
WMT 2018

Third Conference on
Machine Translation

Proceedings of the Conference

October 31 - November 1, 2018
Brussels, Belgium



c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-81-0

ii



Introduction

The Third Conference on Machine Translation (WMT 2018) took place on Wednesday, October 31 and
Thursday, November 1, 2018 in Brussels, Belgium, immediately preceding the Conference on Empirical
Methods in Natural Language Processing (EMNLP 2018).

This is the third time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, and the second time was at EMNLP 2017 in Copenhagen,
Denmark. Prior to being a conference, WMT was held 10 times as a workshop. WMT was held for
the first time at HLT-NAACL 2006 in New York City, USA. In the following years the Workshop on
Statistical Machine Translation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus,
Ohio, USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore,
USA, and EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 8 shared tasks. This consisted of three translation tasks: Machine Translation of News,
Biomedical Translation, and Multimodal Machine Translation, two evaluation tasks: Metrics and Quality
Estimation, as well as the Automatic Post-Editing and Parallel Corpus Filtering tasks. The Parallel
Corpus Filtering tasks was run at this year’s edition of WMT for the first time. As almost all machine
translation system require parallel corpora to train their models, the size and quality of available parallel
corpora has a substantial impact on machine translation quality. At the same, sizable, high-quality
parallel corpora are not available for many languages. This task addresses the important issue of how to
exploit noisy parallel corpora, which are available in much larger quantities and for a larger number of
languages.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2018 has received 84 full research paper submissions (not counting withdrawn
submissions). This is a record number of research paper submissions and more than double the number of
submissions of earlier editions of WMT. In total, WMT 2018 featured 27 full research paper presentations
(32% acceptance rate) and 82 shared task poster presentations.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves,
Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor, and Mark Fishel

Co-Organizers
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Abstract

Sequence to sequence learning models still re-
quire several days to reach state of the art per-
formance on large benchmark datasets using
a single machine. This paper shows that re-
duced precision and large batch training can
speedup training by nearly 5x on a single 8-
GPU machine with careful tuning and im-
plementation.1 On WMT’14 English-German
translation, we match the accuracy of Vaswani
et al. (2017) in under 5 hours when training on
8 GPUs and we obtain a new state of the art
of 29.3 BLEU after training for 85 minutes on
128 GPUs. We further improve these results
to 29.8 BLEU by training on the much larger
Paracrawl dataset. On the WMT’14 English-
French task, we obtain a state-of-the-art BLEU
of 43.2 in 8.5 hours on 128 GPUs.

1 Introduction

Neural Machine Translation (NMT) has seen im-
pressive progress in the recent years with the intro-
duction of ever more efficient architectures (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017). Similar sequence-to-sequence mod-
els are also applied to other natural language
processing tasks, such as abstractive summariza-
tion (See et al., 2017; Paulus et al., 2018) and
dialog (Sordoni et al., 2015; Serban et al., 2017;
Dusek and Jurcı́cek, 2016).

Currently, training state-of-the-art models on
large datasets is computationally intensive and can
require several days on a machine with 8 high-
end graphics processing units (GPUs). Scaling
training to multiple machines enables faster exper-
imental turn-around but also introduces new chal-
lenges: How do we maintain efficiency in a dis-
tributed setup when some batches process faster

*Work done while at Facebook AI Research.
1Our implementation is available at:

https://www.github.com/pytorch/fairseq

than others (i.e., in the presence of stragglers)?
How do larger batch sizes affect optimization and
generalization performance? While stragglers pri-
marily affect multi-machine training, questions
about the effectiveness of large batch training are
relevant even for users of commodity hardware
on a single machine, especially as such hardware
continues to improve, enabling bigger models and
batch sizes.

In this paper, we first explore approaches to im-
prove training efficiency on a single machine. By
training with reduced floating point precision we
decrease training time by 65% with no effect on
accuracy. Next, we assess the effect of dramati-
cally increasing the batch size from 25k to over
400k tokens, a necessary condition for large scale
parallelization with synchronous training. We im-
plement this on a single machine by accumulating
gradients from several batches before each update.
We find that by training with large batches and by
increasing the learning rate we can further reduce
training time by 40% on a single machine. Fi-
nally, we parallelize training across 16 machines
and find that we can reduce training time by an
additional 90% compared to a single machine.

Our improvements enable training a Trans-
former model on the WMT’16 En-De dataset to
the same accuracy as Vaswani et al. (2017) in just
32 minutes on 128 GPUs and in under 5 hours on
8 GPUs. This same model trained to full conver-
gence achieves a new state of the art of 29.3 BLEU
in 85 minutes. These scalability improvements
additionally enable us to train models on much
larger datasets. We show that we can reach 29.8
BLEU on the same test set in less than 10 hours
when trained on a combined corpus of WMT and
Paracrawl data containing ∼150M sentence pairs
(i.e., over 30x more training data). Similarly, on
the WMT’14 En-Fr task we obtain a state of the
art BLEU of 43.2 in 8.5 hours on 128 GPUs.
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Figure 1: Validation loss for Transformer model trained with varying batch sizes (bsz) as a function of
optimization steps (left) and epochs (right). Training with large batches is less data-efficient, but can be
parallelized. Batch sizes given in number of target tokens excluding padding. WMT En-De, newstest13.

2 Related Work

Previous research considered training and infer-
ence with reduced numerical precision for neu-
ral networks (Simard and Graf, 1993; Courbariaux
et al., 2015; Sa et al., 2018). Our work relies on
half-precision floating point computation, follow-
ing the guidelines of Micikevicius et al. (2018) to
adjust the scale of the loss to avoid underflow or
overflow errors in gradient computations.

Distributed training of neural networks follows
two main strategies: (i) model parallel evalu-
ates different model layers on different work-
ers (Coates et al., 2013) and (ii) data paral-
lel keeps a copy of the model on each worker
but distributes different batches to different ma-
chines (Dean et al., 2012). We rely on the second
scheme and follow synchronous SGD, which has
recently been deemed more efficient than asyn-
chronous SGD (Chen et al., 2016). Synchronous
SGD distributes the computation of gradients over
multiple machines and then performs a synchro-
nized update of the model weights. Large neu-
ral machine translation systems have been recently
trained with this algorithm with success (Dean,
2017; Chen et al., 2018).

Recent work by Puri et al. (2018) considers
large-scale distributed training of language mod-
els (LM) achieving 109x scaling with 128 GPUs.
Compared to NMT training, however, LM train-
ing does not face the same challenges of variable
batch sizes. Moreover, we find that large batch
training requires warming up the learning rate,
whereas their work begins training with a large
learning rate. There has also been recent work

on using lower precision for inference only (Quinn
and Ballesteros, 2018).

Another line of work explores strategies
for improving communication efficiency in dis-
tributed synchronous training setting by abandon-
ing “stragglers,” in particular by introducing re-
dundancy in how the data is distributed across
workers (Tandon et al., 2017; Ye and Abbe, 2018).
The idea rests on coding schemes that introduce
this redundancy and enable for some workers to
simply not return an answer. In contrast, we do
not discard any computation done by workers.

3 Experimental Setup

3.1 Datasets and Evaluation

We run experiments on two language pairs, En-
glish to German (En–De) and English to French
(En–Fr). For En–De we replicate the setup
of Vaswani et al. (2017) which relies on the
WMT’16 training data with 4.5M sentence pairs;
we validate on newstest13 and test on newstest14.
We use a vocabulary of 32K symbols based on a
joint source and target byte pair encoding (BPE;
Sennrich et al. 2016). For En–Fr, we train on
WMT’14 and borrow the setup of Gehring et al.
(2017) with 36M training sentence pairs. We use
newstest12+13 for validation and newstest14 for
test. The 40K vocabulary is based on a joint source
and target BPE factorization.

We also experiment with scaling training be-
yond 36M sentence pairs by using data from
the Paracrawl corpus (ParaCrawl, 2018). This
dataset is extremely large with more than 4.5B
pairs for En–De and more than 4.2B pairs for
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En–Fr. We rely on the BPE vocabulary built
on WMT data for each language pair and ex-
plore filtering this noisy dataset in Section 4.5.
We measure case-sensitive tokenized BLEU with
multi-bleu.pl2 and de-tokenized BLEU with
SacreBLEU3 (Post, 2018). All results use beam
search with a beam width of 4 and length penalty
of 0.6, following Vaswani et al. 2017. Checkpoint
averaging is not used, except where specified oth-
erwise.

3.2 Models and Hyperparameters

We use the Transformer model (Vaswani
et al., 2017) implemented in PyTorch in the
fairseq-py toolkit (Edunov et al., 2017). All
experiments are based on the “big” transformer
model with 6 blocks in the encoder and decoder
networks. Each encoder block contains a self-
attention layer, followed by two fully connected
feed-forward layers with a ReLU non-linearity
between them. Each decoder block contains self-
attention, followed by encoder-decoder attention,
followed by two fully connected feed-forward
layers with a ReLU between them. We include
residual connections (He et al., 2015) after each
attention layer and after the combined feed-
forward layers, and apply layer normalization (Ba
et al., 2016) after each residual connection. We
use word representations of size 1024, feed-
forward layers with inner dimension 4,096, and
multi-headed attention with 16 attention heads.
We apply dropout (Srivastava et al., 2014) with
probability 0.3 for En-De and 0.1 for En-Fr. In
total this model has 210M parameters for the
En-De dataset and 222M parameters for the En-Fr
dataset.

Models are optimized with Adam (Kingma and
Ba, 2015) using β1 = 0.9, β2 = 0.98, and
ε = 1e−8. We use the same learning rate schedule
as Vaswani et al. (2017), i.e., the learning rate in-
creases linearly for 4,000 steps to 5e−4 (or 1e−3
in experiments that specify 2x lr), after which
it is decayed proportionally to the inverse square
root of the number of steps. We use label smooth-
ing with 0.1 weight for the uniform prior distri-
bution over the vocabulary (Szegedy et al., 2015;

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

3SacreBLEU hash: BLEU+case.mixed+lang.en-{de,fr}+
numrefs.1+smooth.exp+test.wmt14/full+tok.13a+

version.1.2.9

Pereyra et al., 2017).
All experiments are run on DGX-1 nodes

with 8 NVIDIA c© V100 GPUs interconnected
by Infiniband. We use the NCCL2 library and
torch.distributed for inter-GPU commu-
nication.

4 Experiments and Results

In this section we present results for improving
training efficiency via reduced precision floating
point (Section 4.1), training with larger batches
(Section 4.2), and training with multiple nodes in
a distributed setting (Section 4.3).

4.1 Half-Precision Training

NVIDIA Volta GPUs introduce Tensor Cores that
enable efficient half precision floating point (FP)
computations that are several times faster than
full precision operations. However, half precision
drastically reduces the range of floating point val-
ues that can be represented which can lead to nu-
merical underflows and overflows (Micikevicius
et al., 2018). This can be mitigated by scaling val-
ues to fit into the FP16 range.

In particular, we perform all forward-backward
computations as well as the all-reduce (gradient
synchronization) between workers in FP16. In
contrast, the model weights are also available in
full precision, and we compute the loss and op-
timization (e.g., momentum, weight updates) in
FP32 as well. We scale the loss right after the for-
ward pass to fit into the FP16 range and perform
the backward pass as usual. After the all-reduce
of the FP16 version of the gradients with respect
to the weights we convert the gradients into FP32
and restore the original scale of the values before
updating the weights.

In the beginning stages of training, the loss
needs to be scaled down to avoid numerical over-
flow, while at the end of training, when the loss
is small, we need to scale it up in order to avoid
numerical underflow. Dynamic loss scaling takes
care of both. It automatically scales down the loss
when overflow is detected and since it is not pos-
sible to detect underflow, it scales the loss up if no
overflows have been detected over the past 2,000
updates.

To evaluate training with lower precision, we
first compare a baseline transformer model trained
on 8 GPUs with 32-bit floating point (Our reim-
plementation) to the same model trained with 16-
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model # gpu bsz cumul BLEU updates tkn/sec time speedup
Vaswani et al. (2017) 8×P100 25k 1 26.4 300k ∼25k ∼5,000 –
Our reimplementation 8×V100 25k 1 26.4 192k 54k 1,429 reference

+ 16-bit 8 25k 1 26.7 193k 143k 495 2.9x
+ cumul 8 402k 16 26.7 13.7k 195k 447 3.2x
+ 2x lr 8 402k 16 26.5 9.6k 196k 311 4.6x
+ 5k tkn/gpu 8 365k 10 26.5 10.3k 202k 294 4.9x
16 nodes (from +2xlr) 128 402k 1 26.5 9.5k 1.53M 37 38.6x
+ overlap comm+bwd 128 402k 1 26.5 9.7k 1.82M 32 44.7x

Table 1: Training time (min) for reduced precision (16-bit), cumulating gradients over multiple back-
wards (cumul), increasing learning rate (2x lr) and computing each forward/backward with more
data due to memory savings (5k tkn/gpu). Average time (excl. validation and saving models) over 3
random seeds to reach validation perplexity of 4.32 (2.11 NLL). Cumul=16 means a weight update after
accumulating gradients for 16 backward computations, simulating training on 16 nodes. WMT En-De,
newstest13.

Gradient sync.
Forward/backward
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Sync after 1 backward

time
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gpu4 

Sync after 2 backwards

time

gpu1

gpu4 

Figure 2: Accumulating gradients over multiple
forward/backward steps speeds up training by: (i)
reducing communication between workers, and
(ii) saving idle time by reducing variance in work-
load between GPUs.

bit floating point (16-bit). Note, that we keep
the batch size and other parameters equal. Table 1
reports training speed of various setups to reach
validation perplexity 4.32 and shows that 16-bit
results in a 2.9x speedup.

4.2 Training with Larger Batches

Large batches are a prerequisite for distributed
synchronous training, since it averages the gradi-
ents over all workers and thus the effective batch
size is the sum of the sizes of all batches seen by
the workers.

Figure 1 shows that bigger batches result in
slower initial convergence when measured in
terms of epochs (i.e. passes over the training set).
However, when looking at the number of weight

updates (i.e. optimization steps) large batches con-
verge faster (Hoffer et al., 2017). These results
support parallelization since the number of steps
define the number of synchronization points for
synchronous training.

Training with large batches is also possible on a
single machine regardless of the number of GPUs
or amount of available memory; one simply iter-
ates over multiple batches and accumulates the re-
sulting gradients before committing a weight up-
date. This has the added benefit of reducing com-
munication and reducing the variance in workload
between different workers (see Figure 2), leading
to a 36% increase in tokens/sec (Table 1, cumul).
We discuss the issue of workload variance in more
depth in Section 5.

Increased Learning Rate: Similar to Goyal
et al. (2017) and Smith et al. (2018) we find that
training with large batches enables us to increase
the learning rate, which further shortens training
time even on a single node (2x lr).

Memory Efficiency: Reduced precision also
decreases memory consumption, allowing for
larger sub-batches per GPU. We switch from a
maximum of 3.5k tokens per GPU to a maximum
of 5k tokens per GPU and obtain an additional 5%
speedup (cf. Table 1; 2x lr vs. 5k tkn/gpu).

Table 1 reports our speed improvements due to
reduced precision, larger batches, learning rate in-
crease and increased per-worker batch size. Over-
all, we reduce training time from 1, 429 min to 294
min to reach the same perplexity on the same hard-
ware (8x NVIDIA V100), i.e. a 4.9x speedup.
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Figure 3: Illustration of how the backward pass in
back-propagation can be overlapped with gradient
synchronization to improve training speed.

4.3 Parallel Training

While large batch training improves training time
even on a single node, another benefit of train-
ing with large batches is that it is easily paral-
lelized across multiple nodes (machines). We run
our previous 1-node experiment over 16 nodes of
8 GPUs each (NVIDIA V100), interconnected by
Infiniband. Table 1 shows that with a simple, syn-
chronous parallelization strategy over 16 nodes we
can further reduce training time from 311 minutes
to just 37 minutes (cf. Table 1; 2x lr vs. 16
nodes).

However, the time spent communicating gradi-
ents across workers increases dramatically when
training with multiple nodes. In particular, our
models contain over 200M parameters, therefore
multi-node training requires transferring 400MB
gradient buffers between machines. Fortunately,
the sequential nature of back-propagation allows
us to further improve multi-node training perfor-
mance by beginning this communication in the
background, while gradients are still being com-
puted for the mini-batch (see Figure 3). Back-
propagation proceeds sequentially from the top of
the network down to the inputs. When the gradi-
ent computation for a layer finishes, we add the
result to a synchronization buffer. As soon as the
size of the buffer reaches a predefined threshold4

we synchronize the buffered gradients in a back-
ground thread that runs concurrently with back-
propagation down the rest of the network. Ta-
ble 1 shows that by overlapping gradient commu-
nication with computation in the backwards pass,
we can further reduce training time by 15%, from
37 minutes to just 32 minutes (cf. Table 1; 16

4We use a threshold of 150MB in this work.
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Figure 4: Validation loss (negative log likelihood
on newstest13) versus training time on 1 vs 16
nodes.

En–De En–Fr
a. Gehring et al. (2017) 25.2 40.5
b. Vaswani et al. (2017) 28.4 41.0
c. Ahmed et al. (2017) 28.9 41.4
d. Shaw et al. (2018) 29.2 41.5

Our result 29.3 43.2
16-node training time 85 min 512 min

Table 2: BLEU on newstest2014 for WMT
English-German (En–De) and English-French
(En–Fr). All results are based on WMT’14 train-
ing data, except for En–De (b), (c), (d) and our
result which are trained on WMT’16.

nodes vs. overlap comm+bwd).
We illustrate the speedup achieved by large

batches and parallel training in Figure 4.

4.4 Results with WMT Training Data

We report results on newstest14 for English-to-
German (En-De) and English-to-French (En-Fr).
For En-De, we train on the filtered version of
WMT’16 from Vaswani et al. (2017). For En-
Fr, we follow the setup of Gehring et al. (2017).
In both cases, we train a “big” transformer on
16 nodes and average model parameters from the
last 10 checkpoints (Vaswani et al., 2017). Ta-
ble 2 reports 29.3 BLEU for En-De in 1h 25min
and 43.2 BLEU for En-Fr in 8h 32min. We
therefore establish a new state-of-the-art for both
datasets, excluding settings with additional train-
ing data (Kutylowski, 2018). In contrast to Ta-
ble 1, Table 2 reports times to convergence, not
times to a specific validation likelihood.
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Train set En–De En–Fr
WMT only 29.3 43.2

detok. SacreBLEU 28.6 41.4
16-node training time 85 min 512 min

WMT + Paracrawl 29.8 42.1
detok. SacreBLEU 29.3 40.9
16-node training time 539 min 794 min

Table 3: Test BLEU (newstest14) when training
with WMT+Paracrawl data.

4.5 Results with WMT & Paracrawl Training

Fast parallel training lets us additionally explore
training over larger datasets. In this section we
consider Paracrawl (ParaCrawl, 2018), a recent
dataset of more than 4B parallel sentences for each
language pair (En-De and En-Fr).

Previous work on Paracrawl considered training
only on filtered subsets of less than 30M pairs (Xu
and Koehn, 2017). We also filter Paracrawl by re-
moving sentence-pairs with a source/target length
ratio exceeding 1.5 and sentences with more than
250 words. We also remove pairs for which the
source and target are copies (Ott et al., 2018). On
En–De, this brings the set from 4.6B to 700M.
We then train a En–De model on a clean dataset
(WMT’14 news commentary) to score the remain-
ing 700M sentence pairs, and retain the 140M
pairs with best average token log-likelihood. To
train an En–Fr model, we filter the data to 129M
pairs using the same procedure.

Next, we explored different ways to weight the
WMT and Paracrawl data. Figure 5 shows the val-
idation loss for En-De models trained with differ-
ent sampling ratios of WMT and filtered Paracrawl
data during training. The model with 1:1 ratio per-
forms best on the validation set, outperforming the
model trained on only WMT data. For En-Fr, we
found a sampling ratio of 3:1 (WMT:Paracrawl)
performed best.

Test set results are given in Table 3. We find that
Paracrawl improves BLEU on En–De to 29.8 but
it is not beneficial for En–Fr, achieving just 42.1
vs. 43.2 BLEU for our baseline.

5 Analysis of Stragglers

In a distributed training setup with synchronized
SGD, workers may take different amounts of time
to compute gradients. Slower workers, or strag-
glers, cause other workers to wait. There are sev-
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Figure 5: Validation loss when training on
Paracrawl+WMT with varying sampling ratios.
1:4 means sampling 4 Paracrawl sentences for ev-
ery WMT sentence. WMT En-De, newstest13.
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eral reasons for stragglers but here we focus on
the different amounts of time it takes to process
the data on each GPU.

In particular, each GPU typically processes one
sub-batch containing sentences of similar lengths,
such that each sub-batch has at most N tokens
(e.g., N = 3.5k tokens), with padding added as
required. We refer to sub-batches as the data that
is processed on each GPU worker whose combina-
tion is the entire batch. The sub-batches processed
by a worker may therefore differ from other work-
ers in the following three characteristics: the num-
ber of sentences, the maximum source sentence
length, or the maximum target sentence length. To
illustrate how these characteristics impact training
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speed, Figure 6 shows the amount of time required
to process the 44K sub-batches in the En-De train-
ing data. There is large variability in the amount
time to process sub-batches with different charac-
teristics: the mean time to process a sub-batch is
0.11 seconds, the slowest sub-batch takes 0.228
seconds and the fastest 0.049 seconds. Notably,
there is much less variability if we only consider
batches of a similar shape (e.g., batches where
23 ≤ src len ≈ tgt len ≤ 27).

Unsurprisingly, constructing sub-batches based
on a maximum token budget as just described ex-
acerbates the impact of stragglers. In Section 4.2
we observed that we could reduce the variance
between workers by accumulating the gradients
over multiple sub-batches on each worker be-
fore updating the weights (see illustration in Fig-
ure 2). A more direct, but naı̈ve solution is to as-
sign all workers sub-batches with a similar shape.
However, this increases the variance of the gradi-
ents across batches and adversely affects the final
model. Indeed, when we trained a model in this
way, then it failed to converge to the target valida-
tion perplexity of 4.32 (cf. Table 1).

As an alternative, we construct sub-batches
so that each one takes approximately the same
amount of processing time across all workers. We
first set a target for the amount of time a sub-batch
should take to process (e.g., the 90th percentile
in Figure 6) which we keep fixed across training.
Next, we build a table to estimate the processing
time for a sub-batch based on the number of sen-
tences and maximum source and target sentence
lengths. Finally, we construct each worker’s sub-
batches by tuning the number of sentences until
the estimated processing time reaches our target.
This approach improves single-node throughput
from 143k tokens-per-second to 150k tokens-per-
second, reducing the training time to reach 4.32
perplexity from 495 to 479 minutes (cf. Table 1,
16-bit). Unfortunately, this is less effective than
training with large batches, by accumulating gra-
dients from multiple sub-batches on each worker
(cf. Table 1, cumul, 447 minutes). Moreover,
large batches additionally enable increasing the
learning rate, which further improves training time
(cf. Table 1, 2x lr, 311 minutes).

6 Conclusions

We explored how to train state-of-the-art NMT
models on large scale parallel hardware. We in-

vestigated lower precision computation, very large
batch sizes (up to 400k tokens), and larger learn-
ing rates. Our careful implementation speeds up
the training of a big transformer model (Vaswani
et al., 2017) by nearly 5x on one machine with 8
GPUs.

We improve the state-of-the-art for WMT’14
En-Fr to 43.2 vs. 41.5 for Shaw et al. (2018),
training in less than 9 hours on 128 GPUs. On
WMT’14 En-De test set, we report 29.3 BLEU
vs. 29.2 for Shaw et al. (2018) on the same setup,
training our model in 85 minutes on 128 GPUs.
BLEU is further improved to 29.8 by scaling the
training set with Paracrawl data.

Overall, our work shows that future hardware
will enable training times for large NMT sys-
tems that are comparable to phrase-based sys-
tems (Koehn et al., 2007). We note that multi-node
parallelization still incurs a significant overhead:
16-node training is only ∼10x faster than 1-node
training. Future work may consider better batch-
ing and communication strategies.
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Rafal Józefowicz. 2016. Revisiting distributed syn-
chronous sgd. Arxiv, 1604.00981.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
Yonghui Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent advances in neu-
ral machine translation. arxiv, 1804.09849.

Adam Coates, Brody Huval, Tao Wang, David J. Wu,
Bryan Catanzaro, and Andrew Y. Ng. 2013. Deep
learning with cots hpc systems. In Proc. of ICML.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. 2015. Training deep neural networks with
low precision multiplications.

Jeff Dean. 2017. Machine learning for systems and
systems for machine learning. In Proc. of NIPS
Workshop on ML Systems.

7



Jeffrey Dean, Gregory S. Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew W. Senior, Paul A.
Tucker, Ke Yang, and Andrew Y. Ng. 2012. Large
scale distributed deep networks. In Proc. of NIPS.

Ondrej Dusek and Filip Jurcı́cek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proc. of ACL.

Sergey Edunov, Myle Ott, and Sam Gross. 2017.
Fairseq. https://github.com/pytorch/
fairseq.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
Sequence to Sequence Learning. In Proc. of ICML.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. 2017. Ac-
curate, Large Minibatch SGD: Training ImageNet in
1 Hour. In Proc. of CVPR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep Residual Learning for Image
Recognition. In Proc. of CVPR.

Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017.
Train longer, generalize better: closing the gener-
alization gap in large batch training of neural net-
works. In Proc. of NIPS, pages 1729–1739.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proc. of
ICLR.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
ACL Demo Session.

Jaroslaw Kutylowski. 2018. Deepl press information.
https://www.deepl.com/press.html.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Gar-
cia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018.
Mixed Precision Training. In Proc. of ICLR.

Myle Ott, Michael Auli, David Grangier, and MarcAu-
relio Ranzato. 2018. Analyzing uncertainty in neu-
ral machine translation. In International Conference
on Machine Learning (ICML).

ParaCrawl. 2018. ParaCrawl. http:
//paracrawl.eu/download.html.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In Proc. of ICLR.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey E. Hinton. 2017. Reg-
ularizing neural networks by penalizing confident
output distributions. In Proc. of ICLR Workshop.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv, 1804.08771.

Raul Puri, Robert Kirby, Nikolai Yakovenko, and
Bryan Catanzaro. 2018. Large scale language mod-
eling: Converging on 40gb of text in four hours.
arXiv preprint arXiv:1808.01371.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces of
eight: 8-bit neural machine translation. In Proc. of
NAACL.

Christopher De Sa, Megan Leszczynski, Jian Zhang,
Alana Marzoev, Christopher R. Aberger, Kunle
Olukotun, and Christopher Ré. 2018. High-accuracy
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Abstract

Character-level Neural Machine Translation
(NMT) models have recently achieved impres-
sive results on many language pairs. They
mainly do well for Indo-European language
pairs, where the languages share the same
writing system. However, for translating be-
tween Chinese and English, the gap between
the two different writing systems poses a ma-
jor challenge because of a lack of system-
atic correspondence between the individual
linguistic units. In this paper, we enable
character-level NMT for Chinese, by breaking
down Chinese characters into linguistic units
similar to that of Indo-European languages.
We use the Wubi encoding scheme1, which
preserves the original shape and semantic in-
formation of the characters, while also being
reversible. We show promising results from
training Wubi-based models on the character-
and subword-level with recurrent as well as
convolutional models.

1 Introduction

Character-level sequence-to-sequence (Seq2Seq)
models for machine translation can perform
comparably to subword-to-subword or subword-
to-character models, when dealing with Indo-
European language pairs, such as German-English
or Czech-English (Lee et al., 2017). Such lan-
guage pairs benefit from having a common Latin
character representation, which facilitates suitable
character-to-character mappings to be learned.
This method, however, is more difficult for non-
Latin language pairs, such as Chinese-English.
Chinese characters differ from English characters,
in the sense that they carry more meaning and
resemble subword units in English. For exam-
ple, the Chinese character ‘人’ corresponds to the

1Code and data available at https://github.com/
duguyue100/wmt-en2wubi.

* Equal contribution

������� 

b d y a d

bd|yad

Seq2Seq 

commitment

………………

……… ………

Figure 1: Overview of the wubi2en approach to
Chinese-to-English translation. A raw Chinese
word (‘承诺’) is encoded into ASCII characters
(‘bd|yad’), using the Wubi encoding method, be-
fore passing it to a Seq2Seq network. The net-
work generates the English translation ‘commit-
ment’, processing one ASCII character at a time.

word ‘human’ in English. This lack of correspon-
dence makes the problem more demanding for a
Chinese-English character-to-character model, as
it would be forced to map higher-level linguis-
tic units in Chinese to individual Latin characters
in English. Good performance on this task may,
therefore, require specific architectural decisions.

In this paper, we propose a simple solution to
this challenge: encode Chinese into a meaning-
ful string of ASCII characters, using the Wubi
method (Lunde, 2009) (Section 3). This encoding
enables efficient and accurate character-level pre-
diction applications in Chinese, with no changes
required to the model architecture (see Figure 1).
Our approach significantly reduces the character
vocabulary size of a Chinese text, while preserv-
ing the shape and semantic information encoded
in the Chinese characters.
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We demonstrate the utility of the Wubi en-
coding on subword- and character-level Chinese
NMT, comparing the performance of systems
trained on Wubi vs. raw Chinese characters (Sec-
tion 4). We test three types of Seq2Seq models: re-
current (Cho et al., 2014) convolutional (Gehring
et al., 2017) as well as hybrid (Lee et al., 2017).
Our results demonstrate the utility of Wubi as a
preprocessing step for Chinese translation tasks,
showing promising performance.

2 Background

2.1 Sequence-to-sequence models for NMT

Neural networks with Encoder-Decoder archi-
tectures have recently achieved impressive per-
formance on many language pairs in Machine
Translation, such as English-German and English-
French (Wu et al., 2016). Recurrent Neural Net-
works (RNNs) (Cho et al., 2014) process and en-
code the input sequentially, mapping each word
onto a vector representation of fixed dimensional-
ity. The representations are used to condition a de-
coder RNN which generates the output sequence.

Recent studies have shown that Convolu-
tional Neural Networks (CNNs) (LeCun et al.,
1998) can perform better on Seq2Seq tasks than
RNNs (Gehring et al., 2017; Chen and Wu, 2017;
Kalchbrenner et al., 2016). CNNs enable simul-
taneous computations which are more efficient es-
pecially using parallel GPU hardware. Successive
layers in CNN models have an increasing recep-
tive field for modeling long-term dependencies in
candidate languages.

2.2 Chinese-English translation

Recent large-scale benchmarks of RNN encoder-
decoder models (Wu et al., 2016; Junczys-
Dowmunt et al., 2016) have shown that transla-
tion pairs involving Chinese are among the most
challenging for NMT systems. For instance, in
Wu et al. (2016) an NMT system trained on
English-to-Chinese had the least relative improve-
ment across five other language pairs, measured
over the performance of a phrase-based machine
translation baseline.

While it is known that the quality of a Chi-
nese translation system can be significantly im-
pacted by the choice of word segmentation (Wang
et al., 2015), there has been little work on improv-
ing the representation medium for Chinese trans-
lation. Wang et al. (2017) perform an empirical

comparison on various translation granularities for
the Chinese-English task. They find that adding
additional information about the segmentation of
the Chinese characters, such as marking the start
and the end of each word, leads to improved per-
formance over raw character or word translation.

The work that is most related to ours is (Du and
Way, 2017), in which they use Pinyin2 to romanize
raw Chinese characters based on their pronuncia-
tion. This method, however, adds ambiguity to the
data, because many Chinese characters share the
same pronunciation.

3 Encoding Chinese characters with
Wubi

Wubi (Lunde, 2009) is a shape-based encoding
method for inputting Chinese characters on a com-
puter QWERTY keyboard. The encoding is based
on the structure of the characters rather than on
their pronunciation. Using the method, each raw
Chinese character (e.g., “设”) can be efficiently
mapped to a unique sequence of 1 to 5 ASCII
characters (e.g., “ymc”). This feature greatly re-
duces the ambiguity brought by other phonetic in-
put methods, such as Pinyin.

As an input method, Wubi uses 25 key caps
from the QWERTY keyboard, where each key cap
is assigned to five categories based on the char-
acter’s first stroke (when written by hand). Each
of the key caps is associated with different char-
acter roots. A Chinese character is broken down
into its character roots, and a corresponding QW-
ERTY association of the character roots is used
to encode a word. For example, the Wubi encod-
ing of ‘哈’ is ‘kwgk’, and the character roots of
this word are 口(k),　人(w),　王(g) and 口(k).
To create a one-to-one mapping of every Chinese
character to a Wubi encoding during translation,
we append numbers to the encodings, whenever
one code maps to multiple Chinese characters.

Table 1: Examples of Wubi words and the corre-
sponding Chinese words

English Chinese Wubi
Set up 编设 xyna0|ymc

Public property 公共财产 wc|aw|mf|u
Step aside 让开 yh|ga

Applying Wubi significantly reduces the
2The official romanization system for Standard Chinese

in mainland China.
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character-level vocabulary size of a Chinese
text (from > 5, 000 commonly used Chinese
characters, to 128 ASCII characters3), while
preserving its shape and semantic information.
Table 1 contains examples of Wubi, along with
the corresponding words in Chinese and English.

4 Results

4.1 Dataset

In this work, we use a subset of the English and
Chinese parts of the United Nations Parallel Cor-
pus (Ziemski et al., 2016). We choose the UN cor-
pus because of its high-quality, man-made trans-
lations. The dataset is sufficient for our purpose:
our aim here is not to reach state-of-the-art per-
formance on Chinese-English translation, but to
demonstrate the potential of the Wubi encoding on
the character level.

We preprocess the UN dataset with the MOSES
tokenizer4, and use Jieba5 to segment the Chinese
sentence into words, following which we encode
the texts into Wubi. We use the ‘|’ character as a
subword separator for Wubi, in order to ensure that
the mapping from Chinese to Wubi is unique. We
also convert all Chinese punctuation marks (e.g.
‘。、《》’) from UTF-8 to ASCII (e.g. ‘.,<>’)
because they share similar linguistic roles to En-
glish punctuations. This conversion additionally
decreases the size of the Wubi character vocabu-
lary.

Our final dataset contains 2.1M sentence pairs
for training, and 55k pairs for validation and test-
ing respectively (Table 2 contains additional statis-
tics). Note that our procedures are entirely re-
versible.

Table 2: Statistics of our dataset (mean and stan-
dard deviation).

English Wubi Chinese
words 25.8±11.0 22.9±10.0 22.9±10.0per sentence

characters 4.9±3.3 4.6±3.3 1.8±0.83per word
characters 152.3±67.9 127.1±56.5 63.5±27.6per sentence

To investigate the utility of the Wubi encoding,
we compare the performance of NMT models

3302 ASCII and special characters such as non-ASCII
symbols used in the experiments, see Section 4.

4https://github.com/moses-smt
5https://github.com/fxsjy/jieba

on four training pairs: raw Chinese-to-English
(cn2en) versus Wubi-to-English (wubi2en);
English-to-raw Chinese (en2cn) versus English-
to-Wubi (en2wubi). For each pair, we investigate
three levels of sequence granularity: word-
level, subword-level, and character-level. The
word-level operates on individual English words
(e.g. walk) and either raw-Chinese words (e.g.编
设) or Wubi words (e.g. sh|wy). We limit all word-
level vocabularies to the 50k most frequent words
for each language. The subword-level is produced
using the byte pair encoding (BPE) scheme
(Sennrich et al., 2016), capping the vocabulary
size at 10k for each language. The character-level
operates on individual raw-Chinese characters
(e.g. ‘重’), or individual ASCII characters.

4.2 Model descriptions and training details
Our models are summarized in Table 3, includ-
ing the number of parameters and vocabulary sizes
used for each pair. For the subword- and word-
level experiments, we use two systems6. The
first, LSTM, is an LSTM Seq2Seq model (Cho
et al., 2014) with an attention mechanism (Bah-
danau et al., 2015). We use a single layer of 512
hidden units for the encoder and decoder, and set
512 as the embedding dimensionality. The second
system, FConv, is a smaller version of the convo-
lutional Seq2Seq model with an attention mecha-
nism from (Gehring et al., 2017). We use word
embeddings with dimension 256 for this model.
The encoder and the decoder of FConv have the
same convolutional architecture which consists of
4 convolution layers for the encoder and 3 for the
decoder, each layer having filters with dimension
256 and size 3.

For all character-level experiments, we use the
fully-character level model, char2char from (Lee
et al., 2017)7. The encoder of this model consists
of 8 convolutional layers with max pooling, which
produce intermediate representations of segments
of the input characters. Following this, a 4-layer
highway network (Srivastava et al., 2015) is ap-
plied, as well as a single-layer recurrent network
with gated recurrent units (GRUs) (Cho et al.,
2014). The decoder consists of an attention mech-
anism and a two-layer GRU, which predicts the
output one character at a time. The character em-
bedding dimensionality is 128 for the encoder and

6We use the fairseq library https://github.
com/pytorch/fairseq.

7https://github.com/nyu-dl/dl4mt-c2c
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Table 3: Model and vocabulary sizes used in our experiments. In brackets, we include the number of
embedding parameters for a model (left), or the percentage of vocabulary coverage of the dataset (right).

No. of model parameters (Embedding) Vocab Size (% coverage of dataset)
level char2char FConv LSTM EN Wubi CN
word - 42M (25M) 83M (51M) 50k (99.7%) 50k (99.5%) 50k (99.5%)

subword - 11M (5.1M) 22M (10.6M) 10k (100%) 10k (100%) 10k (98.7%)
character 69-74M (0.21M-2.81M†) - - 302 (100%) 302 (100%) 5183 (100%)

†: 0.21M for wb2en/en2wb (69M in total); 0.77M for cn2en (70M) and 2.81M for en2cn (74M),
due to a larger size of the decoder embedding.

Table 4: BLEU test scores on the UN dataset.

character subword word
char2char FConv LSTM FConv LSTM

wubi2en 40.55 38.20 43.06 39.53 43.36

cn2en 39.60 38.20 43.03 39.64 43.67

en2wubi 36.78 36.04 39.03 36.98 39.69

en2cn† 36.13 35.41 38.64 37.25 39.59
†: We convert these translations to Wubi before computing BLEU to ensure a consistent comparison.

512 for the decoder, whereas the number of hid-
den units is 512 for the encoder and 1024 for the
decoder.

We train all models for 25 epochs using the
Adam optimizer (Kingma and Ba, 2014). We used
four NVIDIA Titan X GPUs for conducting the
experiments, and use beam search with beam size
of 20 to generate all final outputs.

4.3 Quantitative evaluation

In Table 4, we present the BLEU scores for all the
previously described experiments. Before com-
puting BLEU, we convert all Chinese outputs to
Wubi to ensure a consistent comparison. This con-
version has a one-to-one mapping between Chi-
nese and Wubi, whereas, in the reverse direc-
tion, ill-formed Wubi output on the character-level
might not be reversible to Chinese.

On the word-level, the Wubi-based models
achieve comparable results to their counterparts
in Chinese, in both translation directions. LSTM
significantly outperforms FConv across all experi-
ments here, most likely due to its much larger size
(see Table 3).

On the subword-level, we observe a slight in-
crease of about 0.5 BLEU when translating from
English to Wubi instead of raw Chinese. This in-
crease is most likely due to the difference in the
BPE vocabularies: while the English and Wubi
BPE rules that were learned cover 100% of the
dataset, for Chinese this is 98.7% - the remaining

1.3% had to be replaced by the unk symbol un-
der our vocabulary constraints. While the models
were capable of compensating for this gap when
translating to English, in the reverse direction it
resulted in a loss of performance. This highlights
one benefit of Wubi on the subword-level: the
Latin encoding seems to give a greater flexibil-
ity for extracting suitable BPE rules. It would be
interesting to repeat this comparison using much
larger datasets and larger BPE vocabularies.

Character-level translation is more difficult than
word-level, since the models are expected to not
only predict sentence-level semantics, but also to
generate the correct spelling of each word. Our
char2char Wubi models outperformed the raw
Chinese models with 0.95 BLEU points when
translating to English, and 0.65 BLEU when trans-
lating from English. The differences are statisti-
cally significant (p = 0.001 and p = 0.034 respec-
tively) according to bootstrap resampling (Koehn,
2004) with 1500 samples. The results demon-
strate the advantage of Wubi on the character-
level, which outperforms raw Chinese even though
it has fewer parameters dedicated for character
embeddings (Table 3) and that it has to deal with
substantially longer input or output sequences (see
Table 2).

In Figure 2, we plot the sentence-level BLEU
scores obtained by the char2char models on our
test set, with respect to the length of the input
sentences. When translating from Chinese to En-
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(a) Translation from Chinese to English.
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(b) Translation from English to Chinese.

Figure 2: Sentence-level BLEU scores obtained by the character-level char2char models on our test
dataset, plotted with respect to the word length of the source sentences.

glish (Figure 2a) the Wubi-based model consis-
tently outperforms the raw Chinese model, for
all input lengths. Interestingly, the gap between
the two systems increases for longer Chinese in-
puts of over 20 words, indicating that Wubi is
more robust for such examples. This result could
be explained by the fact that the encoder of the
char2char model is more suitable for modeling
languages with a higher level of granularity such
as English and German. When translating from
English to Chinese (Figure 2b) Wubi still has a
small edge, however in this case we see the re-
verse trend: it performs much better on shorter
sentences up to 12 English words. Perhaps, the
increased granularity of the output sequence led to
an advantage during decoding using beam search.

Interestingly, all the char2char models use only
a tiny fraction of their parameters as embeddings,
due to the much smaller size of their vocabularies.
The best-performing LSTM word-level model has
the majority of its parameters, 61% or over 50M,
dedicated to word embeddings. For the Wubi-
based character-level models, the number is only
0.3% or 0.21M. There is even a significant differ-
ence between Wubi and Chinese on the character-
level, for example, en2wb has 12 times fewer em-
bedding parameters than en2cn. Thus, although
char2char performed worse than LSTM in our ex-
periments, these results highlight the potential of
character-level prediction for developing compact
yet performant translation systems, for Latin as
well as non-Latin languages.

4.4 Qualitative evaluation

In Table 5, we present four examples from our test
dataset that cover short as well as long sentences.

We also include the translations produced by the
character-level char2char systems, which is the
main focus of this paper. Full examples from the
additional systems are available in the supplemen-
tary material.

In the first example, which is a short sen-
tence resembling the headline of a document, both
the wubi2en and cn2en models produced correct
translations. When translating from English to
Chinese, however, the en2wubi produced the word
‘与’ (highlighted in red) which more correctly
matches the ground truth text. In contrast, the
en2cn model produced the synonym ‘和’. In the
second example, the en2wubi output completely
matches the ground truth and is superior to the
en2cn output. The latter failed to correctly trans-
late ‘the’ to ‘这次’ (marked in green).

The wubi2en translation in the third example ac-
curately translated the word ‘believe’ (marked in
blue) and the full form of the abbreviation ‘ldcs’
– ‘the least developed countries’ (highlighted in
green), whereas the cn2en chooses ‘are convinced’
and ignores ‘ldcs’ in its output sentence. Inter-
estingly, although the ground truth text maps the
word ‘essential’ (marked in red) to three Chinese
words ‘至 为 重要’, both en2wubi and en2cn
use only a single word to interpret it. Arguably,
en2wubi’s translation ‘至关重要’ is closer to the
ground truth than en2cn’s translation ‘必不可少’.

The fourth example is more challenging. There,
the English ground truth ‘requested’ (highlighted
in blue) maps to two different parts of the Chi-
nese ground truth ‘提出’ (in blue) and ‘要求’ (in
green). This one-to-many mapping confuses both
translation models. The wubi2en tries to match
the Chinese text by translating ‘提出’ into ‘pro-
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Table 5: Four examples from our test dataset, along with system-generated translations produced by the
char2char models. We converted the Wubi translations to raw Chinese. Translations of words with a
similar meaning are marked with the same color.

Translation Type Example 1
English ground truth social and human rights questions
Chinese ground truth 社会与人权问题
Wubi ground truth py|wf gn w|sc ukd0|jghm1|

wubi2en social and human rights questions
cn2en social and human rights questions
en2wubi 社会与人权问题
en2cn 社会和人权问题

Example 2
English ground truth the informal consultations is open to all member states .
Chinese ground truth 所有会员国均可参加这次非正式协商。
Wubi ground truth rn|e wf|km|l fqu sk cd|lk p|uqw djd|ghd0|aa fl|um .

wubi2en this informal consultation may be open to all member states .
cn2en the informal consultations will be open to all member states .
en2wubi 所有会员国均可参加这次非正式协商。
en2cn 所有会员国均可进行非正式协商。

Example 3
English ground truth we believe that increased trade is essential for the growth and development of ldcs .
Chinese ground truth 我们相信，增加贸易对最不发达国家的增长和发展至为 重要。
Wubi ground truth q|wu sh|wy , fu|lk qyv|jqr cf jb i v|dp|l|pe r fu|ta t v|nae gcf o tgj|s .

wubi2en we believe that increased trade is essential for the growth and development of the least
developed countries .

cn2en we are convinced that increased trade growth and development is essential .
en2wubi 我们认为 ，增加贸易对最不发达国家的增长和发展至关重要。
en2cn 我们认为 ，增加贸易对于最不发达国家的增长和发展来说是必不可少的。

Example 4
English ground truth in some cases , additional posts were requested without explanation .
Chinese ground truth 在某些情况中，提出增加员额要求时，并未作出说明。
Wubi ground truth d afs|hxf nge|ukq k , rj|bm fu|lk km|ptkm0 s|fiy jf , ua|fii wt|bm yu|je .

wubi2en in some cases , no indication was made when additional staffing requirements were pro-
posed .

cn2en in some cases , there was no indication of the request for additional posts .
en2wubi 在有些情况下，要求增加员额。
en2cn 在有些情况下还要求增设员额，但没有作出任何解释。

posed’ and ‘要求’ into ‘requirements’: this model
may have been misled by the word ‘时’ (can be
translated to ‘when’); the output contains an ad-
verbial clause. While the wubi2en output is closer
to the ground truth, the two have little overlap.
For the English-to-Chinese task, the en2cn trans-
lation is better than the one produced by en2wubi:
while en2cn successfully translated ‘without ex-
planation’ (in red), the en2wubi model ignored this
part of the sentence.

The Wubi-based models tend to produce
slightly shorter translations for both directions
(see Table 6). In overall, the Wubi-based outputs
appear to be visibly better than the raw Chinese-
based outputs, in both directions.

5 Conclusion

We demonstrated that an intermediate encod-
ing step to ASCII characters is suitable for the
character-level Chinese-English translation task,

Table 6: Word counts of the outputs of the
char2char models (mean and standard deviation).

Model Word Count
wb2en 25.01± 10.95
cn2en 25.80± 11.72

en2wb 21.61± 9.68
en2cn 22.19± 10.11

and can even lead to performance improvements.
All of our models trained using the Wubi encod-
ing achieve comparable or better performance to
the baselines trained directly on raw Chinese. On
the character-level, using Wubi yields BLEU im-
provements when translating both to and from En-
glish, despite the increased length of the input or
output sequences, and the smaller number of em-
bedding parameters used. Furthermore, there are
also improvements on the subword-level, when
translating from English.
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Future work will focus on making use of the se-
mantic structure of the Wubi encoding scheme, to
develop architectures tailored to utilize it. Another
exciting future direction is multilingual many-to-
one character-level translation from Chinese and
several Latin languages simultaneously, which be-
comes possible using encodings such as Wubi.
This has previously been successfully realized for
Latin and Cyrillic languages (Lee et al., 2017).
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Abstract

Recent neural machine translation (NMT)

systems have been greatly improved by

encoder-decoder models with attention mech-

anisms and sub-word units. However, im-

portant differences between languages with

logographic and alphabetic writing systems

have long been overlooked. This study fo-

cuses on these differences and uses a simple

approach to improve the performance of NMT

systems utilizing decomposed sub-character

level information for logographic languages.

Our results indicate that our approach not

only improves the translation capabilities of

NMT systems between Chinese and English,

but also further improves NMT systems be-

tween Chinese and Japanese, because it uti-

lizes the shared information brought by simi-

lar sub-character units.

1 Introduction

Neural machine translation (Cho et al., 2014)

(NMT) systems based on sequence-to-sequence

models (Sutskever et al., 2014) have recently be-

come the de facto standard architecture. The

models use attention mechanisms (Bahdanau

et al., 2015; Luong et al., 2015) to keep records

of all encoding results, and can focus on particu-

lar parts of these results during decoding, so that

the model can produce longer and more accurate

translations. Sub-word units are another tech-

nique first introduced by Sennrich’s (2016) appli-

cation of the byte pair encoding (BPE) algorithm,

and are used to break up words in both source and

target sentences into sequences of smaller units,

learned without supervision. This alleviates the

risk of producing <unk> symbols when the model
encounters infrequent “unknown” words, also

known as the out-of-vocabulary (OOV) problem.

Moreover, sub-word units, which can be viewed

as learned stems and affixes, can help the NMT

model better encode the source sentence and de-

code the target sentence, particularly when the

source and target languages share some similar-

ities.

