 0.1 (Prechelt, 1998). GL at epoch

t is defined as GL(t) = 100(1 — Eyal

By

fied by us to suit our objective using BL%U scores
(Prechelt, 1998). Ef} o1 18 the validation score at
epoch t and E};pt is the optimal score up to epoch .
We evaluate our models using both BLEU scores

(Papineni et al., 2002) and qualitative evaluation.

), modi-

4.2 Family labels and Intra-family &
Inter-family Effects

We first investigate intra-family and inter-family
influences and the effects of adding family labels.
We use full training data in this subsection. Adding
family labels not only improves convergence rate,
but also increases BLEU scores.

Languages have varying closeness to each
other: Single-source single-target translations of
different languages in Germanic family to Swedish
show huge differences in BLEU scores as shown
in Table 3. These differences are well aligned with
the multi-source multi-target results. Norwegian-
Swedish and Danish-Swedish translations have
much higher BLEU scores than the rest. This hints
that Norwegian and Danish are closer to Swedish
than the rest in the neural representation.

Multi-source multi-target translation im-
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Table 4: Effects of adding family labels on BLEU scores with
respect to increasing addition of language families.

S and G: same as in Table 3.

GSl: Germanic, Slavic family with family labels.

GRI: Germanic, Romance family with family labels.

3FL: Germanic, Slavic, Romance family with family labels.
8FI: all 8 European families together with family labels

50
45
40
35 A
30 == de2sw|
> . == dn2sw|
o dt2swl
© 20 e €N25WI
15 == no2swl|
10
5
o
0 1 2 3 4 5 6 7 8 9

Number of Language Families

Figure 2: Effects of adding family labels on BLEU scores
with respect to increasing addition of language families.

proves greatly from single-source single-tar-

get translation: English-Swedish single-source

single-target translation gives a low BLEU score
of 6.9 as shown in Table 3, which is understand-
able as our dataset is very small. BLEU score for
English-Swedish translation improves greatly to
34.0 in multi-source multi-target NMT training on
Germanic family as shown in Table 2. In this pa-
per, we treat Germanic multi-source multi-target
NMT as our baseline model. Complete tables of
multi-source and multi-target experiments are in
the appendices. We present only relevant columns
important for cross-lingual learning and transla-
tion into low-resource language here.

Adding languages from other families into
training improves translation quality within

each family greatly: English-Swedish transla-

tion’s BLEU score improves significantly from
34.0 to 40.3 training on Germanic and Slavic fam-
ilies, and 40.2 training on Germanic and Romance
families as shown in Table 3. After we add all
three families in training, BLEU score for English-
Swedish translation increases further to 41.8 in
Table 3. Finally, after we add all eight families,
BLEU score for English-Swedish translation in-
creases to 42.1 in Table 3.

A Plateau is observed after adding more than
one neighboring family: A plateau is observed

when we plot Table 3 in Figure 1. The increase
in BLEU scores after adding two families is much
milder than that of the first addition of a neighbor-
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Figure 3: Comparison of different ways of increasing train-
ing Data in French-English translation.
Family: Adding data from other languages based on the fam-
ily unit
WMT’14: Adding WMT"’ 14 data as control experiment
Sparse: Adding data from other languages that spans the eight
European families

ing family. This hints that using unlimited number
of languages to train may not be necessary.

Adding family labels not only improves con-
vergence rate, but also increases BLEU scores:
We observe in Table 4 that BLEU scores for most
language pairs improve with the addition of fam-
ily labels. Training on eight language families, we
achieve a BLEU score of 43.9 for English-Swedish
translation, +9.9 above the Germanic baseline. In-
deed, the more families we have, the more helpful
it is to distinguish them.

Training on two neighboring families near-
est to the low-resource language gives better re-
sult than training on languages that are further
apart: Our observation of the plateau hints that
training on two neighboring families nearest to the
low-resource language is good enough as shown in
Table 3. Before jumping to conclusion, we com-
pare results of adding languages by family with
that of adding languages by random samples that
span all eight families, defined as the following.

Definition 4.1 (Language Spanning). A set of lan-
guages spans a set of families when it contains at
least one language from each family.

In Figure 3, we conduct a few experiments on
French-English translation using different ways of
adding training data. Let family addition describe
the addition of training data through adding close-
by language families based on the unit of family;
let sparse addition describe the addition of train-
ing data through adding language sets that spans
eight language families. In sparse addition, lan-
guages are further apart as each may represent a
different family. We find that family addition gives
better generalization than that of sparse addition. It
strengthens our earlier results that training on two
families closest to our low-resource language is a
reliable way to reach good generalization.
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Figure 4: Single-source single-target English-Swedish
BLEU plots against increasing amount of Swedish data.
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Figure 5: Multi-source multi-target Germanic-family-trained
BLEU plots against increasing amount of Swedish data.

Generalization is not merely an effect of in-
creasing amount of data: In Figure 3, we com-
pare all methods of adding languages against a
WMT’14 curve by using equivalent amount of
WMT’ 14 French-English data in each experiment.
The WMT’ 14 curve serve as our benchmark of
observing the effect of increasing data, we ob-
serve that our addition of other languages improve
BLEU score much sharply than the increase in the
benchmark, showing that our generalization is not
merely an effect of increasing data. We also ob-
serve that though increase WMT’ 14 data initially
increases BLEU score, it reaches a plateau and
adding more WMT’ 14 data does not increase per-
formance from very early point.

4.3 Ablation Study on Target Training Data

We use full training data from all rich-resource
languages, and we vary the amount of training data
in Swedish, our low-resource language, spanning
from one tenth to full length uniformly. We dupli-
cate the subset to ensure all training sets, though
having a different number of unique sentences,
have the same number of total sentences.
Power-law relationship is observed between
the performance and the amount of training

data in low-resource language: Figure 5 shows

how BLEU scores vary logarithmically with the
number of unique sentences in the low-resource
training data. It follows a linear pattern for single-
source single-target translation from English to



Data 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#w 53589 107262 | 161332 | 214185 | 268228 | 322116 | 375439 | 429470 | 483440 | 538030
log#w 4.73 5.03 5.21 5.33 5.43 5.51 5.57 5.63 5.68 5.73
en2sw 25.2 30.6 32.9 32.7 34.2 34.2 33.8 33.6 34.3 349
de2sw 26.5 334 34.8 35.7 36.7 36.5 37.1 37.1 36.4 37.5
dn2sw 27.2 34.8 35.8 37.1 37.6 37.1 38.5 38.0 374 38.4
dt2sw 26.1 32.5 342 34.9 36.0 35.8 36.0 35.7 35.8 36.6
no2sw 27.7 36.9 37.9 39.5 39.4 39.2 41.3 40.8 39.2 40.5

Table 5: Ablation Study on Germanic Family. #w is the word count of unique sentences in Swedish data.

[en [de | cz | es | fn | sw l using very little data and zero manual work. A
Josephl Joseph | Jozef | Jos¢ | Joseph | Josef few lexicon examples are shown in Table 6. We
Peter | Petrus Petr Pedro | Pietari | Petrus . . . .
Zion | Zion Sion Sion | Ziomn | Sion first extract named entities from the English Bible
John | Johanne Jan Juan | Johanneq Johannes| (Manning et al., 2014) and combine them with
Egypt | Agypten| Egyptskél Egipto | Egyptin | Egyptens| English biblically named entities from multiple
Noah | Noah Noé Noé Noa Noa

Table 6: A few examples from the parallel lexicon table.

[ expt [ G [ OG [ OG1 [ OGM ]
de2sw 35.8 36.6 36.6 36.9
dn2sw 374 37.0 37.2 36.9
dt2sw 343 35.8 35.6 359
en2sw 34.0 33.6 339 334
no2sw 40.6 41.2 41.0 41.4

Table 7: Summary of order-preserving lexicon translation.
G: training on Germanic family without using order-
preserving method.

OG: order-preserving lexicon translation.

OG1: OG translation using lexicons with frequency 1.
OGM: OG translation using lexicons with manual selection.

Swedish as shown in Figure 4. We also observe
a linear pattern for the multi-source multi-target
case, though more uneven in Figure 5. The linear
pattern with BLEU scores against the logarithmic
data shows the power-law relationship between the
performance in translation and the amount of low-
resource training data. Similar power-law relation-
ships are also found in past research and con-
temporary literature (Turchi et al., 2008; Hestness
et al., 2017).

We achieve reasonably good BLEU scores us-
ing one fifth of random samples: For the multi-
source multi-target case, we find that using one
fifth of the low-resource training data gives rea-
sonably good BLEU scores as shown in Figure 5.
This is helpful when we have little low-resource
data. For translation into low-resource language,
the experts only need to translate a small amount

of seed data before passing it to our system !.

4.4 Order-preserving Lexiconized NMT

We devise a mechanism to build a parallel lexi-
con table across twenty-three European languages

'Note that using nine tenth of random samples yields
higher performance than using full data, but it may not be
generalized to other datasets.
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sources (Easton, 1897; Nave, 1903; Smith et al.,
1967; Hitchcock, 1874; Rice, 2015). Secondly,
we carefully automate the filtering process to ob-
tain a clean English lexicon list. Using this list as
the seed, we build a parallel lexicon table across
all twenty-three languages through fast-aligning
(Dyer et al., 2013). The final parallel lexicon ta-
ble has 2916 named entities. In the translation
task into low-resource language, we assume that
the experts first translate these lexicon entries, and
then translate approximately one fifth random sen-
tences before we train our NMT. If necessary, the
experts evaluate and correct translations before re-
leasing the final translations to the low-resource
language community. We aim to reduce human ef-
fort in post-editing and increase machine accuracy.
After labeling named entities in each sentence pair
in order, we train and obtain good translation re-
sults.

We observe 60.6% accuracy in human evalu-
ation where our translations are parallel to hu-
man translations: In Table 8, we show some ex-
amples of machine translated text, we also show
the expected correct translations for comparison.
Not only the named entities are correctly mapped,
but also the ordering of the subject and the object
is preserved. In a subset of our test set, we conduct
human evaluation on 320 English-Swedish results
to rate the translations into three categories: accu-
rate (parallel to human translation), almost accu-
rate (needing minor corrections) and inaccurate.
More precisely, each sentence is evaluated using
three criteria: correct set of named entities, correct
positioning of named entities, and accurate mean-
ing of overall translation. If a sentence achieves all
three, then it is termed as accurate; if either a name
entity is missing or its position is wrong, then it
is termed as almost accurate (needing minor cor-




Source Sentence

NMT Translation
without Order Preser-
vation (Before)

NMT Translation
with Order Preserva-
tion (After)

Correct Target Trans-
lation

Frequency of Named
Entities

And Noah fathered three
sons, Shem, Ham, and
Japheth.

Och Noa fodde tre
soner, Sem, Ham och
Jafet.

Och Noa fodde tre
soner, Sem Ham och
Jafet

Och Noa fodde tre
soner: Sem, Ham och
Jafet.

Noah: 58, Shem: 18,
Ham: 17, Japheth: 11

And Saul spoke to his son
Jonathan, and to all his
servants, to kill David.

Och Saul sade till
Jonatan, hans son,
och alla hans tjdnare,

Och Saul talade till
sin son Jonatan och
alla hans tjdnare for

Och Saul talade med
sin son Jonatan och
med alla sina tjdnare

Saul: 424, Jonathan:
121, David: 1134

Aspatha, and Poratha,
and Adalia, and Ari-
datha, and Parmashta,
and Arisai, and Aridai,

Aquila, dorrvaktarna,
Amarja, Bered, vidare
Bet-Hadlt, Berota,
Gat-Rimmon,

och Aspata Porata
Adalja Aridata Par-
masta Arisai Aridai
Vajsata

rata, Adalja, Aridata,
Parmasta, Arisai,
Aridai och Vajsata,

sa att de skulle doda | att doda David om att déda David

David.
And they killed Parshan- | Och de dripte | Och de dripte | Och Parsandata, | Parshandatha: 1,
datha, and Dalphon, and | Kedak, Ir-Fittim, | Parsandata Dalefon | Dalefon, Aspata, Po- | Dalphon: 1, Aspatha:

1, Poratha: 1, Adalia:
1, Aridatha: 1, Par-
mashta: 1, Arisai: 1,
Aridai: 1, Vajezatha:

and Vajezatha,

1

Table 8: Examples of order-preserving lexicon-aware translation for English to Swedish. The frequency of the named entities
are the number of occurrences each named entity appears in the whole dataset; for example, all named entities in the last
sentence only appear in the test set once, and do not appear in the training data.

rection); if the meaning of the sentence is entirely
wrong, then it is inaccurate. Our results are 60.6%
accurate, 33.8% needing minor corrections, and
5.6% inaccurate. Though human evaluation car-
ries bias and the sample is small, it does give us
perspective on the performance of our model.

Order-preservation performs well especially

when the named entities are rare words: In
Table 8, NMT without order-preservation lexi-
conized treatment performs well when named en-
tities are common words, but fails to predict the
correct set of named entities and their ordering
when named entities are rare words. The last col-
umn shows the number of occurrences of each
named entity. For the last example, there are many
named entities that only occur in data once, which
means that they never appear in training and only
appear in the test set. The normal NMT without
order-preservation lexiconized treatment predicts
the wrong set of named entities with the wrong
ordering. Our lexiconized order-preserving NMT,
on the contrary, performs well at both the head
and tail of the distribution, predicts the right set
of named entities with the right ordering.