Almost all of the methods used to improve

NMT systems were developed for alphabetic lan-

guages such as English, French, and German as

either the source or target language, or both. An

alphabetic language typically uses an alphabet: a

small set of letters (basic writing symbols) that

each roughly represents a phoneme in the spo-

ken language. Words are composed by ordered

letters, and sentences are composed by space-

segmented ordered words. However, in other

major writing systems—namely, logographic (or

character-based) languages such as Chinese,

Japanese, and traditional Korean—strokes are

used to construct ideographs; ideographs are used

to construct characters, which are the basic units

for meaningful words. Words can then further

compose sentences. In alphabetic languages,

sub-word units are easy to identify, whereas in

logographic languages, a similar effect can be

achieved only if sub-character level information

is taken into consideration.1

Having noticed this significant difference

between these two writing systems, Shi et

al. (2015), Liu et al. (2017), Peng et al. (2017),

and Cao et al. (2017) used stroke-level informa-

tion for logographic languages when constructing

word embeddings; Toyama et al. (2017) used vi-

sual information for strokes and Japanese Kanji

1Taking the ASPEC corpus as an example, the average
word lengths are roughly 1.5 characters (Chinese words, to-
kenized by Jieba tokenizer), 1.7 characters (Japanese words,
tokenized byMeCab tokenizer), and 5.7 characters (English
words, tokenized by Moses tokenizer), respectively. There-
fore, when a sub-wordmodel of similar vocabulary size is ap-
plied directly, English sub-words usually contain several let-
ters, which are more effective in facilitating NMT, whereas
Chinese and Japanese sub-words are largely just characters.
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radicals in a text classification task.2

Some studies have performed NMT tasks using

various sub-word “equivalents”. For instance,

Du and Way (2017) trained factored NMT mod-

els using “Pinyin”3 sequences on the source side.

Unfortunately, they did not apply a BPE algo-

rithm during training, and their model also cannot

perform factored decoding. Wang et al. (2017)

directly applied a BPE algorithm to character se-

quences before building NMT models. However,

they did not take advantage of sub-character level

information during the training of sub-word and

NMT models. Kuang and Han (2018) also at-

tempted to use a factored encoder for Chinese

NMT systems using radical data. It is worth not-

ing that although the idea of using ideographs and

strokes in NLP tasks (particularly in NMT tasks)

is not new, no previous NMT research has fo-

cused on the decoding process. If it is also possi-

ble to construct an ideograph/stroke decoder, we

can further investigate translations between lo-

gographic languages. Additionally, no NMT re-

search has previously used stroke data.

To summarize, there are three potential in-

formation gaps associated with current studies

on NMT systems for logographic languages us-

ing sub-character level data: 1) no research has

been performed on the decoding process; 2) no

studies have trained models using sub-character

level sub-words; and 3) no studies have attempted

to build NMT models for logographic language

pairs, despite their sharing many similarities.

This study investigates whether sub-character in-

formation can facilitate both encoding and decod-

ing in NMT systems and between logographic

language pairs, and aims to determine the best

sub-character unit granularity for each setting.

The main contributions of this study are three-

fold:

1. We create a sub-character database of Chi-

nese character-based languages, and conduct

MT experiments using various types of sub-

character NMT models.

2To be more precise, there is another so-called syl-
labic writing system, which uses individual symbols to
represent symbols rather than phonemes. Japanese hira-
gana and katakana are actually syllabic symbols rather than
ideographs. In this paper, we focus only on the logographic
part.

3An official Romanization system for standard Chinese
in mainland China. Pinyin includes both letters and dia-
critics, which represent phonemic and tonal information, re-
spectively.

2. We facilitate the encoding or decoding pro-

cess by using sub-character sequences on ei-

ther the source or target side of the NMT

system. This will improve translation perfor-

mance; if sub-character information is shared

between the encoder and decoder, it will fur-

ther benefit the NMT system.

3. Specifically, Chinese ideograph4 data and

Japanese stroke data are the best choices for

relevant NMT tasks.

2 Background

2.1 NMT with Attention Mechanisms and

Sub-word Units

In this study, we applied a sequence-to-sequence

model with an attention mechanism (Bahdanau

et al., 2015). The basic recurrent unit is the “long

short-term memory” (Hochreiter and Schmidhu-

ber, 1997) unit. Because of the nature of the

sequence-to-sequence model, the vocabulary size

must be limited for the computational efficiency

of the Softmax function. In such cases, the de-

coder outputs an <unk> symbol for any word

that is not in the vocabulary, which will harm

the translation quality. This is called the out-of-

vocabulary (OOV) problem.

Sub-word unit algorithms (such as BPE algo-

rithms) first break up a sentence into the smallest

possible units. Then, two adjacent units at a time

are merged according to some standard (e.g., the

co-occurrence frequency). Finally, after n steps,

the algorithm collects the merged units as “sub-

word” units. By using sub-word units, it is pos-

sible to represent a large number of words with

a small vocabulary. Originally, sub-word units

were only applied to unknown words (Sennrich

et al., 2016). However, in the recent GNMT (Wu

et al., 2016) and transformer systems (Vaswani

et al., 2017), all words are broken up into sub-

word units to better represent the shared informa-

tion.

For alphabetic languages, researchers have in-

dicated that sub-word units are useful for solving

OOV problems, and that shared information can

further improve translation quality. The Senten-

cepiece project5 compared several combinations

of word-pieces (Kudo, 2018) and BPE sub-word

4We use the term “logographic” to refer to writing sys-
tems such as Chinese characters and Japanese Kanji, and
“ideograph” to refer to the character components.

5https://github.com/google/sentencepiece
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Character
Semantic

ideograph

Phonetic

ideograph
Pinyin

驰 run 马 horse 也 chí

池 pool 水(氵) water 也 chí

施 impose 方 direction 也 sh

弛 loosen 弓 bow 也 chí

地 land 土 soil 也 dì

驱 drive 马 horse 区 q

Table 1: Examples of decomposed ideographs of Chi-

nese characters. The composing ideographs of differ-

ent functionality might be shared across different char-

acters.

models in English/Japanese NMT tasks. The sub-

word units were trained on character (Japanese

Kanji and Hiragana/Katakana) sequences. Sim-

ilarly, Wang et al. (2017) attempted to compare

the effects of different segmentation methods on

NMT tasks, including “BPE” units trained on

Chinese character sequences.

2.2 Sub-character Units in NLP

In alphabetic languages, the smallest unit for

sub-word unit training is the letter; in character-

based languages, the smallest units should be sub-

character units, such as ideographs or strokes.

Because sub-character units are shared across dif-

ferent characters and have similar meanings, it

is possible to build a significantly smaller vocab-

ulary to cover a large amount of training data.

This has been researched quite extensively within

tasks such as word embeddings, as mentioned

previously.

As we can see from the examples in Table 1,

there are several independent Chinese charac-

ters. Each character can be split into at least

two ideographs: a semantic ideograph and a pho-

netic ideograph.6 More importantly, the same

ideograph can be shared by different characters

denoting similar meanings. For example, the

first five characters (驰, 池, 施, 弛 and 地) have

similar pronunciation (and they are written sim-

ilarly in Pinyin) because they share the same

phonetic ideograph “也”. Similarly, semantic

ideographs can be shared across characters and

denote a similar semantic meaning. For exam-

ple, the first character “驰” and the last char-

acter “驱” share same semantic ideograph “马”

(meaning “horse”); and their semantic meanings

are closely related (“run” and “drive”, respec-

6Semantic ideographs denote the meaning of a character,
whereas phonetic ideographs denote the pronunciation.

Word Meaning Ideographs

树木 Wood 木对木

森林 Forest 木木木木木

Table 2: Examples of multi-character words in Chi-

nese and their ideograph sequences.

tively). A few ideographs can also be treated as

standalone characters.

To the best of our knowledge, however, no re-

search has been performed on logographic lan-

guage NMT beyond character-level data, except

in thework of Du andWay (2017), who attempted

to use Pinyin sequences instead of character se-

quences in Chinese–English NMT tasks. Consid-

ering the fact that there are a large number of ho-

mophones and homonyms in Chinese languages,

it was difficult for this method to be used to re-

construct characters in the decoding step.

3 NMT Using Sub-character Level Units

3.1 Ideograph Information

When building NMT vocabulary, the use of sub-

characters (instead of words, characters, and char-

acter level sub-words) can greatly condense vo-

cabulary size. For example, a vocabulary can be

decreased from 6,000 to 10,000 character types7

to hundreds 8 of ideographs. Table 2 presents two

Chinese words composed of four different char-

acters that have very close meanings. Character-

based NMT models treat these characters sep-

arately as one-hot vectors. In contrast, if the

two words are broken down into ideograph se-

quences, they overlap significantly. Then, only

two ideographs are needed to compose the vocab-

ulary of the two words. The computational load

will be reduced, and the chances of training neu-

rons responsible for low-frequency vocabularies

will increase.

Moreover, sub-character units can serve as

building blocks for constructing characters that

are not present in the training data, because all

CJK characters are designed to be composed of a

limited number of ideographs in UNICODE stan-

dards.

3.2 Stroke Information

All ideographs can be further decomposed into

strokes, which are smaller units and have an even

7According to the ASPEC corpus.
8214 as defined in UNICODE 10.0 standard and 517 as

defined in CNS11643 charset.
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smaller number of types. Therefore, we also

propose training our model on stroke sequences.

There are five basic stroke types for Chinese char-

acters and Japanese Kanji: “horizontal” (一),

“vertical” (丨), “right falling” (㇃), “left falling”

(丿), and “break” (㇕). Each stroke type can be

further sub-categorized into several stroke varia-

tions. For example, left falling strokes contain

both long and short left fallings (㇓ and㇒), while

a break contains many more variations, such as

㇄, ㇅, ㇆, and ㇉ (details can be found in Ap-

pendix A).

In practice, the CNS11643 charset9 is used to

transform each character into a stroke sequence,

where unfortunately only “stroke-type” informa-

tion is available. In this study, we manually tran-

scribed all ideographs into stroke sequences using

33 pre-defined strokes.

3.3 Character Decomposition

The CNS11643 charset is used to facilitate char-

acter decomposition, where Chinese, Japanese,

and Korean characters are merged into a sin-

gle character type based on similarities in their

forms and meanings. This is potentially bene-

ficial; for example, if Chinese and Japanese vo-

cabularies are built, they will authentically share

some common types. There are 517 so-called

“components” (i.e., ideographs) pre-defined in

CNS11643. This ensures that all characters can

be divided into certain sequences of components.

For example, the character “可” can be split into

“丁” and “口”; and the character “君” can be

split into “尹” and “口”. Details can be found

on the CNS11643 website10. Using this ideo-

graph decomposition information, all Chinese

and Japanese sentence data can be transformed

into new ideograph sequences; then, using the

manually transcribed stroke decomposition data

introduced in Section 3.2, we can also obtain new

stroke sequences.

Note that although there are no clear indica-

tions of how the components/strokes are struc-

tured together, the sequence potentially contains

structural information, because the writing of

characters always follows a certain order, such as

“up-down”, “outside-in”, etc. We also note that

UNICODE 10.0 has introduced symbols indi-

9The CNS11643 charset is published and maintained by
the Taiwan government.
http://www.cns11643.gov.tw/AIDB/welcome_en.do

10http://www.cns11643.gov.tw/search.jsp?ID=13

Language Word

JP-character 風 景

JP-ideograph 几一虫 日亠口小_1

JP-stroke
丿㇈㇐㇑㇕㇐㇑㇀㇔

㇑㇕㇐㇐㇔㇐㇑㇆㇐㇚㇒㇔_1

CN-character 风 景

CN-ideograph 几㐅 日亠口小_1

CN-stroke
丿㇈㇒㇔
㇑㇕㇐㇐㇔㇐㇑㇆㇐㇚㇒㇔_1

EN landscape

Table 3: The Japanese word 風景 and Chinese word

风景 both mean “landscape” in English, and they only

differ in the middle part of the first character. Note that

there are “_1” tags at the ends of some decomposed se-

quences to distinguish between possible duplications.

cating sub-character structures (Ideographic De-

scription Characters), which provide a clearer in-

dication of character compositions. Wewill make

further use of this information in future studies.

To ensure that there are no duplicated ideo-

graph and stroke sequences for different charac-

ters andmulti-character words, we post-tag the se-

quences on the duplicated ones using “_1”, “_2”,

etc. Table 3 shows an example of character de-

composition in Chinese and Japanese11.

4 Experiments on

Chinese–Japanese–English Translation

To answer our research questions, we set up a

series of experiments to compare NMT mod-

els of logographic languages trained on word

sequences, character-level sub-word unit se-

quences, and ideograph- and stroke-level sub-

word unit sequences.

We performed two lines of experiments:

1. We trained NMT models between logo-

graphic language and alphabetic language

combinations, i.e., Japanese/Chinese and

English. In each model, we varied the data

granularity for the logographic language,

using “character level” or “sub-character

level” (ideograph level and stroke level)

granularities. We used the character level

11For example, the ideograph and stroke sequences for
character景 are the same as those for character晾 (meaning
“to dry in the sun”). However, these two characters have dif-
ferent architectures (“top-down” vs. “left-right”). Post-tags
are thus appended in order to distinguish them. Similarly,
characters风 and𠘰 have the same ideograph and stroke se-
quences, and thus must be post-tagged.
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NMT models as our baselines, and investi-

gated whether the sub-character level NMT

models could outperform the baseline mod-

els.

2. We trained NMT models between combina-

tions of two logographic languages, i.e., Chi-

nese and Japanese. Similarly, we used data

sets with different granularities: 1) Models

lacking sub-character level data. 2) Mod-

els having sub-character level data on both

sides (to confirm the results of the previ-

ous experiment). For the experiments, the

models will have both source and target

sides. The models will use sub-character

level data with/without shared vocabularies

(namely, ideograph models, stroke models,

ideograph-stroke models, stroke-ideograph

models, and ideograph/stroke models with

shared vocabularies). 3) Pinyin baselines ac-

cording to (Du and Way, 2017), where both

Pinyin word sequences with tones and char-

acter sequences with Pinyin factors are used

with the encoder.

4.1 Dataset

We trained our baselines and experiments using

Chinese, Japanese, and English. The Asian Sci-

entific Paper Excerpt Corpus (ASPEC (Nakazawa

et al., 2016)) and Casia201512 corpus were used

for this purpose.

ASPEC contains a Japanese–English paper

abstract corpus of 3 million parallel sentences

(ASPEC-JE) and a Japanese–Chinese paper

excerpt corpus of 680,000 parallel sentences

(ASPEC-JC). We used the first million con-

fidently aligned parallel sentences in ASPEC-

JE and all of the ASPEC-JC data to cover

Japanese–English and Japanese–Chinese lan-

guage pairs. The Casia2015 corpus contains ap-

proximately 1 million parallel Chinese–English

sentences. All data in the Casia2015 corpus were

used to cover Chinese–English language pairs.

During training, the maximum length hyperpa-

rameter was adjusted to ensure 90% coverage of

the training data. For development and testing,

the ASPEC corpus has an official split between

the development set and test set; however, be-

cause the Casia2015 corpus is not similarly split,

12http://nlp.nju.edu.cn/cwmt-wmt/, provided by the Insti-
tute of Automation, Chinese Academy of Sciences.

we made random selections from the develop-

ment set and test set of 1,000 sentences each.

4.2 Settings

Different pre-tokenization methods were applied

to the data in three languages (if applicable). A

Moses tokenizer was applied to the English data;

a Jieba13 tokenizer using the default dictionary

was applied to the Chinese data; and a MeCab14

tokenizer using the IPA dictionary was applied to

the Japanese data. For the Pinyin baseline, the

pypinyin15 Python library was used to transcribe

the Chinese character sequence into a Pinyin se-

quence.

In both of the experiment lines discussed

above, data at the “word”, “character”, “ideo-

graph”, and “stroke” levels were used in combi-

nations. For “word” level data, only dictionary-

based segmentation was applied; for the other

three levels of data, the byte pair encoding (BPE)

models were trained and applied, with a vocabu-

lary size of 8,000. In the second line of exper-

iments, where both the source and target sides

were logographic languages, we added “charac-

ter” level data without BPE (“char”) for com-

parison. Additionally, shared vocabularies were

applied when both the source and target had the

same data granularity level (meaning that both the

source and target sidewould have the same vocab-

ulary)16.

A basic RNNsearch model (Bahdanau et al.,

2015) with two layers of long short-term mem-

ory (LSTM) units was used. The hidden size was

512. A normalized Bahdanau attention mecha-

nism was applied at the output layer of the de-

coder. We developed our model based on Ten-

sorFlow17 and its neural machine translation tu-

torial18.

The model was trained on a single GeForce

GTX TITAN X GPU. During training, the SGD

optimizer was used, and the learning rate was

set at 1.0. The size of the training batch was

set to 128, and the total global training step was

250,000. We also decayed the learning rate as the

training progressed: after two-thirds of the train-

13https://github.com/fxsjy/jieba
14http://taku910.github.io/mecab/
15https://github.com/mozillazg/python-pinyin
16The shared vocabulary can be trained by a BPE model

on a concatenated corpus of source and target sentences.
17https://github.com/tensorflow
18https://github.com/tensorflow/nmt
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English-Japanese NMT BLEU

EN_word JP_word 36.1

EN_word JP_character 38.3

EN_word JP_ideograph 40.3∗

EN_word JP_stroke 41.3∗

Japanese-English NMT BLEU

JP_word EN_word 25.5

JP_character EN_word 26.3

JP_ideograph EN_word 26.8∗

JP_stroke EN_word 27.0∗

English-Chinese NMT BLEU

EN_word CN_word 11.8

EN_word CN_character 10.3

EN_word CN_ideograph 14.6∗

EN_word CN_stroke 14.1∗

Chinese-English NMT BLEU

CN_word EN_word 14.7

CN_character EN_word 14.5

CN_ideograph EN_word 15.6∗

CN_stroke EN_word 15.5∗

Table 4: Experimental results (BLEU scores) of NMT

systems for Japanese/English and Chinese/English

language pairs. All the scores are statistically signifi-

cant at p = 0.0001 (marked by ∗).

ing steps, we set the learning rate to be four times

smaller until the end of training. Additionally, we

set the drop-out rate to 0.2 during training.

BLEU was used as the evaluation metric in

our experiments. For Chinese and Japanese data,

a KyTea tokenization was applied before we ap-

plied BLEU, following the WAT (Workshop on

Asian Translation) leaderboard standard. To val-

idate the significance of our results, we ran boot-

strap re-sampling (Koehn, 2004) for all results us-

ing Travatar (Neubig, 2013) at a significance level

of p = 0.0001.

4.3 Results

4.3.1 NMT of Logographic and Alphabetic

Language Pairs

Table 4 shows the experimental results for the

Japanese/English and Chinese/English language

pairs in both translation directions. Generally,

for each of the experiment settings, the mod-

els using ideograph and stroke data outperformed

the baseline systems, regardless of the language

pair or translation direction. However, for the

Japanese/English language pair, the stroke se-

quence models performed better. For the Chi-

nese/English language pairs, the ideograph se-

quence models worked better. The reason for

these differences will be discussed in detail in

Section 5.

4.3.2 NMT of Logographic Language Pairs

Table 5 shows the results for all baselines and pro-

posed models. Among the character-level base-

lines, the “char” models and “bpe” models out-

performed the “word” models in both translation

directions. When we applied a shared vocabu-

lary to the “bpe”models, the models achieved the

best BLEU scores in both translation directions.

These character-level baselines conformwith pre-

vious studies indicating that sub-word units im-

prove the performance of NMT systems, and that

whenever both the source and target side data

have similarities in their writing systems, shared

vocabularies will further enhance performance.

Sub-character level models aim to replicate

similar results to those presented in Section 4.3.1,

because only one side of these models uses sub-

character level data. For Japanese–Chinese trans-

lation directions, half of the models showed a sig-

nificant improvement over the baselines, whereas

for Chinese–Japanese translation directions, five

out of six models showed significant improve-

ments.

When both the source and target side used the

same sub-character level data (either ideograph or

stroke data), the experimental results also showed

significant improvement over character baselines.

Additionally, the ideograph models outperformed

stroke models. When shared vocabularies were

applied to the models, the ideograph models ex-

hibited slight performance improvements (0.1 ∼
0.4 BLEU point), and the stroke models exhib-

ited dramatically decreased performance (0.9 ∼
1.1 BLEU points). However, no model here out-

performed the sub-character baselines.

To further exploit the power of sub-character

units, the last models having different levels of

sub-character units on the source and target side

were trained. The results conform with what we

found in Section 4.3.1: the models using Chinese

ideograph data and Japanese stroke data exhib-

ited the best performance, regardless of whether

they were applied at the source or target side. For

Japanese–Chinese translations, the best BLEU

score was 33.8, which was produced by the

Japanese-stroke and Chinese-ideograph model;

for Chinese–Japanese translation, the best BLEU

score was 43.9, which was produced by the

Chinese-ideograph and Japanese-stroke model.
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JP-CN NMT CN_word CN_char CN_bpe CN_ideograph CN_stroke

JP_word 29.6 - - 30.8 30.3

JP_char - 31.6 - 32.0∗ 32.1∗

JP_bpe - - 31.5 (31.7) 31.6 31.7

JP_ideograph 30.4 33.1∗ 33.3∗ 32.0∗ (32.4∗) 33.4∗

JP_stroke 30.3 33.4∗ 32.6∗ 33.8∗ 32.1∗ (31.2)

CN-JP NMT JP_word JP_char JP_bpe JP_ideograph JP_stroke

CN_word 40.0 (40.0) - - 40.5 40.1

CN_char 42.1 (40.4) 41.7 - 43.1∗ 42.2∗

CN_bpe 42.1 - 42.0 (42.3) 43.1∗ 42.2∗

CN_ideograph 43.2∗ 43.5∗ 43.0∗ 42.6∗ (42.7∗) 43.9∗

CN_stroke 43.0∗ 43.3∗ 42.5∗ 42.9∗ 42.2∗ (41.1)

Table 5: Experimental results (BLEU scores) for Japanese/Chinese NMT systems. The row headers and column

headers indicate which source and target data were used in the training. In particular, “word” and “char” are

character level data without BPE segmentation, while “bpe” (character level), “ideograph”, and “stroke” (sub-

character level) are data with BPE segmentation. The scores in parentheses indicate the models that had a shared

vocabulary, whenever applicable. The italic numbers represent the two Pinyin baselines used for comparative

purposes, namely the “WdPyT”model, which uses Pinyin words with tones as the source data, and the “factored-

NMT” model, which uses Pinyin characters as factors (Du and Way, 2017). Note that these two baselines can

only have Chinese data on the encoder side. The ∗ superscripts indicate that a score is significantly better than
the best baseline result.

5 Discussions

5.1 Translation Examples

Table 6 shows some of the translation exam-

ples. There is a rare proper noun “松下電器

(Matsushita Electric)” (OOV) in the source sen-

tence. The word baseline model cannot decode

this; therefore, an <unk> symbol is produced.

The character baseline model avoids the OOV

problem. However, the underlined parts in both

baseline translations seem to be word-for-word

translations from the Japanese source sentence

(“松下 電器 グループ で は”), which be-

come a prepositional phrase in Chinese (“在

松下 电器 集团 中 (in Matsushita Electric

Group)”). This makes the translation ungram-

matical because there will be no noun phrase as

the subject in the sentence. Our best model (i.e.,

sub-character based NMT model using Japanese

stroke data and Chinese ideograph data) can

solve these two problems by better encoding the

source sentence and can produce translations

both without OOV and with a noun phrase as the

sentence subject.

5.2 Strokes vs. Ideographs

The experimental results show that in NMTmod-

els, different logographic languages appear to pre-

fer sub-character units with different granulari-

ties. A very clear tendency that was observed con-

sistently in both experiments was that ideographs

worked better for Chinese and strokes worked

better for Japanese. This difference might be be-

cause of the differences in the writing systems. In

addition to Kanji (Chinese characters), Japanese

uses Hiragana and Katakana, which are stan-

dalone alphabets.

Moreover, as described in Section 4, stroke

models tended to perform more poorly than ideo-

graph models. This probably occurred because

to achieve a fair comparison between all baseline

models and proposed models, the same hyper-

parameter configurations were used. For exam-

ple, the embedding dimensions for all vocabular-

ies were set to 300. This might be appropriate

for vocabularies of character-based data and ideo-

graph data having vocabulary sizes larger than

500. However, the stroke data only has a vocabu-

lary size of approximately 30, which is too dispro-

portional. This phenomenon might also account

for the decrease in BLEU scores when shared vo-

cabularies were applied to stroke models.

5.3 The Encoding and Decoding Process

In comparison with character level data, sub-

character level data (such as ideographs and

strokes) can be used to generate much smaller

andmore concentrated vocabularies. This is help-

ful during both the encoding and decoding pro-

cesses. Vocabularies constructed using character-

level data are known to be very skewed, con-

taining both very frequent words and very rare
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Model Sentence

Source
松下 電器 グループ で は , 経営 理念 の 基本 と し て 1991 年 に 「 環境

宣言 」 を 制定 し た 。

Reference 作为 经营 理念 , 松下电气集团 于 1991年 制定 了 《 环境 宣言 》 。

Baseline

(Word)
在 <unk> 集团 中 , 1991年 制定 了 “ 环境 宣言 ” 作为 经营 理念 的 基础 。

Baseline

(Char)

在 松下电器 集团 中 , 作为 经营 理念 的 基础 , 1991年 制定 了 《 环境

宣言 》 。

Best Model

(JP-stroke-

CN-ideograph)

松下电器集团 , 作为 经营 理念 的 基础 , 1991年 制定 了 “ 环境 宣言 ” 。

English

Translation

The Matsushita Electric Group enacted the ”Environmental Declaration” as the basis of

its business philosophy in 1991.

Table 6: Translation examples of Japanese-Chinese NMT systems. Note that “松下电器” as a proper noun,

could be handled properly in sub-character based translation systems.

words. As a result, during training, the neurons

responsible for high-frequency words might be

updated many times, while the neurons respon-

sible for low-frequency words might be updated

only a very limited number of times. This will

potentially harm translation performance for low-

frequency words.

However, this problem can be alleviated by ap-

plying sub-character units. Because ideographs

and strokes are repeatedly shared by different

characters, no items occur with very low frequen-

cies. More instances can be found in the train-

ing data, even for the least frequent sub-character

items. Therefore, the translation performance for

low-frequency items could be much better.

6 Conclusions and Future Work

This study was the first attempt to use sub-

character units in NMT models. Our results

not only confirmed the positive effects of using

ideograph and stroke sequences in NMT tasks,

but also indicated that different logographic lan-

guages actually preferred different sub-character

granularities (namely, ideograph for Chinese and

stroke for Japanese). Finally, this paper presented

a simple method for extending the available cor-

pus from the character level to the sub-character

level. During this process, we maintained a one-

to-one relationship between the original charac-

ters and transformed sub-character sequences. As

a result, this simple and straightforward method

achieved consistently better results for NMT sys-

tems used to translate logographic languages, and

could be easily applied to similar scenarios.

Many questions remain to be answered in fu-

ture work. The first question involves the relative

benefits of ideograph data and stroke data, and the

effects of shared vocabularies. We have not yet

explained why there are considerable differences

in performance. In particular, for NMT models

in which both sides have stroke data, why does

performance drop dramatically when shared vo-

cabularies are applied? We discussed the possi-

ble reasons for this phenomenon in Section 5.2;

however, further investigation is needed.

Another important issue is as follows: when

characters are transformed into ideographs and

strokes, no structural information is considered.

This causes repetitions in data, and we must add

tags at the end of each sequence to differentiate

them. A better way to solve this problem would

be to have structural information directly encoded

in the data.
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Abstract

Recent work has shown that the encoder-
decoder attention mechanisms in neural ma-
chine translation (NMT) are different from the
word alignment in statistical machine trans-
lation. In this paper, we focus on analyz-
ing encoder-decoder attention mechanisms, in
the case of word sense disambiguation (WSD)
in NMT models. We hypothesize that atten-
tion mechanisms pay more attention to context
tokens when translating ambiguous words.
We explore the attention distribution patterns
when translating ambiguous nouns. Counter-
intuitively, we find that attention mechanisms
are likely to distribute more attention to the
ambiguous noun itself rather than context to-
kens, in comparison to other nouns. We con-
clude that attention is not the main mecha-
nism used by NMT models to incorporate con-
textual information for WSD. The experimen-
tal results suggest that NMT models learn to
encode contextual information necessary for
WSD in the encoder hidden states. For the at-
tention mechanism in Transformer models, we
reveal that the first few layers gradually learn
to “align” source and target tokens and the last
few layers learn to extract features from the re-
lated but unaligned context tokens.

1 Introduction

Human languages exhibit many different types of
ambiguity. Lexical ambiguity refers to the fact that
words can have more than one semantic meaning.
Dealing with these lexical ambiguities is a chal-
lenge for various NLP tasks. Word sense disam-
biguation (WSD) is recognizing the correct mean-
ing of an ambiguous word, with the help of con-
textual information.

In statistical machine translation (SMT) (Koehn
et al., 2003), a system could explicitly take context
tokens into account to improve the translation of
ambiguous words (Vickrey et al., 2005). By con-

trast, in neural machine translation (NMT) (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014), especially in attentional
NMT (Bahdanau et al., 2015; Luong et al., 2015),
each hidden state incorporates contextual informa-
tion. Hence, NMT models could potentially per-
form WSD well. However, there are no empiri-
cal results to indicate that the hidden states encode
the contextual information needed for disambigua-
tion. Moreover, how the attention mechanism1

deals with ambiguous words is also not known yet.
In this paper, we focus on the question of how

encoder-decoder attention mechanisms deal with
ambiguous nouns. We explore two different atten-
tion mechanisms. One is the vanilla one-layer at-
tention mechanism (Bahdanau et al., 2015; Luong
et al., 2015), and the other one is the Transformer
attention mechanism (Vaswani et al., 2017).

Rios et al. (2017) find that attentional NMT
models perform well in translating ambiguous
words with frequent senses,2 while Liu et al.
(2018) show that there are plenty of incorrect
translations of ambiguous words. In Section 4, we
evaluate the translations of ambiguous nouns, us-
ing the test set from Rios et al. (2017). In this
setting, we expect to get a more accurate picture
of the WSD performance of NMT models.

In Section 5, we present a fine-grained inves-
tigation of attention distributions of different at-
tention mechanisms. We focus on the process
of translating the given ambiguous nouns. Previ-
ous studies (Ghader and Monz, 2017; Koehn and
Knowles, 2017) have shown that attention mecha-
nisms learn to pay attention to some unaligned but
useful context tokens for predictions. Thus, we
hypothesize that attention mechanisms distribute
more attention to context tokens when translating

1Denotes the encoder-decoder attention mechanism in
this paper, unless otherwise specified.

2More than 2,000 instances in the training set.
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ambiguous nouns, compared to when translating
other words. To test this hypothesis, we compare
the attention weight over ambiguous nouns with
the attention weight over all words and all nouns.

In Section 6, we first compare the two different
attention mechanisms. Then, we explore the rela-
tion between accuracy and attention distributions
when translating ambiguous nouns. In the end, we
investigate the error distributions over frequency.

Our main findings are summarized as follows:

• We find that WSD is challenging in NMT,
and data sparsity is one of the main issues.
• We show that attention mechanisms prefer to

pay more attention to the ambiguous nouns
rather than context tokens when translating
ambiguous nouns.
• We conclude that encoder-decoder attention

is not the main mechanism used by NMT
models to incorporate contextual information
for WSD. Experimental results suggest that
models learn to encode contextual informa-
tion necessary for WSD in the encoder hid-
den states.
• We reveal that the attention mechanism in

Transformers first gradually learns to extract
features from the “aligned” source tokens.
Then, it learns to capture features from the
related but unaligned source context tokens.

2 Related Work

Both Rios et al. (2017) and Liu et al. (2018) pro-
pose some techniques to improve the translation
of ambiguous words. Rios et al. (2017) use sense
embeddings and lexical chains as additional input
features. Liu et al. (2018) introduce an additional
context vector. There is an apparent difference in
evaluation between these two studies. Rios et al.
(2017) design a constrained WSD task. They cre-
ate well-designed test sets to evaluate the perfor-
mance of NMT models in distinguishing different
senses of ambiguous words, rather than evaluat-
ing the translations of ambiguous words directly.
By contrast, Liu et al. (2018) evaluate the trans-
lations of ambiguous words but on a common test
set. Scoring the contrastive translations is not eval-
uating the real output of NMT models. In this pa-
per, we directly evaluate the translations generated
by NMT models, using ContraWSD as the test set.

In NMT, the encoder may encode contextual
information into the hidden states. Marvin and
Koehn (2018) explore the ability of hidden states

at different encoder layers in WSD, while we fo-
cus on exploring the attention mechanisms that
connect the encoder and the decoder.

Koehn and Knowles (2017) and Ghader and
Monz (2017) investigate the relation between
attention mechanisms and the traditional word
alignment. They find that attention mechanisms
not only pay attention to the aligned source to-
kens but also distribute attention to some un-
aligned source tokens. In this paper, we per-
form a more fine-grained investigation of atten-
tion mechanisms, focusing on the task of trans-
lating ambiguous nouns. We also explore the
advanced attention mechanisms in Transformer
models (Vaswani et al., 2017).

The encoder-decoder attention mechanisms dif-
fer in NMT models. Tang et al. (2018b) evaluate
different NMT models, but focusing on NMT ar-
chitectures. Tang et al. (2018a); Domhan (2018)
compare different attention mechanisms. How-
ever, there is no detailed analysis on attention
mechanisms.

In this paper, we mainly investigate the encoder-
decoder attention mechanisms. More specifically,
we explore how attention mechanisms work when
translating ambiguous nouns.

3 Background

3.1 Attention Mechanisms
Attention mechanisms were initially proposed to
learn the alignment between source and target to-
kens by Bahdanau et al. (2015) and Luong et al.
(2015), in order to improve the performance of
NMT. However, attention mechanisms are differ-
ent from the traditional word alignment in SMT
which learns the hard alignment between source
and target tokens. Attention mechanisms learn to
extract features from all the source tokens when
generating a target token. They assign weights to
all the hidden states of source tokens. The more
related hidden states are assigned larger weights.
Then attention mechanisms feed a context vector
ct, which is extracted from the encoder, into the
decoder for target-side predictions.

We use h to represent the hidden state set
{h1, h2, · · · , hn} in the encoder, where n is the
number of source-side tokens. Then ct is com-
puted by Equation 1:

ct = αth (1)

where αt is the attention vector at time step t. αt is
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Figure 1: Different attention mechanisms between encoders and decoders in NMT.

a normalized distribution of a score computed by
the hidden state set h and the decoder state st−1,
as described by Equation 2:

at = softmax (score(st−1,h)) (2)

There are different score() functions to compute
the attention vector at, including multi-layer per-
ceptron (MLP), dot product, multi-head attention,
etc. In this paper, the vanilla attention mechanism
employs MLP. The advanced attention mechanism
applies multi-head attention with scaled dot prod-
uct, which is the same as the attention mechanism
in Transformer (Vaswani et al., 2017).

Figure 1 illustrates different attention mecha-
nisms. In vanilla attention mechanisms (Bah-
danau et al., 2015; Luong et al., 2015), the con-
text vector ct is only fed into the first layer of
the decoder networks. Then the single- or multi-
layer decoder networks compute from bottom to
top to predict target tokens. The vanilla attention
mechanisms can only extract the source-side fea-
tures once, which may be insufficient. Therefore,
Gehring et al. (2017) and Vaswani et al. (2017)
feed a context vector into each decoder layer. The
higher layer could take the result of the previous
layer into account when computing the new atten-
tion. More recently, Domhan (2018) has shown
that multi-layer attention is crucial in NMT mod-
els. Moreover, Vaswani et al. (2017) also propose
the multi-head attention mechanism. In contrast to
the single-head attention, there are multiple atten-
tion functions which compute the attention from
the linearly projected vectors in parallel. Then,
the context vectors from all the heads are concate-
nated and fed into the decoder networks.

3.2 ContraWSD
ContraWSD3 from Rios et al. (2017) consists of
contrastive translation sets where the human ref-

3https://github.com/a-rios/ContraWSD

erence translations are paired with one or more
contrastive variants. Given an ambiguous word in
the source sentence, the correct translation is re-
placed by an incorrect translation corresponding
to another meaning of the ambiguous word. For
example, in a case where the English word ‘line’
is the correct translation of the German source
word ‘Schlange’, ContraWSD replaces ‘line’ with
other translations of ‘Schlange’, such as ‘snake’ or
‘serpent’, to generate contrastive translations. To
evaluate the performance on disambiguation, con-
trastive translations are designed not to be easily
identified as incorrect based on grammatical and
phonological features.

ContraWSD is extracted from a large amount of
balanced parallel text. It contains 84 different Ger-
man word senses. It has 7,200 German→English
lexical ambiguities and each lexical ambiguity in-
stance has 3.5 contrastive translations on average.
All the ambiguous words are nouns so that the
WSD is not simply based on syntactic context.

4 Evaluation

Instead of using NMT models to score the con-
trastive translations, we use NMT models to trans-
late source sentences and evaluate the translations
of the ambiguous nouns directly. We evaluate
two popular NMT models with different attention
mechanisms. One is RNNS2S with the vanilla at-
tention mechanism, and the other is Transformer
with the advanced attention mechanism.

We apply fast-align (Dyer et al., 2013) to get
the aligned translations of ambiguous nouns. To
achieve better alignment, we run fast-align on both
training data and test data which includes refer-
ence translations and generated translations. How-
ever, for some ambiguous nouns, there is no align-
ment. We call these ambiguous nouns filtered.

There are multiple reference translations for
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each ambiguous noun in ContraWSD. We addi-
tionally add their synonyms4 into the reference
translations as well. The non-reference transla-
tions are crawled from the Internet5.

In addition to the filtered nouns, the transla-
tions of the ambiguous nouns are classified into
six groups, depending on which class (references,
incorrect senses, no translation) the translations
at aligned/unaligned positions belong to, as de-
scribed in Table 1. For instance, in C3, there is nei-
ther a correct nor an incorrect sense at the aligned
position. However, there is a reference translation
at an unaligned position.

Group
Aligned Unaligned

Ref. Incor. No Ref. Incor. No
C1

√

C2
√ √

W1
√ √ √

C3
√ √

W2
√ √

Drop
√ √

Table 1: Different groups of translations. Ref. denotes
the reference translations. Incor. represents the incor-
rect senses. No means that there is neither a correct nor
an incorrect sense of the ambiguous noun.

√
indicates

that the translations belong to the reference translations
or incorrect senses or neither.

Since the alignment learnt by fast-align is not per-
fect, we also consider the translations at unaligned
positions. All the translations in C1, C2, C3
groups are viewed as correct translations. Thus,
the accuracy of an NMT model on this test set is
the amount of translations in Group C1, C2, C3,
divided by the sum of ambiguous noun instances.
Formally, Accuracy = (C1 + C2 + C3)/(C1 +
C2+W1+C3+W2+Drop+Filtered), where
C1, C2,W1, C3,W2, Drop, and Filtered are the
amount of translations in each group.

4.1 Experimental Settings

We use the Sockeye (Hieber et al., 2017) toolkit,
which is based on MXNet (Chen et al., 2015), to
train models. In addition, we have extended Sock-
eye to output the distributions of encoder-decoder
attention in Transformer models, from different at-
tention heads and different attention layers.

All the models are trained with 2 GPUs. During
training, each mini-batch contains 4096 tokens. A

4Synonyms from WordNet (Miller, 1995)
5https://www.linguee.com/german-english

model checkpoint is saved every 4,000 updates.
We use Adam (Kingma and Ba, 2015) as the op-
timizer. The initial learning rate is set to 0.0002.
If the performance on the validation set has not
improved for 8 checkpoints, the learning rate is
multiplied by 0.7. We set the early stopping pa-
tience to 32 checkpoints. All the neural networks
have 8 layers. For RNNS2S, the encoder has 1
bi-directional LSTM and 6 stacked uni-directional
LSTMs, and the decoder is a stack of 8 uni-
directional LSTMs. The size of embeddings and
hidden states is 512. We apply layer-normalization
and label smoothing (0.1) in all models. We tie the
source and target embeddings. The dropout rate of
embeddings and Transformer blocks is set to 0.1.
The dropout rate of RNNs is 0.2. The attention
mechanism in Transformer has 8 heads.

We use the training data from the WMT17
shared task.6 We choose newstest2013 as the vali-
dation set, and use newstest2014 and newstest2017
as the test sets. All the BLEU scores are measured
by SacreBLEU. There are about 5.9 million sen-
tence pairs in the training set after preprocessing
with Moses scripts. We learn a joint BPE model
with 32,000 subword units (Sennrich et al., 2016).
There are 6,330 sentences left after filtering the
sentences with segmented ambiguous nouns. We
employ the models that have the best perplexity on
the validation set for the evaluation.

4.2 Results

Table 2 gives the performance of NMT mod-
els on newstests and ContraWSD. The detailed
translation distributions over different groups are
also provided. Transformer is much better than
RNNS2S in both newstests and ContraWSD. Com-
pared to the accuracy of scoring contrastive trans-
lation pairs (Score), the accuracy of evaluating the
translations (Acc.) is apparently lower.

There are 8–10% of ambiguous nouns belong-
ing to Drop and Filtered for both models. We man-
ually checked the translations of sentences with
these ambiguous nouns and found that 250 and
206 ambiguous nouns (41%) are translated cor-
rectly by RNNS2S and Transformer, respectively.
Our automatic classification failed for two rea-
sons. On the one hand, because the models are
trained at subword-level, there are a lot of sub-
words in the translations. The correctly gener-

6http://www.statmt.org/wmt17/
translation-task.html
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Model 2014 2017 C1 C2 W1 C3 W2 Drop Filtered Acc. Score
RNNS2S 23.3 25.1 4,560 187 863 81 31 333 275 76.27 84.01

Transformer 26.7 27.5 4,982 140 599 85 23 308 193 82.26 90.34

Table 2: Evaluation results of NMT models and the distributions of translations. 2014 and 2017 denote the BLEU
scores on newstest2014 and newstest2017, Acc. (in %) is short for accuracy. Score (in %) is the accuracy using
NMT models to score contrastive translation pairs. Filtered is the amount of translations that there is no learnt
alignment for the ambiguous nouns.

ated translations are subword sequences, and not
all the subwords (sometimes even no subword) are
aligned to the ambiguous nouns by fast-align. On
the other hand, the reference translations are all
nouns. If the translations are verbs or variants,
they are not recognized. If we move these transla-
tions into C1, the accuracy of the two NMT mod-
els will be improved from 76.27% to 80.22%, and
from 82.26% to 85.51%, respectively. Thus, atten-
tional NMT models are good at sense disambigua-
tion in German→English, but there is much room
for improvement as well.

5 Ambiguous Nouns in Attentional NMT

Ghader and Monz (2017) show that there are dif-
ferent attention patterns for words of different
part-of-speech (POS) tags, which sheds light on
interpreting attention mechanisms. In this sec-
tion, we investigate the attention distributions over
source-side ambiguous nouns.

5.1 Hypothesis and Tests

Attention mechanisms not only pay attention to
the hidden states at aligned positions but also dis-
tribute attention to the hidden states at unaligned
positions. The hidden states at unaligned posi-
tions can influence the generation of the current
token. In general, NLP models disambiguate am-
biguous words by means of context words. Thus,
for ambiguous nouns, we hypothesize that atten-
tion mechanisms distribute more attention to con-
text tokens for disambiguation.

We test our hypothesis via two different com-
parisons. We use wambi to denote the average
attention weight over the ambiguous nouns and
employ wnouns to represent the average attention
weight over all nouns7 (including the ambiguous
nouns), while wtokens denotes the average atten-
tion weight over all tokens.8 We first compare
wambi with wtokens. As nouns have a more con-

7We use the TreeTagger (Schmid, 1999) to tag German.
8Subword tokens are excluded, which account for 32%.

centrated attention distribution than other word
types (Ghader and Monz, 2017), we then compare
wambi with wnouns. If wambi is the smallest, it
supports our hypothesis.

The NMT models we evaluated are trained at
subword-level. When we compute the attention
distributions, we only consider the ambiguous
nouns that are not segmented into subwords. To
some extent, we therefore conduct an analysis of
frequent tokens. We employ the alignment learnt
by fast-align to find the step of translating the cur-
rent source token.

Given the attention distribution matrix M ∈
Rls∗lt of a sentence translation, lt represents the
length of the target sentence, while ls denotes the
length of the source sentence. Each column is
the attention distribution over all the source tokens
when generating the current target token. Each
row is the attention distribution over the current
source token at all the translation steps. w repre-
sents the attention weight over any tokens. If the
ith source token is aligned to the jth target token,
then w = [M ]ij . If a token is aligned to more than
one token, we choose the largest attention weight
as w.9

As for Transformer attention mechanisms, there
are multiple layers, and each layer has multiple
heads. We maximize the attention weights in dif-
ferent heads to represent the attention distribution
matrix for each attention layer.10 We first com-
putewambi, wnouns, andwtokens for each attention
layer. Then we average these weights.

5.2 Results
As Table 3 shows, wambi is substantially larger
than wtokens in both two models. Even though
wnouns is much larger compared towtokens, wambi

9A source token may be aligned to a set/subset of sub-
word sequences, but the attention mechanism only assigns
the corresponding weight to one of the subwords. We select
the maximal weight rather than the average weight.

10We visualize both the maximal and average attention
weights. We find that maximal attention weights are more
representative in feature extraction.
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is still greater than wnouns, especially in Trans-
former. This result is against our hypothesis. That
is to say, attention mechanisms do not distribute
more attention to context tokens when translat-
ing an ambiguous noun. Instead, attention mech-
anisms pay more attention to the ambiguous noun
itself. We assume that the contextual information
has already been encoded into the hidden states
by the encoder, and attention mechanisms do not
learn which source words are useful for WSD.

Model wambi wtokens wnouns

RNNS2S 0.63 0.48 0.62
Transformer 0.74 0.57 0.69

Table 3: Average attention weights over ambiguous
nouns, non-subword tokens, and nouns.

Figure 2 demonstrates the average attention
weights of the ambiguous nouns, nouns, and non-
subword tokens in different Transformer attention
layers. In each attention layer, wambi is always
the largest attention weight. It is very interesting
that the attention weights keep increasing at lower
layers and achieve the largest weight at Layer 5.
Then wtokens decreases steadily, while wambi and
wnouns have a distinct drop in the final attention
layer. We also re-train a model with 6 attention
layers, and we get a figure with the same pattern,
but the largest attention weights appear at Layer
4. We will give a further analysis of Transformer
attention mechanisms in Section 6.1.
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Figure 2: Average attention weights of ambiguous
nouns, nouns, and non-subword tokens in different
Transformer attention layers.

6 Analysis

We first give our analysis of the two different at-
tention mechanisms based on the attention distri-
butions and visualizations. Then, we explore the
relation between translation accuracy and atten-

tion weight over the ambiguous nouns. In the end,
we provide the error distributions over frequency.

6.1 Vanilla Attention vs. Advanced Attention

As Table 2 shows, the Transformer model with ad-
vanced attention mechanisms is distinctly better
than the RNN model with vanilla attention mecha-
nisms. Even though there are differences in the en-
coder and decoder networks, we focus on the com-
parison between these two attention mechanisms.
Moreover, there is no existing empirical interpre-
tation of the advanced attention mechanisms.

Figure 3 demonstrates the attention distribu-
tions of different models when translating ambigu-
ous nouns. For the vanilla attention mechanism
in the RNN model, most of the attention weights
are relatively uniformly distributed in [0.5, 0.9).
While the patterns in advanced attention mecha-
nisms are completely different. In the first layer,
most of the attention weights are smaller than 0.1.
The larger attention weights, the fewer instances,
except when the weight is larger than 0.9. In the
following layers, the attention weights are getting
more and more concentrated in [0.9, 1) until the
fifth layer. After the fifth layer, the amount in
[0.9, 1) decreases dramatically. We hypothesize
that the first few layers are learning the “align-
ment” gradually. When attention mechanisms fin-
ish the “alignment” learning, they start to capture
contextual features from the related but unaligned
context tokens. In the last layer, the attention is
almost equally distributed over all the attention
ranges except (0, 0.1). That is to say, for some
ambiguous nouns, the weights are large. For the
other ambiguous nouns, the weights are small. It
indicates that there is no clear attention distribu-
tion pattern over ambiguous nouns in the last layer.

Figure 4 shows the average attention weights
over word tokens and subword tokens (wsubwords).
In the first five layers, wsubwords is clearly lower
than wtokens which can be taken to show that
attention mechanisms focus on the “alignment”
of single word tokens, while wsubwords surpasses
wtokens from the sixth layer. We conclude that
attention mechanisms focus on subwords instead
of word tokens. Many words are segmented into
multiple consecutive subwords and not all the sub-
words are aligned to the expected target tokens.
Thus, the pattern over subword tokens demon-
strates that attention mechanisms are learning to
capture context-level features.
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Figure 4: Average attention weights of non-subword
tokens and subwords in different Transformer attention
layers.

We further validate the hypothesis by visualizing
the attention distributions. Table 4 demonstrates
the visualization of attention distributions of dif-
ferent attention mechanisms.

‘Stelle’ is an ambiguous noun, whose reference
translations are ‘job/position/work’. ‘Stelle’ also
has other translations such as ‘location/spot/site’.
The context tokens ‘garantiert’ (guarantee) and
‘Leuten’ (people) contribute to disambiguating
‘Stelle’. However, the RNN model could translate
‘Stelle’ correctly but only pays a little attention to
‘Leuten’.