Prediction with longer sentences and many
named entities are handled well: In Table 8, we
see that normal NMT without order-preservation
lexiconized treatment performs well with short
sentences and few named entities in a sentence.
But as the number of the name entities per sen-
tence increases, especially when the name enti-
ties are rare unknowns as discussed before, nor-
mal NMT cannot make correct prediction of the
right set of name entities with the correct ordering
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8. Our lexiconized order-preserving NMT, on the
contrary, gives very high accuracy when there are
many named entities in the sentence and maintains
their correct ordering.

Trimming the lexicon list that keeps the tail
helps to increase BLEU scores: Different from
most of the previous lexiconized NMT works
where BLEU scores never increase (Wang et al.,
2017), our BLEU scores show minor improve-
ments. BLEU score for German-Swedish transla-
tion increases from 35.8 to 36.6 in Table 7. As an
attempt to increase our BLEU scores even further,
we conduct two more experiments. In one setting,
we keep only the tail of the lexicon table that occur
in the Bible once. In another setting, we keep only
a manual selection of lexicons. Note that this is
the only place where manual work is involved and
is not essential. There are minor improvements in
BLEU scores in both cases.

33.8% of the translations require minor cor-

rections: The sentence length for these transla-

tions that require minor corrections is often longer.
We notice that some have repetitions that do not
affect meaning, but need to be trimmed. Some
have the under-prediction problem where certain
named entities in the source sentence never ap-
pear; in this case, missing named entities need to
be added. Some have minor issues with plurality
and tense. We show a few examples of the transla-
tions that need minor corrections in the appendices
for reference. Typically, sentences with longer sen-
tence length and more complicated named entity
relationships require minor corrections to achieve
high translation quality.




5 Conclusion and Future Directions

We present our order-preserving translation sys-
tem for cross-lingual learning in European lan-
guages. We examine three issues that are impor-
tant to translation into low-resource language: the
lack of low-resource data, effective cross-lingual
transfer, and the variable-binding problem.

Firstly, we add the source and the target family
labels in training and examined intra-family and
inter-family effects. We find that training on mul-
tiple families, more specifically, training on two
neighboring families nearest to the low-resource
language improves BLEU scores to a reasonably
good level. Secondly, we devise a rigorous abla-
tion study and show that we only need a small por-
tion of the low-resource target data to produce rea-
sonably good BLEU scores. Thirdly, to address the
variable-binding problem, we build a parallel lexi-
con table across twenty-three European languages
and design a novel order-preserving named en-
tity translation method by tagging named entities
in each sentence in order. We achieve reasonably
good quantitative and qualitative improvements in
a preliminary study.

The order-preserving named entity translation
labels named entities in order. Since there are
relatively less number of long sentences with
many named entities than short sentences with few
named entities, underprediction of named entities
in long sentences may occur. To seek solution to
the underprediction problem, we are looking at
randomized labeling of the named entities. More-
over, our order-preserving named entity translation
method works well with a fixed pool of named en-
tities in any static document known in advance.
This is due to our unique use cases for applica-
tions like translating water, sanitation and hygiene
(WASH) guidelines written in the introduction.
We devise our method to ensure high accuracy
targeting translating named entities in static doc-
ument known in advance. However, researchers
may need to translate dynamic document to low-
resource language in real-time. We are actively re-
searching into the dynamic timely named entity
discovery with high accuracy.

We are actively extending our work to cover
more world languages, more diverse domains, and
more varied sets of datasets to show our methods
are generalizable. Since our experiments shown
in this paper are using European languages, we
are also interested on non-European languages
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like Arabic, Indian, Chinese, Indonesian and many
others to show that our model is widely general-
izable. We also expect to discover interesting re-
search ideas exploring a wider universe of linguis-
tically dissimilar languages.

Our work is helpful for translation into low-
resource language, where human translators only
need to translate a few lexicons and a partial set of
data before passing it to our system. Human trans-
lators may also be needed during post-editing be-
fore a fully accurate translation is released. Our fu-
ture goal is to minimize the human correction ef-
forts and to present high quality translation timely.

We would also like to work on real world low-
resource tribal languages where there is no or
little training data. Translation using limited re-
sources and data in these tribal groups that fits
with the culture-specific rules will be very impor-
tant (Levin et al., 1998). Real world low-resource
languages call for cultural-aware translation.
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Abstract

Transfer learning has been proven as an ef-
fective technique for neural machine transla-
tion under low-resource conditions. Exist-
ing methods require a common target lan-
guage, language relatedness, or specific train-
ing tricks and regimes. We present a simple
transfer learning method, where we first train
a “parent” model for a high-resource language
pair and then continue the training on a low-
resource pair only by replacing the training
corpus. This “child” model performs signifi-
cantly better than the baseline trained for low-
resource pair only. We are the first to show
this for targeting different languages, and we
observe the improvements even for unrelated
languages with different alphabets.

1 Introduction

Neural machine translation (NMT) has made a big
leap in performance and became the unquestion-
able winning approach in the past few years (Bah-
danau et al., 2014; Sutskever et al., 2014; Sennrich
et al., 2017; Vaswani et al., 2017). The main rea-
son behind the success of NMT in realistic con-
ditions was the ability to handle large vocabulary
(Sennrich et al., 2016b) and to utilize large mono-
lingual data (Sennrich et al., 2016a). However,
NMT still struggles if the parallel data is insuffi-
cient (e.g. fewer than 1M parallel sentences), pro-
ducing fluent output unrelated to the source and
performing much worse than phrase-based ma-
chine translation (Koehn and Knowles, 2017).

Many strategies have been used in MT in the
past for employing resources from additional lan-
guages, see e.g. Wu and Wang (2007), Nakov and
Ng (2012), El Kholy et al. (2013), or Hoang and
Bojar (2016). For NMT, a particularly promising
approach is transfer learning or “domain adapta-
tion” where the “domains” are the different lan-
guages.
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For example, Zoph et al. (2016) train a “par-
ent” model in a high-resource language pair, then
use some of the trained weights as the initializa-
tion for a “child” model and further train it on the
low-resource language pair. In Zoph et al. (2016),
the parent and child pairs shared the target lan-
guage (English) and a number of modifications
of the training process were needed to achieve an
improvement in translation from Hansa, Turkish,
and Uzbek into English with the help of French-
English data.

Nguyen and Chiang (2017) explore a related
scenario where the parent language pair is also
low-resource but it is related to the child language
pair. They improved the previous approach by us-
ing a shared vocabulary of subword units (BPE,
Sennrich et al., 2016b). Additionally, they used
transliteration to improve their results.

In this paper, we contribute empirical evidence
that transfer learning for NMT can be simplified
even further. We leave out the restriction on re-
latedness of the languages and extend the experi-
ments to parent—child pairs where the target lan-
guage changes. Moreover, we do not utilize any
special modifications to the training regime or data
pre-preprocessing.

In contrast to previous work, we test the method
with the Transformer model (Vaswani et al.,
2017), instead of the recurrent approaches (Bah-
danau et al., 2014). As documented in e.g. Popel
and Bojar (2018) and anticipated in WMT18,' the
Transformer model seems superior to other NMT
approaches.

2 Method Description

The proposed method is extremely simple: We
train the parent language pair for a number of iter-

'http://www.statmt .org/wmt18/
translation—-task.html
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ations and switch the training corpus to the child
language pair for the rest of the training, without
resetting any of the training (hyper)parameters.

As such, this method is similar to the transfer
learning proposed by Zoph et al. (2016) but uses
the shared vocabulary as in Nguyen and Chiang
(2017). The novelty is that we are removing the
restriction about relatedness of the language pairs,
and in contrast to the previous papers, we show
that this simple style of transfer learning can be
used on both sides (i.e. either the source or the
target language), not only with the target language
common to both parent and child model. In fact,
the method is effective also for fully unrelated lan-
guage pairs.

Our method does not need any modification of
existing NMT frameworks. The only requirement
is to use a shared vocabulary of subword units (we
use wordpieces, Johnson et al., 2017) across both
language pairs. This is achieved by learning word-
piece segmentation from the concatenated source
and target sides of both the parent and child lan-
guage pairs. All other parameters of the model
stay the same as for the standard NMT training.

During the training we first train the NMT
model for the high-resource language pair until
convergence. This model is called “parent”. After
that, we train the child model without any restart,
i.e. only by changing the training corpora to the
low-resource language pair.

2.1 Details on Shared Vocabulary

Current NMT systems use vocabularies of sub-
word units instead of whole words. Using sub-
word units gives a balance between the flexibil-
ity of separate characters and efficiency of whole
words. It solves the out-of-vocabulary words
problem and reduces the vocabulary size. The ma-
jority of NMT systems use either the byte pair en-
coding (Sennrich et al., 2016b) or wordpieces (Wu
et al., 2016). Given a training corpus and the de-
sired maximal vocabulary size, either method pro-
duces deterministic rules for word segmentation to
achieve the fewest possible splits.

Our method requires the vocabulary shared
across both the parent (translating from language
XX to YY) and the child model (translating from
AA to BB). This is obtained by concatenating both
training corpora into one corpus of sentences in
languages AA, BB, XX and YY. ?

*Having separate vocabularies for the parent and child and
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Due to our focus on low-resource language
pairs, we decided to generate the vocabulary in
a balanced way by selecting the same amount of
sentences from both language pairs. We thus use
the same number of sentence pairs of the parent
corpus as there are in the child corpus.

We did not experiment with any other balanc-
ing of the vocabulary. Future research could also
investigate the impact of using only the child cor-
pus for vocabulary generation or various amounts
of used sentences.

We generated vocabularies aiming at 32k sub-
word types. The exact size of the vocabulary
varies from 26.1k to 34.8k. All experiments of a
given language set use the same vocabulary. Vo-
cabulary overlap in each language set is further
studied in Section 6.1.

3 Model Description

We use the Transformer sequence-to-sequence
model (Vaswani et al., 2017) as implemented
in Tensor2Tensor (Vaswani et al., 2018) version
1.4.2. Our models are based on the “big single
GPU” configuration as defined in the paper. To fit
the model to our GPUs (NVIDIA GeForce GTX
1080 Ti with 11 GB RAM), we set the batch size
to 2300 tokens and limit sentence length to 100
wordpieces.

We use exponential learning rate decay with the
starting learning rate of 0.2 and 32000 warm up
steps and Adam optimized. In our experiments,
we find that it is undesirable to reset learning rate
as it leads to the loss of the performance from the
parent model. Therefore the transfer learning is
handled only by changing the training corpora and
nothing else.

Decoding uses the beam size of 8§ and the length
normalization penalty is set to 1.

The models were trained for 1M steps (approx.
140 hours), which was sufficient for models to
converge to the best performance. We selected the
model with the best performance on the develop-
ment test for the final evaluation on the testset.

4 Datasets

In our experiments, we compare low-resource and
high-resource language pairs spanning two orders

switching from the XX-YY to AA-BB vocabulary when we
switch the training corpus leads on an expected drop in per-
formance. Independent vocabularies use different IDs even
for identical subwords and the network cannot rely on any of
its weights from the parent training.



Lang. Sent. Words Vocabulary

pair pairs First  Second First  Second
ET.EN 0.8M 14 M 20M 631k 220k
FLEN 28M | 44M 64M | 1697k 545k
SK,EN 43 M 82 M 95M | 1059k 610k
RUEN 126M | 297M  321M | 2202k 3161k
CSEEN 40.1M | 491M 563 M | 6253k 4130k
ARRU 102M | 243M  252M | 2299k 2099k
FRRU 10.0M | 295M  238M | 1339k 2045k
ES,FR  10.0M | 297M 288 M | 1426k 1323k
ESRU 10.0M | 300M 235M | 1433k 2032k

Table 1: Datasets sizes overview. We consider Esto-
nian and Slovak low-resource languages in our paper.
Word counts and vocabulary sizes are from the original
corpus, tokenizing only at whitespace and preserving
the case.

of magnitude of training data sizes. We consider
Estonian (ET) and Slovak (SK) as low-resource
languages compared to the Finnish (FI) and Czech
(CS) counterparts.

The choice of languages was closely related to
the languages in this year’s WMT 2018 shared
tasks. In particular, Estonian and Finnish (paired
with English) were suggested as the main focus
for their relatedness. We added Czech and Slovak
as another closely related language pair. Russian
(RU) for the parent model was chosen for two rea-
sons: (1) written in Cyrillic, there will be hardly
any intersection in the shared vocabulary with the
child language pairs, and (2) previous work uses
transliteration to handle Russian, which is a nice
contrast to our work. Finally, we added Arabic
(AR), French (FR) and Spanish (ES) for experi-
ments with unrelated languages.

The sizes of the training datasets are in Table 1.

If not specified otherwise we use training, de-
velopment and test sets from WMT.? Pairs with
training sentences with less than 4 words or more
than 75 words on either the source or the target
side are removed to allow for a speedup of Trans-
former by capping the maximal length and allow-
ing a bigger batch size. The reduction of train-
ing data is small and based on our experiments, it
does not change the performance of the translation
model.

We use the Europarl and Rapid corpora for
Estonian-English. We disregard Paracrawl due to
its noisiness. The development and test sets are
from WMT news 2018.

The Finnish-English was prepared as in Ostling
et al. (2017), removing Wikipedia headlines. The

http://www.statmt.org/wmt18/

dev and test sets are from WMT news 2015.