In the first layer, the attention mechanism does
not pay attention to the correct source tokens if we
only consider the larger attention weights. Then
the “alignment” is learnt gradually in the follow-
ing layers. The attention mechanism could pay at-
tention to all the correct source tokens in the fifth
layer. In addition, the attention mechanism could
learn to pay attention to the related but unaligned
source tokens in the eighth layer. For instance, the
attention mechanism also attends to ‘Stelle’ when

generating ‘guarantees’, and attends to ‘garantiert’
and ‘Leuten’ when generating ‘job’. These source
tokens are not clearly attended to in the fifth layer.

Since the vanilla attention mechanism is only
one layer with one head, it does not perform
as well as the advanced attention mechanism in
learning to pay attention to context tokens. For in-
stance, the attention mechanism in RNN only dis-
tributes a little attention to ‘Leuten’ when generat-
ing ‘job’.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0       0.1          0.2          0.3          0.4          0.5          0.6          0.7          0.8          0.9          1.0

A
c
c
u
ra

c
y

Attention range

RNN

Transformer

Figure 5: WSD accuracy over attention ranges.

6.2 Accuracy and Attention Weights

We explore the relation between WSD accuracy
and the attention weights over ambiguous nouns.
As the alignment learnt by fast-align does not
guarantee that each ambiguous noun is aligned to
the corresponding translation, we only consider
the translations belonging to Group C1, W1, and
Drop. Figure 5 shows the WSD accuracy over dif-
ferent attention ranges. Obviously, the accuracy is
higher when the attention weight is greater. This
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Table 4: An example of attention visualization (German→English). Each row is the attention distribution over all
the source tokens at each time step. Each column represents the attention weight over a source token at all the time
steps. Layer 1 to Layer 8 are attention layers in the Transformer model. Each attention layer has 8 heads, and the
attention weights in each row are the maximal of all the heads. Thus, the summation of attention weights in each
row is larger than 1. Darker blue means larger attention weights.

result further confirms our assumption in Section 5
that the contextual information for disambiguation
has been learnt by the encoder. In the attention
range (0, 0.3), the small attention weight causes
many ambiguous nouns to be untranslated, which
results in low WSD accuracy.

6.3 Error Distribution

Figure 6 shows the error distributions over abso-
lute frequency (sense frequency in the training set)
and relative frequency (sense frequency to source
word frequency). The frequency information is
given in the test set. It is very clear that most of
the errors are in the left bottom corner which are
low in both absolute frequency and relative fre-
quency. There are 84.1% and 80.8% errors with
an absolute frequency of less than 2000 in RNN
and Transformer, respectively.

Even though the attention mechanism pays a lot
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Figure 6: Error distributions over frequency. Absolute
frequency is the sense frequency in training set. Rel-
ative frequency is the sense frequency in relation to
source word frequency. The size of the marker indi-
cates how often the error occurs.
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of attention to a low-frequency sense, the model
is still likely to generate an incorrect translation.
Our evaluation method is different from Rios et al.
(2017), but the finding is the same, namely that
data sparsity leads to incorrect translations.

7 Conclusion

In this paper, we analyze two different attention
mechanisms with respect to WSD in NMT. We
evaluate the translations of ambiguous nouns di-
rectly rather than scoring the contrastive transla-
tions pairs, using ContraWSD as the test set. We
show that the WSD accuracy of these two mod-
els is around 80.2% and 85.5%, respectively. Data
sparsity is the main problem causing incorrect
translations. We hypothesize that attention mech-
anisms distribute more attention to context tokens
to guide the translation of ambiguous nouns. How-
ever, we find that attention mechanisms are likely
to pay more attention to the ambiguous noun itself.
Compared to vanilla attention mechanisms, we re-
veal that the first few layers in Transformer atten-
tion mechanisms learn to “align” source and target
tokens, while the last few layers learn to distribute
attention to the related but unaligned context to-
kens. We conclude that encoder-decoder attention
is not the main mechanism used by NMT models
to incorporate contextual information for WSD. In
addition, Section 6.2 has told us that the larger at-
tention weights, the higher WSD accuracy. Tang
et al. (2018b) have shown that Transformer mod-
els are better than RNN models in WSD because
of their stronger encoding ability. These results
suggest that NMT models learn to encode contex-
tual information necessary for WSD in the encoder
hidden states.

The question how NMT models learn to repre-
sent word senses and similar phenomena has im-
plications for transfer learning, the diagnosis of
translation errors, and for the design of architec-
tures for MT, including architectures that scale up
the context window to the level of documents. We
hope that future work will continue to deepen our
understanding of the internal workings of NMT
models.
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Abstract
We present an analysis of a number of coref-
erence phenomena in English-Croatian human
and machine translations. The aim is to shed
light on the differences in the way these struc-
turally different languages make use of dis-
course information and provide insights for
discourse-aware machine translation system
development. The phenomena are automati-
cally identified in parallel data using annota-
tion produced by parsers and word alignment
tools, enabling us to pinpoint patterns of inter-
est in both languages. We make the analysis
more fine-grained by including three corpora
pertaining to three different registers. In a sec-
ond step, we create a test set with the challeng-
ing linguistic constructions and use it to evalu-
ate the performance of three MT systems. We
show that both SMT and NMT systems strug-
gle with handling these discourse phenomena,
even though NMT tends to perform somewhat
better than SMT. By providing an overview
of patterns frequently occurring in actual lan-
guage use, as well as by pointing out the weak-
nesses of current MT systems that commonly
mistranslate them, we hope to contribute to the
effort of resolving the issue of discourse phe-
nomena in MT applications.

1 Introduction

Every natural language has means of marking ele-
ments belonging to the same coreference chain in
order to achieve cohesion and coherence in run-
ning text. These discourse phenomena are crucial
for understanding texts and their misrepresenta-
tion harms text intelligibility. Despite their sig-
nificance, machine translation (MT) systems have
been known to struggle with adequately transfer-
ring coreference relations from the source to the
target language, which is partly due to the great
differences in the way languages express these re-
lations. In our approach, we extend the framework
introduced by Lapshinova-Koltunski and Hard-
meier (2017), who identify discourse discrepan-

cies in parallel data for English and German by
predefining and automatically extracting discourse
patterns of interest, and then utilize word align-
ment information to determine which of the ex-
tracted phenomena lack the equivalent counterpart
in the other language. We use the same procedure
to automatically extract phenomena, but extend
the methodology to include cases where the phe-
nomenon does have an equivalent construction in
the other language, despite the alignment data sug-
gesting that it is more frequently left unaligned.

In this research, we perform an in-depth study
of the way in which diverse discourse phenomena
are handled in translation from English to Croa-
tian. We investigate both human translation and
the output of different types of MT systems. In
the first step, we use the extended methodology
of Lapshinova-Koltunski and Hardmeier (2017)
to extract interesting diverging discourse patterns
that commonly occur in the parallel data. While
reflections on the relevant linguistic intuitions are
given as a reference, the selection of the phenom-
ena chosen for further examination is primarily
based on the data obtained from corpora. This
makes our approach strongly usage-based and pro-
vides ample space for making observations uncon-
strained by a particular theoretical framework.

In the second step, we construct a dataset with
sentences containing challenging discourse phe-
nomena identified in the analysis of human trans-
lations. The constructed dataset can be used for
further research in the field of corpus linguistics
and translation studies, but it is also useful for
gaining insight about language contrasts that is of
relevance to MT researchers. We therefore use
it to test and evaluate the performance of sev-
eral types of MT systems and to that end devise
a weighted error classification, tailored to accom-
modate the complexity of the problem at hand.

The paper is structured as follows: in Section
2 we explain the motivation for the research and
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in Section 3 we give an overview of related work.
In Section 4 we describe the used parallel corpora
and present the approach to and findings of their
analysis. In Section 5 we describe the MT experi-
ment and our approach to error classification. Sec-
tion 6 contains a discussion of the obtained results
and the paper ends with concluding remarks and
ideas for future research in Section 7.

2 Motivation

As a South Slavic language, Croatian is a morpho-
logically rich language with relatively free word
order. Its pronouns and determiners are grammat-
ically marked for seven cases, three genders and
two numbers. Additionally, the forms of deter-
miners and some pronouns show the distinction
between animate and inanimate, whereas personal
pronouns have long and short variants that reflect
emphasis, the choice between them affecting the
word order and information flow in the sentence.
Croatian is a pro-drop language, meaning that pro-
nouns in the subject position tend to be omitted
if the agent can be inferred from other features,
such as verbal inflection. In comparison, English
is a morphologically less diverse and syntactically
stricter language, which suggests that the two lan-
guages potentially employ quite different mecha-
nisms to express coreference links.

Apart from the inevitable structural differences,
there are several general points of divergence that
quickly come to light when handling parallel data
for the two languages. First of all, although Croa-
tian has means of expressing the notion of def-
initeness, it does not have articles, which have
a prominent role in the English language. In-
stead, demonstratives and possessives are some-
times used, as well as definite forms of adjectives
and, to a certain extent, restrictive relative clauses.
There is also a general tendency to avoid pas-
sive constructions and inanimate subjects in Croat-
ian, with these structures commonly rephrased us-
ing impersonal verb forms with the reflexive pro-
noun se. Moreover, there is no need for cleft
constructions, as information flow can be manipu-
lated through word order, which makes pleonastic
pronouns largely redundant in Croatian. Finally,
it does not easily create participial constructions,
preferring to elaborate the concise English par-
ticipial expressions into full, finite relative clauses
using the relative pronoun koji.

3 Related Work

The study by Lapshinova-Koltunski and Hard-
meier (2017) examines discrepancies in discourse
structures for the language pair English-German.
The structures are defined as linguistic patterns
using part-of-speech and dependency annotation
and the discrepancies are identified using align-
ment information by finding elements with no cor-
responding structure in the parallel sentence. This
approach allows for a corpus-based contrastive
analysis, since the discrepancies might be an in-
dication of systematic linguistic differences or ex-
amples of explicitation and implicitation phenom-
ena in the translation process. The mentioned
study is mostly focused around the former and the
authors manually investigate definite articles and
pronouns in subject position as the most frequent
unaligned patterns in both languages. Through
the analysis, they were able to obtain quantitative
proof of tendencies regarding, for example, article
use in generics and differences in the use of rela-
tive clauses.

Although our approach largely follows the
above described methodology, Lapshinova-
Koltunski and Hardmeier (2017) were hardly the
first to recognize the need to address discourse
phenomena in translation. Given the immense
variety of linguistic phenomena that fall within
the scope of the term, research on discourse
phenomena in translation has often focused on a
limited group of phenomena (e.g. Furkó, 2014;
Zinsmeister et al., 2012; Bührig and House, 2004),
which frequently have to be studied in reference
to particular registers (Kunz and Lapshinova-
Koltunski, 2015). Moreover, the pronouncedly
language-specific character of their form has led
to examinations of explicitation and implicitation
of these phenomena in translation (Blum-Kulka,
1986). On a similar note, Meyer and Webber
(2013) compare implicitation tendencies in human
and machine translation and find that the latter
displays more cases where the phenomena are
kept in translation. Scarton and Specia (2015)
assess the impact of discourse structures on
MT quality through quantitative analysis, while
Lapshinova-Koltunski (2017) compares human
and machine translations to identify and describe
variation in the distribution of different cohesive
devices.

On the other hand, a variety of approaches have
also been proposed to incorporate discursive infor-
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mation in the workflow of MT systems. The ap-
proaches of Le Nagard and Koehn (2010), Hard-
meier and Federico (2010) and Guillou (2012)
are based on the projection of the source side
annotation of coreferring pronouns. A number
of discourse-oriented pronoun prediction systems,
statistical and rule-based, have also been devel-
oped for the submission for the DiscoMT shared
task (Hardmeier et al., 2015). The systems experi-
mented with different coreference resolution tech-
niques to improve the translation of pronouns. In
recent approaches, Voita et al. (2018), Jean et al.
(2017), Wang et al. (2017), Tiedemann and Scher-
rer (2017) and Bawden et al. (2018) all attempt
to improve the translation of discourse phenomena
using context-aware NMT systems. Although the
degree of their success varies, all papers notably
report improvement over the baseline systems.

However, the evaluation of these systems re-
mains problematic, as MT evaluation research
has typically been focused on providing an over-
all score for documents, either through automatic
metrics like BLEU (Papineni et al., 2002), or
through human evaluation, such as the ranking
of systems in the WMT evaluations (Bojar et al.,
2017). There have been attempts at error analy-
sis where specific errors are identified and classi-
fied into typologies (Vilar et al., 2006; Stymne and
Ahrenberg, 2012; Comelles et al., 2016), but these
classifications usually do not target discourse-
related phenomena. Taking a more specific ap-
proach to MT evaluation, Burlot and Yvon (2017)
describe how test suites can be created and used
automatically for the evaluation of MT systems
on morphological phenomena, while the test suite
PROTEST, developed by Guillou and Hardmeier
(2016), enables relative comparisons between MT
systems in terms of pronoun translation. Bawden
et al. (2018) construct a contrastive test set to eval-
uate anaphoric pronouns, cohesion and coherence
by having NMT systems rank a correct and an in-
correct translation of an input sentence, whereas
Sennrich (2017) describes a ranking approach for
evaluating NMT systems on grammaticality.

Some of the above work has specifically tar-
geted the differences in performance between
NMT and SMT (Burlot and Yvon, 2017; Sennrich,
2017). There are also other types of error analysis
targeting this difference, e.g. based on post-edits
(Bentivogli et al., 2016). For Croatian in particu-
lar, Klubička et al. (2017) conducted an error anal-

ysis of SMT and NMT systems, finding that the
translation of function words in general is consid-
erably improved in NMT. However, they do not
present separate results for pronouns or other ele-
ments with coreference functions.

4 Human Translation Analysis

In this section we give an overview of the used
datasets and their preprocessing. We also describe
the extraction process and the selected phenom-
ena, along with the observations based on the man-
ual data analysis.

4.1 Parallel Corpora
As the use of coreference phenomena varies across
different registers and text types, we decided to
perform the analysis on corpora from three differ-
ent domains:

• DGT-TM (Steinberger et al., 2012): EU legal
texts, 950K sentences

• SETIMES2 (Tiedemann, 2009): newspaper
articles, 200K sentences

• TedTalks (Tiedemann, 2012): prepared
speeches, 86K sentences

The three datasets cover an interesting range from
very formal, strictly standardized and highly repet-
itive texts (DGT) to fairly loose and informal
translation of speeches (TedTalks). For the pur-
poses of the analyses, English is taken as the
source and Croatian as the target language. The
corpora were tokenized, tagged for parts of speech
and parsed using the pre-trained models for the re-
spective languages developed for the annotation
pipeline UDPipe (2017). The parallel data were
then aligned at word-level with efmaral (Östling
and Tiedemann, 2016), using the grow-diag-final-
and heuristic (Koehn et al., 2003).

Relying on the approach of Lapshinova-
Koltunski and Hardmeier (2017), we used POS-
tags and dependency information to extract a high-
recall list of pronouns and determiners in both
languages, in order to identify potentially inter-
esting coreference patterns. The main criterion
for their extraction was the pron or det tag, as
the original research has found this approach to
permit reliable identification of phenomena, even
with multi-word units. Similarly to Lapshinova-
Koltunski and Hardmeier (2017), we couple the
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POS-tags with syntactic information to create lin-
guistic patterns in the format lemma, POS-tag, de-
pendency label (e.g. it, pron, nsubj:pass) and use
word-alignment information to identify the equiv-
alent structure in the other language, if it exists.
This gave us a dataset of sentence pairs with indi-
cated coreference phenomena, grouped according
to the described linguistic patterns.

Although our approach was largely open and
we looked into a variety of phenomena, an ini-
tial overview analysis of the data revealed noise
both in the output of the tools and in the corpora
themselves. As a result, the phenomena chosen
for closer examination were selected based on the
combination of several factors: the interesting ten-
dencies in their translation identified in the brief
overall examination of the data, the tentative in-
terpretation of the frequency of their occurrence
across the corpora and the purely practical crite-
rion of having a pattern that enables reliable ex-
traction, meaning that we opted for phenomena
which were in most cases correctly handled by the
parsing and alignment tools.

4.2 Analysis of Discourse Phenomena
This subsection contains the description of the
studied phenomena1 and the observations made in
relation to the specific datasets. The number of
phenomena occurrences per corpus is shown in Ta-
ble 1.

KOJI, det, unaligned. The high frequency of
cases where the relative pronoun koji is present
in Croatian with no corresponding phenomenon
on the English side (who, whom, whose, which,
that) led us to further examine its use. We sepa-
rate the phenomenon into two groups, depending
on whether the relative pronoun has the function
of the subject (nominative case) or object (oblique
cases) in the relative clause. A major source of
unaligned instances with object function seems to
be the omission of that in English. In both syntac-
tic functions, koji is often introduced as a result of
elaboration of participial clauses into finite relative
clauses. Interestingly enough, introducing relative
clauses seems to be a way of dealing with lexical
gaps, as illustrated by the example:

1The patterns used to refer to phenomena have the fol-
lowing format: phenomenon, pos-tag, alignment information.
The last feature specifies whether or not the equivalent struc-
ture exists in the other language. At a more specific level,
phenomena are defined in reference to the Universal Depen-
dency Treebank labels (Nivre et al., 2015).

EN: a resealable bag

vrećica
bag

koja
that

se
REFL

može
can

ponovno
again

zatvoriti
to seal

‘a bag that can be sealed again’

Moreover, it is a way of making the concise En-
glish phrases more natural and understandable in
Croatian:
EN: women-run entreprises

poduzeća
enterprises

koja
that

vode
run

žene
women

‘enterprises that are run by women’

Essentially, clauses with koji seem to constitute
a fairly neutral means of paraphrasing, but their
overuse might yield unnecessarily elaborate and
clumsy constructions. In SETIMES2 we notice a
tendency to resort to such paraphrases in order to
maintain a more neutral style:
EN: the beheaded mother

majka
mother

koja
who

je
is

ostala
left

bez
without

glave
head

‘the mother who has lost her head’

Here the entire relative clause could be substituted
with the Croatian adjective obezglavljen, whose
meaning is equivalent to that of ‘beheaded’, but
whose use is slightly stylistically marked.

ARTICLES, det, aligned. We have already
mentioned that Croatian has alternative ways of
representing definiteness, the most straightfor-
ward example of this being through the use of
demonstratives and possessives2. We were inter-
ested to see whether specific contextual features
could be distinguished that make the explicitation
of these coreference links necessary. In that re-
spect, the function of articles seems to vary among
the corpora: while the DGT deploys a strict coref-
erencing system to ensure precision, cohesion and
consistency, in TedTalks articles are more pro-
nouncedly used for emphasis and achieving imme-
diacy and closeness in delivering a speech in front
of an audience. SETIMES2 generally retains defi-
niteness for the purposes of cohesion and boosting
the effect of reader engagement by making news
appear as more relevant:
EN: to address the problem, he says...

kako
in order to

bi
would

se
REFL

uspješno
successfully

nosilo
deal

s
with

ovim
this

problemom,
problem

kaže
says

Simitis
Simitis

‘to successfully deal with this problem, says Simitis’
2The automatic annotation of adjective definiteness was

not reliable enough to be used for automatic extraction.
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KOJIsub KOJIobj ARTICLES ITnsubj ITexpl ITpass ITobj ITobl/nmod POSSESSIVES
DGT 19747 6606 10558 8019 1576 3981 3113 2395 9645
SETIMES2 2844 1532 8304 3801 400 448 1648 401 6842
TedTalks 618 300 1758 4411 185 134 4919 1758 3043

Table 1: Overall number of occurrences of each phenomenon in the respective language per corpus.

IT, pron, both. The semantically vague English
pronoun it can be used in a variety of functions
and roles. Given that our approach is based on
the patterns produced by the dependency parser,
we generally split the phenomenon according to
its syntactic function (subject or object), and then
break down the two groups into more fine-grained
categories. It as the subject is hence analysed ac-
cording to three different patterns: it as the sub-
ject of an active clause (nsubj), as the subject of
a passive clause (nsubj:pass) and as an expletive
(expl). In the first case, the behaviour of it gen-
erally follows that of other Croatian pronouns, i.e.
it is frequently omitted. The two latter cases, by
contrast, frequently require paraphrasing of vary-
ing extent and level of conventionality in Croatian.
These typically entail changing the word order and
using impersonal constructions:

EN: It is necessary to make them from scratch.

Potrebno
Necessary

ih
them

je
is

stvoriti
to create

od
from

početka.
beginning

‘It is necessary to make them from scratch.’

In the example, the expletive it is dropped and the
adjective in singular neuter form is shifted to the
initial position in the sentence.

Unfortunately, the diversity of forms of it in
Croatian makes it a tricky task for word align-
ment tools, which especially comes to light when
it is in object position and varies both lexically and
grammatically depending on the antecedent. Due
to the inability to reliably separate aligned from
unaligned instances, we abstracted away from this
information in analysing how this phenomenon is
handled in translation. For it as an object we
looked at two phenomena, depending on whether
the object is preceded by a preposition (obl/nmod)
or not (obj). It in object position is more fre-
quently retained in Croatian, which is understand-
able as it is often required by verb valency.

POSSESSIVES, det, unaligned. Finally, we
noticed that possessives, especially reflexive pos-
sessives, are frequently left out on the Croatian
side when their introduction is clumsy or redun-
dant. Notably, possessives are sometimes omitted
when there are other clear markers of possession

in the sentence, encoded for example by verb in-
flection or indirect objects:

EN: it did not deny my right to vote

nije
did not

mi
to me

uskratila
deny

pravo
right

da
to

glasujem
vote

‘it did not deny me the right to vote’

The specification of possession in the example
above is made redundant by the use of the personal
pronoun in dative case mi. Similar situations fre-
quently occur in the more informal TedTalks cor-
pus, where personal pronouns in dative case are
often introduced to denote a degree of familiarity
with the audience. Given the nature of the cor-
pus, there is also a relatively large proportion of
cases where the possessives are dropped in phrases
that are closely tied to the agent (referring to e.g.
one’s body parts or family members). On the other
hand, SETIMES2 and DGT are somewhat stricter
in style and often omit possessives, an interesting
tendency being the omission of reflexive posses-
sives in cataphoric reference:

EN: Shortly after their arrival, the royal couple...

Nedugo
Shortly

nakon
after

dolaska,
arrival

kraljevski
royal

par
couple

‘Shortly upon arrival, the royal couple’

In the example, the reflexive possessive svoj refer-
ring to the subject is omitted from the adverbial
phrase that precedes it. In the DGT data we also
notice the tendency to substitute possessives with
explicit noun phrases:

EN: the value of the procurement over its entire
duration

vrijednost
value

nabave
procurement

tijekom
during

cijelog
entire

razdoblja
period

trajanja
duration

nabave
procurement

‘the value of the procurement during the entire
duration of the procurement’

As can be seen, the noun nabava is repeated in the
translation instead of using the possessive njezin.

5 MT Experiment

After analysing the parallel data and identifying
interesting tendencies regarding the coreference
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TRAIN DEV PREPROCESSING CONFIGURATION BLEU
SMT 1.23M 4500 Standard preprocessing: data

tokenized and truecased, max.
sentence length 80.

Training and tuning using the
Moses default settings, order of the
n-gram model: 3.

33.54

NMT1 1.18M 4500 Tokenization, max. sentence
length 60, min. word
frequency 5.

Encoder: 3-layer bidirectional
LSTM, hidden size 500. Decoder:
3-layer LSTM, hidden size 500.

38.14

NMT2 1.18M 4500 Tokenization, max. sentence
length 60, individual BPE,
min. frequency 5.

Encoder: 3-layer bidirectional
LSTM, hidden size 500. Decoder:
3-layer LSTM, hidden size 500.

36.56

Table 2: MT systems – training configurations.

phenomena, we wanted to see how they were han-
dled by different types of MT systems. Using our
linguistic patterns, we extracted a subset of sen-
tences, targeting the constructions that are han-
dled differently by the two languages. The num-
ber of sentences per phenomenon corresponds to
the overall frequency of their occurrence, while
the proportion of sentences taken from each cor-
pus roughly reflects the differences in corpus sizes.
We added a couple of manually selected examples
(cases of lexical gaps and unaligned reflexive pro-
noun se in Croatian) to construct a test set com-
prising a total of 1899 sentence pairs with indi-
cated phenomena of interest3. We have made the
dataset publicly available4.

5.1 MT Systems
For the experiment we trained a baseline SMT sys-
tem and several baseline NMT systems. We used
open-source toolkits, the phrase-based SMT pack-
age Moses (Koehn et al., 2007) and the OpenNMT
toolkit (Klein et al., 2017) respectively, and fol-
lowed the standard training procedures. The NMT
systems were based on a sequence-to-sequence
architecture with general attention (Luong et al.,
2015) and were trained for 13 epochs. We also ex-
perimented with sub-word segmentation with byte
pair encoding (Sennrich et al., 2016), trained both
individually and jointly, for which 10,000 oper-
ations were performed. However, only the two
models with the highest BLEU scores were re-
tained for the manual analysis. An overview of

3Due to the nature of the extraction process, the study is
largely focused on intra-sentential phenomena. Although the
segmented nature of the artificially constructed test set might
be considered a constraint, it is difficult to find an alternative
way of testing such a variety of phenomena, while retaining
as much data as possible for training.

4http://hdl.handle.net/11234/1-2855

the chosen MT systems is given in Table 25.
The BLEU scores seem to be in line with what

could generally be expected from standard MT
systems used on relatively repetitive data, except
that the performance of NMT systems slightly
drops with the application of byte-pair encoding.
This calls for further investigation in the future,
with some adaptations possibly needed to be made
in the training process. However, the BLEU scores
are given only as a reference, as it remains ques-
tionable whether this evaluation metric can cap-
ture the quality of performance on such specific
instances as those that are examined in this study.
We hence turn to the manual error analysis.

5.2 Error Analysis
For the purposes of the manual analysis, the orig-
inal human translations are taken as a reference
and the order of the machine translations is ran-
domized to reduce bias. The MT output is eval-
uated only with regard to the relevant antecedent
and the syntactic structure containing the specific
phenomenon, with the rest of the sentence not be-
ing taken into account. Based on our initial data
analysis, we devised a classification of errors in
terms of translation variation acceptability. The
categories used in classification are listed in Ta-
ble 3. The evaluation was performed by one of the
authors, who is a native speaker of Croatian.

To reflect the scalar nature of error severity,
we assign a penalty to each error category. This
also enables us to produce a provisional score
for relative comparison and evaluation of the sys-
tems. Some clarification might be needed for cat-
egories 4 to 6. Agreement error means that the
phenomenon does not agree with the grammati-

5The test and development sets are kept constant, but the
training data used for the two NMT systems had to be further
filtered due to technical issues.
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error description category penalty
mistranslation 1 1
phen. misrepresented, unacceptable translation 2 1
different formulation, unacceptable translation 3 1
phen. represented, agreement error 4 0.75
phen. represented, lexical error 5 0.5
phen. represented, grammatical error 6 0.5
phen. misrepresented, unacceptable due to style/register 7 0.25
phen. misrepresented, acceptable in the style/register 8 0
different formulation, acceptable translation 9 0
identical translation 10 0

Table 3: MT error classification.

cal categories of its antecedent, whereas the lexi-
cal and grammatical errors refer to cases such as
antecedent mistranslation or errors in the gram-
matical form of the surrounding elements con-
tained within the same phrase as the phenomenon.
As we are primarily interested in the coreference
element, we assign a higher penalty for cases
where the coreference link gets lost due to agree-
ment mismatch between the antecedent and the
observed phenomenon. On a different note, the
choice between errors 2, 7 and 8 sometimes seems
particularly subjective, but as we conducted the
analysis for three different corpora, it was inter-
esting to retain this fine-grained distinction. As an
illustration of the complexity of the categorization
task, as well as of our approach to it, we provide
an example from the created dataset:
SOURCE: ... modifications for the feed currently
legally placed on the market...

REFERENCE:
... izmjene
f.pl.nom
modifications

hrane za životinje
f.sg.gen prep f.pl.acc
feed

koja
f.sg.nom
which

se
refl.pron.
REFL

trenutačno
adv
currently

zakonito
adv
legally

stavlja
3.sg
place

na
prep
on

tržište...
n.sg.acc
market
‘modifications for the feed which is currently legally
placed on the market’

SMT:
... izmjene
f.pl.nom
modifications

hrane za životinje
f.sg.gen prep f.pl.acc
feed

trenutačno
adv
currently

zakonito
adv
legally

stavljeni
m.pl.nom
placed

na
prep
on

tržište...
n.sg.acc
market

‘modifications for the feed currently legally placed on
the market’

NMT1:
... izmjene
f.pl.nom
modifications

hrane za životinje
f.sg.gen prep f.pl.acc
feed

već
adv
already

pravno
adv
juridically

stavljene
f.sg.gen
placed

na
prep
on

tržište...
n.sg.acc
market

‘modifications for the feed already juridically placed
on the market’

NMT2:
... izmjene
f.pl.nom
modifications

za
prep
for

hranu za životinje
f.sg.acc prep f.pl.acc
feed

koje
f.pl.nom
which

su
3.pl
are

trenutačno
adv
currently

zakonito
adv
legally

stavljene
f.pl.nom
placed

na
prep
on

tržište...
n.sg.acc
market

‘modifications relating to the feed which are currently
legally placed on market’

The observed phenomenon here is the unaligned
relative pronoun koji in subject position, which
means we evaluate the translation of the noun
phrase whose head noun is feed, or hrana. The
reference translation uses the relative pronoun and
an impersonal verb form (se stavlja) instead of the
participial post-modification. SMT keeps the par-
ticipial form, which would arguably be an accept-
able translation in the DGT corpus (error category
8). However, there is an agreement mismatch be-
tween the head noun hrane (feminine, singular,
genitive case) and the participle stavljeni (mascu-
line, plural, nominative case). As the phenomenon
present in the reference translation is not repre-
sented and there are additional errors which make
the translation unacceptable, this is an example of
error category 2.

The translation produced by NMT1 uses the
correct participial form stavljene, but makes inad-
equate lexical choices in the translation of other
elements contained in the phrase, translating cur-
rently and legally by već and pravno instead of
trenutačno and zakonito, respectively. Regardless
of the correct participial form, using the relative
clause is generally more acceptable in the trans-
lation of this particular sentence, so we treat it as
a case of misrepresented phenomenon and opt for
a more severe punishment by marking it as error
category 2, and not 5. Finally, NMT2 uses the rel-
ative pronoun koji, but the post-modification does
not agree with the head noun in number. It is there-
fore categorized as error 4. As a side note, all three
machine translations also lack the durative aspect,
which is one of the morphological properties of
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total SMT NMT1 NMT2
DGT 931 41.78 43.29 38.78
SETIMES2 628 17.36 37.9 38.85
TedTalks 340 11.76 30 27.65

Table 4: Percentage of acceptable translations out of the total
number of sentences for each corpus.

verbs in Croatian (e.g. stavljane instead of stavl-
jene), which means that they all belong to error
category 6 as well. However, if multiple categories
are applicable, we give precedence to the one with
the severest penalty so that the overall error scores
do not get distorted by single examples.

5.3 Results
As already mentioned, the different properties of
individual corpora were taken into account in the
analysis, but for brevity’s sake we focus more on
the overall results in the discussion. However, we
should point out that all systems generally perform
better on the DGT dataset, which is hardly surpris-
ing given that it is the largest and most repetitive
corpus. As can be seen in Table 4, the variance in
performance across corpora is most pronounced in
SMT, which produces 42% of acceptable transla-
tions for the DGT and only 12% for the TedTalks
data.

While for individual phenomena SMT invari-
ably performs best on DGT, there is some varia-
tion in the NMT systems, with NMT2 notably per-
forming best on SETIMES2 for all three cases of it
in subject position and for koji as object. Interest-
ingly enough, when it comes to the retention of ar-
ticles and the omission of possessives, both NMT
systems perform best on TedTalks. However, a
closer look at the data reveals that the good perfor-
mance on articles is largely due to NMT produc-
ing differently phrased translations (category 9),
whereas their performance on possessives is ex-
plained by the fact that the informal style and over-
all proliferation of determiners and pronouns fre-
quently make the retention of possessives seem ac-
ceptable (category 8). Finally, we take note of the
poor performance of all systems on it in obl/nmod
function in the TedTalks corpus, with the majority
of errors belonging to one of the first three cate-
gories and the NMT systems producing the lowest
percentage of acceptable translations.

Looking at the overall results, it should be

acceptable unacceptable score
SMT 538 1361 1219.5
NMT1 743 1156 980
NMT2 699 1200 1036

Table 5: Overall number of acceptable and unacceptable
translations and the score based on summed-up penalties.

Figure 1: Percentages of error categories for each system.

pointed out that the systems generally perform rel-
atively badly on the examined phenomena. As can
be seen in Table 5, the systems in total produce
more unacceptable than acceptable translations,
although the penalty score does seem to loosely
reflect the difference in overall translation qual-
ity measured by BLEU. For individual phenom-
ena, shown in Table 6, NMT1 consistently per-
forms best, except on possessives and the miscel-
laneous examples where NMT2 achieves a better
score. All systems are most successful in trans-
lating it as an expletive and passive subject. On
the other end of the scale, SMT performs worst on
possessives, NMT1 on articles and NMT2 on it as
object.

In terms of total error counts, SMT produces
significantly more complete mistranslations, while
NMT2 makes more agreement errors than the
other two systems. Both NMT systems also pro-
duce more translations that are generally accept-
able, but do not fit the given register/style. Over-
all percentages of individual error categories in the
output of each system are shown in Figure 1. We
also notice that most cases fall into the extreme
ends of the spectrum, i.e. identical translations and
mistranslations.

6 Discussion

It is often pointed out that NMT systems gener-
ally produce more fluent, albeit sometimes inac-
curate output compared to SMT. We can therefore
hypothesize that the two NMT systems will per-
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SMT NMT1 NMT2
phenomenon instances acceptable score acceptable score acceptable score
KOJI, det, subject, unaligned 237 30.8 148.5 40.51 120.5 40.93 126.25
KOJI, det, object, unaligned 247 33.2 143.25 46.56 102.75 43.72 110.25
ARTICLES, det, aligned 327 23.85 231.25 27.83 211 26.61 212.5
IT, pron, nsubj, both 109 33.03 64.75 44.04 50.25 39.45 57.5
IT, pron, expl, both 138 40.58 67.25 57.97 44.75 54.35 49
IT, pron, nsubj:pass, both 137 37.23 78.5 53.28 56.25 51.82 60.5
IT, pron, obj, both 263 22.81 180.75 32.7 148.75 25.48 165.5
IT, pron, obl/nmod, both 132 27.27 86.5 36.36 74 28.03 86.25
POSSESSIVES, pron, unaligned 297 21.89 209 33.33 166.75 35.69 164.25
MISCELLANEOUS 12 8.33 9.75 58.33 5 66.67 4

Table 6: Total scores and percentages of acceptable translations for each system per phenomenon.

form better on unaligned phenomena, especially
when the omission or insertion of elements on the
target side is more a matter of degree of expression
idiomaticity than a strict rule. This is confirmed by
our analysis, as NMT systems outperform SMT on
all three unaligned phenomena. Moreover, SMT
performs worst on possessives, which are gener-
ally indeed frequently retained in Croatian, and
NMT seems to do a better job at identifying con-
texts in which they should be left out. As for
the relative pronoun koji in object position, NMT2
does the best job at recognizing when it is neces-
sary to introduce it on the target side, producing
31.98% of translations identical to the original.

The fluency of NMT could also result in better
translations of it as an expletive or passive sub-
ject, as these instances typically require rephras-
ing in Croatian. This is confirmed in our analy-
sis to some extent as well, with both NMT sys-
tems producing the highest percentage of accept-
able translations for these phenomena. However,
this is also the case for the SMT system, even if its
percentages are much lower, which suggests that
the patterns used to paraphrase these two phenom-
ena are fairly standardized in Croatian, and hence
frequently occur in the corpora. On the other hand,
all systems tend to make mistakes when the re-
phrasing entails moving a noun into the subject
position:

it is not possible for the controls

kontrole
controls

ne
not

mogu
can

‘the controls cannot’

When it comes to restructuring participial
clauses into finite relative clauses using koji, the
situation is similar. The systems rarely produce
the less natural literal translations of participial
structures, despite the existence of grammatically
equivalent forms in the Croatian language. How-

ever, when the translation requires more imagina-
tive paraphrasing, the MT systems in most cases
fail to deliver, which highlights their incapabil-
ity to deal with creative language use and satis-
factorily handle lexical gaps. Most cases of such
mistranslations, manifested as either omission or
retention of the source side element, are noticed
for the phenomena of unaligned koji and in the
small group of miscellaneous examples, which
comprises a number of cases chosen specifically
to see what the systems will do in situations where
the translation and use of coreference phenomena
are less straightforward.

For instance, let us consider the innovative
phrase non-carbon-based life, which in the refer-
ence is translated as

život
life

koji
which

se
REFL

ne
not

bazira
base

na
on

ugljiku
carbon

‘life which is not based on carbon’

and is entirely mistranslated by all three systems.
The SMT system leaves the unknown word in
source language, misinterprets the dependency re-
lations and substitutes the relative clause with an
impersonal verb construction with se:

non-carbon
non-carbon

se
REFL

temelje
based

na
on

životu
life

‘non-carbon are based on life’

Both NMT systems leave out the entire unknown
part and translate the phrase only as život (‘life’).

The systems also fail to cope with idiomatic ex-
pressions, frequently omitting or producing word-
for-word translations for idiomatic uses of it in ob-
ject position (e.g. make it, get it). The translation
of multi-word units is another well-known stum-
bling block of MT systems, but this particular dis-
course phenomenon seems to be problematic for
another reason, and that is the already mentioned
diversity of grammatical forms this pronoun can
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take in the object position in Croatian. Inciden-
tally, it in object position is the phenomenon for
which all three systems produce the largest per-
centage of agreement errors: well above 20% of
errors made by the systems on this phenomenon
belong to category 4, compared to the usual av-
erage of around 3% of agreement errors produced
in the translation of other phenomena. Finally, the
relative performance of all three systems lies clos-
est in the case of aligned articles, but that is be-
cause all systems perform poorly, probably due to
the very strong tendency not to translate these ele-
ments that permeate the English side of the corpus.

7 Conclusion and Future Work

In this paper, we apply the usage-based approach
of Lapshinova-Koltunski and Hardmeier (2017)
for automatic identification of unaligned patterns
linked to discourse-related language discrepan-
cies, and extend it to also include cases of inter-
esting aligned phenomena. We focus on pronouns
and determiners in two structurally different lan-
guages, English and Croatian, and study them in
parallel corpora pertaining to three different regis-
ters. We were able to distinguish tendencies both
at the general level (e.g. the omission of reflex-
ive possessives in cataphoric position in Croatian)
and at corpus-specific levels (e.g. the stricter regu-
lation of representation of definiteness in the DGT
corpus). We find that the data-driven nature of the
approach makes it a useful framework for linguis-
tic and translation studies, as it hardly makes any
initial assumptions about the behaviour of phe-
nomena.

The observations obtained from the parallel data
analysis were used to pinpoint interesting linguis-
tic patterns in the two languages, and we further
study the way they are handled in MT. To that end,
we trained several statistical and neural MT sys-
tems and constructed a test set targeting the chal-
lenging linguistic expressions. The test set has
been made publicly available for further research.
We devised a relatively fine-grained classification
of errors to evaluate system performance and as-
signed a penalty to the different error categories in
order to facilitate the comparison and ranking of
systems in terms of translation acceptability. We
provide insights for these diverse extracted phe-
nomena both with regard to the different registers
and to the general performance of several MT sys-
tems.

Overall, all systems seem to perform unsatisfac-
torily, especially so on the TedTalks corpus, which
is smallest in size as well as linguistically infor-
mal and diverse. On the other hand, insofar as bet-
ter handling of unaligned phenomena can be inter-
preted as a reflection of translation fluency, NMT
systems seem to outperform SMT by producing
a higher percentage of acceptable translations in
cases which involve standard patterns of para-
phrasing and the introduction/omission of coref-
erence elements on the target side. However, all
MT systems fall short when it comes to more cre-
ative language use, such as handling lexical gaps
or idiomatic expressions. Our analysis highlights
the complexity of the issue and offers an approach
through which further insights can be obtained
with a view to improve the translation of coref-
erence phenomena. Lastly, we would like to point
out that the research included Croatian, a language
that is both under-resourced and under-researched
in the field of MT. We also believe that many of
the insights for English–Croatian could carry over
to other closely related Slavic languages.

As part of future work it would be interesting
to investigate other coreference phenomena, and
experiment with basing the extraction patterns on
some other linguistic features, such as pronoun
function (cf. Guillou et al., 2014). As for MT
system applications, our manual analysis suggests
that the MT systems for this language pair are
generally in need of some improvement to bet-
ter support the study of such specific phenomena,
despite obtaining reasonably high BLEU scores.
Further inquiry into why the system performance
dropped with the application of byte-pair encod-
ing would certainly be advisable and experiment-
ing with different architectures, notably the Trans-
former (Vaswani et al., 2017), would be desirable.
Future work might also include attempts at inte-
grating the output of coreference annotation sys-
tems in the workflow of MT systems, in order to
make them more attuned to the translation of dis-
course phenomena.
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berg, Jan Hajič, Jenna Kanerva, Veronika Laippala,
Alessandro Lenci, Teresa Lynn, Christopher Man-
ning, Ryan McDonald, Anna Missilä, Simonetta
Montemagni, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty,
Veronika Vincze, and Daniel Zeman. 2015. Univer-
sal dependencies 1.0. LINDAT/CLARIN digital li-
brary at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 39th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA.

Carolina Scarton and Lucia Specia. 2015. A quanti-
tative analysis of discourse phenomena in machine
translation. Discours. Revue de linguistique, psy-
cholinguistique et informatique. A journal of linguis-
tics, psycholinguistics and computational linguis-
tics, 16.

Rico Sennrich. 2017. How grammatical is character-
level neural machine translation? Assessing MT
quality with contrastive translation pairs. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 376–382.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Ralf Steinberger, Andreas Eisele, Szymon Klocek,
Spyridon Pilos, and Patrick Schlüter. 2012. DGT-
TM: A freely available translation memory in 22
languages. In Proceedings of the 8th international
conference on Language Resources and Evaluation
(LREC-2012), Istanbul, Turkey.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Sara Stymne and Lars Ahrenberg. 2012. On the prac-
tice of error analysis for machine translation eval-
uation. In Proceedings of the 8th International
Conference on Language Resources and Evaluation
(LREC-2012), Istanbul, Turkey.

Jörg Tiedemann. 2009. News from OPUS - A col-
lection of multilingual parallel corpora with tools
and interfaces. In N. Nicolov, K. Bontcheva,
G. Angelova, and R. Mitkov, editors, Recent
Advances in Natural Language Processing, vol-
ume V, pages 237–248. John Benjamins, Amster-
dam/Philadelphia, Borovets, Bulgaria.

Jörg Tiedemann and Yves Scherrer. 2017. Machine
translation with extended context. In Proceedings of
the 3rd Workshop on Discourse in Machine Transla-
tion, pages 82–92, Copenhagen, Denmark.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eight In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

47



David Vilar, Jia Xu, Luis Fernando D’Haro, and Her-
mann Ney. 2006. Error analysis of machine transla-
tion output. In Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC-2006), pages 697–702, Genoa, Italy.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 1264–1274. Association for Computa-
tional Linguistics.

Longyue Wang, Zhaopeng Tu, Andy Way, and Qun
Liu. 2017. Exploiting cross-sentence context for
neural machine translation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2826–2831. Associa-
tion for Computational Linguistics.

Heike Zinsmeister, Stefanie Dipper, and Melanie Seiss.
2012. Abstract pronominal anaphors and label
nouns in German and English: Selected case studies
and quantitative investigations. Translation: Com-
putation, Corpora, Cognition, 2(1).

48



Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 49–60
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64006

Coreference and Coherence in Neural Machine Translation:
A Study Using Oracle Experiments

Dario Stojanovski Alexander Fraser
Center for Information and Language Processing

LMU Munich
{stojanovski,fraser}@cis.lmu.de

Abstract

Cross-sentence context can provide valuable
information in Machine Translation and is crit-
ical for translation of anaphoric pronouns and
for providing consistent translations. In this
paper, we devise simple oracle experiments
targeting coreference and coherence. Oracles
are an easy way to evaluate the effect of dif-
ferent discourse-level phenomena in NMT us-
ing BLEU and eliminate the necessity to man-
ually define challenge sets for this purpose.
We propose two context-aware NMT mod-
els and compare them against models work-
ing on a concatenation of consecutive sen-
tences. Concatenation models perform better,
but are computationally expensive. We show
that NMT models taking advantage of context
oracle signals can achieve considerable gains
in BLEU, of up to 7.02 BLEU for corefer-
ence and 1.89 BLEU for coherence on subti-
tles translation. Access to strong signals al-
lows us to make clear comparisons between
context-aware models.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015) is a state-of-the-art approach to MT.
Standard NMT models translate an input language
sentence to an output language sentence, and do
not take into account discourse-level phenomena.
Cross-sentence context has already proven useful
for language modeling (Ji et al., 2015; Wang and
Cho, 2016) and dialogue systems (Serban et al.,
2016). It has also been of interest in Statistical
Machine Translation (SMT) research (Hardmeier,
2012; Hardmeier et al., 2013; Carpuat and Simard,
2012), and NMT research (Wang et al., 2017; Jean
et al., 2017; Tiedemann and Scherrer, 2017; Baw-
den et al., 2018; Tu et al., 2017; Voita et al., 2018).

Two important discourse phenomena for MT
are coreference and coherence. Pronominal coref-
erence relates to the issue of translating anaphoric

pronouns and is tackled in several works (Guillou,
2016; Hardmeier and Federico, 2010; Le Nagard
and Koehn, 2010) and is the central motivation for
the DiscoMT shared task on cross-lingual pronoun
prediction (Loáiciga et al., 2017). Coherence on
the other hand, is important for producing consis-
tent and coherent translations throughout a docu-
ment, especially for domain-specific terminology
(Carpuat, 2009; Ture et al., 2012; Gonzales et al.,
2017) and it is helpful to properly disambiguate
polysemous words. Modeling discourse-level phe-
nomena for MT is a challenging endeavor because
of difficulties in acquiring relevant linguistic sig-
nals. Measuring the effect of discourse-level phe-
nomena with automatic metrics such as BLEU is
also difficult as pointed out by Hardmeier (2012).

In this paper, we address these issues by propos-
ing several oracle experimental setups for eval-
uating the effect of coreference resolution (CR)
and coherence in MT. Oracle experiments provide
strong linguistic signals that enable strongly vis-
ible effects on BLEU scores, thus alleviating the
difficulty of using BLEU to evaluate discourse-
level phenomena in MT. Oracles highlight the ca-
pability of NMT systems to use context (which
we call context-aware NMT) and to handle dif-
ferent discourse-level phenomena. They provide
a variety of scenarios that can easily be set up
for any domain, dataset or language pair, unlike
discourse-specific challenge sets (Bawden et al.,
2018) which must be manually created. Further-
more, strong linguistic signals from oracles enable
us to easily study how the models use context.

Our primary task is translating subtitles from
English to German. Subtitles provide for a reason-
able diversity of topics necessary for testing coher-
ence. They also contain a large amount of short,
informal and conversational text, where anaphoric
pronouns are very important. We study corefer-
ence by aiding pronoun translation and coherence
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by providing disambiguation signals for transla-
tion of polysemous words. The oracles are auto-
matically created and targeted for each discourse
phenomenon. We additionally include a previous
target sentence oracle, where the context consists
of the previous target sentence, as a more generic
way of including context. This is an interesting
oracle, but this scenario is actually also beneficial
for online post-editing, because the gold standard
previous target sentence is available there.

We propose a simple, yet effective exten-
sion to standard RNN models for NMT (which
we refer to as NMT(RNN)) which models con-
text by employing attention over word embed-
dings only. We compare it against a standard
NMT(RNN) model working on a concatenation of
consecutive sentences (Tiedemann and Scherrer,
2017). Additionally, we evaluate the Transformer
(Vaswani et al., 2017) and propose a context-aware
NMT(Transformer) extension. Our oracles al-
low us to compare the context-aware NMT mod-
els with the baselines and make strong conclu-
sions. Moreover, we study how comparable ora-
cles are with the challenge sets proposed by Baw-
den et al. (2018) by analyzing the performance
of our context-aware model with both approaches.
Finally, we conduct a qualitative study and show
the inner workings of context-aware models under
different oracle settings.

Contributions: (i) We modify the data us-
ing an oracle experimental setup in order to ac-
commodate evaluating coreference and coherence
in NMT. (ii) Our evaluation is independent of
carefully constructed challenge sets, and can eas-
ily be transferred across language pairs and do-
mains. (iii) Results clearly show context-aware
NMT(RNN) and NMT(Transformer) can improve
performance over NMT models without access to
context. (iv) We empirically analyze the pros and
cons of the major approaches to context-aware
NMT and explain how different modeling deci-
sions interact with different discourse phenomena.
(v) We present the trade-offs in modeling power
versus speed that are important when considering
multiple sentences of context.

2 Oracle Signals for Coreference and
Coherence

Acquiring clean and strong context signals is a dif-
ficult challenge and previous work has not pro-
posed a way to do this on a larger scale. In our

work, we use oracles, where the context signals
are strong and allow us to carry out clear analysis.
We define three oracles which differ based on the
context supplied to the model.