For English-Czech, we use all paralel data al-
lowed in WMT2018 except Paracrawl. The main
resource is CzEng 1.7 (the filtered version, Bojar
et al., 2016). The devset is WMT newstest2011
and the testset is WMT newstest2017.

Slovak-English uses corpora from Galuscakova
and Bojar (2012), detokenized by Moses.* WMT
newstest2011 serves as the devset and testset.

The Russian-English training set was created
from News Commentary, Yandex and UN Corpus.
As the devset, we use WMT newstest 2012.

The language pairs Arabic-Russian, French-
Russian, Spanish-French and Spanish-Russian
were selected from UN corpus (Ziemski et al.,
2016), which provides over 10 million multi-
parallel sentences in 6 languages.

5 Results

In this section, we present results of our approach.
Statistical significance of the winner (marked with
) is tested by paired bootstrap resampling against
the baseline (child-only) setup (1000 samples,
conf. level 0.05; Koehn, 2004).

As customary, we label the models with the pair
of the source and target language codes, for ex-
ample the English-to-Estonian translation model is
denoted by ENET.

The vocabularies are generated as described in
2.1 separately for each experimented combination
of parent and child. The same vocabulary is used
whenever the parent and child use the same set of
languages, i.e. disregarding the translation direc-
tion and model stage (parent or child).

5.1 English as the Common Language

Table 2 summarizes our results for various combi-
nations of high-resource parent and low-resource
child language pairs when English is shared be-
tween the child and parent either in the encoder or
in the decoder.

We confirm that sharing the target language im-
proves performance as previously shown (Zoph
et al., 2016; Nguyen and Chiang, 2017). This
gains up to 2.44 BLEU absolute for ETEN with
the FIEN parent. Using only the parent (FIEN)
model to translate the child (ETEN) test set gives
a miserable performance, confirming the need for
transfer learning or “finetuning”.

*nttps://github.com/moses-smt/
mosesdecoder
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Baselines: Only
Parent - Child | Transfer | Child Parent
enFI - enET 19.741 | 17.03 2.32
Flen - ETen 24181 | 21.74 2.44
enCS - enET 20.41% | 17.03 1.42
enRU - enET 20.091 | 17.03 0.57
RUen - ETen 23.54% | 21.74 0.80
enCS - enSK 17.75% | 16.13 6.51
CSen - SKen 22.42% | 19.19 11.62
enET - enFI 20.07% | 19.50 1.81
ETen - Flen 23.95 24.40 1.78
enSK - enCS 22.99 23.48% 6.10
SKen - CSen 28.20 29.61% 4.16

Table 2: Transfer learning with English reused either
in source (encoder) or target (decoder). The column
“Transfer” is our method, baselines correspond to train-
ing on one of the corpora only. Scores (BLEU) are
always for the child language pair and they are compa-
rable only within lines or when the child language pair
is the same. “Unrelated” language pairs in bold. Up-
per part: parent larger, lower part: child larger. (“EN”
lowercased just to stand out.)

A novel result is that the method works also for
sharing the source language, improving ENET by
up to 2.71 BLEU thanks to ENFI parent.

Furthermore, the improvement is not restricted
only to related languages as Estonian and Finnish
as shown in previous works. Unrelated language
pairs (shown in bold in Table 2) like Czech and
Estonian work too and in some cases even better
than with the related datasets. We reach an im-
provement of 3.38 BLEU for ENET when parent
model was ENCS, compared to improvement of
2.71 from ENFI parent. This statistically signifi-
cant improvement contradicts Dabre et al. (2017)
who concluded that the more related the languages
are, the better transfer learning works. We see it as
an indication that the size of the parent training set
is more important than relatedness of languages.

The results with Russian parent for Estonian
child (both directions) show that transliteration is
also not necessary. Because there is no vocab-
ulary sharing between Russian Cyrilic and Esto-
nian Latin (except numbers and punctuation, see
Section 6.1 for further details), the improvement
could be attributed to a better coverage of English;
an effect similar to domain adaptation.

On the other hand, this transfer learning works
well only when the parent has more training data
than the child. As presented in the bottom part of
Table 2, low-resource parents do not generally im-
prove the performance of better-resourced childs
and sometimes, they even (significantly) decrease
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Child Training Sents ‘ Transfer BLEU  Baseline BLEU

800k 19.74 17.03
400k 19.04 14.94
200k 17.95 11.96
100k 17.61 9.39
50k 15.95 5.74
10k 12.46 1.95

Table 3: Maximal score reached by ENET child for
decreasing sizes of child training data, trained off an
ENFI parent (all ENFI data are used and models are
trained for 800k steps). The baselines use only the re-
duced ENET data.

it. This is another indication, that the most impor-
tant is the size of the parent corpus compared to
the child one.

The baselines are either models trained purely
on the child parallel data or only on the parent
data. The second baseline only indicates the relat-
edness of languages because it is only tested but
never trained on the child language pair. Also, we
do not add any language tag as in Johnson et al.
(2017). This also highlights that the improvement
of our method cannot be directly attributed to the
relatedness of languages: e.g. Czech and Slo-
vak are much more similar than Czech and Es-
tonian (Parent Only BLEU of translation out of
English is 6.51 compared to 1.42) and yet the
gain from transfer learning is larger for Estonian
(+3.38) than from Slovak (+1.62).

5.2 Simulated Very Low Resources

In Table 3, we simulate very low-resource settings
by downscaling the data for the child model. It
is a common knowledge, that gains from transfer
learning are more pronounced for smaller childs.
The point of Table 3 is to illustrate that our ap-
proach is applicable even to extremely small child
setups, with as few as 10k sentence pairs. Our
transfer learning (“start with a model for what-
ever parent pair’) may thus resolve the issue of
applicability of NMT for low resource languages
as pointed out by Koehn and Knowles (2017).

5.3 Parent Convergence

Figure 1 compares the performance of the child
model when trained from various training stages
of the parent model. The performance of the child
clearly correlates with the performance of the par-
ent. Therefore, it is better to use a parent model
that already converged and reached its best perfor-
mance.
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Figure 1: Learning curves on dev set for ENFI parent
and ENET child where the child model started training
after various numbers of the parent’s training steps.

Parent - Child | Transfer Baseline || Aligned
enFI - ETen 22.75% 21.74 24.18
Flen - enET 18.19% 17.03 19.74
enRU - ETen 23.12% 21.74 23.54
enCS - ETen 22.80% 21.74 not run
RUen - enET 18.16% 17.03 20.09
enET - ETen 22.04% 21.74 21.74
ETen - enET 17.46 17.03 17.03

Table 4: Results of child following a parent with
swapped direction. “Baseline” is child-only training.
“Aligned” is the more natural setup with English ap-
pearing on the “correct” side of the parent, the numbers
in this column thus correspond to those in Table 2.