First, we define the previous target sentence or-
acle where the context is the gold standard previ-
ous target sentence. Second, we define the coref-
erence or pronoun oracle where we simulate per-
fect knowledge of gender and number for pronoun
translation. Finally, we define the coherence or
more specifically, the repeated words oracle where
we help in identifying polysemous words and pro-
viding the correct signal for disambiguation.

Each of these oracles is accompanied by a fair
and a noisy oracle experimental setup. For the fair
setup, we obtain the linguistic signals in a realis-
tic way without having access to any target side
knowledge. In the noisy oracle setups, we add ad-
ditional target side information to the oracle sig-
nals. This additional information is not necessarily
relevant to the specific problem at hand (corefer-
ence or coherence) and it is used to test the robust-
ness of the models to identify the proper signals.

The oracle datasets are created in an automatic
way. We only need to manually define the list of
pronouns that will be taken into consideration in
the coreference oracle.

Oracle Table 1 shows samples from our ora-
cle setup. For each example we show the context,
original source sentence, our modified oracle sen-
tence and the target sentence. The first two exam-
ples show coreference (pronoun) oracle samples,
while the third one a coherence (repeated words)
oracle sample. The text in brackets shows which
is the counterpart repeated target word or the gen-
der of the noun the pronoun is referencing. It is not
explicitly provided to the models. The text preced-
ing the special token !@#$ in the oracle examples
is the input to the context part of the architecture.

For coreference, we aid the model with pronoun
translation as can be seen in example (c). In this
case, it refers to Roman (meaning novel), which is
apparent in the previous sentence (a). Without this
information the model will have difficulties gener-
ating the proper translation er (the German mas-
culine pronoun agreeing with Roman).

When creating the pronoun oracle setup, we do
not utilize the context sentence. Instead, we just
consider the current source and corresponding tar-
get sentence. If both sentences contain at least one
pronoun in their respective languages, we mark
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the source pronouns with XPRONOUN and insert
the target pronouns in the context of the main sen-
tence, as in example (c).

The example shows that the context provides
access to perfect knowledge of the coreferent,
which in turn tells us the number and gender.
However, the models still need to learn to use the
correct pronouns. As we can see in example (g),
there may be multiple pronouns in the context.
Since (g) is an imperative sentence, Sie does not
have a pronoun counterpart in the source and it is
used in conjunction with the German verb for use.

Example (k) shows how we model the coher-
ence phenomenon by using repeated words. Given
the English word source in a sentence without
helpful context, it would be impossible to disam-
biguate between two possible translations of the
word: Quelle (a source of a fountain or figuratively
the source of information) or Ursprung (origin,
where something originates from). However, we
see that the previous sentence (i) contains the rele-
vant information to select the correct translation of
the English source. The word source is present in
the previous and current source sentence and Ur-
sprung is present in the previous and current target
sentence. When we find at least one repeated word
on both the source and target side, we mark the
source word with a special token XREP and the
repeated target word is used as context to the main
source sentence. The intuition here follows previ-
ous work (Tu et al., 2017) where past translation
decisions are used for disambiguation. This ora-
cle is admittedly weaker than the coreference one
since it relies on the assumption that a polysemous
word has already been seen in the text. However,
if a word occurs in two consecutive sentences, it is
likely that it will have the same translation.

For the previous target sentence oracle, we use
the gold standard previous target sentence as con-
text and don’t modify the main source sentence.
We also setup experiments with 2 and 3 previous
target sentences as context.

Fair For the fair coreference setup, we attempt
to acquire gender and number knowledge by using
a coreference resolution tool, namely CorefAnno-
tator from Stanford CoreNLP1 (Clark and Man-
ning, 2016a,b). We run the model on entire doc-
uments. We only modified sentences that contain
a pronoun which has an antecedent in the previ-
ous source sentence. Consequently, the pronoun is

1https://stanfordnlp.github.io/CoreNLP

context sentence
(a) Let me summarize the novel[masculine] for you.
source sentence
(b) It presents a problem
pronoun oracle sample
(c) er[masculine] !@#$ XPRONOUN It presents a problem.
target sentence
(d) Er präsentiert ein Problem.
context sentence
(e) But you have a charm[masculine] everyone else here seems
to respond to.
source sentence
(f) Use it. OK, sport?
multiple pronoun oracle sample
(g) Sie ihn[masculine] !@#$ Use XPRONOUN it. OK, sport?
target sentence
(h) Setzen Sie ihn ein.
context sentence
(i) When dealing with a crisis everyone knows you go right
to the source[Ursprung].
source sentence
(j) God the source is pretty.
repeated words oracle sample
(k) Ursprung !@#$ God the XREP source is pretty.
target sentence
(l) Mann, so ein hübscher Ursprung.

Table 1: Coreference and coherence oracle samples. For
detailed explanation of the examples, refer to Section 2.

marked and the antecedent is inserted into the con-
text of the given sentence. In this way, we don’t
utilize any target side knowledge.

For the fair coherence experiment, we don’t
have access to target side information and we just
put special emphasis on words that are polyse-
mous candidates. As a result, we only use repeated
source words. A repeated word is marked in the
main sentence and it is used as context.

For the fair previous sentence experimental
setup, we use the same models trained on the pre-
vious target sentence oracle setup, but evaluate
them by translating the previous source sentence
with a baseline model and using this translation as
context. Additionally, we train models where the
previous sentence is from the source side.

Noisy oracles In order to test the robustness
of context-aware models, we define noisy coref-
erence oracles. We use the same approach as in
the oracle, but the previous gold standard target
sentence is added at the beginning of the context
(which already contains the target side pronouns).

We also define noisy oracles for coherence. In
this case, this is achieved by marking repeated
source words and marking repeated target words
in the previous target sentence and using the mod-
ified previous target sentence as context.
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3 Related Work

Bawden et al. (2018) is a recent work with simi-
larities to ours. They look at the scores computed
by context-aware models using challenge sets, by
comparing model scores on two perfect target lan-
guage sentences differing only on a single choice
of, e.g., gender for a pronoun, and providing two
different contexts to try to obtain, e.g., masculine
in the first case and feminine in the second case.

Like Bawden et al. (2018), we provide a focused
evaluation on coherence and coreference, but un-
like their work, we do not depend on manually cre-
ated datasets. Our simple oracles are a strong al-
ternative to manually constructed challenge sets,
as we can easily have a more diverse experimen-
tal setup (our oracles can be defined for different
languages, domains and datasets with little effort).

Several approaches have been proposed for
context-aware NMT that utilize a separate mecha-
nism to handle extra-sentential information. Wang
et al. (2017) integrate cross-sentence context using
gates in the decoder, which control information
flow between the cross-sentence context and the
current decoder state. However, the context repre-
sentation is fixed at each decoding time step, while
the model needs to focus on different parts of the
context. Tu et al. (2017) propose a caching mecha-
nism that stores previous translation decisions. As
a result, this approach fails to take into account
CR as stored translation decisions can’t be used to
address this phenomenon. Jean et al. (2017) and
Bawden et al. (2018) propose methods using a sep-
arate RNN-based context encoder. Tiedemann and
Scherrer (2017), propose concatenating the pre-
ceding sentence, both on source and target side
and then using a standard NMT model. These ap-
proaches are computationally expensive. They ei-
ther have an extra RNN-based encoder (Jean et al.,
2017; Bawden et al., 2018) or work on very long
sentences (Tiedemann and Scherrer, 2017).

A recent work by Voita et al. (2018) proposed
a context-aware Transformer model and provided
an analysis of anaphora resolution in MT. Their
proposed model is conceptually similar to our
NMT(Transformer) model, differing in that the
context is integrated in the encoder unlike our
model which does it in the decoder.

We propose a simple NMT(RNN) model that
only uses attention to encode the context and in-
tegrates it with a gating mechanism (Wang et al.,
2017). It provides for a better computational ef-

ficiency compared to models employing an extra
RNN-based encoder. We also propose a context-
aware Transformer model. In the experiments,
we compare our models against a concatena-
tion NMT(RNN) and NMT(Transformer) model
(Tiedemann and Scherrer, 2017).

4 Context-Aware Models

4.1 Lightweight context-aware NMT(RNN)
model

In this paper, we introduce a new lightweight
context-aware model based on the attention
encoder-decoder model proposed by Bahdanau
et al. (2015). We introduce this context-aware
model to compare against the proposed model by
Tiedemann and Scherrer (2017) as an alternative
approach to handling context.

The encoder part of the model, takes the source
sentence X = (x1, x2, . . . , xTx) and generates a
set of annotation vectors {h1, h2, . . . , hTx} where
hi =

[−→
h i;
←−
h i

]
.
−→
h i and

←−
h i are the i-th hid-

den states from the forward and backward recur-
rent networks respectively. The decoder generates
one target symbol yi at a time by computing the
conditional probability p(yi|y1, y2, . . . , yi−1, x) =
f(yi−1, si, ci) where ci represents the attention
weighted sum of annotation vectors and is com-
puted as in (Bahdanau et al., 2015). Unlike previ-
ous approaches that model context by employing
an RNN-based encoder (Jean et al., 2017; Bawden
et al., 2018), we propose to utilize the capability
of the attention mechanism only. This provides
for better computational efficiency, thus allowing
the model to exploit larger context at a lower com-
putational cost.

The context sentence is given as a sequence of
Xc = (xc1, x

c
2, . . . , x

c
T c
x
). We map the tokens to

the corresponding word embeddings wc
i . We share

all embeddings across the model, including the
context ones. The attention on the cross-sentence
context is conditioned on the previously generated
token yi−1 current candidate decoder state si−1

and attention weighted main sentence representa-
tion ci. Formally, the context sentence represen-
tation is computed as cci =

∑T c
x

j=1 βijwj where
β ∝ exp(f catt(yi−1, si−1, wj , ci)).

We integrate the context representation using
a gating mechanism (Wang et al., 2017) which
controls the flow of information between the cur-
rent decoder state and the context representation.
which is computed as g = fg(yi−1, si−1, ci, c

c
i ).
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The final decoder representation is computed as
si = fc(yi−1, si−1, ci, g ⊗ cci ).

4.2 Transformer context-aware model

The Transformer (Vaswani et al., 2017) is an
encoder-decoder architecture which fully relies on
attention. The encoder layers have two main
components, a multi-head self-attention and a
position-wise fully-connected feed-forward net-
work. Each of these components is followed by a
residual connection. In the self-attention sublayer,
each word from the input sentence acts as a query,
key and value when computing the attention. Each
attention head uses the queries and keys to com-
pute a dot product to which a softmax is applied
in order to get the attention weights to score the
values. Consequently, the representation of each
word depends on all the others. The final repre-
sentation is generated by concatenating the out-
put of the separate attention heads and inputting
it to the feed-forward network. The decoder on
the other hand, has three sublayers. It starts by
applying masked self-attention which is then used
to compute multi-head attention over the encoder
representation. This is then used as input to a feed-
forward network as in the encoder.

The proposed context-aware model in this pa-
per is built as an extension to the standard Trans-
former. All embeddings including the context em-
beddings are shared across the model. We mod-
ify the encoder by sharing the parameters for the
multi-head self-attention for the main and con-
text sentence. However, we don’t share the feed-
forward network after the self-attention.

The standard decoder computes a multi-head at-
tention ci over the main encoder representation us-
ing the output from the masked self-attention cmi .
We add an additional multi-head attention over the
context representation cci as well. Before comput-
ing the context attention, the output of the masked
self-attention is projected using a feed-forward
network. The main and context multi-head self-
attention representations are merged using a gat-
ing mechanism as si = gi ⊗ ci + (1 − gi) ⊗ cci
where gi = σ(Weci +Wcc

c
i +Wmc

m
i ).

5 Experiments

We train our models on OpenSubtitles2016 En-De
with ≈ 13.9M parallel sentences. The develop-
ment and test set consist of 6 and 7 documents ran-
domly sampled from the dataset, containing 3172

and 4627 sentences respectively. In the corefer-
ence oracle setup ≈ 7.8M training samples were
modified and added the appropriate context, while
in the coherence setup only ≈ 0.8M. The remain-
ing samples are unchanged and have no context.

We apply tokenization, truecasing and BPE
splitting computed jointly on both languages with
59500 operations. All sentences with length above
60 tokens are discarded. Batch size is 80. All
embeddings are tied (Press and Wolf, 2017) in-
cluding the ones in the context part of the archi-
tecture. Dropout (Gal and Ghahramani, 2016) of
0.2 is applied and 0.1 on the embeddings. We ap-
ply layer (Ba et al., 2016) and weight normaliza-
tion (Salimans and Kingma, 2016). The models
are trained with early-stopping based on the de-
velopment set’s cost. We report BLEU score on
detokenized text.

Our RNN-based model is implemented as an
extension to Nematus2 (Sennrich et al., 2017). We
used the Sockeye3 (Hieber et al., 2017) implemen-
tation of the Transformer. For the Transformer
we use hyper-parameters as similar as possible to
the ones in the Nematus models. We additionally
use label smoothing of value 0.1. Both, the base-
line and context-aware model have 4 layers. We
didn’t do any special hyper-parameter tuning for
the context-aware models, so further performance
improvements are possible. The datasets and the
source code for our context-aware models are pub-
licly available4.

6 Experimental Results

6.1 Previous target sentence oracle

In this section, we discuss the effect of using
context in context-aware NMT. In Table 2 we
show the results for the three different oracle
setups. Experiment (1a) shows that a baseline
NMT(RNN) model obtains 28.57 BLEU on the
test set. The NMT(Transformer) baseline (1b)
on the other hand, achieves 29.53 BLEU. Us-
ing the gold standard previous target sentence as
context, provides for 1.32 BLEU improvement
on the test for our context-aware NMT(RNN)
model (2a) and 1.78 BLEU for the concatenation
NMT(RNN) model (3a). Our proposed context-

2https://github.com/EdinburghNLP/
nematus

3https://github.com/awslabs/sockeye
4http://www.cis.uni-muenchen.de/

˜dario/projects/oracles
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aware NMT(Transformer) model (2b) also im-
proves upon the baseline, but only by 0.6 BLEU,
and the concatenation model (3b) closely follows
the RNN model, adding 1.49 BLEU.

We also evaluate the usefulness of larger con-
text. Using the previous 2 (6a) and 3 (7a) sen-
tences consistently adds ≈ 0.6 BLEU with the
concatenation NMT(RNN) model. The context-
aware NMT(RNN) model, does not improve when
using 2 sentences (4a), but has large gains when
extending to 3 (5a). In our context-aware mod-
els, the larger context is handled by concatenat-
ing all previous sentences. The context-aware
NMT(Transformer) (4b), (5b) was actually hurt by
the larger context. On the other hand, for the con-
catenation model (6b), (7b) we observed some im-
provements, but they were not as consistent as the
gains for the NMT(RNN) model.

The results in (2ab), (3ab), (4ab), (5ab) (6ab),
(7ab) are obtained with models trained and eval-
uated with the gold standard previous target sen-
tences as context. In the fair experiments (8ab),
(9ab) we train with the gold standard previous tar-
get sentence as context, but then evaluate with
translations of the previous source sentences ob-
tained with the baseline model. This lowers the
performance of both NMT(RNN) models (8a),
(9a), but they still improve over the baseline.
Our context-aware NMT(Transformer) model (8b)
slightly lowers performance compared to the base-
line, unlike the concatenation model (9b).

Additionally, we train context-aware mod-
els where the previous sentence is obtained
from the source side (10ab), (11ab). Even in
such a scenario, context-aware and concatena-
tion NMT(RNN) models obtain improvements
over the baseline. Again, the concatenation
NMT(Transformer) shows improvements over the
baseline. The context-aware NMT(Transformer)
was not able to make use of the source side infor-
mation. Given that the encoder representations are
shared this is to some extent surprising and sug-
gests that additional encoder components are nec-
essary to model the contextual representation.

6.2 Coreference

Results for coreference are also shown in Table 2.
Experiments (12a) and (12b) show the results we
obtained with the pronoun oracle setup. It is clear
that NMT can benefit from strong coreference sig-
nals. We observed a large difference between the

(a) RNN (b) TF
(1) baseline 28.57 29.53
(2) context - gold prev. target 29.89 30.13
(3) concat - gold prev. target 30.35 31.02
(4) context - gold prev. 2 target 29.96 29.57
(5) context - gold prev. 3 target 30.95 29.98
(6) concat - gold prev. 2 target 30.96 31.69
(7) concat - gold prev. 3 target 31.56 31.26
(8) context - baseline prev. target 29.10 29.25
(9) concat - baseline prev. target 29.28 29.89
(10) context - prev. source 29.48 28.80
(11) concat - prev. source 29.56 30.25
Coreference
(12) context - pronoun oracle 34.35 34.60
(13) context - fair 29.05 28.76
(14) context - noisy pronoun oracle 33.61 34.62
(15) concat - noisy pronoun oracle 35.59 35.18
Coherence
(16) context - repeated target words 29.83 29.35
(17) context - repeated source words 29.27 29.04
(18) context - noisy rep. target words 30.07 29.85
(19) concat - noisy rep. target words 30.46 31.25

Table 2: BLEU scores from all of the oracle experimental
setups on the test set. Results in the first column correspond
to the NMT(RNN) context-aware and concatenation models
while the second column to the NMT(Transformer) ones. The
number in brackets in each line is used to indicate the corre-
sponding experiment throughout the text.

improvements on the development and the test set,
probably because this phenomenon is not equally
prominent in the datasets. In the absence of perfect
CR, this setup is a reasonable proxy for obtaining
coreference signals and gender information, and
the context-aware models achieve large improve-
ments over their respective baselines.

Experiments (13a) and (13b) show the results
for the fair coreference setup. Using a CR tool, we
identified the appropriate antecedents (to current
sentence pronouns) in the previous source sen-
tence and used them as context. The results show
small improvements on the test set. This signal
is significantly weaker. Moreover, only ≈ 0.3M
samples had a non-empty context, meaning a pro-
noun was referring to a coreferent as identified by
the CR tool. These results show that while weak,
the context-aware NMT(RNN) model is able to
utilize this signal. The NMT(Transformer) model
on the other hand, was significantly hurt by this
setup. We attribute this to the model not being able
to handle scenarios where the majority of the sam-
ples are without context information.

In the noisy pronoun oracle setup, the context
consists of the previous gold standard target sen-
tence to which we append the target side pronouns
as in the previously outlined pronoun oracle setup.
The results are shown in Table 2. We can ob-
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serve that the context-aware NMT(RNN) model
(14a) is actually hurt by the extra information in
the form of previous target sentence. We attribute
the decrease to the model learning to strongly at-
tend to all pronouns in the context. As such, in
some cases, it chooses to attend to a pronoun from
the previous sentence which ends up acting as
noise in these models. Using oracles allowed us to
easily find this important weakness in our model
design. The context-aware NMT(Transformer)
model (14b) is more robust to noise and had no
problems identifying the appropriate information.

Using the same setting for the concatenation
NMT(RNN) model (15a), achieves best perfor-
mance with an absolute gain of 7.02 BLEU. Based
on the obtained results in (3a), we conclude that
the effects in (15a) are a compound of the capabil-
ity of concatenation models to make use of the pre-
vious sentence and target side pronouns. The same
effects can be observed for the NMT(Transformer)
concatenation model as well (15b). However, de-
spite the concatenation Transformer being able to
obtain better results for the previous target sen-
tence and pronoun oracle than the RNN model, the
compound effect is not as strong.

6.3 Coherence

Table 2 shows the results we obtained for the co-
herence experimental setup. For the oracle setup,
we identify repeated source and target words in
the previous and current sentence, mark the source
words and insert the target words in the context.
For the fair setup, we insert repeated source words
in the context. The aim with this scenario is to em-
phasize which words are potentially important for
disambiguation. Moreover, in the oracle setup, we
provide the presumably gold standard translation
of the repeated word in the appropriate context.

Both scenarios (16a), (17a) obtain improve-
ments over the baseline with the NMT(RNN)
model, although not as strong as the gains with
the pronoun oracle. One reason is that the num-
ber of samples with context is significantly smaller
than the pronoun oracle. Another potential reason
is that coherence is already modeled well by the
baseline. The results indicate that obtaining coher-
ence and disambiguating signals from past trans-
lation decisions, whether from an oracle such as
in our work or from the model itself (Tu et al.,
2017) is difficult. Nevertheless, the noticeable
gains in BLEU we observed in our experiments

confirm that further improvements can be made.
The context-aware NMT(Transformer) is hurt by
these oracle setups as shown in experiments (16b)
and (17b) because of the lack of sufficient context.

Table 2 presents the results for the noisy co-
herence oracle. The context-aware NMT(RNN)
model (18a) obtains improvement over the base-
line of 1.5 BLEU and the concatenation model
(19a) of 1.89 BLEU. This is likely a compound ef-
fect of having access to the entire previous target
sentence as in (2a) and (3a) and the weak signals
in the form of pointers to where disambiguation is
necessary. This is to some extent matched by the
Transformer experiments (18b), (19b).

6.4 Comparison with challenge sets

In order to assess the quality of our oracles, we
also set them up on OpenSubtitles2016 En-Fr and
compare them against the challenge sets proposed
in Bawden et al. (2018). This allows us to compare
the two methods and show whether we can draw
similar conclusions about a model when evaluat-
ing it with both the oracles and challenge sets. For
simplicity, we only evaluate our proposed context-
aware NMT(RNN) model. We randomly sampled
documents from the En-Fr dataset to create a de-
velopment and test set. The challenge sets are used
as provided by Bawden et al. (2018). We set up the
oracles in the same way as for En-De. However, in
French the pronouns le, la and les can also be used
as definite articles. Therefore, we used MarMoT
(Mueller et al., 2013) to filter out these instances.

We compare the methods by measuring the im-
provements a context-aware model achieves over
a baseline, on our oracles and on the challenge
sets. Since our oracles use target side knowledge,
we use the version of the challenge sets where the
previous sentence is from the target side. This
provides for a fairer comparison. We train our
context-aware model on the pronoun and repeated
words oracle. In order to evaluate the model on the
challenge sets, we train the model with the gold
standard previous target sentence as context.

The baseline model obtains a score of 27.73
BLEU on the test and by design, it achieves 50%
accuracy on the coreference and 50% accuracy
on the coherence challenge set. Our proposed
context-aware model trained on the pronoun ora-
cle achieved 30.72 BLEU on the test set. On the
repeated words oracle, it scored 28.25 BLEU. As
in the En-De experimental results, our model ob-
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pronoun oracle meine er !@#$ XPRONOUN My reading of the prophecy is that XPRONOUN it will come in 2012
reference Meine Textstudien ergeben, daß er 2012 kommen wird
baseline Mein Lesen der Prophezeiung lautet, dass es 2012 kommen wird
context Meine Lesung der Prophezeiung ist, dass er 2012 kommen wird
repeated words
oracle

Abneigung Romulaner !@#$ If you had seen them kill your parents, you would XREP understand it
is always the XREP time for those XREP feelings.

reference Höatten Sie mit angesehen, wie Ihre Eltern getötet werden... Meine Abneigung gegen die Romulaner
ist universell.

baseline Wenn du gesehen hättest, wie sie deine Eltern töten würden, würdest du verstehen, dass es immer die
Zeit für diese Gefühle ist.

context Wenn du gesehen hättest, wie sie deine Eltern getötet haben, würdest du verstehen, dass es immer die
Zeit für diese Abneigung ist.

prev. sent. oracle Er dachte, die Geschichte handelte von einem Fisch. !@#$ It isn’t?
reference Tut sie nicht?
baseline Ist es nicht?
context Ist es nicht?

Table 3: Samples from the qualitative analysis.

tains small gains for coherence and larger ones
for coreference. The context-aware model we
trained with the previous target sentence as con-
text, scored 63.0% and 54.0%, on the corefer-
ence and coherence challenge set, respectively.
From these results we also can conclude that our
model is reasonably powerful to handle corefer-
ence and marginally improves coherence. These
results show that challenge sets and oracles pro-
vide comparable results when evaluating discourse
in MT. However, our oracle setups are easier to de-
fine and control.

6.5 Qualitative study

In this section, we show examples from our ora-
cle setups and provide visualizations of the extra-
sentential attention for our context-aware and
the concatenation NMT(RNN) model (Tiedemann
and Scherrer, 2017). We also show the activations
of the decoder gates which control the context in-
formation flow. This can help us understand how
the models make decisions at each time step.

In Table 3 we show the pronoun, repeated words
and previous target sentence oracles and com-
pare the output from a baseline and our proposed
context-aware model against the reference transla-
tion. For simplicity, in the visualizations for the
concatenation model, we only present the atten-
tion over the previous sentence and the sentence
separating token SEP.

The first row in Table 3 shows a pronoun oracle
sample. In this case, it refers to comet. It is ob-
vious that there is not sufficient information in the
main sentence alone to properly translate it and the
baseline model falls back to the data-driven prior,
which is to generate es.
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Figure 1: Context attention for the pronoun and repeated
words oracles.

From the visualization in Figure 1a we see that
our context-aware model pays attention to the ap-
propriate pronoun (meine, er). From Figure 3 we
see that for this example, the noisy oracle shows
the same behavior and correctly ignores the noise.
Furthermore, Figure 2a and Figure 2b show that
the gate activations follow the intuitive assump-
tion that they should be high when generating pro-
nouns. Our model in the noisy pronoun oracle
produced a correct translation, but it still weakly
paid attention to irrelevant parts of the sentence.
From Figure 4 we see that concatenation model
on the other hand, makes a clean distinction be-
tween what is relevant and what is not, and only
has strong attention over the pronouns.

56



meine
Les@@

ung
der

Prophezeiung
ist

,
dass

er
2012

kommen
wird

...
</s>

(a)

meine

Werte

der

Prophezeiung

sind

,

dass

er

2012

kommen

wird

...

</s>

(b)

wenn
du

gesehen
hättest

,
wie
sie

deine
Eltern

getötet
haben

,
würdest

du
verstehen

,
dass

es
immer

die
Zeit
für

diese
Ab@@

neigung
ist

.
</s>

(c)

hätten
Sie

gesehen
,

wie
sie

Ihre
Eltern
töten

,
würden

Sie
verstehen

,
dass

es
immer

die
Zeit
für

diese
Gefühle

ist
.

</s>

(d)

Figure 2: Gate activations for pronoun and repeated words
oracles. (a) pronoun oracle, (b) - noisy pronoun oracle, (c) -
repeated words oracle, (d) - noisy repeated words oracle.
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Figure 3: Context attention of our proposed model on the
noisy pronoun oracle.
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Figure 4: Attention over the previous sentence of the con-
catenation model on the noisy pronoun oracle.

The second sample is selected from the repeated
words oracle setup. Because the reference transla-
tion does not exactly match the source sentence,
there is a small mismatch between the repeated
words on the source and target side. However,
we see that without the contextual signal that feel-
ings in this case refers to adverse feelings (as in-
dicated by Abneigung) the baseline falls back to
the more common translation Gefühle. We also
looked at the previous sentence which did not have

any context information and both the baseline and
the context-aware model generated Gefühle.

Figure 1b shows that the context-aware model
has no problem attending to the disambiguating
signal (Abneigung) and it also uses this signal
when generating the determiner dieses which is
dependent on the noun. However, we also can ob-
serve that given the incorrect indication to look at
the context when translating time, it also has at-
tention activation over the context as well. This is
closely followed by the gate activations in Figure
2c. The same doesn’t happen when translating the
marked source token understand. This is probably
because the model is confident that it doesn’t need
context when translating understand.
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Figure 5: Context attention of our proposed model on the
noisy repeated words oracle.

From Figure 5 and Figure 2d we see that the
context-aware model in a noisy repeated words
oracle setting has difficulties identifying the co-
herence information and when to use it. It tends
to pay attention to certain words throughout the
whole sequence generation. This is likely a side
effect of having access to the previous target sen-
tence which in other cases provides useful infor-
mation. Although it pays attention to the appro-
priate repeated word (Abneigung), it still fails to
generate it. Since the concatenation model uses an
RNN over the context, it has no problem identify-
ing the disambiguating signal, marked with XREP
and generates it accordingly (Figure 6).

We also did an analysis of the previous target
sentence oracle as well as the models that use the
previous source sentence as context. We looked
at examples where there is an anaphoric pronoun
it. When the context is from the source side, our
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Figure 6: Attention over the previous sentence of the con-
catenation model on the noisy repeated words oracle.

context-aware model tends to pay attention to a
single noun, while in the previous target sentence
oracle, it looks at more explicit gender informa-
tion, such as pronouns, articles etc. This is illus-
trated in the last example in Table 3 and Figure 7
and 8. In this case, it refers to die Geschichte or
story. When translating it both models paid atten-
tion to the appropriate place in the previous sen-
tence, but failed to generate the correct pronoun
sie. For this particular example, the concatenation
model paid no attention to the previous sentence.
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Figure 7: Context attention of our proposed model on the
previous target sentence.
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Figure 8: Context attention of our proposed model on the
previous source sentence.

6.6 Model inference speed
Although the concatenation model performs better
than our context-aware model, an important con-
sideration when working with context-aware NMT
is computational efficiency. We compared infer-
ence times for the RNN models on the develop-

ment set. We report times with context size of 1, 2
and 3 previous sentences.

The context model took 1233 seconds to de-
code the development set, while the concatenation
model 2063 seconds. The concatenation model
took additional ≈ 900 seconds for each additional
context sentence. Because our context-aware im-
plementation is not tightly dependent on context
length, there are no considerable drops in speed.
This is a disadvantage of the concatenation ap-
proach. If one is to use large context, or even
entire documents, the problem quickly becomes
very computationally expensive. This highlights
the necessity of specialized context-aware mod-
els. Since the Transformer can be more easily
parallelized, there is still room for improving the
computational performance of our context-aware
Transformer. As a result, we leave such a compar-
ison for future work.

7 Conclusion and Future Work

We used simple oracles to look at discourse-level
phenomena in MT. We compared context-aware
NMT models and show that these approaches pro-
vide large gains in BLEU for coreference and
coherence given clear oracle signals. We also
showed that even when using fair signals, such as
the previous source sentence or a system transla-
tion of the previous target sentence, NMT mod-
els benefit and make use of the extra informa-
tion. Some future work in context-aware NMT
can focus on using the standard NMT architecture,
which performs well. However, if one requires ac-
cess to larger context, vanilla NMT will have diffi-
culties scaling in terms of speed and perhaps even
in modeling ability. For this reason, a promising
way forward is studying different ways of model-
ing and integrating context that support fast infer-
ence. Oracle experiments will allow us to quickly
test interesting modeling differences.
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Abstract

The translation of pronouns presents a
special challenge to machine translation
to this day, since it often requires con-
text outside the current sentence. Re-
cent work on models that have access
to information across sentence boundaries
has seen only moderate improvements in
terms of automatic evaluation metrics such
as BLEU. However, metrics that quan-
tify the overall translation quality are ill-
equipped to measure gains from additional
context. We argue that a different kind of
evaluation is needed to assess how well
models translate inter-sentential phenom-
ena such as pronouns. This paper therefore
presents a test suite of contrastive transla-
tions focused specifically on the transla-
tion of pronouns. Furthermore, we per-
form experiments with several context-
aware models. We show that, while gains
in BLEU are moderate for those systems,
they outperform baselines by a large mar-
gin in terms of accuracy on our contrastive
test set. Our experiments also show the ef-
fectiveness of parameter tying for multi-
encoder architectures.

1 Introduction

Even though machine translation has improved
considerably with the advent of neural machine
translation (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015), the translation of pronouns re-
mains a major issue. They are notoriously hard to
translate since they often require context outside
the current sentence.

As an example, consider the sentences in Fig-
ure 1. In both languages, there is a pronoun in the

∗ Work performed prior to joining Amazon.

EN However, the European Central Bank (ECB)
took an interest in it. It describes bitcoin as
“the most successful virtual currency”.

DE Dennoch hat die Europäische Zentralbank
(EZB) Interesse hierfür gezeigt. Sie
beschreibt Bitcoin als “die virtuelle Währung
mit dem grössten Erfolg”.

Figure 1: Example sentence illustrating how the
translation of pronouns is ambiguous on a sen-
tence level. Pronouns of interest are in italics, and
the antecedents they refer to are underlined. Taken
from WMT newstest2013.

second sentence that refers to the European Cen-
tral Bank. When the second sentence is translated
from English to German, the translation of the pro-
noun it is ambiguous. This ambiguity can only
be resolved with context awareness: if a transla-
tion system has access to the previous English sen-
tence, the previous German translation, or both, it
can determine the antecedent the pronoun refers
to. In this German sentence, the antecedent Eu-
ropäische Zentralbank dictates the feminine gen-
der of the pronoun sie.

It is unfortunate, then, that current NMT sys-
tems generally operate on the sentence level
(Vaswani et al., 2017; Gehring et al., 2017; Hieber
et al., 2017). Documents are translated sentence-
by-sentence for practical reasons, such as line-
based processing in a pipeline and reduced compu-
tational complexity. Furthermore, improvements
of larger-context models over baselines in terms of
document-level metrics such as BLEU or RIBES
have been moderate, so that their computational
overhead does not seem justified, and so that it is
hard to develop more effective context-aware ar-
chitectures and empirically validate them.
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To address this issue, we present an alternative
way of evaluating larger-context models on a test
set that allows to specifically measure a model’s
capability to correctly translate pronouns. The test
suite consists of pairs of source and target sen-
tences, in combination with contrastive translation
variants (for evaluation by model scoring) and ad-
ditional linguistic and contextual information (for
further analysis). The resource is freely available.1

Additionally, we evaluate several context-aware
models that have recently been proposed in the lit-
erature on this test set, and extend existing models
with parameter tying.

The main contributions of our paper are:

• We present a large-scale test set to evaluate
the accuracy with which NMT models trans-
late the English pronoun it to its German
counterparts es, sie and er.

• We evaluate several context-aware systems
and show how targeted, contrastive evalua-
tion is an effective tool to measure improve-
ment in pronoun translation.

• We empirically demonstrate the effectiveness
of parameter tying in multi-encoder context-
aware models.

Section 2 explains how our paper relates to ex-
isting work on context-aware models and the eval-
uation of pronoun translation. Section 3 describes
our test suite. The context-aware models we use in
our experiments are detailed in Section 4. We dis-
cuss our experiments in Section 5 and the results
in Section 6.

2 Related Work

Two lines of work are related to our paper: re-
search on context-aware translation (described in
Section 2.1) and research on focused evaluation of
pronoun translation (described in Section 2.2).

2.1 Context-Aware NMT Models
If the translation of a pronoun requires context be-
yond the current sentence (see the example in Fig-
ure 1), a natural extension of sentence-level NMT
models is to condition the model prediction on this
necessary context. In the following, we describe a
number of existing approaches to making models
“aware” of additional context.

1https://github.com/ZurichNLP/
ContraPro

The simplest possible extension is to trans-
late units larger than sentences. Tiedemann and
Scherrer (2017) concatenate each sentence with
the sentence that precedes it, for the source side
of the corpus or both sides. All of their models
are standard sequence-to-sequence models built
with recurrent neural networks (RNNs), since the
method does not require any architectural change.
Agrawal et al. (2018) use the same concatena-
tion technique with a Transformer architecture
(Vaswani et al., 2017), and experiment with wider
context.

A number of works do propose changes to the
NMT architecture. A common technique is to ex-
tend a standard encoder-decoder model by addi-
tional encoders for the context sentence(s), with a
modified attention mechanism (Jean et al., 2017;
Bawden et al., 2018; Voita et al., 2018). One as-
pect that differs between these works is the ar-
chitecture of the encoder and attention. While
Jean et al. (2017); Bawden et al. (2018) extend an
RNN encoder-decoder with a second encoder that
the decoder attends to, Voita et al. (2018) extend
the Transformer architecture with an encoder that
is attended to by the main encoder. Voita et al.
(2018) also introduce parameter sharing between
the main encoder and the context encoder, but do
not empirically demonstrate its importance.

While the number of encoded sentences in
the previous work is fixed, Wang et al. (2017);
Maruf and Haffari (2018) explore the integration
of variable-size context through a hierarchical ar-
chitecture, where a first-level RNN reads in words
to produce sentence vectors, which are then fed
into a second-level RNN to produce a document
summary.

Apart from differences in the architectures, re-
lated work varies in whether it considers source
context, target context, or both (see Table 1 for
an overview of language arcs and context types).
Some work considers only source context, but for
pronoun translation, target-side context is intu-
itively important for disambiguation, especially if
the antecedent itself is ambiguous. In our evalua-
tion, we therefore emphasize models that take into
account both source and target context.

Our experiments are based on models from
Bawden et al. (2018), who have released their
source code.2 We extend their models with pa-
rameter sharing, which was shown to be beneficial

2https://github.com/rbawden/nematus
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Languages Context types
source target source target preceding following

Tiedemann and Scherrer (2017) DE EN x x x
Jean et al. (2017) EN FR/DE x x
Wang et al. (2017) ZH EN x x
Voita et al. (2018) EN RU x x x
Bawden et al. (2018) EN FR x x x
Maruf and Haffari (2018) FR/DE/ET EN x x x
Agrawal et al. (2018) EN IT x x x x

Table 1: Overview of context-aware translation models in related work.

by Voita et al. (2018). Additionally, we consider a
concatenative baseline, similar to Tiedemann and
Scherrer (2017), and Transformer-based models
(Voita et al., 2018).

2.2 Evaluation of Pronoun Translation
Pronouns can serve a variety of functions with
complex cross-lingual variation (Guillou, 2016),
and hand-picked, manually annotated test suites
have been presented for the evaluation of pronoun
translation (Guillou and Hardmeier, 2016; Isabelle
et al., 2017; Bawden et al., 2018). While suitable
for analysis, the small size of the test suites makes
it hard to make statistically confident comparisons
between systems, and the hand-picked nature of
the test suites introduces biases.3 To overcome
these problems, we opted for a fully automatic ap-
proach to constructing a large-scale test suite.

Conceptually, our test set is most similar to
the “cross-lingual pronoun prediction” task held
at DiscoMT and WMT in recent years (Hardmeier
et al., 2015; Guillou et al., 2016; Loáiciga et al.,
2017): participants are asked to fill a gap in a tar-
get sentence, where gaps correspond to pronouns.

The first edition of the task focused on
English→French, and it was found that local con-
text (such as the verb group) was a strong sig-
nal for pronoun prediction. Hence, future editions
only provided target-side lemmas instead of fully
inflected forms, which makes the task less suitable
to evaluate end-to-end neural machine translation
systems, although such systems have been trained
on the task (Jean et al., 2017).

Loáiciga et al. (2017) do not report on the
proportion of intra-sentential and inter-sentential
anaphora in their test set, but the two top-

3For example, all pronoun examples in the test suite by
Bawden et al. (2018) require the previous target sentence for
disambiguation, and thus do not reward models that condition
on more than one sentence of context.

performing systems only made use of intra-
sentential information. Our test suite focuses on
allowing the comparison of end-to-end context-
aware NMT systems, and we thus extract a
large number of inter-sentential anaphora, with
meta-data allowing for a focus on inter-sentential
anaphora with a long distance between the pro-
noun and its antecedent. Our focus on evaluat-
ing end-to-end NMT systems also relieves us from
having to provide annotated training sets, and re-
duces pressure to achieve balance and full cover-
age of phenomena.4

An alternative approach to automatically evalu-
ate pronoun translation are reference-based meth-
ods that produce a score based on word alignment
between source, translation output, and reference
translation, and identification of pronouns in them,
such as AutoPRF (Hardmeier and Federico, 2010)
and APT (Miculicich Werlen and Popescu-Belis,
2017). Guillou and Hardmeier (2018) perform a
human meta-evaluation and show substantial dis-
agreement between reference-based metrics and
human judges, especially because there often ex-
ist valid alternative translations that use different
pronouns than the reference. Our test set, and our
protocol of generating contrastive examples, is fo-
cused on selected pronouns to minimize the risk
of producing contrastive examples that are actu-
ally valid translations.

3 Test set with contrastive examples

Contrastive evaluation requires a large set of suit-
able examples that involve the translation of pro-
nouns. As additional goals, our test set is designed

4For example, we do not consider cases where English it
is translated into something other than a personal pronoun.
While this would be a severe blind spot in a training set for
pronoun prediction, the focused nature of our test suite does
not impair the performance of end-to-end NMT systems on
other phenomena.
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Alignment Frequency Probability

it→es 255764 0.334
it→sie 64446 0.084
it→er 44543 0.058
it→ist 42614 0.055
it→Sie 26054 0.034
it→, 21037 0.027
it→das 17992 0.023
it→dies 11943 0.015
it→wird 11886 0.015
it→man 10539 0.013
it→ihn 7744 0.010

Table 2: Frequency and probability of alignments
of it in the training data of our systems (all
data from the WMT 2017 news translation task).
Alignments are produced by a fast_align model.

to 1) focus on hard cases, so that it can be used
as a benchmark to track progress in context-aware
translation and 2) allow for fine-grained analysis.

Section 3.1 describes how we extract our data
set. Section 3.2 explains how, given a set of con-
trastive examples, contrastive evaluation works.

3.1 Automatic extraction of contrastive
examples from corpora

We automatically create a test set from the Open-
Subtitles corpus (Lison and Tiedemann, 2016).5

The goal is to provide a large number of diffi-
cult test cases where an English pronoun has to
be translated to a German pronoun.

The most challenging cases are translating it to
either er, sie or es, depending on the grammatical
gender of the antecedent.6 Not only is the transla-
tion of it ambiguous, there is also class imbalance
in the training data (see Table 2). There is roughly
a 30% probability that it is aligned to es,7 which
makes it difficult to learn to translate er and sie.
We use parsing and automatic co-reference reso-
lution to find translation pairs that satisfy our con-
straints.

5http://opus.nlpl.eu/
OpenSubtitles2016.php

6The pronouns he and she usually refer to a person in En-
glish, and since persons do not change gender in the trans-
lation, we assume that learning the correspondences he →
er and she → sie does not present a challenge for a model.
Cases where he or she refer to a noun that is not a person are
possible, but extremely rare.

7Note that these statistics include non-referential uses of
it, that we exclude from our testset.

To provide a basis for filtering with constraints,
we tokenize the whole data set with the Moses
tokenizer, generate symmetric word alignments
with fast_align (Dyer et al., 2013), parse the En-
glish text with CoreNLP (Manning et al., 2014),
parse the German text with ParZu (Sennrich et al.,
2013) and perform coreference resolution on both
sides. The coreference chains are obtained with
the neural model of CoreNLP for English, and
with CorZu for German (Tuggener, 2016), respec-
tively.

Then we opt for high-precision, aggressive fil-
tering, according to the following protocol: for
each pair of sentences (e, f) in English and Ger-
man, extract iff

• e contains the English pronoun it, and f con-
tains a German pronoun that is third person
singular (er, sie or es), as indicated by their
part-of-speech tags;

• those pronouns are aligned to each other;

• both pronouns are in a coreference chain;

• their nominal antecedents in the coreference
chain are aligned on word level.

This removes most candidate pairs, but is neces-
sary to overcome the noise introduced by our pre-
processing pipeline, most notably coreference res-
olution. From the filtered set, we create a balanced
test set by randomly sampling 4000 instances of
each of the three translations of it under consider-
ation (er, sie, es). We do not balance antecedent
distance. See Table 4 for the distribution of pro-
noun pairs and antecedent distance in the test set.

For each sentence pair in the resulting test set,
we introduce contrastive translations. A con-
trastive translation is a translation variant where
the correct pronoun is swapped with an incor-
rect one. For an example, see Table 3, where
the pronoun it in the original translation corre-
sponds to sie because the antecedent bat is a fem-
inine noun in German (Fledermaus). We produce
wrong translations by replacing sie with one of the
other pronouns (er, es).

Note that, by themselves, these contrastive
translations are grammatically correct if the an-
tecedent is outside the current sentence. The test
set also contains pronouns with an antecedent in
the same sentence (antecedent distance 0). Those
examples do not require any additional context
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source: It could get tangled in your hair.
reference: Sie könnte sich in deinem Haar verfangen.

contrastive: Er könnte sich in deinem Haar verfangen.
contrastive: Es könnte sich in deinem Haar verfangen.

antecedent en: a bat
antecedent de: eine Fledermaus (f.)
antecedent distance : 1

Table 3: Example sentence pair with contrastive translations. An antecedent distance of 1 means that the
antecedent is in the immediately preceding sentence.

for disambiguation and we therefore expect the
sentence-level baseline to perform well on them.

We take extra care to ensure that the resulting
contrastive translations are grammatically correct,
because ungrammatical sentences are easily dis-
missed by an NMT system. For instance, if there
are any possessive pronouns (such as seine) in the
sentence, we also change their gender to match the
personal pronoun replacement.

The German coreference resolution system does
not resolve es because most instances of es in Ger-
man are either non-referential forms, or they refer
to a clause instead of a nominal antecedent. We
limit the test set to nominal antecedents, as these
are the only ambiguous cases with respect to trans-
lation. For this reason, we have to rely entirely
on the English coreference links for the extraction
of sentence pairs with it→es, as opposed to pairs
with it→er and it→sie where we have coreference
chains in both languages.8

Our extraction process respects document
boundaries, to ensure we always search for the
right context. We extract additional information
from the annotated documents, such as the dis-
tance (in sentences) between pronouns and their
antecedents, the document of origin, lemma, mor-
phology and dependency information if available.

3.2 Evaluation by scoring

Contrastive evaluation is different from conven-
tional evaluation of machine translation in that it
does not require any translation. Rather than test-
ing a model’s ability to translate, it is a method
to test a model’s ability to discriminate between
given good and bad translations.

8There are some cases where the antecedent is listed as it
in the test set. This is our fallback behaviour if the corefer-
ence chain does not contain any noun. In that case, we do not
know the true antecedent.

distance it→es it→er it→sie total

0 872 736 792 2400
1 1892 2577 2606 7075
2 631 459 420 1510
3 274 167 132 573

>3 331 61 50 442

total 4000 4000 4000 12000

Table 4: Test set frequencies of pronoun pairs and
antecedent distance (measured in sentences).

We exploit the fact that NMT systems are in
fact language models of the target language, con-
ditioned on source text. Like language models,
NMT systems can be used to compute a model
score (the negative log probability) for an existing
translation. Contrastive evaluation, then, means
to compare the model score of two pairs of in-
puts: (actual source, reference translation)
and (actual source, contrastive translation).
If the model score of the actual reference transla-
tion is higher, we assume that this model can de-
tect wrong pronoun translations.

However, this does not mean that systems actu-
ally produce the reference translation when given
the source sentence for translation. An entirely
different target sequence might rank higher in the
system’s beam during decoding. The only conclu-
sion permitted by contrastive evaluation is whether
or not the reference translation is more probable
than a contrastive variant.

If the model score of the reference is indeed
higher, we refer to this outcome as a “correct
decision” by the model. The model’s decision
is only correct if the reference translation has a
higher score than any contrastive translation. In
our evaluation, we aggregate model decisions on
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the whole test set and report the overall percent-
age of correct decisions as accuracy.

During scoring, the model is provided with ref-
erence translations as target context, while during
translation, the model needs to predict the full se-
quence. It is an open question to what extent per-
formance deteriorates when context is itself pre-
dicted, and thus noisy. We highlight that the same
problem arises for sentence-level NMT, and has
been addressed with alternative training strategies
(Ranzato et al., 2015).

4 Context-Aware NMT Models

This section describes several context-aware NMT
models that we use in our experiments. They fall
into two major categories: models based on RNNs
and models based on the Transformer architecture
(Vaswani et al., 2017). We experiment with addi-
tional context on the source side and target side.

4.1 Recurrent Models

We consider the following recurrent baselines:
baseline Our baseline model is a standard bidi-

rectional RNN model with attention, trained with
Nematus. It operates on the sentence level and
does not see any additional context. The input
and output embeddings of the decoder are tied, en-
coder embeddings are not.

concat22 We concatenate each sentence with
one preceding sentence, for both the source and
target side of the corpus. Then we train on this
new data set without any changes to the model ar-
chitecture. This very simple method is inspired by
Tiedemann and Scherrer (2017).

The following models are taken, or slightly
adapted, from Bawden et al. (2018). For this rea-
son, we give only a very short description of them
here and the reader is referred to their work for
details.

s-hier A multi-encoder architecture with hier-
archical attention. This model has access to one
additional context: the previous source sentence.
It is read by a separate encoder, and attended to by
an additional attention network. The output of the
resulting two attention vectors is combined with
yet another attention network.

s-t-hier Identical to s-hier, except that it consid-
ers two additional contexts: the previous source
sentence and previous target sentence. Both are
read by separate encoders, and sequences from all
encoders are combined with hierarchical attention.

s-hier-to-2 The model has an additional en-
coder for source context, whereas the target side
of the corpus is concatenated, in the same way as
for concat22. This model achieved the best results
in Bawden et al. (2018).

For each variant, we also introduce and test
weight tying: we share the parameters of embed-
ding matrices between encoders that read the same
kind of text (source or target side).

4.2 Transformer Models

All remaining models are based on the Trans-
former architecture (Vaswani et al., 2017). A
Transformer avoids recurrence completely: it
follows an encoder-decoder architecture using
stacked self-attention and fully connected layers
for both the encoder and decoder.

baseline A standard context-agnostic Trans-
former. All model parameters are identical to a
Transformer-base in Vaswani et al. (2017).

concat22 A simple concatentation model where
only the training data is modified, in the same way
as for the recurrent concat22 model.

concat21 Trained on data where the preceding
sentence is concatenated to the current one only
on the source side. This model is also taken from
Tiedemann and Scherrer (2017).

Voita et al. (2018) A more sophisticated
context-aware Transformer that uses source con-
text only. It has a separate encoder for source con-
text, but all layers except the last one are shared
between encoders. A source and context sentence
are first encoded independently, and then a sin-
gle attention layer and a gating function are used
to produce a context-aware representation of the
source sentence. Such restricted interaction with
context is shown to be beneficial for analysis of
contextual phenomena captured by the model. For
details the reader is referred to their work.

5 Experiments

We train all models on the data from the WMT
2017 English→German news translation shared
task (∼ 5.8 million sentence pairs). These cor-
pora do not have document boundaries, therefore
a small fraction of sentences will be paired with
wrong context, but we expect the model to be ro-
bust against occasional random context (see also
Voita et al. 2018). Experimental setups for the
RNN and Transformer models are different, and
we describe them separately.
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All RNN-based models are trained with Ne-
matus (Sennrich et al., 2017). We learn a joint
BPE model with 89.5k merge operations (Sen-
nrich et al., 2016). We train shallow models with
an embedding size of 512, a hidden layer size of
1024 and layer normalization. Models are trained
with Adam (Kingma and Ba, 2015), with an initial
learning rate of 0.0001. We apply early stopping
based on validation perplexity. The batch size for
training is 80, and the maximum length of training
sequences is 100 (if input sentences are concate-
nated) or 50 (if input lines are single sentences).

For our Transformer-based experiments, we use
a custom implementation and follow the hyperpa-
rameters from Vaswani et al. (2017); Voita et al.
(2018). Systems are trained on lowercased text
that was encoded using BPE (32k merge opera-
tions). Models consist of 6 encoder and decoder
layers with 8 attention heads. The hidden state size
is 512, the size of feedforward layers is 2048.

Model performance is evaluated in terms of
BLEU, on newstest2017, newstest2018
and all sentence pairs from our pronoun test
set. We compute scores with SacreBLEU (Post,
2018).9 Evaluation with BLEU is done mainly to
control for overall translation quality.

To evaluate pronoun translation, we perform
contrastive evaluation and report the accuracy of
models on our contrastive test set.

6 Evaluation

The BLEU scores in Table 5 show a moder-
ate improvement for most context-aware systems.
This suggests that the architectural changes for
the context-aware models do not degrade overall
translation quality. The contrastive evaluation on
our test set on the other hand shows a clear in-
crease in the accuracy of pronoun translation: The
best model s-hier-to-2.tied achieves a total of +16
percentage points accuracy on the test set over the
baseline, see Table 6.

Table 7 shows that context-aware models per-
form better than the baseline when the antecedent
is outside the current sentence. In our exper-
iments, all context-aware models consider one
preceding sentence as context. The evaluation
according to the distance of the antecedent in
Table 8 confirms that the subset of sentences

9Our (cased) SacreBLEU signature is BLEU+c.mixed+
l.en-de+#.1+s.exp+t.wmt{17,18}+tok.13a+
v.1.2.10.

with antecedent distance 1 benefits most from the
tested context-aware models (up to +20 percentage
points accuracy). However, we note two surprising
patterns:

• For inter-sentential anaphora, the perfor-
mance of all systems, including the base-
line, improves with increasing antecedent
distance.

• Context-aware systems that consider one
preceding sentence also improve on intra-
sentential anaphora, and on pronouns whose
antecedent is outside the context window.

The first observation can be explained by the
distribution of German pronouns in the test set.
The further away the antecedent, the higher the
percentage of it→es cases, which are the major-
ity class, and thus the class that will be predicted
most often if evidence for other classes is lacking.
We speculate that this is due to our more permis-
sive extraction heuristics for it→es.

We attribute the second observation to the ex-
istence of coreference chains where the preced-
ing sentence contains a pronoun that refers to the
same nominal antecedent as the pronoun in the
current sentence. Consider the example in Table
9: The nominal antecedent of it in the current sen-
tence is door, Tür in German with feminine gen-
der. The nominal antecedent occurs two sentences
before the current sentence, but the German sen-
tence in between contains the pronoun sie, which
is a useful signal for the context-aware models,
even though they cannot know the nominal an-
tecedent.

Note that only models aware of target-side con-
text can benefit from such circumstances: The s-
hier models as well as the Transformer model by
(Voita et al., 2018) only see source side context,
which results in lower accuracy if the distance to
the antecedent is >1, see Table 8.

While such coreference chains complicate the
interpretation of the results, we note that im-
provements on inter-sentential anaphora with an-
tecedent distance > 1 are relatively small (com-
pared to distance 1), and that performance is still
relatively poor (especially for the minority classes
er and sie). We encourage evaluation of wider-
context models on this subset, which is still large
thanks to the size of the full test set.

Regarding the comparison of different context-
aware architectures, our results demonstrate the
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newstest2017 newstest2018 pronoun set
cased uncased cased uncased cased uncased

baseline 23.0 23.7 33.7 34.2 19.4 19.9
concat22 23.8 24.4 34.5 35.0 20.2 20.8

independent encoders
s-hier 23.5 24.0 33.5 34.0 18.9 19.5
s-hier-to-2 23.8 24.3 34.2 34.8 19.2 19.7
s-t-hier 23.1 23.6 33.1 33.6 19.3 20.0

with weight tying
s-hier.tied 23.6 24.1 33.7 34.2 19.7 20.3
s-hier-to-2.tied 24.2 24.8 34.1 34.7 20.1 20.7
s-t-hier.tied 23.5 24.0 33.9 34.5 19.4 20.0

Transformer-based models
baseline - 24.6 - 35.4 - 21.1
concat21 - 24.8 - 35.3 - 21.8
concat22 - 24.4 - 36.0 - 21.3
(Voita et al., 2018) - 25.3 - 36.5 - 21.7

Table 5: English→German BLEU scores on newstest2017, newstest2018 and all sentence pairs from our
pronoun test set. Case-sensitive and case-insensitive (uncased) scores are reported. Higher is better, and
the best scores are marked in bold.

reference pronoun
total es er sie

baseline 0.44 0.85 0.17 0.31
concat22 0.53 0.84 0.32 0.42

independent encoders
s-hier 0.43 0.80 0.20 0.29
s-hier-to-2 0.55 0.84 0.41 0.40
s-t-hier 0.52 0.88 0.32 0.36

with weight tying
s-hier.tied 0.47 0.85 0.30 0.26
s-hier-to-2.tied 0.60 0.87 0.45 0.48
s-t-hier.tied 0.56 0.86 0.39 0.42

Transformer-based models
baseline 0.47 0.81 0.22 0.38
concat21 0.48 0.88 0.26 0.31
concat22 0.49 0.91 0.20 0.36
(Voita et al., 2018) 0.49 0.84 0.23 0.39

Table 6: Accuracy on contrastive test set (N=4000
per pronoun) with regard to reference pronoun.

antecedent location
intrasegmental external

baseline 0.57 0.41
concat22 0.58 0.51

independent encoders
s-hier 0.58 0.39
s-hier-to-2 0.63 0.53
s-t-hier 0.52 0.52

with weight tying
s-hier.tied 0.56 0.45
s-hier-to-2.tied 0.65 0.58
s-t-hier.tied 0.57 0.55

Transformer-based models
baseline 0.70 0.41
concat21 0.67 0.44
concat22 0.56 0.47
(Voita et al., 2018) 0.75 0.43

Table 7: Accuracy on contrastive test set with re-
gard to antecedent location (within segment vs.
outside segment).
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antecedent distance
0 1 2 3 >3

baseline 0.57 0.38 0.47 0.52 0.67
concat22 0.58 0.50 0.51 0.51 0.69

independent encoders
s-hier 0.58 0.36 0.42 0.46 0.61
s-hier-to-2 0.63 0.51 0.54 0.60 0.70
s-t-hier 0.52 0.49 0.57 0.61 0.71

with weight tying
s-hier.tied 0.56 0.43 0.46 0.49 0.67
s-hier-to-2.tied 0.65 0.58 0.55 0.55 0.75
s-t-hier.tied 0.57 0.54 0.56 0.59 0.72

Transformer-based models
baseline 0.70 0.38 0.45 0.49 0.65
concat21 0.67 0.42 0.45 0.47 0.66
concat22 0.56 0.44 0.53 0.54 0.74
(Voita et al., 2018) 0.75 0.39 0.48 0.54 0.66

Table 8: Accuracy on contrastive test set with regard to antecedent distance of antecedent (in sentences).

source sentence with antecedent What’s with the door?
target sentence with antecedent Was ist mit der Tür?
source context It won’t open.
reference context Sie geht nicht auf.
source sentence - Is it locked?
reference sentence - Ist sie abgeschlossen?

contrastive 1 - Ist er abgeschlossen?
contrastive 2 - Ist es abgeschlossen?

Table 9: Example where 1) antecedent distance is >1 and 2) the context given contains another pronoun
as an additional hint.
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effectiveness of parameter sharing between the
main encoder (or decoder) and the contextual en-
coder. We observe an improvement of 5 percent-
age points from s-hier-to-2 to s-hier-to-2.tied, and
4 percentage points from s-t-hier to s-t-hier.tied.
Context encoders introduce a large number of ex-
tra parameters, while inter-sentential context is
only relevant for a relatively small number of pre-
dictions. We hypothesize that the training signal
is thus too weak to train a strong contextual en-
coder in an end-to-end fashion without parame-
ter sharing. Our results also confirm the finding
by Bawden et al. (2018) that multi-encoder archi-
tectures, specifically s-hier-to-2(.tied), can outper-
form a simple concatenation system in the transla-
tion of coreferential pronouns.

The Transformer-based models perform
strongest on pronouns with intra-segmental
antecedent, outperforming the recurrent baseline
by 9–18 percentage points. This is likely an effect
of increased model depth and the self-attentional
architecture in this set of experiments. The model
by (Voita et al., 2018) only uses source context,
and outperforms the most comparable RNN
system, s-hier.tied. However, the Transformer-
based concat22 slightly underperforms the
RNN-based concat22, and we consider it future
research how to better exploit target context with
Transformer-based models.

7 Conclusions

We present a large-scale test suite to specifically
test the capacity of NMT models to translate pro-
nouns correctly. The test set contains 12,000 dif-
ficult cases of pronoun translations from English
it to its German counterparts er, sie and es, ex-
tracted automatically from OpenSubtitles (Lison
and Tiedemann, 2016).

We evaluate recently proposed context-aware
models on our test set. Even though the increase
in BLEU score is moderate for all context-aware
models, the improvement in the translation of pro-
nouns is considerable: The best model (s-hier-to-
2.tied) achieves a +16 percentage points gain in
accuracy over the baseline.

Our experiments confirm the importance of
careful architecture design, with multi-encoder
architectures outperforming a model that simply
concatenates context sentences. We also demon-
strate the effectiveness of parameter sharing be-
tween encoders of a context-aware model.

We hope the test set will prove useful for em-
pirically validating novel architectures for context-
aware NMT. So far, we have only evaluated mod-
els that consider one sentence of context, but
the nominal antecedent is more distant for a siz-
able proportion of the test set, and the evalua-
tion of variable-size context models (Wang et al.,
2017; Maruf and Haffari, 2018) is interesting fu-
ture work.
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Abstract

Tying the weights of the target word em-
beddings with the target word classifiers of
neural machine translation models leads to
faster training and often to better translation
quality. Given the success of this parameter
sharing, we investigate other forms of shar-
ing in between no sharing and hard equal-
ity of parameters. In particular, we pro-
pose a structure-aware output layer which
captures the semantic structure of the output
space of words within a joint input-output em-
bedding. The model is a generalized form
of weight tying which shares parameters but
allows learning a more flexible relationship
with input word embeddings and allows the
effective capacity of the output layer to be
controlled. In addition, the model shares
weights across output classifiers and transla-
tion contexts which allows it to better lever-
age prior knowledge about them. Our eval-
uation on English-to-Finnish and English-to-
German datasets shows the effectiveness of the
method against strong encoder-decoder base-
lines trained with or without weight tying.

1 Introduction

Neural machine translation (NMT) predicts the
target sentence one word at a time, and thus mod-
els the task as a sequence classification problem
where the classes correspond to words. Typi-
cally, words are treated as categorical variables
which lack description and semantics. This makes
training speed and parametrization dependent on
the size of the target vocabulary (Mikolov et al.,
2013). Previous studies overcome this problem
by truncating the vocabulary to limit its size and
mapping out-of-vocabulary words to a single “un-
known” token. Other approaches attempt to use a
limited number of frequent words plus sub-word
units (Sennrich et al., 2016), the combination of
which can cover the full vocabulary, or to perform

character-level modeling (Chung et al., 2016; Lee
et al., 2017; Costa-jussà and Fonollosa, 2016; Ling
et al., 2015); with the former being the most effec-
tive between the two. The idea behind these al-
ternatives is to overcome the vocabulary size issue
by modeling the morphology of rare words. One
limitation, however, is that semantic information
of words or sub-word units learned by the input
embedding are not considered when learning to
predict output words. Hence, they rely on a large
amount of examples per class to learn proper word
or sub-word unit output classifiers.

One way to consider information learned by in-
put embeddings, albeit restrictively, is with weight
tying i.e. sharing the parameters of the input em-
beddings with those of the output classifiers (Press
and Wolf, 2017; Inan et al., 2016) which is effec-
tive for language modeling and machine transla-
tion (Sennrich et al., 2017; Klein et al., 2017). De-
spite its usefulness, we find that weight tying has
three limitations: (a) It biases all the words with
similar input embeddings to have a similar chance
to be generated, which may not always be the case
(see Table 1 for examples). Ideally, it would be
better to learn distinct relationships useful for en-
coding and decoding without forcing any general
bias. (b) The relationship between outputs is only
implicitly captured by weight tying because there
is no parameter sharing across output classifiers.
(c) It requires that the size of the translation con-
text vector and the input embeddings are the same,
which in practice makes it difficult to control the
output layer capacity.

In this study, we propose a structure-aware out-
put layer which overcomes the limitations of pre-
vious output layers of NMT models. To achieve
this, we treat words and subwords as units with
textual descriptions and semantics. The model
consists of a joint input-output embedding which
learns what to share between input embeddings
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NMT NMT-tied NMT-joint
Query Input Output Input/Output Input Output
visited attacked visiting visits visiting attended

(Verb past tense) conquered attended attended attended witnessed
contacted visit visiting visits discussed
occupied visits frequented visit recognized
consulted discovered visit frequented demonstrated

generous modest spacious generosity spacious friendly
(Adjective) extensive generosity spacious generosity flexible

substantial generously generously flexible brilliant
ambitious massive lavish generously fantastic
sumptuous huge massive massive massive

friend wife friends colleague colleague colleague
(Noun) husband colleague friends friends fellow

colleague Fri@@ neighbour neighbour supporter
friends fellow girlfriend girlfriend partner
painter friendship companion husband manager

Table 1: Top-5 most similar input and output representations to two query words based on cosine sim-
ilarity for an NMT trained without (NMT) or with weight tying (NMT-tied) and our structure-aware
output layer (NMT-joint) on De-En (|V| ≈ 32K). Our model learns representations useful for en-
coding and generation which are more consistent to the dominant semantic and syntactic relations of the
query such as verbs in past tense, adjectives and nouns (inconsistent words are marked in red).

and output classifiers, but also shares parameters
across output classifiers and translation contexts
to better capture the similarity structure of the out-
put space and leverage prior knowledge about this
similarity. This flexible sharing allows it to distin-
guish between features of words which are useful
for encoding, generating, or both. Figure 1 shows
examples of the proposed model’s input and out-
put representations, compared to those of a soft-
max linear unit with or without weight tying.

This proposal is inspired by joint input-output
models for zero-shot text classification (Yazdani
and Henderson, 2015; Nam et al., 2016a), but in-
novates in three important directions, namely in
learning complex non-linear relationships, con-
trolling the effective capacity of the output layer
and handling structured prediction problems.

Our contributions are summarized as follows:

• We identify key theoretical and practical lim-
itations of existing output layer parametriza-
tions such as softmax linear units with or
without weight tying and relate the latter to
joint input-output models.

• We propose a novel structure-aware output
layer which has flexible parametrization for
neural MT and demonstrate that its mathe-

matical form is a generalization of existing
output layer parametrizations.

• We provide empirical evidence of the superi-
ority of the proposed structure-aware output
layer on morphologically simple and com-
plex languages as targets, including under
challenging conditions, namely varying vo-
cabulary sizes, architecture depth, and output
frequency.

The evaluation is performed on 4 translation pairs,
namely English-German and English-Finnish in
both directions using BPE (Sennrich et al., 2016)
of varying operations to investigate the effect of
the vocabulary size to each model. The main
baseline is a strong LSTM encoder-decoder model
with 2 layers on each side (4 layers) trained with
or without weight tying on the target side, but we
also experiment with deeper models with up to 4
layers on each side (8 layers). To improve effi-
ciency on large vocabulary sizes we make use of
negative sampling as in (Mikolov et al., 2013) and
show that the proposed model is the most robust to
such approximate training among the alternatives.

2 Background: Neural MT

The translation objective is to maximize the con-
ditional probability of emitting a sentence in a
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target language Y = {y1, ..., yn} given a sen-
tence in a source language X = {x1, ..., xm},
noted pΘ(Y |X), where Θ are the model param-
eters learned from a parallel corpus of length N :

max
Θ

1

N

N∑

i=1

log(pΘ(Y (i)|X(i))). (1)

By applying the chain rule, the output sequence
can be generated one word at a time by calculating
the following conditional distribution:

p(yt|yt−1
1 , X) ≈ fΘ(yt−1

1 , X). (2)

where fΘ returns a column vector with an element
for each yt. Different models have been proposed
to approximate the function fΘ (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015; Cho et al., 2014; Gehring et al., 2017;
Vaswani et al., 2017). Without loss of generality,
we focus here on LSTM-based encoder-decoder
model with attention Luong et al. (2015).

2.1 Output Layer parametrizations
2.1.1 Softmax Linear Unit
The most common output layer (Figure 3a), con-
sists of a linear unit with a weight matrix W ∈
IRdh×|V| and a bias vector b ∈ IR|V| followed by
a softmax activation function, where V is the vo-
cabulary, noted as NMT. For brevity, we focus our
analysis specifically on the nominator of the nor-
malized exponential which characterizes softmax.
Given the decoder’s hidden representation ht with
dimension size dh, the output probability distribu-
tion at a given time, yt, conditioned on the input
sentence X and the previously predicted outputs
yt−1

1 can be written as follows:

p(yt|yt−1
1 , X) ∝ exp(W Tht + b)

∝ exp(W T Iht + b), (3)

where I is the identity function. From the sec-
ond line of the above equation, we observe that
there is no explicit output space structure learned
by the model because there is no parameter shar-
ing across outputs; the parameters for output class
i, W T

i , are independent from parameters for any
other output class j, W T

j .

2.1.2 Softmax Linear Unit with Weight Tying
The parameters of the output embedding W can
be tied with the parameters of the input embed-
ding E ∈ IR|V|×d by setting W = ET , noted as

NMT-tied. This can happen only when the in-
put dimension of W is restricted to be the same as
that of the input embedding (d = dh). This cre-
ates practical limitations because the optimal di-
mensions of the input embedding and translation
context may actually be when dh 6= d.

With tied embeddings, the parametrization of
the conditional output probability distribution
from Eq. 3 can be re-written as:

p(yt|yt−1
1 , X) ∝ exp((ET )Tht + b)

∝ exp(Eht + b). (4)

As above, this model does not capture any explicit
output space structure. However, previous stud-
ies have shown that the input embedding learns
linear relationships between words similar to dis-
tributional methods (Mikolov et al., 2013). The
hard equality of parameters imposed by W = ET

forces the model to re-use this implicit structure in
the output layer and increases the modeling bur-
den of the decoder itself by requiring it to match
this structure through ht. Assuming that the la-
tent linear structure which E learns is of the form
E ≈ ElW where El ∈ IR|V|×k and W ∈ IRk×d

and d = dh, then Eq. 4 becomes:

p(yt|yt−1
1 , X) ∝ exp(ElWht + b) �. (5)

The above form, excluding bias b, shows that
weight tying learns a similar linear structure, albeit
implicitly, to joint input-output embedding mod-
els with a bilinear form for zero-shot classifica-
tion (Yazdani and Henderson, 2015; Nam et al.,
2016a).1 This may explain why weight tying is
more sample efficient than the baseline softmax
linear unit, but also motivates the learning of ex-
plicit structure through joint input-output models.

2.2 Challenges

We identify two key challenges of the existing
parametrizations of the output layer: (a) their dif-
ficulty in learning complex structure of the output
space due to their bilinear form and (b) their rigid-
ness in controlling the output layer capacity due
to their strict equality of the dimensionality of the
translation context and the input embedding.

1The capturing of implicit structure could also apply for
the output embedding W in Eq. 3, however that model would
not match the bilinear input-output model form because it is
based on the input embedding E.

75



E W

 dh x |V|

ht

 |V| x d 

ct

yt-1

.

d=dh

yt

W

SoftmaxDecoder

(a) Typical output layer which is a softmax linear unit
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(b) The structure-aware output layer is a joint embedding
between translation contexts and word classifiers.

Figure 1: Schematic of existing output layers and the proposed output layer for the decoder of the NMT
model with source context vector ct, previous word yt−1 ∈ IRd, and decoder hidden states, ht ∈ IRdh .

2.2.1 Learning Complex Structure
The existing joint input-output embedding models
(Yazdani and Henderson, 2015; Nam et al., 2016a)
have the following bilinear form:

E W︸︷︷︸
Structure

ht (6)

where W ∈ IRd×dh . We can observe that the
above formula can only capture linear relation-
ships between encoded text (ht) and input embed-
ding (E) through W . We argue that for struc-
tured prediction, the relationships between differ-
ent outputs are more complex due to complex in-
teractions of the semantic and syntactic relations
across outputs but also between outputs and dif-
ferent contexts. A more appropriate form for this
purpose would include a non-linear transformation
σ(·), for instance with either:

(a) σ(EW)︸ ︷︷ ︸
Output structure

ht or (b) E σ(Wht)︸ ︷︷ ︸
Context structure

. (7)

2.2.2 Controlling Effective Capacity
Given the above definitions we now turn our focus
to a more practical challenge, which is the capac-
ity of the output layer. Let Θbase, Θtied, Θbilinear

be the parameters associated with a softmax lin-
ear unit without and with weight tying and with
a joint bilinear input-output embedding, respec-
tively. The capacity of the output layer in terms of
effective number of parameters can be expressed
as:

Cbase ≈ |Θbase| = |V| × dh + |V| (8)

Ctied ≈ |Θtied| ≤ |V| × dh + |V| (9)

Cbilinear ≈ |Θbilinear| = d× dh + |V|. (10)

But since the parameters of Θtied are tied to the
parameters of the input embedding, the effective

number of parameters dedicated to the output layer
is only |Θtied| = |V|.

The capacities above depend on external fac-
tors, that is |V|, d and dh, which affect not only
the output layer parameters but also those of other
parts of the network. In practice, for Θbase the
capacity dh can be controlled with an additional
linear projection on top of ht (e.g. as in the Open-
NMT implementation), but even in this case the
parametrization would still be heavily dependent
on |V|. Thus, the following inequality for the
effective capacity of these models holds true for
fixed |V |, d, dh:

Ctied < Cbilinear < Cbase. (11)

This creates in practice difficulty in choosing
the optimal capacity of the output layer which
scales to large vocabularies and avoids under-
parametrization or overparametrization (left and
right side of Eq. 11 respectively). Ideally, we
would like to be able to choose the effective capac-
ity of the output layer more flexibly moving freely
in between Cbilinear and Cbase in Eq. 11.

3 Structure-aware Output Layer for
Neural Machine Translation

The proposed structure-aware output layer for
neural machine translation, noted as NMT-
joint, aims to learn the structure of the out-
put space by learning a joint embedding between
translation contexts and output classifiers, as well
as, by learning what to share with input embed-
dings (Figure 1b). In this section, we describe the
model in detail, showing how it can be trained effi-
ciently for arbitrarily high number of effective pa-
rameters and how it is related to weight tying.
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3.1 Joint Input-Output Embedding
Let ginp(ht) and gout(ej) be two non-linear pro-
jections of dj dimensions of any translation con-
text ht and any embedded output ej , where ej is
the jth row vector from the input embedding ma-
trix E, which have the following form:

e′j = gout(ej) = σ(UeTj + bu) (12)

h′t = ginp(ht) = σ(V ht + bv), (13)

where the matrix U ∈ IRdj×d and bias bu ∈ IRdj is
the linear projection of the translation context and
the matrix V ∈ IRdj×dh and bias bv ∈ IRdj is the
linear projection of the outputs, and σ is a non-
linear activation function (here we use Tanh).
Note that the projections could be high-rank or
low-rank for h′t and e′j depending on their initial
dimensions and the target joint space dimension.

With E′ ∈ IR|V|×dj being the matrix result-
ing from projecting all the outputs ej to the joint
space, i.e. gout(E), and a vector b ∈ IR|V| which
captures the bias for each output, the conditional
output probability distribution of Eq 3 can be re-
written as follows:

p(yt|yt−1
1 , X) (14)

∝ exp
(
E′h′t + b

)

∝ exp
(
gout(E)ginp(ht) + b

)

∝ exp
(
σ(UET + bu)σ(V ht + bv) + b

)
.

3.1.1 What Kind of Structure is Captured?
From the above formula we can derive the general
form of the joint space which is similar to Eq. 7
with the difference that it incorporates both com-
ponents for learning output and context structure:

σ(EWo)︸ ︷︷ ︸
Output structure

σ(Wcht)︸ ︷︷ ︸
Context structure

, (15)

where Wo ∈ IRd×dj and Wc ∈ IRdj×dh are the
dedicated projections for learning output and con-
text structure respectively (which correspond to
U and V projections in Eq. 14). We argue that
both nonlinear components are essential and vali-
date this hypothesis empirically in our evaluation
by performing an ablation analysis (Section 4.4).

3.1.2 How to Control the Effective Capacity?
The capacity of the model in terms of effective
number of parameters (Θjoint) is:

Cjoint ≈ |Θjoint| = d× dj + dj × dh + |V|.
(16)

By increasing the joint space dimension dj above,
we can now move freely between Cbilinear and
Cbase in Eq .11 without depending anymore on the
external factors (d, dh, |V |) as follows:

Ctied < Cbilinear ≤ Cjoint ≤ Cbase. (17)

However, for very large number of dj the com-
putational complexity increases prohibitively be-
cause the projection requires a large matrix multi-
plication between U and E which depends on |V|.
In such cases, we resort to sampling-based train-
ing, as explained in the next subsection.

3.2 Sampling-based Training

To scale up to large output sets we adopt the
negative sampling approach from (Mikolov et al.,
2013). The goal is to utilize only a sub-set V ′
of the vocabulary instead of the whole vocabu-
lary V for computing the softmax. The sub-set V ′
includes all positive classes whereas the negative
classes are randomly sampled. During back prop-
agation only the weights corresponding to the sub-
set V ′ are updated. This can be trivially extended
to mini-batch stochastic optimization methods by
including all positive classes from the examples
in the batch and sampling negative examples ran-
domly from the rest of the vocabulary.

Given that the joint space models generalize
well on seen or unseen outputs (Yazdani and Hen-
derson, 2015; Nam et al., 2016b), we hypothesize
that the proposed joint space will be more sample
efficient than the baseline NMT with or without
weight tying, which we empirically validate with a
sampling-based experiment in Section 4.5 (Table
2, last three rows with |V| ≈ 128K).

3.3 Relation to Weight Tying

The proposed joint input-output space can be seen
as a generalization of weight tying (W = ET ,
Eq. 3), because its degenerate form is equivalent
to weight tying. In particular, this can be simply
derived if we set the non-linear projection func-
tions in the second line of Eq. 14 to be the identity
function, ginp(·) = gout(·) = I , as follows:

p(yt|yt−1
1 , X) ∝ exp

(
(IE) (Iht) + b

)

∝ exp
(
Eht + b

)
�. (18)

Overall, this new parametrization of the output
layer generalizes over previous ones and addresses
their aforementioned challenges in Section 2.2.
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En→ Fi Fi→ En En→ De De→ En

Model |Θ| BLEU (∆) |Θ| BLEU (∆) |Θ| BLEU (∆) |Θ| BLEU (∆)
32

K

NMT 60.0M 12.68 (–) 59.8M 9.42 (–) 61.3M 18.46 (–) 65.0M 15.85 (–)

NMT-tied 43.3M 12.58 (−0.10) 43.3M 9.59 (+0.17) 44.9M 18.48 (+0.0) 46.7M 16.51 (+0.66)†
NMT-joint 47.5M 13.03 (+0.35)‡ 47.5M 10.19 (+0.77)‡ 47.0M 19.79 (+1.3)‡ 48.8M 18.11 (+2.26)‡

64
K

NMT 108.0M 13.32 (–) 106.7M 12.29 (–) 113.9M 20.70 (–) 114.0M 20.01 (–)

NMT-tied 75.0M 13.59 (+0.27) 75.0M 11.74 (−0.55)‡ 79.4M 20.85 (+0.15) 79.4M 19.19 (−0.82)†
NMT-joint 75.5M 13.84 (+0.52)‡ 75.5M 12.08 (−0.21) 79.9M 21.62 (+0.92)‡ 79.9M 20.61 (+0.60)†

12
8K

(∼
) NMT 201.1M 13.52 (–) 163.1M 11.64 (–) 211.3M 22.48 (–) 178.3M 19.12 (–)

NMT-tied 135.6M 13.90 (+0.38)∗ 103.2M 11.97 (+0.33)∗ 144.2M 21.43 (−0.0) 111.6M 19.43 (+0.30)

NMT-joint 137.7M 13.93 (+0.41)† 103.7M 12.07 (+0.43)† 146.3M 22.73 (+0.25)† 115.8M 20.60 (+1.48)‡

Table 2: Model performance and number of parameters (|Θ|) with varying BPE operations (32K, 64K,
128K) on the English-Finish and English-German language pairs. The significance of the difference
against the NMT baseline with p-values <.05, <.01 and <.001 are marked with ∗, † and ‡ respectively.

4 Evaluation
We compare the NMT-joint model to two
strong NMT baselines trained with and without
weight tying over four large parallel corpora which
include morphologically rich languages as targets
(Finnish and German), but also morphologically
less rich languages as targets (English) from WMT
2017 (Bojar et al., 2017)2. We examine the be-
havior of the proposed model under challenging
conditions, namely varying vocabulary sizes, ar-
chitecture depth, and output frequency.

4.1 Datasets and Metrics
The English-Finnish corpus contains 2.5M sen-
tence pairs for training, 1.3K for develop-
ment (Newstest2015), and 3K for testing (New-
stest2016), and the English-German corpus 5.8M
for training, 3K for development (Newstest2014),
and 3K for testing (Newstest2015). We pre-
process the texts using the BPE algorithm (Sen-
nrich et al., 2016) with 32K, 64K and 128K op-
erations. Following the standard evaluation prac-
tices in the field (Bojar et al., 2017), the trans-
lation quality is measured using BLEU score
(Papineni et al., 2002) (multi-blue) on tokenized
text and the significance is measured with the
paired bootstrap re-sampling method proposed by
(Koehn et al., 2007).3 The quality on infrequent
words is measured with METEOR (Denkowski
and Lavie, 2014) which has originally been pro-
posed to measure performance on function words.

2http://www.statmt.org/wmt17/
3multi-bleu.perl and bootstrap-hypothe-

sis-difference-significance.pl scripts.

To adapt it for our purposes on English-German
pairs (|V| ≈ 32K), we set as function words dif-
ferent sets of words grouped according to three
frequency bins, each of them containing |V|3 words
of high, medium and low frequency respectively
and set its parameters to {0.85, 0.2, 0.6, 0.} and
{0.95, 1.0, 0.55, 0.} when evaluating on English
and German respectively.

4.2 Model Configurations
The baseline is an encoder-decoder with 2 stacked
LSTM layers on each side from OpenNMT (Klein
et al., 2017), but we also experiment with varying
depth in the range {1, 2, 4, 8} for German-English.
The hyperparameters are set according to vali-
dation accuracy as follows: maximum sentence
length of 50, 512-dimensional word embeddings
and LSTM hidden states, dropout with a probabil-
ity of 0.3 after each layer, and Adam (Kingma and
Ba, 2014) optimizer with initial learning rate of
0.001. The size of the joint space is also selected
on validation data in the range {512, 2048, 4096}.
For efficiency, all models on corpora with V ≈
128K (∼) and all structure-aware models with
dj ≥ 2048 on corpora with V ≤ 64K are trained
with 25% negative sampling.4

4.3 Translation Performance
Table 2 displays the results on four translation
sets from English-German and English-Finish lan-
guage pairs when varying the number of BPE op-
erations. The NMT-tied model outperforms the

4Training the models with a full 128K vocabulary without
sampling runs out of memory on our machines.
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Model Layer form BLEU |Θ|
NMT W Tht 15.85 65.0M

NMT-tied Eht 16.51 46.7M

N
M

T-
j
o
i
n
t

Eq. 6 EWht 16.23 47.0M

Eq. 7 a σ(EW)ht 16.01 47.0M

Eq. 7 b Eσ(Wht) 17.52 47.0M

Eq. 15 (512) σ(EWo)σ(Wcht) 17.54 47.2M

Eq. 15 (2048) σ(EWo)σ(Wcht) 18.11 48.8M

Table 3: BLEU scores on De → En (|V| ≈ 32K)
for the ablation analysis of NMT-joint.

NMT baseline in many cases, but the differences
are not consistent and it even scores significantly
lower than NMT baseline in two cases, namely on
Fi→ En and De→ En with V ≈ 64K. This vali-
dates our claim that the parametrization of the out-
put space of the original NMT is not fully redun-
dant, otherwise the NMT-tied would be able to
match its BLEU in all cases. In contrast, the NMT-
jointmodel outperforms consistently both base-
lines with a difference up to +2.2 and +1.6 BLEU
points respectively,5 showing that the NMT-tied
model has a more effective parametrization and
retains the advantages of both baselines, namely
sharing weights with the input embeddings, and
dedicating enough parameters for generation.

Overall, the highest scores correlate with a high
number of BPE operations, namely 128K, 64K,
128K and 64k respectively. This suggests that the
larger the vocabulary the better the performance,
especially for the morphologically rich target lan-
guages, namely En → Fi and En → De. Lastly,
the NMT baseline seems to be the least robust to
sampling since its BLEU decreases in two cases.
The other two models are more robust to sampling,
however the difference of NMT-tied with the
NMT is less significant than that of NMT-joint.

4.4 Ablation Analysis

To demonstrate whether all the components of
the proposed joint input-output model are useful
and to which extend they contribute to the perfor-
mance, we performed an ablation analysis; the re-
sults are displayed in Table 3. Overall, all the vari-
ants of the NMT-joint outperform the baseline
with varying degrees of significance. The NMT-
joint with a bilinear form (Eq. 6) as in (Yaz-

5Except in the case of Fi→ En with |V| ≈ 64K, where
the NMT baseline performed the best.

Joint space dimension (    )

Fi → En

En→ De De → En

En → Fi

Figure 2: BLEU scores for the NMT-jointmodel
when varying its dimension (dj) with |V| ≈ 32K.

dani and Henderson, 2015; Nam et al., 2016b) is
slightly behind the NMT-tied and outperforms
the NMT baseline; this supports our theoretical
analysis in Section 2.1.2 which demonstrated that
weight tying is learning an implicit linear structure
similar to bilinear joint input-output models.

The NMT-joint model without learning ex-
plicit translation context structure (Eq. 7 a) per-
forms similar to the bilinear model and the NMT-
tied model, while the NMT-joint model with-
out learning explicit output structure (Eq. 7 b)
outperforms all the previous ones. When keep-
ing same capacity (with dj=512), our full model,
which learns both output and translation con-
text structure, performs similarly to the latter
model and outperforms all the other baselines, in-
cluding joint input-output models with a bilinear
form (Yazdani and Henderson, 2015; Nam et al.,
2016b). But when the capacity is allowed to in-
crease (with dj=2048), it outperforms all the other
models. Since both nonlinearities are necessary
to allow us to control the effective capacity of the
joint space, these results show that both types of
structure induction are important for reaching the
top performance with NMT-joint.

4.5 Effect of Embedding Size

Performance Figure 2 displays the BLEU scores
of the proposed model when varying the size of the
joint embedding, namely dj ∈ {512, 2048, 4096},
against the two baselines. For English-Finish
pairs, the increase in embedding size leads to a
consistent increase in BLEU in favor of the NMT-
joint model. For the English-German pairs, the
difference with the baselines is much more evident
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(a) Results on En→ De (|V| ≈ 32K). (b) Results on De→ En (|V| ≈ 32K).

Figure 3: METEOR scores (%) on both directions of German-English language pair for all the models
when focusing the evaluation on different frequency outputs grouped into three bins (high, medium, low).

Sampling
Model dj 50% 25% 5%
NMT - 4.3K 5.7K 7.1K
NMT-tied - 5.2K 6.0K 7.8K
NMT-joint 512 4.9K 5.9K 7.2K
NMT-joint 2048 2.8K 4.2K 7.0K
NMT-joint 4096 1.7K 2.9K 6.0K

Table 4: Target tokens processed per second during
training with negative sampling on En→ De pair
with a large BPE vocabulary |V| ≈ 128K.

and the optimal size is observed around 2048 for
De→ En and around 512 on En→De. The results
validate our hypothesis that there is parameter re-
dundancy in the typical output layer. However
the ideal parametrization is data dependent and
is achievable systematically only with the joint
output layer which is capacity-wise in between the
typical output layer and the tied output layer.

Training speed Table 4 displays the target to-
kens processed per second by the models on En
→ DE with |V| ≈ 128K using different levels of
negative sampling, namely 50%, 25%, and 5%.
In terms of training speed, the 512-dimensional
NMT-joint model is as fast as the baselines, as
we can observe in all cases. For higher dimensions
of the joint space, namely 2048 and 4096 there is
a notable decrease in speed which is remidiated by
reducing the percentage of the negative samples.

4.6 Effect of Output Frequency and
Architecture Depth

Figure 3 displays the performance in terms of ME-
TEOR on both directions of German-English lan-
guage pair when evaluating on outputs of differ-
ent frequency levels (high, medium, low) for all

the competing models. The results on De → EN
show that the improvements brought by the NMT-
joint model against baselines are present con-
sistently for all frequency levels including the low-
frequency ones. Nevertheless, the improvement is
most prominent for high-frequency outputs, which
is reasonable given that no sentence filtering was
performed and hence frequent words have higher
impact in the absolute value of METEOR. Sim-
ilarly, for En → De we can observe that NMT-
joint outperforms the others on high-frequency
and low-frequency labels while it reaches parity
with them on the medium-frequency ones.

We also evaluated our model in another chal-
lenging condition in which we examine the ef-
fect of the NMT architecture depth in the perfor-
mance of the proposed model. The results are dis-
played in Table 5. The results show that the NMT-
joint outperforms the other two models consis-
tently when varying the architecture depth of the
encoder-decoder architecture. The NMT-joint
overall is much more robust than NMT-tied and
it outperforms it consistently in all settings. Com-
pared to the NMT which is overparametrized the
improvement even though consistent it is smaller
for layer depth 3 and 4. This happens because
NMT has a much higher number of parameters
than NMT-joint with dj=512.

Increasing the number of dimensions dj of the
joint space should lead to further improvements,
as shown in Fig. 2. In fact, our NMT-joint with
dj = 2048 reaches 18.11 score with a 2-layer deep
model, hence it outperforms all other NMT and
NMT-tied models even with a deeper architec-
ture (3-layer and 4-layer) regardless of the fact that
it utilizes fewer parameters than them (48.8M vs
69.2-73.4M and 50.9-55.1M respectively).
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Model dj 1-layer |Θ| 2-layer |Θ| 3-layer |Θ| 4-layer |Θ|
NMT - 16.49 60.8M 15.85 65.0M 17.71 69.2M 17.74 73.4M

NMT-tied - 15.93 42.5M 16.51 46.7M 17.72 50.9M 17.60 55.1M
NMT-joint 512 16.93 43.0M 17.54 47.2M 17.83 51.4M 18.13 55.6M

Table 5: BLEU scores on De→ En (|V| ≈ 32K) for the NMT-joint with dj = 512 against baselines
when varying the depth of both the encoder and the decoder of the NMT model.

5 Related Work

Several studies focus on learning joint input-
output representations grounded to word seman-
tics for zero-shot image classification (Weston
et al., 2011; Socher et al., 2013; Zhang et al.,
2016), but there are fewer such studies for NLP
tasks. (Yazdani and Henderson, 2015) proposed
a zero-shot spoken language understanding model
based on a bilinear joint space trained with hinge
loss, and (Nam et al., 2016b), proposed a similar
joint space trained with a WARP loss for zero-shot
biomedical semantic indexing. In addition, there
exist studies which aim to learn output represen-
tations directly from data such as (Srikumar and
Manning, 2014; Yeh et al., 2018; Augenstein et al.,
2018); their lack of semantic grounding to the
input embeddings and the vocabulary-dependent
parametrization, however, makes them data hun-
gry and less scalable on large label sets. All these
models, exhibit similar theoretical limitations as
the softmax linear unit with weight tying which
were described in Sections 2.2.

To our knowledge, there is no existing study
which has considered the use of such joint input-
output labels for neural machine translation. Com-
pared to previous joint input-label models our
model is more flexible and not restricted to lin-
ear mappings, which have limited expressivity,
but uses non-linear mappings modeled similar
to energy-based learning networks (Belanger and
McCallum, 2016). Perhaps, the most similar em-
bedding model to ours is the one by (Pappas and
Henderson, 2018), except for the linear scaling
unit which is specific to sigmoidal linear units de-
signed for multi-label classification problems and
not for structured prediction, as here.

6 Conclusion and Perspectives

We proposed a re-parametrization of the output
layer for the decoder of NMT models which is
more general and robust than a softmax linear
unit with or without weight tying with the input

word embeddings. Our evaluation shows that the
structure-aware output layer outperforms weight
tying in all cases and maintains a significant dif-
ference with the typical output layer without com-
promising much the training speed. Furthermore,
it can successfully benefit from training corpora
with large BPE vocabularies using negative sam-
pling. The ablation analysis demonstrated that
both types of structure captured by our model
are essential and complementary, as well as, that
their combination outperforms all previous out-
put layers including those of bilinear input-output
embedding models. Our further investigation re-
vealed the robustness of the model to sampling-
based training, translating infrequent outputs and
to varying architecture depth.

As future work, the structure-aware output
layer could be further improved along the fol-
lowing directions. The computational complex-
ity of the model becomes prohibitive for a large
joint projection because it requires a large matrix
multiplication which depends on |V|; hence, we
have to resort to sampling based training relatively
quickly when gradually increasing dj (e.g. for
dj >= 2048). A more scalable way of increas-
ing the output layer capacity could address this
issue, for instance, by considering multiple con-
secutive additive transformations with small dj .
Another useful direction would be to use more
advanced output encoders and additional exter-
nal knowledge (contextualized or generically de-
fined) for both words and sub-words. Finally,
to encourage progress in joint input-output em-
bedding learning for NMT, our code is available
on Github: http://github.com/idiap/
joint-embedding-nmt.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt
Post, Raphael Rubino, Lucia Specia, and Marco
Turchi. 2017. Findings of the 2017 conference
on machine translation (wmt17). In Proceedings
of the Second Conference on Machine Translation,
Volume 2: Shared Task Papers, pages 169–214,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1693–1703, Berlin, Germany.
Association for Computational Linguistics.
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Abstract

We incorporate an explicit neural interlin-
gua into a multilingual encoder-decoder neural
machine translation (NMT) architecture. We
demonstrate that our model learns a language-
independent representation by performing di-
rect zero-shot translation (without using pivot
translation), and by using the source sentence
embeddings to create an English Yelp review
classifier that, through the mediation of the
neural interlingua, can also classify French
and German reviews. Furthermore, we show
that, despite using a smaller number of pa-
rameters than a pairwise collection of bilingual
NMT models, our approach produces compa-
rable BLEU scores for each language pair in
WMT15.

1 Introduction

1.1 Multilingual Machine Translation

Neural machine translation (NMT) relies on word
and sentence embeddings to encode the seman-
tic information needed for translation. The stan-
dard attentional encoder-decoder models (Bah-
danau et al., 2015) for bilingual NMT decom-
pose naturally into separate encoder and decoder
subnetworks for the source and target languages.
This factorization has inspired various forms of
multilingual NMT models that extended the orig-
inal bilingual framework to handle more language
pairs simultaneously. We refer to NMT models
that accept sentences from one source language
and produce outputs in one target language as
‘bilingual’. We contrast this with ‘multilingual’
NMT models, which support more than one source
and/or target languages within the same model.

The naive approach to multilingual machine
translation would train a model for each language
pair, which scales quadratically with the number

∗ Equal contribution

of languages in the corpus. Instead, by com-
bining language-specific encoders and decoders
in different ways, Dong et al. (2015), Zoph and
Knight (2016), Luong et al. (2016), and Firat
et al. (2016a) have explored the one source-to-
many target, many source-to-one target, and many
source-to-many target multilingual MT settings.
The multi-way shared attention model (Firat et al.,
2016a) is closest to our work, in that they consider
the large-scale, many-to-many scenario with mul-
tiple encoders and decoders.

It is also possible to adapt existing bilingual
NMT models to the many-to-many case without
changing the architecture at all. The universal
encoder-decoder approach (Ha et al., 2016; John-
son et al., 2017) constructs a shared vocabulary
for all languages in the dataset, and use just one
encoder and decoder for multilingual translation.
In addition, Johnson et al. (2017) introduce direct
zero-shot translation, which refers to the task of
translating between language pairs without paral-
lel text or pivoting through an intermediate lan-
guage like English. Direct zero-shot translation
may yield lower BLEU scores than pivot-based
approaches, but avoids doubling the latency and
computational overhead (due to translating the
source sentence twice,) which is a concern for
large-scale, productionized MT systems.

Nonetheless, both the multi-way shared at-
tention model and the universal encoder-decoder
model suffer from certain disadvantages. For the
former, direct zero-shot translation was shown to
be impossible in Firat et al. (2016b), and there is
no indication that the model learns any kind of
shared representation across languages. For the
latter, the output vocabulary size is typically fixed
to the vocabulary size for a single target language
(i.e. roughly 20,000 to 30,000 types), regardless
of the number of languages in the corpus. Increas-
ing the vocabulary size is costly, since the training
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and inference time scales linearly with the size of
the decoder’s output layer.

1.2 Our Contributions

In this work, we construct an explicit neural in-
terlingua for multilingual NMT, which addresses
some of the limitations in existing approaches.
Our contributions are threefold:

Firstly, we describe an attentional neural inter-
lingua that receives language-specific encoder em-
beddings and produces output embeddings which
are agnostic to the source and target languages.

Secondly, we perform zero-shot translation
(without pivot translation) for the Fr↔Ru, Zh↔Es
and Es↔Fr pairs of the updated UN Parallel Cor-
pus (Ziemski et al., 2016). At the time of writing,
our approach is the only alternative to the universal
encoder-decoder model for direct neural zero-shot
translation. We observe a significant improvement
in zero-shot translation performance compared to
that model.

Finally, we demonstrate that our model gener-
ates useful representations for crosslingual trans-
fer learning. We use the source sentence embed-
dings from our translation model to create an En-
glish Yelp review classifier that can, through the
mediation of the interlingua, classify French and
German Yelp reviews. We also show that the sen-
tence embeddings of parallel translations are close
to each other in a low-dimensional space.

2 Model Architecture

Figure 1: Our encoder-decoder model with the neural
interlingua, trained on WMT15. The neural interlin-
gua is an attentional encoder that converts language-
specific embeddings to language-independent ones.
Here, we illustrate the flow of data from English →
Interlingua → Finnish, and Russian → Interlingua →
English.

Figure 1 illustrates our basic model architecture.
Each language has its own recurrent encoder and
decoder. We attempt to construct a neural interlin-

Figure 2: An in-depth look at the network structure
when training/predicting with an En-De batch. The En-
glish sentence is fed through the English bidirectional
LSTM encoder. The encoder states are passed into the
neural interlingua, which is an attentional LSTM en-
coder. Finally, the hidden states of the interlingua are
consumed by the German attentional LSTM decoder to
generate the German translation.

gua by passing the language-specific encoder em-
beddings through a shared recurrent layer, whose
output embeddings are then passed to language-
specific decoders.

The figure describes the flow of data in the
model; each minibatch only contains one source
language and one target language, and only the
parameters in the source encoder, interlingua, and
target decoder are used for the forward and back-
ward passes. During training, the source and target
languages in each minibatch rotate according to a
schedule (see Algorithm 1). In Figure 2, we illus-
trate how an English sentence is converted into a
German one.

As with most sequence-to-sequence models, we
can view the generation of the next token in the tar-
get sentence as the application of a series of neural
network operations on the source sentence and the
partial output thus far. We model the probability
of each target sentence as follows,
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p(yi|y<i, x) = Dect(Inter(Encs(Embs(x))),

yi−1, h
t
i−1)

where y is the target sentence, x is the source
sentence, Dect is the decoder for the target lan-
guage t, Inter is the neural interlingua, Encs is the
encoder for the source language s, Embs is the
word embedding matrix for s, hti−1 is the state of
the decoder at step i − 1, s ∈ {1, ..., S} is the in-
dex of the source language, and t ∈ {1, ..., T} is
the index of the target language.