5.4 Direction Swap in Parent and Child

Relaxing the setup in Section 5.1, we now allow a
mismatch in translation direction of the parent and
child. The parent XX-EN is thus followed by an
EN-YY child or vice versa. It is important to note
that Transformer shares word embeddings for the
source and target side. The gain can be thus due to
better English word embeddings, but definitely not
due to a better English language model. It would
be interesting to study the effect of not sharing the
embeddings but we leave it for some future work.

The results in Table 4 document that an im-
provement can be reached even when none of the
involved languages is reused on the same side.
This interesting result should be studied in more
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Parent - Child ‘ Transfer Baseline
ARRU - ETEN 22.23 21.74
ESFR - ETEN 22.24% 21.74
ESRU - ETEN 22.52% 21.74
FRRU - ETEN 22.40% 21.74

Table 5: Transfer learning with parent and child not
sharing any language.

detail. Firat et al. (2016) hinted possible gains
even when both languages are distinct from the
low-resource languages but in a multilingual set-
ting. Not surprisingly, the improvements are better
when the common language is aligned.

The bottom part of Table 4 shows a particu-
larly interesting trick: the parent is not any high-
resource pair but the very same EN-ET corpus
with source and target swapped. We see gains
in both directions, although not always statisti-
cally significant. Future work should investigate if
this performance boost is possible even for high-
resource languages. Similar behavior has been
shown in Niu et al. (2018), where in contrast to
our work they mixed the data together and added
an artificial token indicating the target language.

5.5 No Language in Common

Our final set of experiments examines the perfor-
mance of ETEN child trained off parents in totally
unrelated language pairs. Without any common
language, the gains cannot be attributed, e.g., to
the shared English word embeddings. The vocab-
ulary overlap is mostly due to short n-grams or
numbers and punctuations.

We see gains from transfer learning in all cases,
mostly significant. The only non-significant gain
is from Arabic-Russian which does not share the
script with the child Latin at all. (Sharing of
punctuation and numbers is possible across all the
tested scripts.) The gains are quite similar (+0.49—
+0.78 BLEU), supporting our assumption that the
main factor is the size of the parent (here, all have
10M sentence pairs) rather than language related-
ness.

6 Analysis

Here we provide a rather initial analysis of the
sources of the gains.
6.1 Vocabulary Overlap

Out method relies on the vocabulary estimated
jointly from the child and parent model. In Trans-



ET EN RU % Subwords
v - - 29.93%
- v - 20.69%
- - v 29.03%
v v - 10.06%
- v v 1.39%
v - v 0.00%
v v v 8.89%
Total 28.2k (100%)
From parent 41.03%

Table 6: Breakdown of subword vocabulary of exper-
iments involving ET, EN and RU.

former, the vocabulary is even shared across en-
coder and decoder. With a large overlap, we could
expect a lot of “information reuse” between the
parent and the child.

Since the subword vocabulary depends on the
training corpora, a little clarification is needed.
We take the vocabulary of subword units as cre-
ated e.g. for ENRU-ENET experiments, see Sec-
tion 2.1. This vocabulary contains 28.2k subwords
in total. We then process the training corpora for
each of the languages with this shared vocabulary,
ignore all subwords that appear less than 10 times
in each of the languages (these subwords will have
little to no impact on the result of the training) and
break down the total 28.2k subwords into classes
depending on the languages in which the particu-
lar subword was observed, see Table 6.

We see that the vocabulary is reasonably bal-
anced, with each language having 20-30% of sub-
words unique to it. English and Estonian share
10% subwords not seen in Russian while Russian
shares only 0—1.39% of subwords with each of the
other languages. Overall 8.89% of subwords are
seen in all three languages.

A particularly interesting subset is the one
where parent languages help the child model, in
other words subwords appearing anywhere in En-
glish and also tokens common to Estonian and
Russian. For this set of languages, this amounts
t0 20.69+10.06+1.39+0.0+8.89 = 41.03%. We list
this number on a separate line in Table 6, “From
parent”. These subwords get their embeddings
trained better thanks to the parent model.

Table 7 summarizes this analysis for several lan-
guage sets, listing what portion of subwords is
unique to individual languages in the set, what
portion is shared by all the languages and what
portion of subwords benefits from the parent train-
ing. We see a similar picture across the board, only
AR-RU-ET-EN stands out with the very low num-

Languages Unique in a Lang. In All From Parent
ET-EN-FI 24.4-18.2-26.2 19.5 494
ET-EN-RU 29.9-20.7-29.0 8.9 41.0
ET-EN-CS 29.6-17.5-21.2 20.3 49.2
AR-RU-ET-EN 28.6-27.7-21.2-9.1 4.6 6.2
ES-FR-ET-EN  15.7-13.0-24.8-8.8 184 34.1
ES-RU-ET-EN 14.7-31.1-21.3-9.3 6.0 214
FR-RU-ET-EN 12.3-32.0-22.3-8.1 6.3 23.1

Table 7: Summary of vocabulary overlaps for the var-
ious language sets. All figures in % of the shared vo-
cabulary.

BLEU nPER nTER nCDER chrF3 nCharacTER
Base ENET 16.13 47.13 3245 36.41 48.38 33.23
ENRU+ENET 19.10 50.87 36.10 39.77 52.12 39.39
ENCS+ENET 19.30 51.51 36.84 40.42 52.71 40.81
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Table 8: Various automatic scores on ENET test set.
Scores prefixed “n” reported as (1 — score) to make
higher numbers better.

ber of subwords (6.2%) available already in the
parent. The parent AR-RU thus offered very lit-
tle word knowledge to the child and yet lead to a
gain in BLEU.

6.2 Output Analysis

Since we rely on automatic analysis, we need to
prevent some potential overestimations of trans-
lation quality due to BLEU. For this, we took a
closer look at the baseline ENET model (BLEU
of 17.03 in Table 2) and two ENET childs derived
from ENCS (BLEU of 20.41) and ENRU parent
(BLEU 20.09).

Table 8 confirms the improvements are not an
artifact of uncased BLEU. The gains are apparent
with several (now cased) automatic scores.

As documented in Table 9, the improved out-
puts are considerably longer. In the table, we show
also individual n-gram precisions and brevity
penalty (BP) of BLEU. The longer output clearly
helps to reduce the incurred BP but the improve-
ments are also apparent in m-gram precisions.
In other words, the observed gain cannot be at-
tributed solely to producing longer outputs.