The source sentence x is transformed from a se-
quence of one-hot representations to a sequence of
word embeddings Bs through Embs,

Bs = Embs(xs)

Bs is a bs×Lx matrix, where Lx is the length of
the source sentence, and bs is the size of the word
embedding for the source language s.

The sequence of word embeddings is converted
into a sentence representation Es by Encs,

Es
.,i = Encs(Bs).,i

= BiLSTM(Bs
.,i, h

s
i−1)

Es is a es × Lx matrix, where es is the size of
encoder’s output. The notation X.,i refers to the
ith column of the matrix X . BiLSTM is a bidirec-
tional LSTM network, with forward and backward
states hsi−1 = [

−→
h s

i−1,
←−
h s

i+1] for step i− 1.
The neural interlingua Inter is an attentional en-

coder that maps the language-specific representa-
tion Es to an interlingual representation I ,

I.,i = Inter(Es).,i

=W I [LSTM(cIi , h
I
i−1), c

I
i ] + bI

=W I [hIi , c
I
i ] + bI

where hIi−1 is the interlingua LSTM state for
step i − 1, cIi =

∑Lx
j=1 α

I
ijE

s
.,j is the atten-

tional context vector, αI
ij =

exp(eIij)∑
j exp(e

I
ij)

and eIij =

MLPI(h
I
i , E

s
.,j) are the normalized and unnor-

malized attention weights introduced in Bahdanau
et al. (2015), and z = [x, y] denotes the concate-
nation of the vectors x and y into a new vector z.
We perform an affine transformation with W I , bI

to project the interlingua output to the desired di-
mensions.
I is a ei × Li matrix, where ei is the size of

the interlingua’s output. The output of the neural
interlingua is always fixed in length to Li (where
Li = 50 in our experiments), regardless of the
length of the source sentence. We chose Li = 50
because, during model training, we restrict the
maximum source sentence length to 50. To avoid
learning language-specific embeddings, we do not
use indicator tokens for the source or target lan-
guages.

Finally, the decoder takes the interlingual repre-
sentation I and the partial target sentence y<i and
computes the probability distribution for the next
output token,

p(yi|y<i, x)

= Dect(I, yi−1, h
t
i−1).,i

= softmax(W t[LSTM([yi−1, c
t
i], h

t
i−1), c

t
i] + bt)

= softmax(W t[hti, c
t
i] + bt)

where cti =
∑Li

j=1 α
t
ijI.,j is the context vec-

tor at step i, and αt
ij are the normalized attention

weights. The decoders receive the source sentence
only through the interlingual embedding.

Like Firat et al. (2016a), the number of encoders
and decoders for our model architecture scales lin-
early (rather than quadratically) with the number
of languages. In addition, since the neural inter-
lingua provides a common source sentence repre-
sentation to all decoders, the number of attention
mechanisms also scales linearly with the number
of languages.

We note that the concept of a neural interlin-
gua is independent of the architecture that is cho-
sen. While we use a LSTM encoder-decoder
model with single-headed attention for experimen-
tal simplicity, one could also introduce a neu-
ral interlingua to a transformer network (Vaswani
et al., 2017) or a CNN encoder-decoder network
(Gehring et al., 2017) instead.

3 Experiments

We conducted 4 experiments with our model.
We compared the performance of bilingual

NMT baselines against our proposed multilin-
gual model, and observe comparable performance
across all the language pairs in WMT15.
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Parameter Multi Bilingual-lingual
vocabulary size 30,000 30,000

source embedding size 256 256
target embedding size 256 256

output dimension 512 512
encoder hidden size 512 512
decoder hidden size 512 512

interlingua hidden size 512 -
interlingua length 50 -

encoder depth 2 4
interlingua depth 1 0

decoder depth 1 1
attention type additive additive

optimizer Adam Adam
learning rate 0.0002 0.0002

batch size 400 400

Table 1: Hyperparameters for the multilingual and
bilingual encoder-decoder models.

We found that the language-independent sen-
tence embeddings can be used for zero-shot mul-
tilingual classification. We train an English Yelp
review classifier with the interlingual embeddings
as input features, and use that model to classify
French and German reviews.

We performed direct zero-shot translation for
3 language pairs in the new UN Parallel Corpus.
For this task, our model showed an improvement
over the model architecture described in Johnson
et al. (2017). Our positive experimental finding
confirms that our model provides a new approach
for direct neural zero-shot translation.

Finally, we visualized the language-
independent sentence embeddings by projecting
them down to 2 dimensions. We observe that
parallel translations of French, German and
English sentences remain close to each other in
this low-dimensional space.

3.1 Model Training

The hyperparameters for the bilingual baseline
models and our multilingual network are summa-
rized in Table 1. Our multilingual model uses 1
bidirectional LSTM layer in the encoder for each
input language, 1 attentional LSTM layer for the
interlingua and 1 attentional LSTM layer in the
decoder for each output language. The baseline
bilingual models use 2 bidirectional LSTM layers
in the encoder and 1 attentional LSTM layer in the

decoder. We chose the Adam optimizer (Kingma
and Ba, 2015), and we used importance sampling,
as described in Jean et al. (2015), to accelerate
model training.

3.2 Language Rotation During Training

Algorithm 1: Multilingual model training
schedule on WMT15. We store the cycle of
language pairs in schedule, and xs and yt re-
fer to the source and target sentences respec-
tively.
θ ← RandomInitializer()
schedule← {}
for S ∈ {En, Fr, De, Cs, Fi, Ru} do

for L ∈ {Fr, De, Cs, Fi, Ru} do
schedule += {(En,L), (L,En)}

end
schedule += {(S, S)}

end
while True do

for (s, t) ∈ schedule do
xs ← SampleSource(s)
yt ← SampleTarget(t)
a← ForwardStep(θ, xs, yt)
∇θ ← BackwardStep(a, θ)
θ ← SGDUpdate(θ,∇θ)

end
end

The language pair schedule used during train-
ing is crucial for learning an effective sentence
representation. We provide the details in Algo-
rithm 1. In our initial experiments, we cycled
through 10 language pairs (i.e. (x → En, En →
x), x ∈ {Fr, De, Ru, Cs, Fi}), where each mini-
batch consisted of sentences from one language
pair. However, we found that the naive schedule
failed to produce a useful representation for zero-
shot translation or crosslingual text classification.
Since WMT15 is not a multi-parallel corpus, the
model essentially learns to handle two separate
tasks, namely translation from English and trans-
lation to English. For instance, since the output of
the De encoder and the En encoder would never
be used by the same decoder, there is no reason
for De and En source sentences to share the same
embedding, even if they are translations of each
other.

To encourage the model to share the encoder
representations across English and non-English
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Source Target Bilingual Multilingual

En

Fr 34.85 33.80
De 23.67 23.37
Cs 17.60 16.62
Ru 21.26 21.92
Fi 11.55 13.34

Fr

En

30.72 30.24
De 27.08 27.29
Cs 23.00 23.87
Ru 24.14 26.15
Fi 14.77 16.58

Table 2: Comparison of BLEU scores across language
pairs in newstest2015 and newsdiscuss2015. We show
the results for the bilingual baseline NMT models and
our multilingual NMT model.

source sentences, we added an extra identity lan-
guage pair (i.e. De→De, En→ En, etc.) to the ro-
tation. The identity pair forces the source embed-
dings to be compatible with an additional decoder.
We found that when we did not include the identity
mapping task during training, the zero-shot BLEU
score was < 1.0 for the Fr-Ru language pair.

3.3 Multilingual NMT versus Bilingual NMT
We used the training corpora from the WMT15
translation task to train our encoder-decoder mod-
els. The dataset provides English ↔ (German,
French, Czech, Russian, Finnish) parallel sen-
tences. We followed the standard WMT prepro-
cessing recipes1, which are based on the Moses
library (Koehn et al., 2007). For each language,
we created a vocabulary of 30,000 word pieces
using byte pair encoding (Sennrich et al., 2016).
Sentences longer than 50 word pieces were re-
moved from the training corpus. We used new-
stest2014 and newsdev2015 as our development
set, and newstest2015 and newsdiscuss2015 as our
test set.

We compared the performance of the multilin-
gual model against bilingual baseline models. The
BLEU scores are provided in Table 2. Results are
reported on newstest2015 and newsdiscuss2015.
We see that, while the performance is broadly sim-
ilar (i.e. generally <1.0 BLEU) between the our
model and the baselines, there is a decrease in
BLEU for higher-resource languages (e.g. Fr) and
an increase in BLEU for lower-resource languages

1e.g. http://data.statmt.org/wmt17/
translation-task/preprocessed/de-en/
prepare.sh

(e.g. Fi, Ru). We suspect that this is a conse-
quence of the language pair schedule, which cy-
cles through all language pairs as though they were
equally frequent in the corpus. A similar effect
was also observed in Johnson et al. (2017).

Currey et al. (2017) have shown that (specifi-
cally in low-resource settings) using copied mono-
lingual data can improve model performance. We
followed the technique in Currey et al. (2017) to
strengthen the baseline models, but did not ob-
serve an improvement in the final BLEU score.
This may be due to the fact that even the smallest
language pair in WMT15 has 2 million sentence
pairs, which is more than 3 times larger than ei-
ther the Tr-En or Ro-En pairs discussed in Currey
et al. (2017).

As with Firat et al. (2016a), we generally see
an improvement when translating to English. We
believe that this is because the English language
model is stronger in the multilingual case, since
the English decoder sees more English text.

3.4 Zero-shot Multilingual Classification

We constructed a multilingual Yelp review dataset
from a subset of the Yelp Challenge (Round 10)
corpus. We restrict ourselves to English, French,
and German reviews. The training corpus con-
sists of 5,000 English Yelp reviews, and the test
sets contain 4,000 reviews for each language. The
French and German reviews were extracted by ap-
plying language detection on reviews from Que-
bec, Canada and Baden-Württemberg, Germany.
The review scores were binarized, where 4 and 5
star reviews were labeled as positive, and 1 and
2 star reviews were labeled as negative. We reuse
the encoders trained in Section 3.3 in this section’s
experiments.

At training time, an English Yelp review is
treated as one sentence; we do not apply sen-
tence segmentation to the review. It is passed
through the English encoder, and the neural in-
terlingua converts the English sentence represen-
tation to a fixed-length representation. To create
a feature vector for the text classifier, we apply
mean-pooling to the sentence representation. Un-
der our experimental settings, every sentence is
converted to a 512 × 50 interlingual embedding,
which is mean-pooled into a 512-dimensional vec-
tor. We then fit a logistic regression model using
this feature vector and the sentence polarity as the
binary label. The classifier is only trained on En-
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Color Lang. Text
Green En spreads between sovereign bonds in Germany and those in other countries were relatively unaffected

by political and market uncertainties concerning Greece in late 2014 and early 2015 .
Fr par contre , la différence entre les obligations souveraines allemandes et celles d’autres pays a été

relativement peu touchée par les incertitudes politiques et les doutes des marchés concernant la Grèce
fin 2014 et début 2015 .

Ru политическая и рыночная нестабильность , связанная с ситуацией в Греции в конце
2014 - го и начале 2015 года , практически не отразилась на спредах доходности между
государственными облигациями Германии и других стран .

Red En 13 . we underscore the need to accelerate efforts at all levels to achieve the objectives of the international
arrangement on forests beyond 2015 and the need to establish a stronger , more effective and solid
arrangement for the period 2015 to 2030 ;

Fr 13 . nous soulignons qu’il faudra redoubler d’efforts à tous les niveaux pour atteindre les objectifs de
l’arrangement international après 2015 et qu’il faudra mettre en place un arrangement plus solide et
plus efficace pour la période 2015 - 2030 ;

Ru 13 . мы подчеркиваем , что необходимо активизировать усилия на всех уровнях в
интересах достижения целей международного механизма по лесам на период после 2015
года и создать действенный , более эффективный и надежный механизм на период 2015
- 2030 годов ;

Orange En the various training activities are listed in table 2 below .
Fr on énumère dans le tableau 2 ci - dessous les diverses activités de formation .
Ru в представленной далее таблице 2 приведен перечень различных мероприятий по

профессиональной подготовке .
Blue En the Conference affirms that , pending the realization of this objective , it is in the interest of the very

survival of humanity that nuclear weapons never be used again .
Fr elle affirme que , en attendant la réalisation de cet objectif , il est dans l’intérêt de la survie même de

l’humanité que les armes nucléaires ne soient plus jamais utilisées .
Ru конференция заявляет , что , пока эта цель не достигнута , необходимо в интересах

самого выживания человечества добиться того , чтобы ядерное оружие никогда не
было вновь применено .

Table 3: Text of the parallel sentences in Figure 3.

Input Language
En De Fr

Trigram 91.6% ± 0.9% 89.6% ± 0.9% 91.5% ± 0.9%
Embeddings 91.5% ± 0.9% 89.2% ± 0.9% 91.1% ± 0.9%
% Positive 82.9% 86.7% 88.5%

Table 4: Accuracy for crosslingual Yelp binary review classification. The trigram baseline model was trained
on English reviews, and tested on English reviews and English translations of French and German reviews. The
embedding-based classifier uses interlingual embeddings from our model in Section 3.3. ‘% Positive’ refers to the
proportion of the test set that has a positive label.

glish reviews.
At prediction time, we pass the text of a German

review through the German encoder and the inter-
lingua, which is again mean-pooled to form a 512-
dimensional vector. Since the interlingual repre-
sentation should be language-independent, we can
attempt to classify German reviews by providing
the vector representation of the German review to
the English classifier. We use the same process for
French reviews.

In Table 4, we compare the accuracy of the clas-
sifier trained on English review embeddings to that
of a baseline model. We established the baseline
by training a trigram classifier on the English re-
views, and used English translations of the French
and German reviews for classification. We ob-

tained the translations through the Google Trans-
late API. The classification accuracy using the in-
terlingual embeddings or the translated French and
German reviews are similar, which shows that the
embeddings have retained semantic information in
a language-independent way.

3.5 Direct Zero-shot Translation

The updated UN Parallel Corpus (Ziemski et al.,
2016), unlike the WMT corpus, is a fully multi-
parallel corpus that contains English, Spanish,
French, Arabic, Chinese and Russian text. We
used this corpus as a testbed for our zero-shot
translation experiments.

We trained our multilingual model on the UN
corpus, following the same settings that we used

89



Fr-Ru Ru-Fr Es-Zh Zh-Es Es-Fr Fr-Es
This Work 18.24 21.61 17.66 18.66 30.08 31.94
Univ. Enc-Dec 8.77 9.76 8.62 6.13 15.04 14.37
Pivot 20.87 27.34 26.03 26.01 31.84 32.93
Direct NMT 28.29 33.26 32.36 32.69 41.38 44.49

Table 5: Zero-shot BLEU scores on the UN Parallel Corpus on selected language pairs. The universal encoder-
decoder, pivot and direct NMT results were retrieved from Miura et al. (2017). Our proposed model outperforms
the universal encoder-decoder model (Johnson et al., 2017) on the zero-shot translation task.

for the WMT corpus (see Table 1 and Algorithm
1). The text was processed following the steps pro-
vided in Miura et al. (2017). We restrict the train-
ing corpus to sentence pairs that have English as
either the source or target language.

We used the Fr-Ru, Es-Zh and Es-Fr portions of
the test set from the UN corpus for the zero-shot
translation evaluation. The training dataset that we
constructed does not contain direct Fr-Ru, Es-Zh
or Es-Fr sentence pairs. The test set contains 4,000
sentence pairs for each language pair.

We examine the BLEU scores for zero-shot
translation on the UN corpus in Table 5. The uni-
versal encoder-decoder, pivot and direct NMT re-
sults were retrieved from (Miura et al., 2017). By
‘direct NMT’, we refer to a model trained directly
on the parallel text.

Our multilingual model performs significantly
better on the direct zero-shot task than the uni-
versal encoder-decoder approach of Johnson et al.
(2017). Generally, our model does not perform
as well as the pivot approach, though in the case
of Es-Fr and Fr-Es, the difference is surprisingly
small (<2.0 BLEU).

Improving direct zero-shot methods to reach
parity with pivot translation has practical conse-
quences for large-scale NMT systems, like re-
duced latency and computational overhead. (Re-
call that pivot translation must translate every
source sentence twice; first into the intermediate
language, and then into the target language.) Our
results show progress towards the goal of transi-
tioning away from pivot-based methods to neural
zero-shot translation.

3.6 Interlingua Visualization

In Figure 3, we plot the embeddings for 4 groups
of parallel sentences. Sentences from the same
group share the same color. Each group contains
one French, one English and one Russian sentence
which are parallel translations of each other. We

Figure 3: Interlingual embeddings for four groups of
parallel English, French, and Russian sentences from
the UN Parallel Corpus. The 512-dimensional mean-
pooled interlingual sentence embeddings were pro-
jected down to R2 using PCA. Refer to Table 3 for the
colors and text of the sentences.

provide the text of the embedded sentences in Ta-
ble 3.

The embeddings were generated by mean-
pooling each sentence embedding to a 512-
dimensional vector and projecting it to R2 using
PCA. From the figure, we observe a clear separa-
tion between different groups of sentences, while
sentences within the same group remain close to
each other in space. This is the expected outcome
if our model has captured language-independent
semantic information in its sentence representa-
tions.

4 Related Work

4.1 Networks with Language-specific
Encoders and Decoders

The many-to-one approach explored in Zoph and
Knight (2016) primarily considers the trilingual
case, where a multi-parallel corpus is available,
and uses 2 encoders simultaneously to provide the
source context for the decoder. We note that us-
ing 2 encoders simultaneously requires having 2
source sentences for every desired target sentence
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at prediction time, which is not the setting that we
investigate here.

By combining a single encoder with multiple at-
tentional decoders, the one-to-many approach pre-
sented in Dong et al. (2015) showed an improve-
ment in translation performance, due to the in-
crease in the number of sentences seen by the en-
coder and through multi-task learning.

The many-to-many approach in the shared at-
tention model (Firat et al., 2016a) assigns a dif-
ferent encoder and decoder to each language, but
shares the decoders’ attention mechanisms. By
specifying a ‘universal’ attention mechanism for
all language pairs, Firat et al. (2016a) avoid cre-
ating as many attention mechanisms as there are
language pairs (i.e. avoids quadratic scaling).

However, the attention mechanism acts as the
alignment model between the source and target
sentences, and a shared attention mechanism may
be too restrictive, especially for languages that
have very different word orders. Our interlin-
gual approach relaxes the requirement of a single,
shared attention mechanism. In our framework,
there are as many attention mechanisms as there
are decoders.

4.2 Universal Encoder-Decoder Networks

Johnson et al. (2017) have foregone the use of
multiple encoders and decoders, and instead use
one universal encoder and one universal decoder.
They constructed a joint vocabulary for all lan-
guages in the corpus, consisting of word pieces
derived from a byte-pair encoding (Sennrich et al.,
2016) on the union of the vocabulary of all the
languages, and include special tokens to indicate
what the output language should be. Ha et al.
(2016) follow a similar approach, but the shared
vocabulary is constructed by prepending a lan-
guage identifier to each token.

The universal encoder-decoder approach does
have some shortcomings. Johnson et al. (2017)
rely on the existence of a shared vocabulary, which
may not be as sensible in some combinations (e.g.
Chinese and English) as in others (e.g. Spanish
and Portuguese). If the languages’ vocabularies
do not share many word pieces, then either the
decoder’s output layer will be very large, which
slows down training and inference, or the output
layer will be artificially constrained to a manage-
able size, which impacts translation performance.

Our approach, on the other hand, allows each

target language to retain its own decoder. The to-
tal vocabulary size can then expand with the num-
ber of languages without affecting training or in-
ference speed.

4.3 Zero-shot Translation

One of the challenges in multilingual MT is data
sparsity, which refers to the lack of parallel text
for every possible language pair in a corpus. Zero-
shot translation is the task of translating between
language pairs without parallel text.

An early approach to allow zero-shot translation
made use of a ‘pivot’ language in the translation
process (Boitet, 1988). For instance, in sentence-
based pivoting, the source sentence is translated
into a pivot language, and from the pivot language
translated to the target language. Various exten-
sions of the pivot technique have been proposed
over the years, see Utiyama and Isahara (2007),
Chen et al. (2017), Miura et al. (2017), Cohn and
Lapata (2007).

Universal encoder-decoder systems like John-
son et al. (2017) have demonstrated the ability to
perform direct zero-shot translation without using
a pivot language at all, albeit with a significant
BLEU reduction for some language pairs.

5 Conclusion

We incorporate a neural interlingua compo-
nent into the standard encoder-decoder frame-
work for multilingual neural machine transla-
tion, and demonstrate that the resulting model
learns language-independent sentence representa-
tions, enabling zero-shot translation and crosslin-
gual text classification.

We perform direct zero-shot translation for 3
language pairs without pivoting through an inter-
mediate language like English. We observe an
improvement in zero-shot translation performance
compared to the universal encoder-decoder results
reported in Miura et al. (2017). Furthermore, we
use the learned encoder to train an English Yelp
review classifier that can, with the help of the in-
terlingual embeddings, also classify German and
French reviews. Finally, our experiments showed
that the results from our model are comparable to
the results from bilingual baselines.

In future work, we intend to address the signifi-
cant performance gap between direct neural zero-
shot translation and pivot translation. By manipu-
lating the sentence embeddings in an appropriate
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way, we aim to extract significant improvements
over the results presented in this paper.
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Abstract

Embedding and projection matrices are com-
monly used in neural language models (NLM)
as well as in other sequence processing net-
works that operate on large vocabularies. We
examine such matrices in fine-tuned language
models and observe that a NLM learns word
vectors whose norms are related to the word
frequencies. We show that by initializing the
weight norms with scaled log word counts, to-
gether with other techniques, lower perplexi-
ties can be obtained in early epochs of train-
ing. We also introduce a weight norm regular-
ization loss term, whose hyperparameters are
tuned via a grid search. With this method, we
are able to significantly improve perplexities
on two word-level language modeling tasks
(without dynamic evaluation): from 54.44 to
53.16 on Penn Treebank (PTB) and from 61.45
to 60.13 on WikiText-2 (WT2).

1 Introduction

A language model (LM) measures how likely a
certain sequence of words is for a given language.
It does so by calculating the probability of occur-
rence of that sequence, which can be learned from
monolingual text data. Many models in machine
translation and automatic speech recognition ben-
efit from the use of a LM (Corazza et al., 1995;
Peter et al., 2017).

While count-based LMs (Katz, 1987; Kneser
and Ney, 1995) provided the best results in
the past, substantial improvements were achieved
with the introduction of neural networks in the
field of language modeling (Bengio et al., 2003).
Different types of architectures such as feedfor-
ward neural networks (Schwenk, 2007) and re-
current neural networks (Mikolov et al., 2010)
have since been used for language modeling.
Currently, variants of long short-term memory
∗Equal contribution. Ordering determined by coin flipping.

(LSTM) (Hochreiter and Schmidhuber, 1997) net-
works give the best results on popular language
modeling tasks (Yang et al., 2018).

In natural language processing, words are typ-
ically represented by high-dimensional one-hot
vectors. To reduce dimensionality and to be able
to learn relationships between words, they are
mapped into a lower-dimensional, continuous em-
bedding space. Mathematically, this is done by
multiplying the one-hot vector with the embed-
ding matrix. Similarly, to receive a probability dis-
tribution over the vocabulary, a mapping from an
embedding space is performed by a projection ma-
trix followed by a softmax operation. These two
matrices can be tied together in order to reduce
the number of parameters and improve the results
of NLMs (Inan et al., 2017; Press and Wolf, 2017).

Since the row vectors in the embedding and pro-
jection matrices are effectively word vectors in a
continuous space, we investigate such weight vec-
tors in well-trained and fine-tuned NLMs. We ob-
serve that the learned word vector generally has
a greater norm for a frequent word than an in-
frequent word. We then specifically examine the
weight vector norm distribution and design ini-
tialization and normalization strategies to improve
NLMs.

Our contribution is twofold:

• We identify that word vectors learned by
NLMs have a weight norm distribution that
resembles logarithm of the word counts. We
then correspondingly develop a weight initial-
ization strategy to aid NLM training.

• We design a weight norm regularization loss
term that increases the generalization ability
of the model. Applying this loss term, we
achieve state-of-the-art results on Penn Tree-
bank (PTB) and WikiText-2 (WT2) language
modeling tasks.
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2 Related Work

Melis et al. (2018) investigated different NLM ar-
chitectures and regularization methods with the
use of a black-box hyperparameter tuner. In par-
ticular, the LSTM architecture was compared to
two more recent recurrent approaches, namely re-
current highway networks (Zilly et al., 2017) and
neural architecture search (Zoph and Le, 2017).
They found that the standard LSTM architecture
outperforms other models, if properly regularized.

Merity et al. (2017a) used various regularization
methods such as activation regularization (Merity
et al., 2017b) in a LSTM model. They also intro-
duced a variant of the averaged stochastic gradient
method, where the averaging trigger is not tuned
by the user but relies on a non-monotonic condi-
tion instead. With these and further regulariza-
tion and optimization methods, improved results
on PTB and WT2 were achieved.

To further improve this network architecture,
Yang et al. (2018) introduced the mixture of soft-
maxes (MoS) model, claiming that the calculation
of the output probabilities with a single softmax
layer is a bottleneck. In their approach, several
output probabilities are calculated and then com-
bined via a weighted sum. The LSTM-MoS ar-
chitecture provides state-of-the-art results on PTB
and WT2 at the time of writing and is used as the
baseline model for comparisons in this work.

Other works proposed to tie the embedding and
projection matrices. Press and Wolf (2017) inves-
tigated the effects of weight tying, analyzed up-
date rules after tying and showed that tied matri-
ces evolve in a similar way as the projection ma-
trix. Inan et al. (2017) were motivated by the fact
that with a classification setup over the vocabulary,
inter-word information is not utilized to its full po-
tential. They also provided theoretical justification
on why it is appropriate to tie the above-mentioned
matrices.

Besides using the word embedding matrix, there
are other approaches to represent word sequences.
Zhang et al. (2015) proposed a new embedding
method called fixed-sized ordinally-forgetting en-
coding (FOFE), which allows them to encode
variable-length sentences into fixed-length vectors
almost uniquely.

Additionally, Salimans and Kingma (2016) in-
troduced a weight normalization reparametriza-
tion trick on weight matrices, which separates the
norm and the angle of a vector. This can speed

up the convergence of stochastic gradient descent
and also allows for explicit scaling of gradients in
the amplitude and direction. They also discussed
the connections between weight normalization and
batch normalization.

On top of one-hot representations of words, Irie
et al. (2015) used additional information to rep-
resent word sequences. It is shown that the use
of long-context bag-of-words as additional feature
for language modeling can narrow the gap be-
tween feed-forward NLMs and recurrent NLMs.

3 Neural Language Modeling

In NLM the probability of a word sequence
xt1 = x1x2...xt is decomposed as

P (xt1) =
t∏

j=1

P (xj |xj−1j−n+1) (1)

so that the (n− 1) preceding words xj−1j−n+1 are
considered for the prediction of the next word xj .
This is typically done by using a recurrent neural
network, e.g. a stack of LSTM layers, to encode
the input sequence as

ht = LSTM(ET [xt−n+1, xt−n+2, ..., xt−1]) (2)

where ET is the transposed embedding ma-
trix, [xt−n+1, xt−n+2, ..., xt−1] are the one-hot en-
coded preceding words and the LSTM() function
returns the last hidden state of the last LSTM layer.
The probability distribution over the next word xt
is then calculated as

P (xt = xk|ht) =
exp(Wkht)∑V
j=1 exp(Wjht)

(3)

with V being the vocabulary size, k = 1, 2, ..., V ,
andWk being the k-th row vector in the projection
matrix W .
For training the neural network, the cross-entropy
error criterion, which is equivalent to the maxi-
mum likelihood criterion, is used. For the i-th se-
quence of words xti1 , the cross-entropy loss Li is
defined as

Li = −logP (xti = xyi |hti) (4)

with yi being the true label of xti . The total loss is
then calculated as

L =
1

N

N∑

i=1

Li (5)
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where N is the total number of sequences. A
language model is normally scored by perplexity
(ppl). For a given test corpus xT1 = x1x2...xT , the
ppl is calculated as

ppl = P (xT1 )
− 1

T (6)

which is a measurement on how likely a given sen-
tence is, according to the prediction of the model.

In the above formulation, we have an embedding
matrix E and a projection matrix W . When the
two matrices are tied and one-hot vectors are used
to represent words, the rows of these matrices are
then the word vectors of the corresponding words.
Particularly, we focus on the norms of the row vec-
tors and study their relationship with word counts
and how to regularize them.

4 Weight Norm Initialization

We first train models on PTB and WT2 as de-
scribed in (Yang et al., 2018) and plot the norms
of learned weight vectors of the embedding matrix
in Figure 1.

When the words are ranked by their counts and
placed on the x-axis from frequent to infrequent,
it can be seen that the word vector norms follow
a downward trend as well. Log unigram counts
are also plotted for comparison. As can be seen,
the norm distribution follows a similar trend as the
log counts. It is important to note, that the logit for
word xk and context ht is calculated as Wkht (see
Equation 3), which can be rewritten as

Wkht = ‖Wk‖ ‖ht‖ cos(θ) (7)

where θ denotes the angle between Wk and ht.
Therefore, one intuition from the aforementioned
observation is that, for a frequent word, the net-
work tends to learn a weight vector Wk with a
greater norm to maximize likelihood. This mo-
tivates our approach to initialize the weight norms
with scaled log counts rather than uniformly ran-
dom values in a specific range.

Because we wish to initialize the weight norms
explicitly with scaled logarithm of the word
counts, it is helpful to look at a weight vector’s
magnitude and direction separately. For this pur-
pose, we use a reparameterization technique on
the weight vectors as described in (Salimans and
Kingma, 2016):

Wk = gk
vk
‖vk‖2

(8)

(a) Penn Treebank

(b) WikiText-2

Figure 1: Word vector norms of fine-tuned MoS
models (Yang et al., 2018), trained on (a) Penn
Treebank and (b) WikiText-2. Words are ranked
by their counts in a descending order and thus fre-
quent words are to the left. Actual logarithm of
word counts are plotted in black, and word vec-
tor norms are grey. We observe that word vector
norms loosely follow the trend of log counts.

where k = 1, 2, ..., V , gk = ‖Wk‖2, and vk is
a vector proportional to Wk. Reparameterizing
the weight vectors makes it easy to implement the
weight norm initialization as

gk = σlogck (9)

where ck denotes unigram word count for word k
and σ is a scalar applied to the log counts. We
sample each component of vk from a continuous
uniform distribution in [−r, r], where r is a hy-
perparameter, specifying the initialization range.
With this, no constraint on the weight vector di-
rection is imposed during initialization.

Additionally, we adopt an adaptive gradient
strategy which regularizes the gradients in gk. As
in

(
∂L

∂g
)
′
=

{
[1− (1− γ) tτ ]∂L∂g , for t ≤ τ
γ ∂L∂g , for t > τ

(10)

when epoch t is no greater than a specified epoch
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Tokens Vocab Size

Penn Treebank
Train 888k

10kValid 70k
Test 79k

WikiText-2
Train 2.1M

33kValid 214k
Test 241k

Table 1: Statistics of the Penn Treebank and
WikiText-2 datasets.

τ , ( ∂L∂gk )
′
— the regularized gradient in gk, linearly

decays to γ (γ ≤ 1) times the unregularized gradi-
ent ∂L

∂gk
. Otherwise, we directly use the discounted

gradient. In analogy to learning rate decay, this
adaptive gradient strategy anneals the word vector
norm updates in each step. The intuition for such
a strategy is that after a certain amount of epochs,
the weight norms should not change so drastically
from the initialized scaled log counts.

5 Weight Norm Regularization

Weight regularization (WR) is a well established
method to combat overfitting in neural networks,
which is especially important on smaller datasets
(Krogh and Hertz, 1992). The idea is to push
weights in the network to zero, where gradients are
not significant. Typically, WR is implemented by
adding an extra term to the loss functionL0, which
penalizes the norm of all weights in the network.
For example, L2-regularization is implemented as

L = L0 +
λ

2

∑

w

(‖w‖2)2 (11)

with the sum going over all weights w in the
network and λ being the regularization strength.
However, this method is not perfect, as it affects

every weight in the network equally and may lead
to hidden units’ weights getting stuck near zero.

In this work we add a constraint specifically
on the embedding and projection matrices, whose
weights are shared. Since the row vectors in both
matrices are word vectors, it seems appropriate to
put constraints explicitly on their norms instead of
on each individual weight parameter in the matri-
ces.

We propose to add a regularization term to the
standard loss function L0 in the form of

Lwr = L0 + ρ

√√√√
V∑

j=1

(‖Wj‖2 − ν)2 (12)

where ν, ρ ≥ 0 are two scalars and Wj is the j-th
row vector of the projection matrix W . The L2-
norms of the row vectors are pushed towards ν,
while ρ is the regularization strength. This will
punish the row vectors for adopting norms other
than ν, in the hope of reducing the effect of over-
fitting on the training data.

The choice of a soft regularization loss term in-
stead of hard-fixing the weight norms in the for-
ward pass is motivated by the weight norm dis-
tribution shown in Figure 1. It can be seen that
NLMs tend to learn non-equal weight norms for
words with different counts. Therefore, hard-
fixing weight norms may limit the network’s abil-
ity to learn.

6 Experiments

6.1 Experiment Setup
The experiments are conducted on two popular
language modeling datasets. The number of to-
kens and size of vocabulary for each dataset are
summarized in Table 1.

epoch
Penn Treebank WikiText-2

wni ppl baseline ppl ppl reduction (%) wni ppl baseline ppl ppl reduction (%)
1 162.18 180.72 10.26 172.19 192.19 10.41
10 85.92 92.09 6.70 95.90 100.72 4.79
20 73.36 78.94 7.07 85.14 88.21 3.48
30 71.44 73.06 2.22 81.80 82.70 1.09
40 69.27 70.20 1.32 79.28 80.32 1.29

Table 2: Perplexity (ppl) improvement using weight norm initialization (wni) in early epochs on Penn
Treebank and WikiText-2. ppl reduction is around 10% after the first epoch on both tasks, and decays
to approximately 1% after 40 epochs. The wni model has slightly higher perplexities than the baseline
model from around 50 epochs onward.
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Figure 2: Model perplexity on the Penn Treebank
test set as a function of ρ. The different sym-
bols denote different values of ν. Models not de-
picted yield higher perplexity values. The doted
line marks the baseline result (with ρ = 0) as re-
ported by Yang et al. (2018).

The smaller one is the PTB corpus with prepro-
cessing from Mikolov et al. (2010), which has a
comparatively small vocabulary size of 10k. With
a smaller number of sentences, this dataset is a
good choice for performing optimization of hyper-
parameters. The second corpus WT2, which was
introduced by Merity et al. (2016), has over three
times the vocabulary size of PTB.

We use the network structure introduced by
Yang et al. (2018) with the same hyper-parameter
values to ensure comparability. Several regular-
ization techniques are used in this setup, such as
dropout and weight decay. Furthermore, the em-
bedding and projection matrices are tied by de-
fault. For optimization, we adopt the same strat-
egy as described in (Merity et al., 2017a). That
is, a conservative non-monotonic criterion is used
to switch from stochastic gradient descent (SGD)
to averaged stochastic gradient descent (ASGD)
(Polyak and Juditsky, 1992). For more details of
the network structure refer to (Yang et al., 2018).

6.2 Weight Norm Initialization

We tune the hyperparameter σ and use a value of
σ = 0.5 to scale the logarithm of word counts.
Initialization range r is set to 0.1 for both the
reparametrized direction vectors and the baseline
word vectors. Empirically, we set γ = 0.1 and
τ = 100 for the adaptive gradient method. Per-
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Figure 3: Weight norm distributions of the projec-
tion matrices’ row vectors for the AWD-LSTM-
MoS model from Yang et al. (2018) as well as
for our regularized version (WR). The models are
trained on the (a) Penn Treebank corpus and (b)
WikiText-2 corpus with the resulting test perplex-
ities shown in Table 3 and Table 4 respectively.

plexities on both PTB and WT2 in early epochs,
as well as the relative perplexity improvement over
baseline models are summarized in Table 2.

First, we notice significant improvement after
the first epoch of training using weight norm ini-
tialization. About 10% of perplexity reduction is
achieved on both datasets. This could be bene-
ficial, when one wants to train on large datasets
and/or can only train for a limited number of
epochs. Second, the perplexity improvements de-
cay down to around 1% after 40 epochs. This is
in agreement with our expectation, because apart
from reduced gradient in gk, a weight norm ini-
tialized model is not fundamentally different from
the baseline model and no major difference should
be seen if we train for long enough. It is impor-
tant to note that with only weight norm initializa-
tion, both models eventually converge to perplex-
ities that are slightly worse than the baseline. We
also notice that the epochs, after which the opti-
mizer is switched from SGD to ASGD, are differ-
ent in weight norm initialized models and baseline
models.
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Model #Params Validation Test
Mikolov and Zweig (2012) - RNN-LDA + KN + cache 9M - 92.0
Zaremba et al. (2014) - LSTM 20M 86.2 82.7
Gal and Ghahramani (2016) - Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) - CharCNN 19M - 78.9
Merity et al. (2016) - Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2017) - LSTM + continuous cache pointer† - - 72.1
Inan et al. (2017) - Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2017) - Variational RHN 24M 75.7 73.2
Zoph and Le (2017) - NAS Cell 25M - 64.0
Melis et al. (2018) - 2-layer skip connection LSTM 24M 60.9 58.3
Merity et al. (2017a) - AWD-LSTM 24M 60.0 57.3
Yang et al. (2018) - AWD-LSTM-MoS 22M 56.54 54.44
Ours - AWD-LSTM-MoS with weight norm regularization 22M 55.03 53.16

Table 3: Single model perplexity on the Penn Treebank test and validation sets. Baseline results are
obtained from (Yang et al., 2018). † indicates the use of dynamic evaluation.

Model #Params Validation Test
Inan et al. (2017) - Variational LSTM + augmented loss 28M 91.5 87.0
Grave et al. (2017) - LSTM + continuous cache pointer† - - 68.9
Melis et al. (2018) - 2-layer skip connection LSTM 24M 69.1 65.9
Merity et al. (2017a) - AWD-LSTM 33M 69.1 66.0
Yang et al. (2018) - AWD-LSTM-MoS 35M 63.88 61.45
Ours - AWD-LSTM-MoS with weight norm regularization 35M 62.67 60.13

Table 4: Single model perplexity on the WikiText-2 test and validation sets. Baseline results are obtained
from (Yang et al., 2018). † indicates the use of dynamic evaluation.

6.3 Weight Norm Regularization

In order to tune the hyperparameters ρ and ν intro-
duced in Section 5, we perform a grid search over
the PTB dataset, the results of which are shown
in Figure 2. If the norm constraint ν becomes too
large, perplexity worsens significantly, as seen in
the case of ν = 64. A model with a ν-value of
2 provides the best result in most cases. We hy-
pothesize that a value of ν that is too small results
in the logit being close to zero as shown in Equa-
tion 7. For the regularization strength ρ, we recog-
nize that ρ = 10−3 gives the best result on the PTB
test data. Larger or smaller values can hurt the
performance of the system, depending also on the
value of ν. It should be noted that the optimized
value of ρ is significantly larger than the scaling
swd of the weight decay term, which was opti-
mized to be 1.2×10−6 by Merity et al. (2017a).

The resulting weight norm distributions of the
projection matrices’ row vectors are shown in Fig-
ure 3a and Figure 3b for models trained on PTB

and WT2 respectively. Our efforts of pushing the
norms to a value of ν = 2.0 resulted in a notice-
ably smaller average norm, as well as in a overall
more narrow distribution.

With the tuned parameter values ρ = 10−3 and
ν = 2.0 we improve the previous state-of-the-art
result by 1.28 ppl on PTB and by 1.32 ppl on WT2
(without considering dynamic evaluation (Krause
et al., 2018), see Table 3 and Table 4). This is
achieved without increasing the number of train-
able parameters in the network or slowing down
the training process.

7 Conclusion

Word embedding matrix and output projection ma-
trix are important components in LSTM-based
LMs. They are also widely used in other NLP
models where one-hot vectors of words need to
be mapped into lower dimensional space. Given
the one-hot nature of word representations, row
vectors in such matrices are then the correspond-

98



ing word vectors. We study specifically the norms
of these learned word vectors, the distribution of
the norms, and the relationship with word counts.
We show that with a simple initialization strat-
egy together with a reparametrization technique,
it is possible to get significantly lower perplex-
ity in early epochs during training. By using a
weight norm regularization loss term, we are able
to obtain significant improvements on standard
language modeling tasks — 2.4% ppl reduction on
PTB and 2.1% on WT2.

We propose three directions to investigate fur-
ther. First, in this work we use scaled logarithm of
word counts to initialize the weight norms. It is a
logical next step to use smoothing techniques on
the word counts and study the effects of such ini-
tializations. Second, we currently apply the same
norm constraint on different words. Altering the
loss function and regularizing the weight norms to
word counts (and smoothed word counts) is worth
examining as well. Finally, our focus so far is on
weight norms. It is a more exciting and challeng-
ing task to study the pairwise inner products, and
single out the effects of angular differences.

We also plan to expand our regularization and
initialization techniques to the field of neural ma-
chine translation. Embedding and projection ma-
trices are also present in neural machine trans-
lation networks, which could potentially benefit
from our methods as well. It seems natural to use
our methods on the transformer architecture intro-
duced by Vaswani et al. (2017), in which the em-
bedding matrices at source and target sides, plus
the projection matrix, are three-way tied.
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Abstract

Recent works in neural machine transla-
tion have begun to explore document trans-
lation. However, translating online multi-
speaker conversations is still an open problem.
In this work, we propose the task of trans-
lating Bilingual Multi-Speaker Conversations,
and explore neural architectures which exploit
both source and target-side conversation histo-
ries for this task. To initiate an evaluation for
this task, we introduce datasets extracted from
Europarl v7 and OpenSubtitles2016. Our ex-
periments on four language-pairs confirm the
significance of leveraging conversation his-
tory, both in terms of BLEU and manual eval-
uation.

1 Introduction

Translating a conversation online is ubiquitous in
real life, e.g. in the European Parliament, United
Nations, and customer service chats. This sce-
nario involves leveraging the conversation history
in multiple languages. The goal of this paper is to
propose and explore a simplified version of such
a setting, referred to as Bilingual Multi-Speaker
Machine Translation (Bi-MSMT), where speak-
ers’ turns in the conversation switch the source and
target languages. We investigate neural architec-
tures that exploit the bilingual conversation history
for this scenario, which is a challenging problem
as the history consists of utterances in both lan-
guages.

The ultimate aim of all machine translation
systems for dialogue is to enable a multi-lingual
conversation between multiple speakers. How-
ever, translation of such conversations is not well-
explored in the literature. Recently, there has been
work focusing on using the discourse or docu-
ment context to improve NMT, in an online set-
ting, by using the past context (Jean et al., 2017;
Wang et al., 2017; Bawden et al., 2017; Voita

et al., 2018), and in an offline setting, using the
past and future context (Maruf and Haffari, 2018).
In this paper, we design and evaluate a conversa-
tional Bi-MSMT model, where we incorporate the
source and target-side conversation histories into a
sentence-based attentional model (Bahdanau et al.,
2015). Here, the source history comprises of sen-
tences in the original language for both languages,
and the target history consists of their correspond-
ing translations. We experiment with different
ways of computing the source context represen-
tation for this task. Furthermore, we present an
effective approach to leverage the target-side con-
text, and also present an intuitive approach for
incorporating both contexts simultaneously. To
evaluate this task, we introduce datasets extracted
from Europarl v7 and OpenSubtitles2016, con-
taining speaker information. Our experiments
on English-French, English-Estonian, English-
German and English-Russian language-pairs show
improvements of +1.44, +1.16, +1.75 and +0.30
BLEU, respectively, for our best model over the
context-free baseline. The results show the im-
pact of conversation history on translation of bilin-
gual multi-speaker conversations and can be used
as benchmark for future work on this task.

2 Related Work

Our research builds upon prior work in the field
of context-based language modelling and context-
based machine translation.

Language Modelling There have been few
works on leveraging context information for lan-
guage modelling. Ji et al. (2015) introduced Doc-
ument Context Language Model (DCLM) which
incorporates inter and intra-sentential contexts.
Hoang et al. (2016) make use of side informa-
tion, e.g. metadata, and Tran et al. (2016) use
inter-document context to boost the performance
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of RNN language models.
For conversational language modelling, Ji and

Bilmes (2004) propose a statistical multi-speaker
language model (MSLM) that considers words
from other speakers when predicting words from
the current one. By taking the inter-speaker depen-
dency into account using a normal trigram context,
they report significant reduction in perplexity.

Statistical Machine Translation The few SMT-
based attempts to document MT are either restric-
tive or do not lead to significant improvements
upon automatic evaluation. Few of these deal
with specific discourse phenomena, such as re-
solving anaphoric pronouns (Hardmeier and Fed-
erico, 2010) or lexical consistency of translations
(Garcia et al., 2017). Others are based on a two-
pass approach i.e., to improve the translations al-
ready obtained by a sentence-level model (Hard-
meier et al., 2012; Garcia et al., 2014).

Neural Machine Translation Using context-
based neural models for improving online and of-
fline NMT is a popular trend recently. Jean et al.
(2017) extend the vanilla attention-based NMT
model (Bahdanau et al., 2015) by conditioning
the decoder on the previous source sentence via a
separate encoder and attention component. Wang
et al. (2017) generate a summary of three previous
source sentences via a hierarchical RNN, which is
then added as an auxiliary input to the decoder.
Bawden et al. (2017) explore various ways to ex-
ploit context from the previous sentence on the
source and target-side by extending the models
proposed by Jean et al. (2017); Wang et al. (2017).
Apart from being difficult to scale, they report de-
teriorated BLEU scores when using the target-side
context.

Tu et al. (2017) augment the vanilla NMT
model with a continuous cache-like memory,
along the same lines as the cache-based system
for traditional document MT (Gong et al., 2011),
which stores hidden representations of recently
generated words as translation history. The pro-
posed approach shows significant improvements
over all baselines when translating subtitles and
comparable performance for news and TED talks.
Along similar lines, Kuang et al. (2018) propose
dynamic and topic caches to capture contextual
information either from recently translated sen-
tences or the entire document to model coherence
for NMT. Voita et al. (2018) introduce a context-

aware NMT model in which they control and anal-
yse the flow of information from the extended con-
text to the translation model. They show that us-
ing the previous sentence as context their model is
able to implicitly capture anaphora.

For the offline setting, Maruf and Haffari (2018)
incorporate the global source and target document
contexts into the base NMT model via memory
networks. They report significant improvements
using BLEU and METEOR for the contextual
model over the baseline. To the best of our knowl-
edge, there has been no work on Multi-Speaker
MT or its variation to date.

3 Preliminaries

3.1 Problem Formulation

We are given a dataset that comprises parallel
conversations, and each conversation consists of
turns. Each turn is constituted by sentences spo-
ken by a single speaker, denoted by x or y, if the
sentence is in English or Foreign language, respec-
tively. The goal is to learn a model that is able to
leverage the mixed-language conversation history
in order to produce high quality translations.

3.2 Data

Standard machine translation datasets are inappro-
priate for Bi-MSMT task since they are not com-
posed of conversations or the speaker annotations
are missing. In this section, we describe how we
extract data from raw Europarl v7 (Koehn, 2005)
and OpenSubtitles20161 (Lison and Tiedemann,
2016) for this task2.

Europarl The raw Europarl v7 corpus (Koehn,
2005) contains SPEAKER and LANGUAGE tags
where the latter indicates the language the speaker
was actually using. The individual files are first
split into conversations. The data is tokenised (us-
ing scripts by Koehn (2005)), and cleaned (head-
ings and single token sentences removed). Con-
versations are divided into smaller ones if the
number of speakers is greater than 5.3 The cor-
pus is then randomly split into train/dev/test sets
with respect to conversations in ratio 100:2:3. The
English side of the corpus is set as reference, and

1http://www.opensubtitles.org/
2The data is publicly available at https://github.

com/sameenmaruf/Bi-MSMT.git
3Using the conversations as is or setting a higher thresh-

old further reduces the data due to inconsistencies in conver-
sation/turn lengths in the source and target side.
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Europarl Subtitles
En-Fr En-Et En-De En-Ru

# Conversations 6997 4394 3582 23126
# Sentences 246540 174218 109241 291516

Mean Statistics per Conversation
# Sentences 36.24 40.65 31.50 13.60
# Turns 4.77 4.85 4.79 7.12
Turn Length 7.12 7.92 6.16 1.68

Table 1: General statistics for training set.

if the language tag is absent, the source language
is English, otherwise Foreign. The sentences in
the source-side of the corpus are kept or swapped
with those in the target-side based on this tag.

We perform the aforementioned steps for
English-French, English-Estonian and English-
German, and obtain the bilingual multi-speaker
corpora for the three language pairs. Before
splitting into train/dev/test sets, we remove con-
versations with sentences having more than 100
tokens for English-French, English-German and
more than 80 tokens for English-Estonian4 respec-
tively, to limit the sentence-length for using sub-
words with BPE (Sennrich et al., 2016). The data
statistics are given in Table 1 and Appendix A5.

Subtitles There has been recent work to obtain
speaker labels via automatic turn segmentation for
the OpenSubtitles2016 corpus (Lison and Meena,
2016; van der Wees et al., 2016; Wang et al.,
2016). We obtain the English side of OpenSub-
titles2016 corpus annotated with speaker informa-
tion by Lison and Meena (2016).6 To obtain the
parallel corpus, we use the OpenSubtitles align-
ment links to align foreign subtitles to the anno-
tated English ones. For each subtitle, we extract
individual conversations with more than 5 sen-
tences and at least two turns. Conversations with
more than 30 turns are discarded. Finally, since
subtitles are in a single language, we assign lan-
guage tag such that the same language occurs in
alternating turns. We thus obtain the Bi-MSMT
corpus for English-Russian, which is then divided

4Sentence-lengths of 100 tokens result in longer sentences
than what we get for the other two language-pairs.

5Although the extracted dataset is small but we believe
it to be a realistic setting for a real-world conversation task,
where reference translations are usually not readily available
and expensive to obtain.

6The majority of sentences still have missing annotations
(Lison and Meena, 2016) due to changes between the original
script and the actual movie or alignment problems between
scripts and subtitles. As for Wang et al. (2016), their publicly
released data is even smaller than our En-De dataset extracted
from Europarl.

into training, development and test sets.

3.3 Sentence-based attentional model

Our base model consists of two sentence-based
NMT architectures (Bahdanau et al., 2015), one
for each translation direction. Each of them con-
tains an encoder to read the source sentence and
an attentional decoder to generate the target trans-
lation one token at a time.

Encoder It maps each source word xm to a
distributed representation hm which is the con-
catenation of the corresponding hidden states of
two RNNs running in opposite directions over
the source sentence. The forward and backward
RNNs are taken to be GRUs (gated-recurrent unit;
Cho et al. (2014)) in this work.

Decoder The generation of each target word
yn is conditioned on all the previously generated
words y<n via the state sn of the decoder, and the
source sentence via a dynamic context vector cn:

yn ∼ softmax(Wy · un + by)

un = tanh(sn +Wuc · cn +Wun ·ET [yn−1])

sn = GRU(sn−1,ET [yn−1], cn)

whereET [yn−1] is the embedding of previous tar-
get word yn−1, and {W(·),by} are the parameters.
The fixed-length dynamic context representation
of the source sentence cn =

∑
m αnmhm is gen-

erated by an attention mechanism where α spec-
ifies the proportion of relevant information from
each word in the source sentence.

4 Conversational Bi-MSMT Model

Before we delve into the details of how to lever-
age the conversation history, we identify the three
types of context we may encounter in an ongoing
bilingual multi-speaker conversation, as shown in
Figure 1. It comprises of: (i) the previously com-
pleted English turns, (ii) the previously completed
Foreign turns, and (iii) the ongoing turn (English
or Foreign).

We propose a conversational Bi-MSMT model
that is able to incorporate all three types of
context using source, target or dual conversa-
tion histories into the base model. The base
model caters to the speaker’s language transition
by having one sentence-based NMT model (de-
scribed previously) for each translation direction,
English→Foreign and Foreign→English. We now
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Figure 1: Overview of an ongoing conversation while
translating ith sentence in 2k + 1th turn. Xj

|tj | and

Yj
|tj | denote the sentences in previous English and For-

eign turn respectively, and xj
i denotes the sentence i

in ongoing turn j where i ∈ {1, ..., |tj |}. The shaded
turns are observed i.e., source (the speaker utterances),
while the rest are unobserved i.e., the target translations
or the unuttered source sentences for current turn.

describe our approach for extracting relevant in-
formation from the source and target bilingual
conversation history.

4.1 Source-Side History
Suppose we are translating an ongoing conversa-
tion having alternating turns of English and For-
eign. We are currently in the 2k + 1th turn (in En-
glish) and want to translate its ith sentence using
the source-side conversation history represented
by context vector osrc (dimensions H).

Let’s assume that we already have the represen-
tations of previous source sentences in the con-
versation. We pass the source sentence represen-
tations through Turn-RNNs, which are composed
of language-specific bidirectional RNNs irrespec-
tive of the speaker, as shown in Figure 2, and con-
catenate the last hidden states of the forward and
backward Turn-RNNs to get the final turn repre-
sentation rj , where j denotes the turn index. The
individual turn representations are then combined,
based on language7, to obtain context vectors oen
and ofr, computed in several possible ways (de-
scribed below), which are further amalgamated us-

7For this work, we define the turns based on language and
do not use the speaker information as for real-world chat sce-
narios (e.g., agent-client in a customer service chat), we do
not have multiple speakers based on language. We leave this
for future exploration.

Figure 2: Architectural overview when translating ith

sentence in 2k + 1th turn using source history.

ing a gating mechanism so as to give differing im-
portance to each element of the context vector:

oen,fr = α� oen + (1−α)� ofr (1)

α = σ(Uen × oen +Ufr × ofr + bg)

where σ is the logistic sigmoid function, U’s are
matrices and bg is a vector. Finally, we perform a
dimensionality reduction to obtain:

osrc = tanh(WT × oen,fr + bT ) (2)

In the remainder of this section, {W,U,b} are
language-specific learned parameters. We propose
five ways of computing the language-specific con-
text representations, oen and ofr.

Direct Transformation The simplest approach
is to combine turn representations using a
language-specific dimensionality reduction trans-
formation:

oen = tanh([Wen; ...;Wen]× [r1; ...; r2k+1] + ben)

ofr = tanh([Wfr; ...;Wfr]× [r2; ...; r2k] + bfr)

Here rj’s are concatenated row-wise.
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Hierarchical Gating We propose a language-
specific exponential decay gating based on the in-
tuition that the farther the previous turns are from
the current one, the lesser their impact may be on
the translation of a sentence in an ongoing turn,
similar in spirit to the caching mechanism by Tu
et al. (2017):

oen = gen(gen(...gen(gen(r1, r3), r5)...), r2k−1), r2k+1)

where
gen(a,b) = α� a+ (1−α)� b

α = σ(U1,en × a+U2,en × b+ ben)

ofr is computed in a similar way.

Language-Specific Attention The English and
Foreign turn representations are combined sepa-
rately via attention to allow the model to focus on
relevant turns in the English and the Foreign con-
text:

pen = softmax([r1; ...; r2k+1]
T × hi) (3)

pfr = softmax([r2; ...; r2k]T × tanh(Wen × hi + ben))

oen = tanh(Wen × ([r1; ...; r2k+1]× pen) + ben)

ofr = [r2; ...; r2k]× pfr

Here rj’s are concatenated column-wise, hi is the
concatenation of last hidden state of forward and
backward RNNs in the encoder for current sen-
tence i in turn 2k+1 (dimensions 2H) and {Wen,
ben} transform the language space to that of the
target language.

Combined Attention This is a language-
independent attention that merges all turn
representations into one. The hypothesis here
is to verify if the model actually benefits from
Language-Specific attention or not.

pen,fr = softmax([r1,en; r2; ...; r2k+1,en]
T ×

tanh(Wen × hi + ben))

oen,fr = [r1,en; r2; ...; r2k+1,en]× pen,fr

Here r2k+1,en = tanh(Wen × r2k+1 + ben).

Language-Specific Sentence-level Attention
All the previous approaches for computing oen
and ofr use a single turn-level representation.
We propose to use the sentence information
explicitly via a sentence-level attention to evaluate
the significance of more fine-grained context in
contrast to Language-Specific Attention. We
first concatenate the hidden states of forward
and backward Turn-RNNs for each sentence and

get a matrix comprising of representations of all
the previous source sentences, i.e., for English
turns, we have [r11; ...; r

1
|t1|; ...; r

2k+1
1 ; ...; r2k+1

i−1 ],
and similarly we have another matrix for all the
previous Foreign sentences. Here, each rji is
the representation of source sentence i in turn j
computed by the bidirectional Turn-RNN. The
remaining computations are same as in Eq. 3.

4.2 Target-Side History
Using target-side conversation history is as impor-
tant as that of the source-side since it helps in mak-
ing the translation more faithful to the target lan-
guage. This becomes crucial for translating con-
versations where the previous turns are all in the
same language. For incorporating the target-side
context, we use a sentence-level attention simi-
lar to the one described for the source-side con-
text, i.e., for all previous English source sentences,
we have a matrix Ren comprising of the corre-
sponding target sentence representations in For-
eign, and another matrix Rfr of target sentence
representations (in English) for previous Foreign
turns. Here each target sentence representation has
dimensions H. Then,

pen = softmax(RT
en × tanh(Wt,en × hi + bt,en))

pfr = softmax(RT
fr × (Wtd,en × hi + btd,en))

oen = Ren × pen

ofr = tanh(Wt,en × (Rfr × pfr) + bt,en)

where {Wt,en,bt,en} are for dimensionality re-
duction and changing the language space of the
query vector hi and the context vector, while
{Wtd,en,btd,en} are only for dimensionality re-
duction. oen and ofr are further combined using
a gating mechanism as in Eq. 1 to obtain the final
target context vector otgt (dimensions H).

4.3 Dual Conversation History
Now that we have explained how to leverage the
source and target conversation history separately,
we explain how they can be utilised simultane-
ously. The simplest way to do this is to incorporate
both context vectors osrc and otgt into the base
model (explained in Sec 4.4), referred as Src-Tgt
dual context.

Another intuitive approach, as evident from Fig-
ure 2, is to separately model English and For-
eign sentences using two separate context vectors
oen,m and ofr,m, where each is constructed from
a mixture of the original source or target trans-
lations, is language-specific and possibly contain
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less noise. We refer to this as the Src-Tgt-Mix
dual context. Suppose Ren,m contains the mixed
source/target representations for English (the di-
mensions for source representations have been re-
duced to H) and Rfr,m contains the same for For-
eign. Then,

pen,m = softmax(RT
en,m × (Wtd,en × hi + btd,en))

pfr,m = softmax(RT
fr,m × tanh(Wtt,en × hi + btt,en))

oen,m = tanh(Wtr,en × (Ren,m × pen,m) + btr,en)

ofr,m = Rfr,m × pfr,m

where Wtd,en, Wtr,en and Wtt,en are for dimen-
sionality reduction, changing the language space
and both, respectively.

4.4 Incorporating Context into Base Model
The final representations osrc and otgt or oen,m
and ofr,m, can be incorporated together or indi-
vidually in the base model by:

• InitDec Using a non-linear transformation to
initialise the decoder, similar to Wang et al.
(2017): si,0 = tanh(V×oi+bs), where i is
the sentence index in current turn 2k+1, {V,
bs} are encoder-decoder specific parameters
and oi is either a single context vector or a
concatenation (transformed) of the two.

• AddDec As an auxiliary input to the decoder
(similar to Jean et al. (2017); Wang et al.
(2017); Maruf and Haffari (2018)):

si,n = tanh(Ws · si,n−1 +Wsn ·ET [yi,n] +

Wsc · ci,n +Wss · oi,src +Wst · oi,tgt)

• InitDec+AddDec Combination of previous
two approaches.

4.5 Training and Decoding
The model parameters are trained end-to-end by
maximising the sum of log-likelihood of the bilin-
gual conversations in training set D. For example,
for a conversation having alternating turns of En-
glish and Foreign language, the log-likelihood is:
|T |
2
−1∑

k=0

(|t2k+1|∑

i=1

logPθ(yi|xi,oi) +

|t2k+2|∑

j=1

logPθ(xj |yj ,oj)
)

where i, j denote sentences belonging to 2k + 1th

or 2k + 2th turn; o(.) is a representation of the
conversation history, and |T | is the total number
of turns (assumed to be even here).

The best output sequence for a given input se-
quence for the ith sentence at test time, a.k.a. de-
coding, is produced by:

argmax
yi

Pθ(yi|xi,oi)

5 Experiments

Implementation and Hyperparameters We
implement our conversational Bi-MSMT model in
C++ using the DyNet library (Neubig et al., 2017).
The base model is built using mantis (Cohn
et al., 2016) which is an implementation of the
generic sentence-level NMT model using DyNet.

The base model has single layer bidirectional
GRUs in the encoder and 2-layer GRU in the de-
coder8. The hidden dimensions and word embed-
ding sizes are set to 256, and the alignment dimen-
sion (for the attention mechanism in the decoder)
is set to 128.

Models and Training We do a stage-wise
training for the base model, i.e., we first
train the English→Foreign architecture and
the Foreign→English architecture, using the
sentence-level parallel corpus. Both architectures
have the same vocabulary9 but separate parame-
ters to avoid biasing the embeddings towards the
architecture trained last. The contextual model is
pre-trained similar to training the base model. The
best model is chosen based on minimum overall
perplexity on the bilingual dev set.

For the source context representations, we use
the sentence representations generated by two
sentence-level bidirectional RNNLMs (one each
for English and Foreign) trained offline. For the
target sentence representations, we use the last
hidden states of the decoder generated from the
pre-trained base model10. At decoding time, how-
ever, we use the last hidden state of the decoder
computed by our model (not the base) as the tar-
get sentence representations. Further training de-
tails are provided in Appendix B.

8We follow Cohn et al. (2016) and Britz et al. (2017) in
choosing hyperparameters for our model.

9For each language-pair, we use BPE (Sennrich et al.,
2016) to obtain a joint vocabulary of size ≈30k.

10Even though the paramaters of the base model are up-
dated, the target sentence representations are fixed throughout
training. We experimented with a scheduled updating scheme
in preliminary experiments but it did not yield significant im-
provement.
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Europarl Subtitles
En-Fr En-Et En-De En-Ru

OverallEn→FrFr→EnOverallEn→EtEt→EnOverallEn→DeDe→En OverallEn→RuRu→En
Base Model 37.36 38.13 36.03 20.68 18.64 26.65 24.74 21.80 27.74 19.05 14.90 23.04

+Source Context as Lang-Specific Attention via
InitDec 38.40† 39.19† 36.86† 21.79† 19.54† 28.33† 26.34† 23.31† 29.39† 18.88 14.89 22.56
AddDec 38.50† 39.35† 36.98† 21.65† 19.66† 27.48† 26.30† 23.09† 29.52† 19.34 15.16 23.12
InitDec+AddDec 38.55† 39.34† 37.14† 21.49† 19.43† 27.55† 26.25† 23.18† 29.30† 19.35 15.16 23.14

+Source Context via
Direct Tranformation 38.35† 39.13† 36.96† 21.75† 19.59† 28.07† 26.29† 23.34† 29.22† 19.09 14.89 22.76
Hierarchical Gating 38.33† 39.14† 36.89† 21.62† 19.55† 27.64† 26.31† 23.17† 29.45† 19.20 15.10 22.73
Lang-Specific Attention 38.40† 39.19† 36.86† 21.79† 19.54† 28.33† 26.34† 23.31† 29.39† 19.35 15.16 23.14
Combined Attention 38.50† 39.36† 36.94† 21.66† 19.52† 27.90† 26.38† 23.31† 29.44† 18.96 14.82 22.92
Lang-Specific S-Attention 38.46† 39.24† 37.06† 21.84† 19.58† 28.43† 26.49† 23.49† 29.49† 19.09 14.59 22.98

+Lang-Specific S-Attention using
Source Context 38.46† 39.24† 37.06† 21.84† 19.58† 28.43† 26.49† 23.49† 29.49† 19.09 14.59 22.98
Target Context 38.76† 39.57† 37.35† 21.77† 19.68† 27.86† 26.21† 23.16† 29.26† 19.23 14.77 23.23
Dual Context Src-Tgt 38.80† 39.51† 37.50† 21.74† 19.60† 27.98† 26.39† 23.28† 29.50† 18.89 14.52 23.06
Dual Context Src-Tgt-Mix 38.76† 39.52† 37.43† 21.68† 19.63† 27.71† 26.37† 23.26† 29.48† 19.26 14.86 23.01

Table 2: BLEU scores for the bilingual test sets. Here all contexts are incorporated as InitDec for Europarl and
InitDec+AddDec for Subtitles unless otherwise specified. bold: Best performance, †: Statistically significantly
better than the base model, based on bootstrap resampling (Clark et al., 2011) with p < 0.05.

5.1 Results

Firstly, we evaluate the three strategies for in-
corporating context: InitDec, AddDec, Init-
Dec+AddDec, and report the results for source
context using Language-Specific Attention in Ta-
ble 2. For the Europarl data, we see de-
cent improvements with InitDec for En-Et (+1.11
BLEU) and En-De (+1.60 BLEU), and with Init-
Dec+AddDec for En-Fr (+1.19 BLEU). We also
observe that, for all language-pairs, both transla-
tion directions benefit from context, showing that
our training methodology was indeed effective.
On the other hand, for the Subtitles data, we see
a maximum improvement of +0.30 BLEU for Init-
Dec+AddDec . We narrow down to three major
reasons: (i) the data is noisier when compared to
Europarl, (ii) the sentences are short and generic
with only 1% having more than 27 tokens, and fi-
nally (iii) the turns in OpenSubtitles2016 are short
compared to those in Europarl (see Table 1), and
we show later (Section 5.2) that the context from
current turn is the most important.

The next set of experiments evaluates the five
different approaches for computing the source-
side context. It is evident from Table 2
that for English-Estonian and English-German,
our model indeed benefits from using the fine-
grained sentence-level information (Language-
Specific Sentence-level Attention) as opposed to

just the turn-level one.
Finally, our results with source, target and dual

contexts are reported. Interestingly, just using the
source context is sufficient for English-Estonian
and English-German. For English-French, on the
other hand, we see significant improvements for
the models using the target-side conversation his-
tory over using only the source-side. We attribute
this to the base model being more efficient and
able to generate better translations for En-Fr as it
had been trained on a larger corpus as opposed to
the other two language-pairs. Unlike Europarl, for
Subtitles, we see improvements for our Src-Tgt-
Mix dual context variant over the Src-Tgt one for
En→Ru, showing this to be an effective approach
when the target representations are noisier.

To summarise, for majority of the cases our
Language-Specific Sentence-level Attention is a
winner or a close second. Using the Target Con-
text is useful when the base model generates
reasonable-quality translations; otherwise, using
the Source Context should suffice.

Local Source Context Model Most of the pre-
vious works for online context-based NMT con-
sider only a single previous sentence as context
(Jean et al., 2017; Bawden et al., 2017; Voita et al.,
2018). Drawing inspiration from these works,
we evaluate our model (trained with Language-
Specific Sentence-Level Attention) on the same
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Europarl Subtitles
En-Fr En-Et En-De En-Ru

Prev Sent 38.15 21.70 26.09 19.13
Our Model 38.46† 21.84 26.49† 19.09

Table 3: BLEU scores for the bilingual test sets. bold:
Best performance, †: Statistically significantly better
than the contextual baseline.

Type of Context BLEU
No context (Base Model) 24.74
Current Turn 26.39
Current Language from Previous Turns 26.21
Other Language from Previous Turns 26.32
Complete Context 26.49

Table 4: BLEU scores for En-De bilingual test set.
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Figure 3: BLEU scores on En-De test set while train-
ing (I) smaller base model with smaller corpus (pre-
vious experiment), (II) smaller base model with larger
corpus, and (III) a larger base model with larger corpus.

test set but using only the previous source sentence
as context. This evaluation allows us to hypothe-
sise how much of the gain can be attributed to the
previous sentence. From Table 3, it can be seen
that our model surpasses the local-context base-
line for Europarl showing that the wider context is
indeed beneficial if the turn lengths are longer. For
En-Ru, it can be seen that using previous sentence
is sufficient due to short turns (see Table 1).

5.2 Analysis

Ablation Study We conduct an ablation study
to validate our hypothesis of using the complete
context versus using only one of the three types
of contexts in a bilingual multi-speaker conversa-
tion: (i) current turn, (ii) previous turns in current
language, and (iii) previous turns in the other lan-
guage. The results for En-De are reported in Ta-
ble 4. We see decrease in BLEU for all types of
contexts with significant decrease when consider-
ing only current language from previous turns.The
results show that the current turn has the most in-
fluence on translating a sentence, and we conclude

En→Fr les; par; est; a; dans; le; en; j’; un; afin; question;
entre; qu’; être; ces; également; y; depuis; c’; ou

Fr→En this; of; we; issue; europe; by; up; make; united;
does; what; regard; s; must; however; such; whose;
share; like; been

En→Et eest; vahel; üle; nimel; ja; aastal; aasta; neid; ainult
seepärast; nagu; kes; komisjoni; tehtud; küsimuses;
sisserände; liikmesriigi; mulla; liibanoni; dawit

Et→En for; this; of; is; political; important; culture; also; as;
order; are; each; their; only; gender; were; its;
economy; one; market

En→Dedaß; auf; und; werden; nicht; müssen; aus; mehr;
können; einem; rates; eines; insbesondere; wurden;
habe; mitgliedstaaten; ist; sondern; europa;
gemeinsamen

De→Enthat; its; say; must; some; therefore; more; countries;
an; favour; public; will; without; particularly;
hankiss; much; increase; eu; them; parliamentary

Table 5: Most frequent tokens correctly generated by
our model when compared to the base model.

that since our model is able to capture the com-
plete context, it is generalisable to any conversa-
tional scenario.

Training base model with more data To anal-
yse if the context is beneficial even when using
more data, we perform an experiment for English-
German where we train the base model with addi-
tional sentence-pairs from the full WMT’14 cor-
pus11 (excluding our dev/test sets and filtering sen-
tences with more than 100 tokens). For train-
ing the contextual model, we still use the bilin-
gual multi-speaker corpus. We observe a sig-
nificant improvement of +1.12 for the context-
based model (Figure 3 II), showing the signifi-
cance of conversation history in this experiment
condition.12

We perform another experiment where we use a
larger base model, having almost double the num-
ber of parameters than our previous base model
(hidden units and word embedding sizes set to
512, and alignment dimension set to 256), to
test if the model parameters are being overesti-
mated due to the additional context. We use the
same WMT’14 corpus to train the base model and
achieve significant improvement of +1.48 BLEU
for our context-based model over the larger base-
line (Figure 3 III).

11https://nlp.stanford.edu/projects/nmt/
12It should be noted that the BLEU score for the base

model trained with WMT does not match the published re-
sults exactly as the test set contains both English and German
sentences. It does, however, fall between the scores usually
obtained on WMT’14 for En→De and De→En.
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Context nous sommes également favorables au principe d’un système de collecte des miles commun pour le parlement
européen, pour que celui-ci puisse bénéficier de billets d’avion moins chers, même si nous voyons difficilement
comment ce système pourrait être déployé en pratique.
enfin, nous ne sommes pas opposés à l’attribution de prix culturels par le parlement européen.

Source néanmoins, nous sommes particulièrement critiques à l’égard du prix pour le journalisme du parlement européen
et nous ne pensons pas que celui-ci puisse décerner des prix aux journalistes ayant pour mission de soumettre le
parlement européen à un regard critique.

Target however, we are highly critical of parliament’s prize for journalism, and do not believe that it is appropriate for
parliament to award prizes to journalists whose task it is to critically examine the european parliament.

Base Modelnevertheless, we are particularly critical of the price for the european union’s european alism and we do not
believe that it would be able to make a price to the journalists who have been made available to the european
parliament to a critical view.

Our Model however, we are particularly critical of the price for the european union’s democratic alism and we do not believe
that it can give rise to the prices for journalists who have been tabled to submit the european parliament to a
critical view.

Table 6: Example En-Fr sentence translation showing how the context helps our model in generating the appropri-
ate discourse connective.

Context oleks hea, kui reitinguagentuurid vastutaksid tulevikus enda tegevuse eest rohkem.
...
kirjalikult. - (it) kiites heaks wolf klinzi raporti, mille eesmärk on reitinguagentuuride tõhus reguleerimine,
võtab parlament järjekordse sammu finantsturgude suurema läbipaistvuse suunas.
...
mul oli selle dokumendi üle hea meel, sest krediidireitingute valdkonnal on palju probleeme, millest kõige
suuremad on oligopolidele tüpilised struktuurid ning konkurentsi, vastutuse ja läbipaistvuse puudumine.

Source selles suhtes tuleb rõhutada nende tegevuse suuremal äbipaistvuse põhirolli.
Target in this respect, it is necessary to highlight the central role of increased transparency in their activities.
Base Model in this regard it must be emphasised in the major role of transparency in which these activities are to be

strengthened.
Our Model in this regard, it must be stressed in the key role of greater transparency in their activities.

Table 7: Example En-Et translation showing how the wide-range context helps in generating the correct pronoun.
The antecedent and correct pronoun are highlighted in blue.

Figure 4: Density of token counts for En→Fr illustrat-
ing where our model is better (+ve x-axis) and where
the base model is better (-ve x-axis).

How is the context helping? The underlying
hypothesis for this work is that discourse phe-
nomenon in a conversation may depend on long-
range dependency and these may be ignored by
the sentence-based NMT models. To analyse if
our contextual model is able to accurately translate
such linguistic phenomenon, we come up with our
own evaluation procedure. We aggregate the to-

kens correctly generated by our model and those
correctly generated by the baseline over the entire
test set. We then take the difference of these counts
and sort them13. Table 5 reports the top 20 tokens
where our model is better than the baseline for the
Europarl dataset. Figure 4 gives the density of
counts obtained using our evaluation for En→Fr14.
Positive counts correspond to correct translations
by our model while the negative counts correspond
to where the base model was better. It can be seen
that for majority of cases our model supersedes
the base model. We observed a similar trend for
other translation directions. In general, the cor-
rectly generated tokens by our model include pro-
nouns (that, this, its, their, them), discourse con-
nectives (e.g., ‘however’, ‘therefore’, ‘also’) and
prepositions (of, for, by).

Table 6 reports an example where our model is
able to generate the correct discourse connective
‘however’ using the context. If we look at the con-

13We do not normalise the counts with the background fre-
quency as it favours rare words. Thus, obscuring the main
reasons of improving the BLEU score.

14Outliers and tokens with equal counts for our model and
the baseline were removed.
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Figure 5: Attention map when translating a conversa-
tion from the Et-En test set.

text of the source sentence in French, we come to
the conclusion that ‘however’ is indeed a perfect
fit in this case, whereas the base model is at a dis-
advantage and completely changes the underlying
meaning of the sentence by generating the inap-
propriate connective ‘nevertheless’.

Table 7 gives an instance where our model is
able to generate the correct pronoun ‘their’. It
should be noted that in this case, the current source
sentence does not contain the antecedent and thus
the context-free baseline is unable to generate the
appropriate pronoun. On the other hand, our con-
textual model is able to do so by giving the high-
est attention weights to sentences containing the
antecedent (observed from the attention map in
Figure 5)15. Figure 5 also shows that for trans-
lating majority of the sentences, the model attends
to wide-range context rather than just the previous
sentence, hence strengthening the premise of us-
ing the complete context.

6 Conclusion

This work investigates the challenges associated
with translating multilingual multi-speaker con-
versations by exploring a simpler task referred
to as Bilingual Multi-Speaker Conversation MT.
We process Europarl v7 and OpenSubtitles2016
to obtain an introductory dataset for this task.
Compared to models developed for similar tasks,
our work is different in two aspects: (i) the his-
tory captured by our model contains multiple lan-
guages, and (ii) our model captures ‘global’ his-
tory as opposed to ‘local’ history captured in most
previous works. Our experiments demonstrate the

15For this particular conversation, all previous turns were
in Estonian.

significance of leveraging the bilingual conversa-
tion history in such scenarios. Furthermore, the
analysis shows that using wide-range context, our
model generates appropriate pronouns and dis-
course connectives in some cases. We hope this
work to be a first step towards translating multilin-
gual multi-speaker conversations. Future work on
this task may include optimising the base transla-
tion model and approaches that condition on spe-
cific discourse information in the conversation his-
tory.
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A Data Statistics

Europarl Subtitles
En-Fr En-Et En-De En-Ru

Dev/Test
# Conversations 140/209 88/132 70/108 462/694

# Sentences 4.9k/7.8k 3.2k/5.2k 2.1k/3.3k 5.9k/9k

Table 8: General statistics for development and test
sets.

B Experiments

Training For the base model, we make use of
stochastic gradient descent (SGD)16 with initial
learning rate of 0.1 and a decay factor of 0.5 af-
ter the fifth epoch for a total of 15 epochs. For
the contextual model, we use SGD with an initial
learning rate of 0.08 and a decay factor of 0.9 after
the first epoch for a total of 30 epochs. To avoid
overfitting, we employ dropout and set its rate to
0.2. To reduce the training time of our contextual
model, we perform computation of one turn at a
time, for instance, when using the source context,
we run the Turn-RNNs for previous turns once and
re-run the Turn-RNN only for sentences in the cur-
rent turn.

16In our preliminary experiments, we tried SGD, Adam
and Adagrad as optimisers, and found SGD to achieve better
perplexities in lesser number of epochs (Bahar et al., 2017).
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Abstract

We reassess a recent study (Hassan et al.,
2018) that claimed that machine translation
(MT) has reached human parity for the transla-
tion of news from Chinese into English, using
pairwise ranking and considering three vari-
ables that were not taken into account in that
previous study: the language in which the
source side of the test set was originally writ-
ten, the translation proficiency of the evalua-
tors, and the provision of inter-sentential con-
text. If we consider only original source text
(i.e. not translated from another language, or
translationese), then we find evidence showing
that human parity has not been achieved. We
compare the judgments of professional trans-
lators against those of non-experts and dis-
cover that those of the experts result in higher
inter-annotator agreement and better discrim-
ination between human and machine transla-
tions. In addition, we analyse the human trans-
lations of the test set and identify important
translation issues. Finally, based on these find-
ings, we provide a set of recommendations for
future human evaluations of MT.

1 Introduction

Neural machine translation (NMT) has revolu-
tionised the field of MT by overcoming many
of the weaknesses of the previous state-of-the-art
phrase-based machine translation (PBSMT) (Ben-
tivogli et al., 2016; Toral and Sánchez-Cartagena,
2017). In only a few years since the first work-
ing models, this approach has led to a substan-
tial improvement in translation quality, reported
in terms of automatic metrics (Bojar et al., 2016,
2017; Sennrich et al., 2016). This has ignited
higher levels of expectation, fuelled in part by hy-
perbolic claims from large MT developers. First
we saw in Wu et al. (2016) that Google NMT
was “bridging the gap between human and ma-
chine translation [quality]”. This was amplified

recently by the claim by Hassan et al. (2018) that
Microsoft had ”achieved human parity” in terms
of translation quality on news translation from
Chinese to English, and more recently still by
SDL who claimed to have “cracked” Russian-to-
English NMT with “near perfect” translation qual-
ity.1 However, when human evaluation is used to
compare NMT and SMT, the results do not always
favour NMT (Castilho et al., 2017a,b).

Accompanying the claims regarding the capa-
bility of the Microsoft Chinese-to-English NMT
system, Hassan et al. (2018) released their exper-
imental data2 which permits replicability of their
experiments. In this paper, we provide a detailed
examination of Microsoft’s claim to have reached
human parity for the task of translating news from
Chinese (ZH) to English (EN). They provide two
definitions in this regard, namely:

Definition 1. If a bilingual human judges the
quality of a candidate translation produced by a
human to be equivalent to one produced by a ma-
chine, then the machine has achieved human par-
ity.

Definition 2. If there is no statistically signifi-
cant difference between human quality scores for
a test set of candidate translations from a machine
translation system and the scores for the corre-
sponding human translations then the machine has
achieved human parity.

The remainder of the paper is organised as fol-
lows. First, we identify and discuss three poten-
tial issues in Microsoft’s human evaluation, con-
cerning (i) the language in which the source text
was originally written, (ii) the competence of the
human evaluators with respect to translation, and
(iii) the linguistic context available to these evalu-
ators (Section 2). We then conduct a new modified

1https://www.sdl.com/about/news-media/press/2018/sdl-
cracks-russian-to-english-neural-machine-translation.html

2http://aka.ms/Translator-HumanParityData
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evaluation of their MT system on the same dataset
taking these issues onboard (Section 3). In so do-
ing, we reassess whether human parity has indeed
been achieved following what we consider to be
a fairer evaluation setting. We then take a closer
look at the quality of Microsoft’s dataset with the
help of an English native speaker and a Chinese
native speaker, and discover a number of problems
in this regard (Section 4). Finally, we conclude the
paper (Section 5) with a set of recommendations
for future human evaluations, together with some
remarks on the risks for the whole field of over-
hyping the capability of the systems we build.

2 Potential Issues

2.1 Original Language of the Source Text
The test set used by Hassan et al. (2018)
(newstest2017) was the ZH reference from the
news translation shared task at WMT 2017 (Bo-
jar et al., 2017),3 which contains 2,001 sentence
pairs, of which half were originally written in
ZH and the remaining half were originally writ-
ten in EN. Figure 1 represents the WMT test set
and the respective translation. The organisers of
WMT 2017 manually translated each of these two
subsets (files A1 and B1 in Figure 1) into the
other language (B2 and A2, respectively) to pro-
duce the resulting parallel test set of 2,001 sen-
tence pairs. Thus, Hassan et al. (2018) machine-
translated 2,001 sentences from ZH into EN, but
only half of them were originally written in ZH
(file D1); the other half were originally written in
EN, then they were translated by a human trans-
lator into ZH (as part of WMT’s organisation),
and this human translation was finally machine-
translated by Microsoft into EN (file D2). Mi-
crosoft also human-translated the ZH reference
file into EN to use as reference translations (file C
- EN REF). Therefore, 50% of their EN reference
comprises EN translations direct from the original
Chinese (file C1), while 50% are EN translations
from the human-translated file from EN into ZH
(file C2), i.e. backtranslation of the original EN
(A1). While their human evaluation is conducted
on three different subsets (referred to as Subset-
2, Subset-3, and Subset-4 in Tables 5d to 5f of
their paper), since all three are randomly sampled
from the whole test set, these subsets still contain
around 50% of sentences originally written in ZH
and around 50% originally written in EN.

3http://www.statmt.org/wmt17/translation-task.html

Figure 1: WMT test set and Microsoft Translation ZH-
to-EN reference and MT output

We hypothesize that the sentences originally
written in EN are easier to translate than those
originally written in ZH, due to the simplification
principle of translationese, namely that translated
sentences tend to be simpler than their original
counterparts (Laviosa-Braithwaite, 1998). Two
additional universal principles of translation, ex-
plicitation and normalisation, would also indicate
that a ZH text originally written in EN would be
easier to translate. Therefore, we explore whether
the inclusion of source ZH sentences originally
written in EN distorts the results, and unfairly
favours MT.

2.2 Human Evaluators

The human evaluation described in Hassan et al.
(2018) was conducted by “bilingual crowd work-
ers”. While the authors implemented a set of qual-
ity controls to “guarantee high quality results”,
no further details are provided on the selection of
evaluators and their linguistic expertise. In addi-
tion, no inter-annotator agreement (IAA) figures
were provided. We acknowledge, however, that
agreement cannot be measured using the conven-
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tional Kappa coefficient, since their human evalu-
ation uses a continuous scale (range [0− 100]).

It has been argued that non-expert translators
lack knowledge of translation and so might not
notice subtle differences that make one transla-
tion better than another. This was observed in
the human evaluation of the TraMOOC project4 in
which authors compared the evaluation of MT out-
put of professional translators against crowd work-
ers (Castilho et al., 2017c). Results showed that
for all language pairs (involving 11 languages), the
crowd workers tend to be more accepting of the
MT output by giving higher fluency and adequacy
scores and performing very little post-editing.

With that in mind, we attempt to replicate the
results achieved in Hassan et al. (2018) by redo-
ing the manual evaluation with participants with
different levels of translation proficiency, namely
professional translators (henceforth referred to as
experts) and bilingual speakers with no formal
translation qualifications (henceforth referred to as
non-experts).

2.3 Context

Hassan et al. (2018) evaluated the sentences in
the testset in randomised order, meaning that sen-
tences were evaluated in isolation. However, doc-
uments such as the news stories that make up
the test set contain relations that go beyond the
sentence level. To translate them correctly one
needs to take this inter-sentential context into ac-
count (Voigt and Jurafsky, 2012; Wang et al.,
2017a). The MT system by Hassan et al. (2018)
translates sentences in isolation while humans nat-
urally consider the wider context when conducting
translation.

Our hypothesis is that referential relations that
go beyond the sentence-level were ignored in the
evaluation as its setup considered sentences in iso-
lation (randomised). This probably resulted in
the evaluation missing some errors by the MT
system that might have been caused by its lack
of inter-sentential contextual knowledge. In con-
trast, our revised human evaluation takes inter-
sentential context into account. Sentences are not
randomised but evaluated in the order they appear
in the documents that make up the test set. In
addition, when a sentence is evaluated, the eval-
uator can see both the previous and the next sen-
tence, akin to how a professional translator works

4http://tramooc.eu/

in practice. In the same spirit, concurrent work by
Läubli et al. (2018) contrasts the evaluation of sin-
gle sentences and entire documents in the dataset
by Hassan et al. (2018), and shows a stronger
preference for human translation over MT when
evaluating documents as compared to isolated sen-
tences.

3 Evaluation

3.1 Experimental Setup

We conduct a human evaluation in which at the
same time evaluators are shown a source ZH sen-
tence and three EN translations thereof: (i) the hu-
man translation produced by Microsoft (file C in
Figure 1: henceforth referred to as HT), (ii) the
output of Microsoft’s MT system (file D: hence-
forth MS), and the output of a production system,
Google Translate (henceforth GG).5 We take these
three translations from the data provided by Has-
san et al. (2018).

Instead of giving evaluators randomly selected
sentences, they see them in order. We randomised
the documents in the test set (169) and prepared
one evaluation task per document, for the first 49
documents (503 sentences). Of these 49 docu-
ments, 41 were originally written in ZH (amount-
ing to 299 sentences, with each document contain-
ing 7.3 sentences on average) and the remaining 8
were originally written in EN (204 sentences, av-
erage of 25.5 sentences per document). Evaluators
were asked to annotate all the sentences of each
document in one go, so that they can take inter-
sentential context into account.

Rather than direct assessment (DA) (Graham
et al., 2015), as in Hassan et al. (2018), we conduct
a relative ranking evaluation. While DA has some
advantages over ranking and has replaced the latter
at the WMT shared task since 2017 (Bojar et al.,
2017), ranking is more appropriate for our eval-
uation due to the fact that we evaluate sentences
in consecutive order (rather than randomly). This
can be accommodated in ranking as we can show
all three translations for each source sentence to-
gether with the previous and next source sentences

5We note that in the study by Hassan et al. (2018), 9 differ-
ent translations were compared: 3 reference translations, and
the output from six MT systems, 4 of which were Microsoft
systems (including one online), plus Google Translate and the
Sogou system (Wang et al., 2017b), the best-performing sys-
tem at WMT-2017. This, together with the fact that we use
different methods, may affect the comparability of the results
obtained to some degree.
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Figure 2: Snapshot from the human evaluation showing the first sentence from the first document, which contains
30 sentences.

at the same time. In contrast, in DA only one trans-
lation is shown at a time, which is of course eval-
uated in isolation. An important advantage of DA
is that the number of annotations required grows
linearly (rather than exponentially with ranking)
with the number of translations to be evaluated;
this is relevant for WMT’s shared task as there
may be many MT systems to be evaluated, but not
for our research as we have only three translations
(HT, MS and GG). In any case, both approaches
have been found to lead to very similar outcomes
as their results correlate very strongly (R ≥ 0.92
in Bojar et al. (2016)).

Our human evaluation is performed with the
Appraise tool (Federmann, 2012).6 Figure 2
shows a snapshot of the evaluation. Subsequently,
we derive an overall score for each translation (HT,
MS and GG) based on the rankings. To this end
we use the TrueSkill method adapted to MT eval-
uation (Sakaguchi et al., 2014) following its us-
age at WMT15,7 i.e. we run 1,000 iterations of
the rankings recorded with Appraise followed by
clustering (significance level α = 0.05).

Five evaluators took part in our evaluation: two
professional Chinese-to-English translators and
three non-experts. Of the two professional transla-
tors, one is a native English speaker with a fluent
level of Chinese, and the other is a Chinese na-
tive speaker with a fluent level of English. The

6https://github.com/cfedermann/Appraise
7https://github.com/mjpost/wmt15

three non-expert bilingual participants are Chi-
nese native speakers with an advanced level of En-
glish. These bilingual participants are researchers
in NLP, and so their profile is similar to some of
the human evaluators of WMT, namely MT re-
searchers.8

All evaluators completed all 49 documents, ex-
cept the third non-expert, who completed the first
18. Similarly, all evaluators ranked all the sen-
tences in the documents they evaluated, except the
second professional translator, who skipped 3 sen-
tences. In total we collected 6,675 pairwise judge-
ments.

3.2 Results

3.2.1 Original Language
To find out whether the language in which the
source sentence was originally written has any
effect on the evaluation, we show the resulting
Trueskill scores for each translation taking into ac-
count all the sentences in our test set versus con-
sidering the sentences in two groups according to
the original language (ZH and EN). The results are
shown in Table 1.

Regardless of the original language, GG is the
lowest-ranked translation, thus providing an indi-

8It is an open question as to whether using bilingual NLP
researchers may affect the results obtained. While we fol-
low the practice of WMT here – which differs from the ap-
proach taken by Hassan et al. (2018), who used bilingual
crowd workers – we intend in future work to investigate this
further.
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Rank Original language
Both ZH EN

n = 6675 n = 3873 n = 2802

1 HT 1.587* HT 1.939* MS 1.059
2 MS 1.231* MS 1.199* HT 0.772*
3 GG -2.819 GG -3.144 GG -1.832

Table 1: Ranks of the translations given the original
language of the source side of the test set shown with
their Trueskill score (the higher the better). An aster-
isk next to a translation indicates that this translation is
significantly better than the one in the next rank.

cation that the quality obtainable from the MS sys-
tem is a notable improvement over state-of-the-art
NMT systems used in production. We observe that
HT outperforms significantly MS when the origi-
nal language is ZH, but the difference between the
two is not significant when the original language
is EN. Hence, we confirm our hypothesis that the
use of translationese as the source language dis-
torts the results in favour of MS.

Next, we check whether this effect of transla-
tionese is also present in the evaluation by Has-
san et al. (2018). To this end, we concatenate
all their judgments and model them with mixed-
effects regression. Our dependent variable is the
score, scaled down from the original range [0, 100]
to [0, 1], which we aim to predict with one contin-
uous predictor – sentence length – and two fac-
torial independent variables: translation (levels
HT, MS and GG) and original language (levels
ZH and EN). The identifiers of the sentence and
the annotator are included as random effects. We
plot the interaction between the translation and the
original language of the resulting model in Fig-
ure 3. HT outperforms MS by around 0.05 abso-
lute points for sentences whose original language
is ZH. However this gap disappears for source sen-
tences originally written in EN, where we see that
the score for MS is actually slightly higher than
that of HT, though the difference is not signifi-
cant. We observe a clear effect of translationese
(EN): compared to ZH, the scores of both MT sys-
tems increase substantially (GG over 10% abso-
lute and MS over 6% absolute), while the HT score
increases only very slightly.

Our hypothesis was theoretically supported by
the simplification principle of translationese. Ap-
plied to the test data, this would mean that the por-
tion originally written in ZH is more complex than
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Figure 3: Interaction between the MT system (lev-
els HT, MS and GG) and the original language of the
source sentence (levels ZH and EN).

the part originally written in EN. To check whether
this is the case, we compare the two subsets of the
test set using a measure of text complexity, type-
token ratio (TTR). While both subsets contain a
similar number of sentences (1,001 and 1,000),
the ZH subset contains more tokens (26,468) than
its EN counterpart (22,279). We thus take a sub-
set of the ZH (840 sentences) containing a similar
amount of words to the EN data (22,271 words).
We then calculate the TTR for these two sub-
sets using bootstrap resampling. The TTR for ZH
(M = 0.1927, SD = 0.0026, 95% confidence in-
terval [0.1925, 0.1928]) is 13% higher than that for
EN (M = 0.1710, SD = 0.0025, 95% confidence
interval [0.1708, 0.1711]).

Given the findings of this experiment, in the re-
mainder of the paper we use only the subset of the
test set whose original language is ZH.

3.2.2 Evaluators
To find out whether the translation expertise of
the evaluator has any effect on the evaluation, we
show the resulting Trueskill scores for each trans-
lation resulting from the evaluations by non-expert
versus expert translators. The results are shown in
Table 2. The gap between HT and MS is consid-
erably wider for experts (2.2 vs 1.2) than for non-
experts (1.3 vs 0.9). We link this to our expec-
tation, based on the previous finding by Castilho
et al. (2017c), that non-experts are more lenient
regarding MT errors. In other words, non-experts
disregard translation subtleties in their evaluation,
which leads to the gap between different transla-
tions – in this case HT and MS – being smaller.
In Section 4 we explore this further by means of a
qualitative analysis.
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Rank Translators
All Experts Non-experts

n = 3873 n = 1785 n = 2088

1 HT 1.939* HT 2.247* HT 1.324
2 MS 1.199* MS 1.197* MS 0.94*
3 GG -3.144 GG -3.461 GG -2.268

Table 2: Ranks and Trueskill scores (the higher the
better) of the three translations for evaluations carried
out by expert versus non-expert translators. An aster-
isk next to a translation indicates that this translation is
significantly better than the one in the next rank.

Trueskill provides not only an overall score for
each translation but also its confidence interval.
We expect these to be wider for the annotations
by non-experts than those annotations given by ex-
perts, which would indicate that there is more un-
certainty in the rankings by non-experts. Figure 4
shows the scores for each translation by experts
and non-experts, i.e. the same values that were
shown in Table 2, now enriched with their 95%
confidence intervals.

The sum of the confidence scores for the three
translations is just 0.33% higher for non-experts
(3.076) than for experts (3.066). However, it is
worth mentioning that, compared to the width of
the intervals for experts, those for non-experts are
considerably wider for HT (16% relative differ-
ence) while they are similar or smaller for MT (1%
and -11% relative differences for GG and MS, re-
spectively).
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Figure 4: Trueskill scores of the three translations by
experts and non-experts together with their confidence
intervals.

We now look at inter-annotator agreement
(IAA) between experts and non-experts. We com-
pute the Kappa (κ) coefficient (Cohen, 1960), as
done at WMT 2016 (Bojar et al., 2016, Sec-

tion 3.3):9

k =
P (A)− P (E)

1− P (E)

where P (A) represents the proportion of times
that the annotators agree, and P (E) the proportion
of times that the annotators are expected to agree
by chance.

As expected, the IAA between professional
translators (κ = 0.254) is notably higher, 95%
relative, than that between non-experts (κ =
0.130).10 As we have three non-experts, we can
calculate the IAA not only among the three of
them but also between all three pairs of non-expert
annotators; all of the resulting coefficients (0.057,
0.135 and 0.195) are lower than that between ex-
perts (0.254).

To the best of our knowledge, this is the first
time that IAA of professional translators and non-
experts has been compared for the human eval-
uation of MT. In related work, Callison-Burch
(2009) compared the agreement level of two types
of non-expert translators: MT developers (referred
to in that paper as ‘experts’) and crowd work-
ers. He showed that crowd workers can reach the
agreement level of MT researchers using multiple
workers and weighting their judments. That said,
both types of non-experts conducted human eval-
uations for WMT13 (Bojar et al., 2013) and the
IAA rates of the crowd were well below those of
the researchers.

4 Analyses

As mentioned previously, we have examined the
quality of the test sets, both originally written in
ZH and originally written in EN and their respec-
tive translations. An English native speaker anal-
ysed both the original EN version from the WMT
set (file A1 in Figure 1) and the human transla-
tion of the set originally written in ZH performed
by Microsoft (file C2). A Chinese native speaker,
who is fluent in English and has experience with
translation from EN into ZH, analysed the original

9https://github.com/cfedermann/wmt16/
blob/master/scripts/compute_agreement_
scores.py

10Due to the fact that one non-expert evaluated only 18 out
of the 49 documents, the IAA calculations consider only the
first 18 documents. If we consider all 49 documents, the trend
remains the same; the IAA for the two experts is higher than
that for the two non-experts who evaluated all the documents:
0.265 vs 0.196.
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ZH versions (file B1) as well as the human transla-
tion of the set originally written in EN performed
by the WMT organisers (file B2).

4.1 Original English
Regarding the English original (file A1 in Figure
1), the analysis showed that apart from a few
grammar errors, the test set appeared to be fluent
and grammatical. Examples of grammatical errors
in the original EN files are:

i) “The idiot didn’t realize they were still on the
air”
ii) “Soon after, Scott Russel who was hosting
CBC’s broadcast apologized on-air for Mac-
Donald’s comment, saying: ‘We apologize the
comment on a swim performance made it to air.’ ”

In example i) “on air” should be used instead
of “on the air”, while in the example ii) a missing
“that” should be used after “apologize”. Nonethe-
less, these errors did not affect the ZH translation
(file B2) or the following backtranslation (C2) into
EN. Our hypothesis is that because the test set is
news content, it also contains tweets (such as ex-
ample i)) and quotes from speech interviews (such
as example ii)), which are more likely to contain
grammatical errors.

4.2 Chinese Translation
Regarding the human translation into ZH per-
formed by WMT (file B2 in Figure 1), most of
the sentences contained grammatical errors and/or
mistranslations of proper nouns. Furthermore,
although some translations were grammatically
correct and accurate, they were not fluent. When
the ZH-translated sentences were compared
against the source (A1), the translations were
mostly accurate. However, when analyzed on
their own without the source, they sound disfluent:

iii)
EN original (A1): A front-row seat to the stunning
architecture of the Los Angeles Central Library
ZH (B2):洛杉矶中央图书馆的惊艳结构先睹为
快

iv)
EN original (A1): An open, industrial loft in
DTLA gets a cozy makeover
ZH (B2): DTLA的开放式工厂阁楼进行了一次
舒适的改造。

In example iii), although the ZH translation has
fully transferred the meaning of the source text, it
contains word-order errors which makes the trans-
lation disfluent since the verb phrase “先睹为快”
(take a look) is placed after the object (library).
One possible translation for that is “抢先目睹洛
杉矶中央图书馆的惊艳结构” because the ZH
language syntax requires the verb to be placed be-
fore the object.