Table 10 explains the gains in unigram preci-
sions by checking which tokens in the improved
outputs (the parent followed by the child) were
present also in the baseline (child-only, denoted
“b” in Table 10) and/or confirmed by the refer-
ence (denoted “r”’). We see that about 44+20% of
tokens of improved outputs can be seen as “un-
changed” compared to the baseline because they
appear already in the baseline output (“b”). (The



Length BLEU Components BP
Base ENET 35326 48.1/21.3/11.3/6.4  0.979
ENRU+ENET 35979 51.0/24.2/13.5/8.0  0.998
ENCS+ENET 35921 51.7/24.6/13.7/8.1  0.996

Table 9: Candidate total length, BLEU n-gram preci-
sions and brevity penalty (BP). The reference length in
the matching tokenization was 36062.

ENRU+ENET  ENCS+ENET
) 15902 (442 %) 15924 (44.3 %)
- 9635 (26.8 %) 9485 (26.4 %)
b 7209 (20.0 %) 7034 (19.6 %)
r 3233 (9.0 %) 3478 (9.7 %)
Total 35979 (100.0 %) 35921 (100.0 %)

Table 10: Comparison of improved outputs vs. the

baseline and reference.

44% “‘rb” tokens are actually confirmed by the ref-
erence.)

The differing tokens are more interesting: “-”
denotes the cases when the improved system pro-
duced something different from the baseline and
also from the reference. Gains in BLEU are due to
“r” tokens, i.e. tokens only in the improved out-
puts and the reference but not the baseline “b”.
For both parent setups, there are about 9-9.7 %
of such tokens. We looked at these 3.2k and 3.5k
tokens and we have to conclude that these are reg-
ular Estonian words; no Czech or Russian leaks to
the output and the gains are not due to simple to-
ken types common to all the languages (punctua-
tion, numbers or named entities). We see identical
BLEU gains even if we remove all such simple to-
kens from the candidates and references. A better
explanation of the gains thus still has to be sought
for.

7 Related Work

Firat et al. (2016) propose multi-way multi-lingual
systems, with the main goal of reducing the to-
tal number of parameters needed to cater multiple
source and target languages. To keep all the lan-
guage pairs “active” in the model, a special train-
ing schedule is needed. Otherwise, catastrophic
forgetting would remove the ability to translate
among the languages trained earlier.

Johnson et al. (2017) is another multi-lingual
approach: all translation pairs are simply used at
once and the desired target language is indicated
with a special token at the end of the source side.
The model implicitly learns translation between
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many languages and it can even translate among
language pairs never seen together.

Lack of parallel data can be tackled by unsu-
pervised translation (Artetxe et al., 2018; Lample
et al., 2018). The general idea is to mix monolin-
gual training of autoencoders for the source and
target languages with translation trained on data
translated by the previous iteration of the system.

When no parallel data are available, the train-
set of closely related high-resource pair can be
used with transliteration approach as described in
Karakanta et al. (2018).

Aside from the common back-translation (Sen-
nrich et al., 2016a; Kocmi et al., 2018), simple
copying of target monolingual data back to source
(Currey et al., 2017) has been also shown to im-
prove translation quality in low-data conditions.

Similar to transfer learning is also curriculum
learning (Bengio et al., 2009; Kocmi and Bojar,
2017), where the training data are ordered from
foreign out-of-domain to the in-domain training
examples.

8 Conclusion

We presented a simple method for transfer learn-
ing in neural machine translation based on train-
ing a parent high-resource pair followed a low-
resource language pair dataset. The method works
for shared source or target side as well as for lan-
guage pairs that do not share any of the translation
sides. We observe gains also from totally unre-
lated language pairs, although not always signifi-
cant.

One interesting trick we propose for low-
resource languages is to start training in the oppo-
site direction and swap to the main one afterwards.

The reasons for the gains are yet to be explained
in detail but our observations indicate that the key
factor is the size of the parent corpus rather than
e.g. vocabulary overlaps.
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Abstract

In multi-source sequence-to-sequence tasks,
the attention mechanism can be modeled in
several ways. This topic has been thoroughly
studied on recurrent architectures. In this
paper, we extend the previous work to the
encoder-decoder attention in the Transformer
architecture. We propose four different in-
put combination strategies for the encoder-
decoder attention: serial, parallel, flat, and hi-
erarchical. We evaluate our methods on tasks
of multimodal translation and translation with
multiple source languages. The experiments
show that the models are able to use multiple
sources and improve over single source base-
lines.

1 Introduction

The Transformer model (Vaswani et al., 2017) re-
cently demonstrated superior performance in neu-
ral machine translation (NMT) and other sequence
generation tasks such as text summarization or im-
age captioning (Kaiser et al., 2017). However, all
of these setups consider only a single input to the
decoder part of the model.

In the Transformer architecture, the represen-
tation of the source sequence is supplied to the
decoder through the encoder-decoder attention.
This attention sub-layer is applied between the
self-attention and feed-forward sub-layers in each
Transformer layer. Such arrangement leaves many
options for the incorporation of multiple encoders.

So far, attention in sequence-to-sequence learn-
ing with multiple source sequences was mostly
studied in the context of recurrent neural networks
(RNNs). Libovicky and Helcl (2017) explicitly
capture the distribution over multiple inputs by
projecting the input representations to a shared
vector space and either computing the attention
over all hidden states at once, or hierarchically, us-
ing another level of attention applied on the con-
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text vectors. Zoph and Knight (2016) employ a
gating mechanism for combining the context vec-
tors. Voita et al. (2018) adapted the gating mech-
anism for use within the Transformer model for
context-aware MT. The other aproaches are how-
ever not directly usable in the Transformer model.

We propose a number of strategies of com-
bining the different sources in the Transformer
model. Some of the strategies described in this
work are an adaptation of the strategies previously
used with recurrent neural networks (Libovicky
and Helcl, 2017), whereas the rest of them is a
novel contribution devised for the Transformer ar-
chitecture. We test these strategies on multimodal
machine translation (MMT) and multi-source ma-
chine translation (MSMT) tasks.

This paper is organized as follows. In Sec-
tion 2, we briefly describe the decoder part of
the Transformer model. We propose a number of
input combination strategies for the multi-source
Transformer model in Section 3. Section 4 de-
scribes the experiments we performed, and Sec-
tion 5 shows the results of quantitative evaluation.
An overview of the related work is given in Sec-
tion 6. We discuss the results and conclude in
Section 7.

2 Transformer Decoder

The Transformer architecture is based on the use
of attention. Attention, as conceptualized by
Vaswani et al. (2017), can be viewed as a soft-
lookup function operating on an associative mem-
ory. For each query vector in query set (), the at-
tention computes a set of weighted sums of values
V' associated with a set of keys K, based on their
similarity to the query.

The variant of the attention function used in
the Transformer architecture is called multi-head
scaled dot-product attention. Scaled dot-product
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of queries and keys is used as the similarity mea-
sure. Given the dimension of the input vectors d,
the attention is computed as follows:
QK >
A(Q, K, V) = softmax < V. ()
@KV) N

In the multi-head variant, the vectors that represent
the queries, keys, and values are linearly trans-
formed to a number of projections (usually with
smaller dimension), called attention heads. The
attention is computed in each head independently
and the outputs are concatenated and projected
back to the original dimension:

h
AMNQ K, V) =) CiwP 2)
=1

where WZ-O € R%*4 are trainable parameter ma-
trices used as projections of the attention head out-
puts of dimension dj, to the model dimension d,
and

C; = AQWE, KWK vw}Y) 3)

where W<, WE and WV € R4*4r  are trainable
projection matrices used to project the attention in-
puts to the attention heads.

The model itself consists of a number of lay-
ers, each of which is divided in three sub-layers:
self-attention, encoder-decoder (or cross) atten-
tion, and a feed-forward layer. Both of the at-
tention types use identical sets for keys and val-
ues. The states of the previous layer are used
as the query set. The self-attention sub-layer at-
tends to the previous decoder layer (i.e. the sets of
queries and keys are identical). Since the decoder
works autoregressively from left to right, during
training, the self-attention is masked to prevent
attending to the future positions in the sequence.
The encoder-decoder attention sub-layer attends to
the final layer of the encoder. The feed-forward
sub-layer consists of a single non-linear projec-
tion (usually to a space with larger dimension),
followed by a linear projection back to the vec-
tor space with the original dimension. The input
of each sub-layer is summed with the output, cre-
ating a residual connection chain throughout the
whole layer stack.

3 Proposed Strategies

We propose four input combination strategies for
multi-source variant of the Transformer network,
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Figure 1: Schemes of computational steps for
the serial, parallel, flat, and hierarchical attention
combination in a single layer of the decoder.



as illustrated in Figure 1. Two of them, serial
and parallel, model the encoder-decoder attentions
independently and are a natural extension of the
sub-layer scheme in the transformer decoder. The
other two versions, flat and hierarchical, are in-
spired by approaches proposed for RNNs by Li-
bovicky and Helcl (2017) and model joint distri-
butions over the inputs.

Serial. The serial strategy (Figure 1a) computes
the encoder-decoder attention one by one for each
input encoder. The query set of the first cross-
attention is the set of the context vectors computed
by the preceding self-attention. The query set of
each subsequent cross-attention is the output of the
preceding sub-layer. All of these sub-layers are in-
terconnected with residual connections.

Parallel. In the parallel combination strategy
(Figure 1b), the model attends to each encoder in-
dependently and then sums up the context vectors.
Each encoder is attended using the same set of
queries, i.e. the output of the self-attention sub-
layer. Residual connection link is used between
the queries and the summed context vectors from
the parallel attention.

‘Agam(Q» Kltnv ‘/171) = ZAh(Q7 Ki’ V;) (4)
=1

Flat. The encoder-decoder attention in the flat
combination strategy (Figure 1c) uses all the states
of all input encoders as a single set of keys and val-
ues. Thus, the attention models a joint distribution
over a flattened set of all encoder states. Unlike the
approach taken in the recurrent setup (Libovicky
and Helcl, 2017), where the flat combination strat-
egy requires an explicit projection of the encoder
states to a shared vector space, in the Transformer
models, the vector spaces of all layers are tied with
residual connections. Therefore, the intermediate
projection of the states of each encoder is not nec-
essary.

Kfat = Vg = concat; (K;) 5)
A]%at(@7 Ky, Vl:n) = -Ah(Q7 Kﬂat7 Vﬂat) (6)

Hierarchical. In the hierarchical combination
(Figure 1d), we first compute the attention inde-
pendently over each input. The resulting contexts
are then treated as states of another input and the
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attention is computed once again over these states.

Khier = Viier = concaty(A"(Q, K;, V;))  (7)
AZier(Qa Kl:na ‘/1n) = Ah(Qa Khiera Vhier) (8)

4 Experiments

We conduct our experiments on two different
tasks: multimodal translation and multi-source
machine translation. We use Neural Monkey
(Helcl and Libovicky, 2017)" for design, training,
and evaluation of the experiments.

In all experiments, the encoder part of the net-
work follows the Transformer architecture as de-
scribed by Vaswani et al. (2017).

We optimize the model parameters using Adam
optimizer (Kingma and Ba, 2014) with initial
learning rate 0.2, and Noam learning rate decay
(Vaswani et al., 2017) with 81 = 0.9, B3 = 0.98,
e = 1079, and 4,000 warm-up steps. The size of a
mini-batch size of 32 for MMT, and 24 for multi-
source MT experiments.

During decoding, we use beam search of width
10 and length normalization of 1.0 (Wu et al.,
2016).

4.1 Multimodal Translation

The goal of MMT (Specia et al., 2016) is trans-
lating image captions from one language into an-
other given both the source and image as the in-
put. We use Multi30k dataset (Elliott et al., 2016)
containing triplets of images, English captions and
their English translations into German, French and
Czech. The dataset contains 29k triplets for train-
ing, 1,014 for validation and a test set of 1,000.
We experiment with all language pairs available in
this dataset.

We extract image feature using the last convo-
Iutional layer of the ResNet network (He et al.,
2016) trained for ImageNet classification. We ap-
ply a linear projection into 512 dimensions on the
image representation, so it has the same dimen-
sion as the rest of the model. For each language
pair, we create a shared wordpiece-based vocabu-
lary of approximately 40k subwords. We share the
embedding matrices across the languages and we
use the transposed embedding matrix as the output
projection matrix as proposed by Press and Wolf
(2017).

We use 6 layers in the textual encoder and de-
coder, and set the model dimension to 512. We

'nttp://github.com/ufal/neuralmonkey



set the dimension of the hidden layers in the feed-
forward sub-layers to 4096. We use 16 heads in
the attention layers.

During the evaluation, we follow the prepro-
cessing used in WMT Multimodal Translation
Shared Task (Specia et al., 2016).

Conclusions of previous work show (Elliott and
Kadar, 2017) that the improved performance of
the multimodal models compared to textual mod-
els can come from improving the input representa-
tion. In order to test whether it is also the case with
our models or the models explicitly use the visual
input, we perform an adversarial evaluation simi-
lar to Elliott (2018). We evaluate the model while
providinng a random image and observe how it af-
fects the score and observe whether their quality
drops.

4.2 Multi-Source MT

In this set of experiment, we attempt to generate
a sentence in a target language, given equivalent
sentences in multiple source languages.

We use the Europarl corpus (Tiedemann, 2012)
for training and testing the MSMT. We use Span-
ish, French, German, and English as source lan-
guages and Czech as a target language. We se-
lected an intersection of the bilingual sub-corpora
using English as a pivot language. Our dataset
contains 511k 5-tuples of sentences for training,
1k for validation and another 1k for testing.

Due 