In example iv), the ZH translation contains a
grammatical error in the word “进行”, which
would imply that the loft is carrying out a
makeover. In addition, the adjective “舒适
的” (cosy) cannot be used to describe “改造”
(makeover). One possible translation for the En-
glish sentence is “DTLA的开放式工业阁楼被
改造的很舒适”.

Given this analysis, we speculate that the trans-
lation of the EN original files into ZH might not
have been performed by an experienced translator,
but rather exemplify either human translation per-
formed by an inexperienced translator, or poorly
post-edited MT.

4.3 English Translation

Regarding the EN reference files translated by
Microsoft (file C2 in Figure 1), many of the
sentences contained grammatical errors (such as
word order, verb tense and missing prepositions)
as well as mistranslations.

v)
EN original (A1): A front-row seat to the stunning
architecture of the Los Angeles Central Library
ZH (B2):洛杉矶中央图书馆的惊艳结构先睹为
快

EN (C2): Take a look of the astounding architec-
ture of the Los Angeles Central Library.

GG: The stunning structure of the Los Angeles
Central Library
MS: A sneak peek at the stunning architecture of
the Los Angeles Central Library

vi)
EN original (A1): An open, industrial loft in
DTLA gets a cozy makeover
ZH (B2):DTLA的开放式工厂阁楼进行了一次
舒适的改造。

EN (C2): A comfortable makeover was provided
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to the open factory building design of DTLA.

GG: DTLA’s Open factory loft has a comfortable
makeover.
MS: DTLA’s open-plan factory loft has undergone
a comfortable makeover.

In example v), the EN translation of the ZH
source11 analyzed previously is translated with
the wrong preposition, i.e. ‘look of’ instead of
‘look at’. None of the professional translators
considered the reference worse than the MS
output; while one translator and one non-expert
considered it ‘as good’ as the MS output, the
other considered it better than MS but worse than
GG. Regarding the non-expert assessment, two of
them considered the HT to be as good as MS and
better than GG, and one considered the HT to be
worse than MS but better than GG.

In example vi), the EN translation (C2) of the
ZH source (B2) does not have all the information
expressed in ZH as the word ‘loft’ (阁楼) is not
translated. Moreover, the EN translation refers to
an architectural design makeover of the building
rather than an interior makeover of an attic. Both
professional translators considered the EN refer-
ence to be worse than the MS output. As far as
the non-experts are concerned, two of them con-
sidered the HT to be worse than MS, while one
considered it to be ‘as good’. This provides quali-
tative evidence that non-experts may be more tol-
erant of translation errors than professional trans-
lators.

Another example of such behaviour is the
following:

vii)
EN original (A1): Learn more about the history of
downtown’s Central Library as the Society of Ar-
chitectural Historians/Southern California Chap-
ter hosts a salon with Arnold Schwartzman and
Stephen Gee, authors of the new book ”Los An-
geles Central Library: A History of its Art and Ar-
chitecture
ZH (B2): 美国建筑史学家学会南加利福尼亚洲
分会与新书《洛杉矶中央博物馆：其艺术与建
筑历史》的作者阿诺·斯瓦茨曼和史蒂芬·吉举

11It is important to note that the translators did not have
access to the original EN (A1) and so the ZH file (B2) was
used as the source.

办了一场沙龙。观众们可通过此次活动进一步
了解市中心中央图书馆的历史

EN (C2):A salon will be hosted by Southern
California Branch of Society of Architectural
Historians and the co-authors of Los Angles
Central Museum: Art and Architectural History,
Arnold Schwarzman and Stephen Gee. It will
deliver more knowledge of the Central Library to
the participants

GG: The Southern California branch of the
American Institute of Architectural Historians has
held a salon with阿诺·斯瓦茨曼 and史蒂芬·吉,
author of the Los Angeles Central Museum:
its art and architectural history. Through this
event, viewers can learn more about the history of
Central Library in the city centre
MS: The Southern California chapter of the
American Society of Architectural Historians and
the authors of a new book, ”Los Angeles Central
Museum: Its Art and Architectural History,”
Arnold Schwartzman and Steven Gee, hosted a
salon at which viewers learned more about the
history of the Central Library in the city center

In example vii), regarding the ZH source (B2),
in addition to having the first sentence translated
into past tense – whereas the EN original (A1)
shows the salon event is happening in the near fu-
ture – it also contains a typo ‘洲’ which means
‘continent’ instead of ‘state’ ‘州’. Even though
the typo does not affect the EN translation (C2),
it shows that the quality of the ZH translation is
not as high as would be expected of professional
human translators. Regarding the EN translation
(C2), while the first sentence is mostly fluent –
although it contains a typo in ‘Angles’ (Ange-
les) and lacks the article ‘the’ before the proper
noun in the first sentence – the second sentence
lacks fluency and contains errors of omissions and
mistranslations. For example, the words “down-
town” and “history” (市中心 and 历史, respec-
tively) were not transferred over to the EN refer-
ence (C2). Furthermore, the word ‘viewers’ in the
ZH translation (观众们) was mistranslated as ‘par-
ticipants’. Nonetheless, the EN translation (C2) is
able to capture the correct tense of the sentence
since the second sentence in the ZH translation
(B2) is ambiguous regarding verbal tense. The
MS translation does a better job in keeping the flu-
ency throughout the sentence even though it mis-
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translates the tense of the source in the past tense.
Both professional translators assessed the HT as
worse than MS, whereas two of the non-experts
considered it to be as good as MS and better than
GG. The third non-expert considered the HT to be
worse than both MT systems. This example shows
that the level of expertise of the evaluators may
have an effect on the evaluation given that non-
experts are wrongly more tolerant of MT errors.

Similarly to the ZH translation (B2) of the En-
glish original, we speculate that the EN translation
(C2) of the ZH files is more likely a human trans-
lation performed by an inexperienced translator,
or even a poorly post-edited machine translation;
even if the translation was performed by an expe-
rienced translator, such that the ZH source (B2)
contained errors or was disfluent, a professional
translator would surely be more meticulous and
fix such errors before rubber-stamping the trans-
lations.

5 Conclusions and Future Work

This paper has reassessed a recent study that
claimed that MT has reached human parity for
the translation of news from Chinese into English,
considering three variables that were not taken
into account in that previous study: (i) the lan-
guage in which the source side of the test set was
originally written, (ii) the translation proficiency
of the evaluators, and (iii) the provision of inter-
sentential context.

The main findings of this paper are the follow-
ing:

• If we consider the subset of the test set whose
source side was originally written in ZH,
there is evidence that human parity has not
been achieved, i.e. the difference between the
human and the machine translations is signif-
icant. This is the case both in our human eval-
uation and in Microsoft’s.

• Having translationese (ZH translated from
EN in our study) as input, compared to hav-
ing original text, results in higher scores for
MT systems in Microsoft’s human evalua-
tion.

• Compared to judgments by non-experts,
those by professional translators have a
higher IAA and a wider gap between human
and machine translations.

• We have identified issues in the human trans-
lations by both WMT and Microsoft. These
indicate that these translations were con-
ducted by non-experts and that were possibly
post-edited MT output.

There is little doubt that human evaluation has
played a very important role in MT research and
development to date. As MT systems improve –
as exemplified by the progress made by Hassan
et al. (2018) over state-of-the-art production sys-
tems – and thus the gap between them and human
translators narrows, we believe that human evalu-
ation, in order to remain useful, needs to be more
discriminative. We suggest that a set of principles
should be adhered to, partly based on our findings,
which we outline here as recommendations:

• The original language in which the source
side of the test sets is written should be the
same as their source language. This will
avoid having spurious effects because of hav-
ing translationese as MT input.

• Human evaluations should be conducted by
professional translators. This allows fine-
grained nuances of translations to be taken
into account in the evaluation and should re-
sult in higher inter-annotator agreement.

• Human evaluations should proceed taking
the whole document into account rather than
evaluating sentences in isolation. This allows
for intersentential phenomena to be consid-
ered as part of the evaluation.

• Test sets should be translated by experienced
professional translators from scratch.

We are confident that adhering to these princi-
ples is sensible under any translation conditions.
Of course, if the test set is faulty, then in claim-
ing that one’s MT system outperforms one’s com-
petitors, there is a risk that what one is actually
demonstrating is the contrary, as if automatic eval-
uation metrics demonstrate a higher score, what
that could be denoting is that one’s output is actu-
ally closer to the faulty test set than producing bet-
ter output in terms of improved translation quality
per se. Of course, this has consequences not just
for the study in this paper, but for all shared tasks:
past, present, and future.12

12Ideally, it would be great if multiple references were also
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Should material be made available by Google,
SDL or any other MT developers who claim ‘hu-
man parity’ or the like, we would be very happy
to apply these principles in subsequent rigorous
evaluations of actual demonstrable improvements
in translation quality. One thing is certain; as Way
(2018) observes, “those of us who have seen many
paradigms come and go know that overgilding the
lily does none of us any good, especially those of
us who have been trying to build bridges between
MT developers and the translation community for
many years.” We trust that our findings in this pa-
per demonstrate that while MT quality does seem
to be improving quite dramatically, human trans-
lators will continue to find gainful employment for
many years to come, despite somewhat grandiose
claims to the contrary.

On a final note, we acknowledge that our con-
clusions and recommendations are somewhat lim-
ited in that they are derived from experiments
on just one language direction and five evalua-
tors. Therefore we plan as future work to conduct
similar experiments on additional language pairs
with a higher number of evaluators. In the spirit
of Hassan et al. (2018), without which this pa-
per would not have been possible, we too make
publicly available our evaluation materials, the
anonymised human judgments and the statistical
analyses thereof.13
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ity human translations, then this is likely to skew results still
further.
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Appendix: Evaluator Instructions
Given three translations (T1, T2 and T3), the task is to rank
them from best to worst given a source segment:

• Rank a translation T1 higher (rank1) than T2 (rank2),
if the first is better than the second.

• Rank both translations equally, for example translation
T1 rank1 and T2 rank1, if they are of the same quality.

• Use the highest rank possible, e.g. if you’ve three
translations T1, T2 and T3, and the quality of T1 and
T2 is equivalent and both are better than T3, then do:
T1=rank1, T2=rank1, T3=rank2. Do NOT use lower
rankings, e.g.: T1=rank2, T2=rank2, T3=rank3.

Each task corresponds to one document. Documents contain
up to 50 sentences. If possible please annotate all the sen-
tences of a document in one go.

123



Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 124–132
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64013

Freezing Subnetworks to Analyze Domain Adaptation
in Neural Machine Translation

Brian Thompson† Huda Khayrallah† Antonios Anastasopoulos‡
Arya D. McCarthy† Kevin Duh† Rebecca Marvin† Paul McNamee†

Jeremy Gwinnup◦ Tim Anderson◦ and Philipp Koehn†
†Johns Hopkins University, ‡University of Notre Dame, ◦Air Force Research Laboratory

{brian.thompson, huda, arya, becky, mcnamee, phi}@jhu.edu,
aanastas@nd.edu, kevinduh@cs.jhu.edu,

{jeremy.gwinnup.1, timothy.anderson.20}@us.af.mil

Abstract

To better understand the effectiveness of con-
tinued training, we analyze the major compo-
nents of a neural machine translation system
(the encoder, decoder, and each embedding
space) and consider each component’s contri-
bution to, and capacity for, domain adaptation.
We find that freezing any single component
during continued training has minimal impact
on performance, and that performance is sur-
prisingly good when a single component is
adapted while holding the rest of the model
fixed. We also find that continued training
does not move the model very far from the
out-of-domain model, compared to a sensitiv-
ity analysis metric, suggesting that the out-of-
domain model can provide a good generic ini-
tialization for the new domain.

1 Introduction

Neural Machine Translation (NMT) has supplanted
Phrase-Based Machine Translation (PBMT) as the
standard for high-resource machine translation.
This has necessitated new domain adaptation meth-
ods, because PBMT adaptation methods primarily
rely on adapting the language model and phrase ta-
ble using interpolation or back-off schemes (see §2).
Continued training (Luong and Manning, 2015;
Freitag and Al-Onaizan, 2016), also referred to as
fine-tuning, is one of the most popular methods for
NMT adaptation, due to its strong performance.

In contrast to the PBMT literature, little research
has focused on why continued training is effective
or on what happens to NMT models during con-
tinued training. Motivated by domain adaptation
analysis in PBMT (Haddow and Koehn, 2012; Duh
et al., 2010; Irvine et al., 2013), this work proposes
a simple freezing subnetworks technique and uses it
to gain insight into how the various components of
an NMT system behave during continued training.

Wash your hands

Wasch dir die Hände

Softmax

Decoder

Source

Target
Embedding

Embedding

Encoder

Figure 1: Visualization of an NMT system seg-
mented into components.

We segment the model into five subnetworks,
which we refer to as components, denoted in Fig-
ure 1: the source embeddings, encoder, decoder
(which includes the attention mechanism), the soft-
max (used to denote the decoder output embed-
dings and biases), and the target embeddings.

We freeze components one at a time during con-
tinued training to see how much the adaptation
depends on each component. We also experiment
with freezing everything except one component to
determine each component’s capacity to adapt to
the new domain on its own.

In order to further analyze continued training, we
examine the magnitude of change in model com-
ponents during continued training of the network,
under both normal and freezing training conditions.
We also conduct sensitivity analysis of each com-
ponent to assist in interpreting these magnitudes.

Our NMT adaptation experiments are performed
across three languages: we translate from German,
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Component Size

Target Embedding 15.1M
Softmax 15.1M
Decoder 6.8M
Encoder 3.7M
Source Embedding 15.4M

Total 56.0M

Table 1: Number of parameters in each component.

Korean, and Russian into English. Our out-of-
domain models are trained on WMT and/or subti-
tles corpora, and we adapt each model to translate
patent abstracts.

2 Related Work

Continued training has recently become a standard
for domain or cross-lingual adaptation in several
neural NLP applications. In PBMT, the most promi-
nent methods focus on adapting the language model
component (Moore and Lewis, 2010), and/or the
translation model (Matsoukas et al., 2009; Man-
sour and Ney, 2014; Axelrod et al., 2011), or on
interpolating in-domain and out-of-domain models
(Lu et al., 2007; Foster et al., 2010; Koehn and
Schroeder, 2007).

In contrast, the methods employed in NMT tend
to utilize continued training, which involves initial-
izing the model with pre-trained weights (trained
on out-of-domain data) and training/adapting it
to the in-domain data. Among others, Luong
and Manning (2015) and Freitag and Al-Onaizan
(2016) applied this method for domain adaptation.
Chu et al. (2017) mix in-domain and out-of-domain
data during continued training in order to adapt to
multiple domains. Continued training has also been
applied to cross-lingual transfer learning for NMT,
with Zoph et al. (2016) and Nguyen and Chiang
(2017) using it for transfer between high- and low-
resource language pairs.

Continued training is effective on a range of
data sizes. In-domain gains have been shown with
as few as dozens of in-domain training sentences
(Miceli Barone et al., 2017), and recent work has
explored continued training on single sentences
(Farajian et al., 2017; Kothur et al., 2018).

Similar adaptation techniques are also employed
in the field of Automatic Speech Recognition,
where continued training has been the basis of

Tokens

Dataset Sentences Source Target

Out-of-domain training sets
Ru–En WMT 25.2M 563.9M 595.9M
Ru–En Subtitles 25.9M 179.8M 212.4M
De–En WMT 5.8M 138.6M 131.8M
De–En Subtitles 22.5M 171.6M 185.8M
Ko–En Subtitles 1.4M 11.5M 11.9M

In-domain training sets
Ru–En WIPO 29 k 620 k 812 k
De–En WIPO 821 k 19M 23M
Ko–En WIPO 81 k 2.2M 2.0M

In-domain test sets
Ru–En WIPO 3 k 82 k 109 k
De–En WIPO 3 k 132 k 162 k
Ko–En WIPO 3 k 187 k 165 k

Table 2: Dataset statistics. The number of tokens
is computed before segmentation into subwords.
The in-domain development sets (not shown) have
similar statistics to the test sets.

cross-lingual transfer learning approaches (Grézl
et al., 2014; Kunze et al., 2017). Usually, the lower
layers of the network, which perform acoustic mod-
eling, are frozen and only the upper layers are up-
dated. In a similar vein, other works (Swietojanski
and Renals, 2014; Vilar, 2018) adapt a network to
a new domain by learning additional weights that
re-scale the hidden units.

3 Data

Our experiments are carried out across three lan-
guage pairs, from Russian, Korean, and German
into English. Basic statistics on the datasets used
for our experiments are summarized in Table 2. The
three languages represent three different domain
adaptation scenarios:

• In German, both the in- and out-of-domain
datasets are large.

• In Russian, the in-domain dataset is large but
the out-of-domain dataset is small.

• In Korean, both in- and out-of-domain
datasets are small.
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OpenSubtitles You’re gonna need a bigger boat.

WMT Intensified communication and sharing of information between the project partners
enables the transfer of expertise in rural tourism.

WIPO The films coated therewith, in particular polycarbonate films coated therewith, have
improved properties with regard to scratch resistance, solvent resistance, and reduced
oiling effect, said films thus being especially suitable for use in producing plastic parts
in film insert molding methods.

Table 3: Example sentences to illustrate domain differences.

3.1 Out-of-domain Data

For our out-of-domain dataset we utilize the
OpenSubtitles2018 corpus (Tiedemann, 2016;
Lison and Tiedemann, 2016), which consists of
translated movie subtitles.1 For De–En and Ru–
En, we also use data from WMT 2017 (Bojar
et al., 2017),2 which contains data from several
sources: Europarl (parliamentary proceedings)
(Koehn, 2005),3 News Commentary (political and
economic news commentary),4 Common Crawl
(web-crawled parallel corpus), and the EU Press
Releases.

We use the final 2500 lines of
OpenSubtitles2018 for the development
set. For German and Russian we also concatenate
newstest2016 as part of the development set.
newstest2016 consists of translated news articles
released by WMT for its shared task. In Korean,
we rely only on the OpenSubtitles2018 data.
See Table 3 for example sentences from WMT and
OpenSubtitles.

3.2 In-domain Data

We perform adaptation into the World International
Property Organization (WIPO) COPPA-V2 dataset
(Junczys-Dowmunt et al., 2016).5 The WIPO data
consist of parallel sentences from international
patent application abstracts. We reserve 3000 lines
each for the in-domain development and test sets.
See Table 3 for an example WIPO sentence.

3.3 Data Preprocessing

All our datasets were tokenized using the Moses6

tokenizer. Additionally, Korean text was seg-

1www.opensubtitles.org
2statmt.org/wmt17
3statmt.org/europarl
4casmacat.eu/corpus/news-commentary.html
5wipo.int/patentscope/en/data
6statmt.org/moses/

mented into words using the KoNLPy wrapper of
the Mecab-Ko segmenter.7

As a final preprocessing step, we train Byte Pair
Encoding (BPE) segmentation models (Sennrich
et al., 2016) on the out-of-domain training corpus.
We train separate BPE models for each language,
each with a vocabulary size of 30,000. For each lan-
guage, BPE is trained on the out-of-domain corpus
only and then applied to the training, development,
and test data for both out-of-domain and in-domain
datasets. This mimics the realistic setting where a
generic, computationally-expensive-to-train NMT
model is trained once. This NMT model is then
adapted to new domains as they emerge, without
retraining on the out-of-domain corpus. Training
BPE on the in-domain data would change the vo-
cabulary and thus require re-building the model.

4 Experimental Setup

For all language pairs, we train systems on the
out-of-domain data and select the best model pa-
rameters based on perplexity on the out-of-domain
development set. We then adapt the systems into
our smaller, in-domain training sets. We select the
best model based on the WIPO development set
perplexity and report results on the WIPO test sets.

4.1 Continued Training

We define continued training as:

1. Train a model until convergence on large out-
of-domain bitext.

2. Initialize a new model with the final parame-
ters of Step 1.

3. Train the model from Step 2 until convergence
on in-domain bitext.

7konlpy.org/en/
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4.2 NMT Implementation and Settings

Our neural machine translation systems are trained
using SOCKEYE (Hieber et al., 2017).8 We use
SOCKEYE’s built-in functionality for freezing pa-
rameters. We build RNN-based encoder–decoder
models with attention (Bahdanau et al., 2015), us-
ing a bidirectional RNN for the encoder. The en-
coder and decoder both have 2 layers with LSTM
hidden sizes of 512. Source and target word vec-
tors are also of size 512. The number of parameters
in each component are given in Table 1.

While training the out-of-domain models, we
apply dropout with 10% probability on the RNN
layers. We apply label smoothing of 0.1. We use
ADAM (Kingma and Ba, 2014) as the optimizer,
using a learning rate of 0.0003 and a learning rate
reduce factor of 0.7. We use a batch size of 4096
words and create a checkpoint every 4000 mini-
batches.

We do not use dropout or label smoothing during
continued training because we do not want regu-
larization to bias our measurements of magnitude
changes during continued training (see §5.3). We
note, however, that each would likely increase in-
domain performance. Our batch size during con-
tinued training is 128 sentences, and we create a
checkpoint every half epoch. Our learning rate re-
duce factor for continued training is 0.5. We run
each continued training experiment over a set of
learning rates (0.1, 0.01, 0.001, 0.0001, 0.00001)
and choose the best result based on the perplex-
ity on the development set, as previous work has
suggested that even when using ADAM, continued
training can be sensitive to learning rate (Farajian
et al., 2017; Li et al., 2018; Kothur et al., 2018).
We use dot product attention (Luong et al., 2015),
which means we do not have a separate attention
component; the attention is implicitly built into the
decoder.

5 Results and Analysis

5.1 Freezing One Component at a Time

Our first set of experiments measure the extent to
which performance depends on updating any given
component in the model. We perform continued
training while freezing a single component (i.e.
keeping that component fixed to the values from
the out-of-domain model used to initialize training
while adapting the rest of the components). The

8github.com/awslabs/sockeye
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Figure 2: BLEU scores when freezing only the de-
noted component (left solid bars) and when freez-
ing all but the denoted component (right striped
bars). The horizontal lines denote baselines: no
adaptation (dashed) and full continued training
(solid). The labels on top of each bar denote the
difference from the full continued training baseline.

results for this setting are shown in the solid left
bars of Figure 2.

For De–En and Ru–En, the out-of-domain mod-
els have reasonable performance on the in-domain
test set. In these language pairs, freezing any single
component has little impact on in-domain BLEU.
The worst change is −0.9 BLEU—when freezing
the De–En encoder—and in some cases we see
small gains of up to 0.4 BLEU. We interpret these
gains as trivial (and possibly the result of variance)
but there may be an NMT continued training sce-
nario in which freezing could increase performance
by acting as a regularizer (see Ghahremani et al.,
2017).

In Ko–En, where the out-of-domain model does
poorly on the in-domain test set, we see more sub-
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stantial drops when freezing a component during
continued training. Freezing the decoder and en-
coder does the most harm (−3.8 and −3.3 BLEU,
respectively), followed by the source embeddings
and softmax components (−1.7 and −1.5 BLEU,
respectively).

In all cases, freezing the target embeddings has
very little impact (at most −0.2 BLEU, in Ko–En),
suggesting that it is relatively unimportant during
adaptation. These results show that the model and
training procedure are very robust; continued train-
ing is able to find a local minimum for the new
domain which has (nearly) equal performance to
the one found in full training, even though an en-
tire component is fixed to the initial out-of-domain
model’s values.

This robustness suggests that caution is in order
when attempting to interpret changes of any single
component—in particular, changes in the surround-
ing components must also be considered. For ex-
ample, it appears that when the source embeddings
are fixed, the encoder is able to compensate for
the non-adapted source embeddings and adapt the
system to interpret source tokens correctly in the
new domain. Conversely, it appears that when the
encoder is fixed, the source embeddings are able to
adapt to produce vectors for source tokens which
are interpreted correctly by the un-adapted encoder.
Note that adaptation to source tokens in the new
domain could theoretically occur in any un-frozen
component, an idea further explored in the next
section.

5.2 Freezing All But One Component

In our second set of experiments, we freeze all but
one component during continued training to see
how much each component, in isolation, is able to
adapt the NMT system to the new domain. The
results are shown in Figure 2 (right striped bars).

We find that only adapting a single component
is—somewhat surprisingly—not catastrophic in
most cases. Adapting only the encoder, for ex-
ample, still gives a gain of 20.1 BLEU over the
out-of-domain model (3.8 BLEU worse than full
continued training) in German and 11.4 BLEU
(0.2 BLEU worse than full continued training) in
Russian.

In De–En and Ko–En, we see that adapting just
the encoder does the best, followed by the decoder,
source embeddings, softmax, and target embed-
dings. The trend in Russian is similar but with the

Russian German Korean

Softmax 0.0347 0.0578 0.0650
Encoder 0.0236 0.0520 0.0654
Decoder 0.0209 0.0465 0.0594
Source Embed 0.0165 0.0417 0.0414
Target Embed 0.0141 0.0357 0.0422

Table 4: Euclidean distance moved by each compo-
nent when components are adapted jointly.

Russian German Korean

Softmax 0.0345 0.2215 0.1031
Encoder 0.0516 0.2857 0.1494
Decoder 0.0419 0.2751 0.1122
Source Embed 0.0563 0.3045 0.0893
Target Embed 0.0714 0.2940 0.5777

Table 5: Euclidean distance moved by each compo-
nent when components are adapted individually.

decoder and source embeddings switched.
These experiments suggest the encoder is most

able to adapt the model to a new domain in isola-
tion. It is worth noting that the encoder achieves
this despite being the component with the fewest
parameters (3.7M). The target embeddings are least
able to adapt the model to a new domain (consistent
with §5.1).

These experiments also show that the upper
bound for adapting a single component is quite
high, suggesting that the upper bound for adapta-
tion techniques using monolingual data to adapt
individual components could be quite high as well.
Of course, it seems unlikely that techniques us-
ing only monolingual data can achieve the same
level of performance as when directly optimizing
on bitext.

5.3 Magnitude of Changes During Continued
Training

We are interested in the overall magnitude of the
changes experienced by each component during
continued training, (i.e., how far each moves from
the out-of-domain model) and how those changes
compare to the cases where only a single compo-
nent was adapted.

We had two opposing hypotheses that could pre-
dict adaptation behavior when only one component
is being adapted (as in §5.1):
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1. The portion of the network producing the com-
ponent’s input is fixed, as is the portion of
the network that interprets the component’s
output. This suggests the component will be
somewhat constrained, in contrast to full con-
tinued training where the components may
adapt jointly over time.

2. Since all other components are fixed, the
adapting component has to bear all the re-
sponsibility for changing the entire model’s
behavior, requiring more drastic changes than
it would have undergone during full continued
training.

The Euclidean distance between each compo-
nent in the initial out-of-domain model and the con-
tinued training model are shown in Table 4 (normal
continued training) and Table 5 (trained individu-
ally).9 While further work would be required to
make any definitive statements, the results clearly
favor the second hypothesis. The movement of in-
dividually adapted components tends to be larger
than that of their counterparts in fully adapted mod-
els.

5.4 Sensitivity Analysis
To assist in interpreting the overall magnitude of
changes experienced during continued training, we
perform sensitivity analysis of each component of
the initial, out-of-domain model. In each experi-
ment, zero-mean, independent Gaussian noise with
fixed variance is added to every parameter in a sin-
gle component of the model. By varying noise
levels, we show how much (random) movement
is required to produce a given decrease in perfor-
mance.10

Figure 3 shows the sensitivity plots for each com-
ponent. Table 6 shows, for each component, the
(linearly interpolated) BLEU score decrease that
would result from adding random noise of the same
magnitude as the change observed in full continued
training.

9To compute this distance, all weights and biases in a given
component are concatenated into a vector (i.e. we compute
the Frobenius norm).

10 Bojar et al. (2010) show that very low BLEU scores are
not trustworthy. Due to the very low BLEU score (2.7) of the
out-of-domain Ko–En system on the in-domain test set, we
use out-of-domain test sets for each language, where BLEU
scores fall between 11 and 30. This means that the BLEU
scores for continued training (computed on the in-domain test
set) are not directly comparable to the BLEU scores produced
for sensitivity analysis. However, as the sensitivity analysis is
used only as an aid in interpreting the general magnitude of
BLEU shifts, we view this as an acceptable compromise.

Russian German Korean

Softmax −1.29 −3.00 −5.49
Encoder −0.05 −0.78 −1.68
Decoder −0.23 −0.52 −1.05
Source Embed −0.12 −0.10 −0.22
Target Embed −0.08 −0.02 −0.04

Table 6: Sensitivity Analysis: Change in BLEU
for random perturbation of magnitude correspond-
ing to the distance each component moved during
standard continued training.

Considering the sensitivity of each component
reveals several patterns. First, the most significant
change in the network, compared to the sensitivity
metric, is in the softmax component for all three
languages. Second, these values are rather small
compared to the overall improvements seen in con-
tinued training (+23.0 in De–En, +24.2 in Ko–En,
and +11.4 in Ru–En). This suggests that the in-
domain model parameters are, on average, fairly
close to the out-of-domain model used to initial-
ize training; even though the out-of-domain model
does not have a particularly high BLEU score, it
is close to a good local minimum in the in-domain
error surface.

6 Conclusions

This work presents and applies a simple freezing
subnetworks method to analyze continued training.

Freezing any single component during contin-
ued training has negligible effect on performance
compared to full continued training. Furthermore,
adapting only a single component via continued
training produces surprisingly strong performance
in most cases, achieving most of the performance
gain of full continued training. That is, continued
training is able to adapt the overall system to a new
domain by modifying only parameters in a single
component. This finding goes against the intuitive
hypothesis that source embeddings must account
for domain changes in the source vocabulary, target
embeddings must account for changes in the target
vocabulary, etc.

We note that the encoder and decoder, despite
having the least parameters (3.7M and 6.8M, re-
spectively, out of 56M), perform strongly across all
languages. This suggests further work on adapting
only a subset of parameters may be warranted (see
also Vilar, 2018; Michel and Neubig, 2018).
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Figure 3: Performance degradation (BLEU) as a
function of noise (standard deviation) added to a
given component.

We also perform sensitivity analysis of compo-
nents and find that continued training does not
move the model very far from the initial out-of-
domain model, in the sense that random pertur-
bations of the same magnitude cause only small
performance drops on the out-of-domain test set.
This suggests that the out-of-domain model, while
not performing very well on the in-domain test set,
is close to a good local minimum on the in-domain
error surface. This finding may explain the recent
success of techniques which regularize a contin-
ued training model using the initial, out-of-domain
model (Miceli Barone et al., 2017; Dakwale and
Monz, 2017; Khayrallah et al., 2018).
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Ondřej Bojar, Kamil Kos, and David Mareček. 2010.
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Frantisek Grézl, Martin Karafiát, and Karel Vesely.
2014. Adaptation of multilingual stacked bottle-
neck neural network structure for new language. In
Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pages
7654–7658. IEEE.

Barry Haddow and Philipp Koehn. 2012. Analysing
the effect of out-of-domain data on smt systems. In
Proceedings of the Seventh Workshop on Statistical
Machine Translation, pages 422–432. Association
for Computational Linguistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A Toolkit for Neural Machine
Translation. arXiv preprint arXiv:1712.05690.

Ann Irvine, John Morgan, Marine Carpuat, Hal
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Abstract

Measuring domain relevance of data and iden-
tifying or selecting well-fit domain data for
machine translation (MT) is a well-studied
topic, but denoising is not yet. Denoising is
concerned with a different type of data qual-
ity and tries to reduce the negative impact of
data noise on MT training, in particular, neu-
ral MT (NMT) training. This paper general-
izes methods for measuring and selecting data
for domain MT and applies them to denoising
NMT training. The proposed approach uses
trusted data and a denoising curriculum real-
ized by online data selection. Intrinsic and
extrinsic evaluations of the approach show its
significant effectiveness for NMT to train on
data with severe noise.

1 Introduction

Data noise is an understudied topic in the machine
translation (MT) field. Recent research has found
that data noise has a bigger impact on neural ma-
chine translation (NMT) than on statistical ma-
chine translation (Khayrallah and Koehn, 2018),
but learning what data quality (or noise) means in
NMT and how to make NMT training robust to
data noise remains an open research question.

On the other hand, a rich body of MT data re-
search focuses on domain data relevance and se-
lection for domain adaptation purpose. As a re-
sult, effective and successful methods have been
published and shown to work for both SMT and
NMT. For example, (Axelrod et al., 2011) intro-
duce a metric for measuring the data relevance
to a domain by using n-gram language models
(LM). (van der Wees et al., 2017) employ a neural-
network version of it and propose a gradually-
refining strategy to dynamically schedule data dur-
ing NMT training. In these methods, a large
amount of in-domain data are used to help mea-
sure data domain relevance.

Data noise is a different quality that has been
shown to affect NMT performance in particular.
In MT, the use of web crawl, automatic methods
for parallel data mining, sentence alignment pro-
vide us with parallel data of variable quality from
many points of view: sentence breaking, poor sen-
tence alignments, translations, domain adequacy,
tokenization and so forth. To deal with such
data noise, a commonly used practice is (static)
data filtering with simple heuristics or classifica-
tion. The NMT community increasingly realizes
that this type of quality matters for general NMT
translation accuracy. For example, (Khayrallah
and Koehn, 2018) studies the types of data noise
and their impact on NMT; WMT 2018 introduces
a Parallel Corpus Filtering task on noisy web-
crawled data.

Unfortunately, the ingredients that made do-
main data selection methods successful have not
been studied in the NMT denoising context.
Specifically,

• How to measure noise?

• How does noise dynamically interact with the
training progress?

• How to denoise the model training with a
small, trusted parallel dataset?

In the denoising scenario, the trusted data would
be the counterpart of in-domain monolingual data
of domain data selection. Trusted data can be hu-
man translations, a small amount of which can be
easily available as a development set or validation
set from a normal MT setup.

We use the example in Table 1 to illustrate the
challenges in the NMT denoising problem, as well
as the issue of directly applying existing domain
methods as is for this purpose. Both sentences in
the example appear to be relevant to travel con-
versations, but the sentence pair is “noisy” in that,
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zh gongche zhan zai nali?
zh-gloss bus stop is where?
en Where is the bus stop? For bus 81.

Table 1: A noisy sentence pair.

a part of the English sentence does not align to
anything on the Chinese side, yet the pair con-
tains some translation and the sentences are flu-
ent. An LM-based domain-data selection method
would generally treat it as a suitable domain ex-
ample for building a travel NMT model and may
not consider this noise.

A simple data filtering method based on length
or a bilingual dictionary can easily filter it, but, in-
tuitively, the example may still be useful for train-
ing the NMT model, especially in a data-scarce
scenario – the Chinese sentence and the first half
of the English sentence are still a translation pair.
This suggests the subtlety in identifying noisy data
for MT – It is not a simple binary problem: Some
training samples may be partially useful to train-
ing a model, and their usefulness may also change
as training progresses.

An NMT model alone may be incapable of
identifying noise. Under a conditional seq2seq
NMT model that translates Chinese into English,
a word, e.g., 81, in the extra English fragment may
receive a low probability (or a high loss), but that
could as well mean that is hard but still correct
translation. Here is then where the trusted data can
play a role – It can help produce a (slightly) bet-
ter model for the first model to compare against to
be able to distinguish informative hard examples
from harmful noisy ones.

In this paper, we propose an approach to denois-
ing online NMT training. It uses a small amount
of trusted data to help models measure noise in a
sentence pair. The noise is defined based on com-
parison between a pair of a noisy NMT model and
another, slightly denoised NMT model, inspired
by the contrastive in-domain LM vs out-of-domain
LM idea. It employs online data selection to sort
sentence pairs by noise level so that the model is
trained on gradually noise-reduced data batches.
We show that language model based domain data
selection method as is does not work well whereas
the proposed approach is quite effective in denois-
ing NMT training.

2 Related Research

One line of research that is related to our work
is data selection for machine translation. It has
been mostly studied in the domain adaptation con-
text. Under this context, a popular metric to mea-
sure domain relevance of data is based on cross
entropy difference (CED) between an in-domain
and an out-of-domain language models. For ex-
ample, (Moore and Lewis, 2010) selects LM train-
ing data with CED according to an in-domain LM
and a generic LM. (Axelrod et al., 2011) propose
the contrastive data selection idea to select par-
allel domain data. It ranks data by the bilingual
CED that is computed, for each language, with a
generic n-gram LM and a domain one. Even more
recently, (van der Wees et al., 2017) employ a
neural-network version of it along with a dynamic
data selection idea and achieve better domain data
selection outcome. (Mansour et al., 2011) com-
pute the CED using IBM translation Model 1 and
achieve the best domain data selection/filtering ef-
fect for SMT combined with LM selection; The
case of partial or misalignments with a bilingual
scoring mechanism rather than LMs is also dis-
cussed.

Another effective method to distinguish domain
relevance is to build a classifier. A small amount
of trusted parallel data is used in classifier training.
For example, (Chen and Huang, 2016) use semi-
supervised convolutional neural networks (CNNs)
as LMs to select domain data. Trusted data is used
to adapt the classifier/selector. (Chen et al., 2016)
introduce a bilingual data selection method that
uses CNNs on bitokens; The method uses parallel
trusted data and is targeted at selecting data to im-
prove SMT; In addition to domain relevance, the
work also examines its noise-screening capability;
The method is tried on NMT and does not seem to
improve.

Previous work on domain data selection has
shown that the order in which data are scheduled
matters a lot for NMT training, a research that
is relevant to curriculum learning (Bengio et al.,
2009) in machine learning literature. (van der
Wees et al., 2017) show the effectiveness of a nice
“gradually-refining” dynamic data schedule. (Saj-
jad et al., 2017) find the usefulness of a simi-
lar idea, called model stacking for NMT domain
adaptation. Data ordering could be viewed as a
way of data weighting, which can be also done
by example weighting/mixing, e.g., (Wang et al.,
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2017; Britz et al., 2017; Matsoukas et al., 2009).
In the context of denoising, the quality that the or-
dering uses would be the amount of noise in a sen-
tence pair, not (only) how much the data fits the
domain of interest.

SMT models tend to be fairly robust to data
noise and denoising in SMT seems to have been
a lightly studied topic. For example, (Mediani,
2017) uses a small, clean seed corpus and designs
classifier filter to identify noisy data with lexical
features; and also there is a nice list of works ac-
cumulated over years, compiled on the SMT Re-
search Survey Wiki1.

The importance of NMT denoising has been
increasingly realized. (Khayrallah and Koehn,
2018) study the impact of five types of artificial
noise in parallel data on NMT training and find
that NMT is less robust to data noise. (Vyas et al.,
2018) select well-translated examples by identify-
ing semantic divergences in parallel data. (Lample
et al., 2017) bootstrap backtranslations with a de-
noising loss term, in an unsupervised NMT con-
text. Label noise is also a generally studied topic,
e.g., (Natarajan et al., 2013).

In a sense, our approach is an application of ac-
tive learning (Settles, 2010). Active learning is
usually employed for the model to interactively
choose novel examples to obtain labels for fur-
ther training a given model. In our case we use
the idea to select the already labeled data that the
model finds useful at a given point during training.
The usefulness signal is guided by a small trusted
dataset.

3 Online NMT Training

We usually train NMT models with online opti-
mization, e.g., stochastic gradient descent. At a
time step t, we have an NMT model p(y|x; θt)
translating from sentence x to y with parame-
terization θt. The model choice could be, for
example, RNN-based (Wu et al., 2016), CNN-
based (Gehring et al., 2017), Transformer model
(Vaswani et al., 2017) or RNMT+ (Chen et al.,
2018). To move p(y|x; θt) to next step, t + 1, a
random data batch bt is normally used to compute
the cross entropy loss. The prediction accuracy of
p(y|x; θt) does not depend on the data of this batch
alone, but on all data the model has seen so far.

1http://www.statmt.org/survey/Topic/
CorpusCleaning

4 The Denoising Problem

The problem we address in the paper is as follows.
We have a large, noisy, mixed-domain dataset D̃
whose size is on the order of hundreds of millions
of sentence pairs or larger. An NMT model trained
on this noisy data may suffer from low transla-
tion accuracy or severe translation errors. We also
have a small trusted dataset D̂ consisting of sev-
eral thousand sentence pairs or even less. We ad-
dress the denoising scenario where the trust frac-
tion |D̂|/|D̃| � 1 (|D̂| being the size of D̂).

Trusted data can be human translations or any
other source of parallel data of higher quality
than the translations produced by our model. The
trusted data we use in experiments contains noise,
too. We think that, for the trusted data to improve,
it needs to be stronger than the translation quality
from the model we are improving, and as we will
show, we define the noise level of a sentence pair
relative to a model.

We are concerned with a method for select-
ing noise-reduced data batches to train the NMT
model using online training. The trusted data is
used to help measure data noise in a sentence pair.
Training data is digested by training in terms of
(cross entropy) loss, thus selecting noise-reduced
sentence pairs to train on would be equivalent to
denoising the training loss term (thus the training
process).

5 Our Approach

We first define how to measure noise with the help
of the small trusted dataset. Then we use it to con-
trol the schedule of the data batches to train the
NMT model.

5.1 Incremental denoising with trusted data
Given a model p(y|x; θ̃) trained on noisy data D̃,
a practical way to denoise it with a small amount
of trusted data D̂ would be to simply fine-tune the
model on the trusted data, considering that a small
trusted dataset alone is not enough to reliably train
an NMT model from scratch. Fine-tuning has
been used in NMT domain adaptation to adapt
an existing NMT model on a small amount of in-
domain data, for example, in (van der Wees et al.,
2017). We hypothesize that it would be effective
for denoising, too, which will be verified by our
experiments.

To facilitate the introduction of our denoising
method, we introduce a denoise function that de-
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noises a model, p(y|x; θ̃), on the trusted data D̂ by
fune-tuning:

p(y|x; θ̂) = denoise
(
p(y|x; θ̃), D̂

)
(1)

Eq 1 represents that model p(y|x; θ̃) with initial
parameterization θ̃ is fine-tuned on the trusted data
D̂ to yield a denoised model, p(y|x; θ̂). With a
small trusted dataset, the fine-tuning may take a
small number of training steps.

5.2 Definition of data noise
MT training samples can be noisy in many ways,
and different types of noise might have different
impact on NMT. Furthermore, human’s definition
of data noise may not be completely consistent
with NMT model’s perspective. Therefore, in-
stead of defining noise in these aspects, we sim-
ply use model probabilities and rely on the quality
of the trusted data. After all, data needs to be in-
gested by model training via (cross-entropy) loss.

Supposed we are given a noisy model, p(y|x, θ̃),
that has been trained on noisy data and a denoised
model, p(y|x, θ̂), obtained by Eq 1, with the de-
noised model being a slightly more accurate prob-
ability distribution than the noisy version. For a
sentence pair (x, y) of a source sentence x and its
target translation y, we can compute its “noisy log-
prob” under the noisy model:

L
p(y|x,θ̃) = log p(y|x, θ̃) (2)

We can also compute its “denoised logprob” under
the denoised model:

L
p(y|x,θ̂) = log p(y|x, θ̂) (3)

We then define the noise level of a sentence pair
(x, y) as the difference of a noisy model score over
a denoised model score:

noise(x, y; θ̃, θ̂) = L
p(y|x;θ̃t) − Lp(y|x;θ̂t) (4)

The noise level of a sentence pair is the sum of
the per-word noise over all the target words (under
conditional translation models). Noise(x, y; θ̃, θ̂)
could also be normalized by the length of sen-
tence y empirically. The bigger noise(x, y; θ̃, θ̂)
is, the higher noise level the sentence pair has. A
negative value of noise(x, y; θ̃, θ̂) means that the
sentence pair has more information to learn from
(cleaner).

The noise in a sentence pair is defined in terms
of the comparison between two models: the noisy
model, θ̃, and the denoised model, θ̂. Under
this definition, noise is relative – A sentence pair
could have negative noise(x, y; θ̃, θ̂) (not noise)
for weeker models (i.e., an earlier checkpoint of
θ̃ in an NMT training), but could become noisy
(positive value) for stronger models (i.e., a later
checkpoint of θ̃). This would address one of the
issues we illustrated in Section 1 with the example
in Table 1.

Notice that this definition of noise is a gener-
alization of the bilingual cross-entropy difference
(CED) defined and used in (Axelrod et al., 2011;
van der Wees et al., 2017) to measure domain rel-
evance of a sentence pair. We use seq2seq NMT
models to directly model a sentence pair, while
previous works use language models to model
monolingual sentences independently. A language
model corresponds just to the decoder compo-
nent of a translation model and thus cannot model
the translation quality. The lack of the encoder
component (thus translation) makes the LM-based
method unsuitable for denoising, as we show in
experiments. Additionally, we use a small, bilin-
gual trusted dataset (semi-supervision) rather than
lots of in-domain data (heavier supervision).

5.3 Denoising by online data selection

5.3.1 The idea

Our main idea for online denoising of NMT train-
ing is to train an NMT model on a progressively-
denoised curriculum (data batches). As a re-
sult, the entire training becomes a continuous
fine-tuning. We realize the denoising curriculum
through dynamic data selection to “anneal” the
noise level in data batches over training steps.
Therefore, our method tries to control the way
how noise dynamically interacts with training loss
by data selection, instead of directly altering per-
example loss. The assumption is that D̃ contains
good examples to select, which is usally true with
a big enough training dataset D̃.

More concretely, at each step with an initial (po-
tentially still noisy) model, p(y|x; θ̃t), the method
denoises it (by Eq 1) with the trusted data D̂ into a
slightly better model p(y|x; θ̂t) for that step. With
this pair of noisy and denoised models, we then
compute noise scores for examples in a buffer
B̃random
t that is randomly drawn from D̃ per step

and maintained during training. We sort the noise
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Algorithm 1: Denoising NMT training
with trusted data and online data selection.

1: Input: Noisy data D̃, trusted data D̂
2: Output: A denoised, better model
3: t = 0; Randomly initialize θ̃0.
4: while t < T do
5: p(y|x; θ̂t)← denoise(p(y|x; θ̃t), D̂).
6: Randomly draw B̃random

t from D̃.
7: Compute noise for examples in B̃random

t by
Eq 4.

8: Sort B̃random
t by noise scores.

9: Sample bt from top rt of above sorted
buffer.

10: Train p(y|x; θ̃t) on bt to produce new
model p(y|x; θ̃t+1).

11: Discard the denoised model p(y|x; θ̂t).
12: t← t+ 1.
13: end while

scores. The final, actual data batch bt is then ran-
domly sampled from the top rt portion of Brandom

t

based on the sorted scores, where rt, called se-
lection ratio, is increasingly tightened. Averaged
noise level of examples in the top rt portion ex-
pects to become less over time. As a result, the
data batches bt’s that are actually fed to train the
final model are gradually denoised. Algorithm 1
summarizes the idea. It is worth pointing out that
this denoising method is realized by a bootstrap-
ping process, in which, θ̃t and θ̂t iteratively boot-
strap each other by interacting with the trusted
data and selected denoised data.

We choose to use the following exponential de-
caying function for selection ratio, rt, to anneal
data noise by data selection2:

rt = 0.5t/H (5)

It keeps decreasing/tightening over time t. The en-
tire training thus becomes a continuous fine-tuning
process, in a self-paced learning (Kumar et al.,
2010) fashion.

In Equation 5, H is a hyper-parameter control-
ling the decaying pace: It halves rt every H steps.
For instance, H = 106 means that, at step 1 mil-
lion, data batch bt will be drawn from the top-50%
out of sorted buffer.

2We simply use one of the ways to anneal learning rate as the
decaying function to anneal training data selection.

In practice, it may be desirable to set a floor
value for rt (e.g., 0.2) to avoid potential selection
bias. Brandom

t needs also to be big enough such
that there are enough examples in the top rt range
to select from to form the final training batch bt,
which is usally a constant size – It needs to con-
tain at least |bt|/rfloor examples.

The noise annealing is inspired by (van der
Wees et al., 2017), but we anneal data quality
at per step to make the approach more friendly
to NMT online optimization, instead of per data
epoch. Compared to static selection, the noise
annealing idea also makes every training exam-
ple useful, by digesting noisy examples earlier and
fine-tuning on good-quality examples later on.

Note that there are two reasons that this process
does not overfit on the trusted data, even though
it is kept being used to denoise the initial model
at every step. First, the noisy model, p(y|x; θ̃)
being trained over steps is never trained on the
trusted data – It is the denoised model, p(y|x; θ̂),
that is trained on it and then gets discarded at the
end of that step. Second, the online data selection
progressively anneals from noisy examples to less
noisy ones, instead of greedily keeping selecting
out of the least noisy examples.

5.3.2 Data selection per-step overhead
Compared to normal NMT training, there is a per-
step data selection overhead in Algorithm 1. The
overhead includes (1) training the denoised model
on a small trusted dataset, which requires a small
number of training steps; and (2) scoring all ex-
amples in the random buffer Brandom

t with both
the noisy model and the denoised model. Both
cases will in general depend on model size, but
will probably depend even more on model type
and configuration.

5.3.3 Lightweight implementation
We make Algorithm 1 more lightweight by decou-
pling model training from example noise scoring:
We score all examples in D̃ offline and use scores
for online data selection.

Algorithm 2 shows the details of this idea. To
enable offline scoring, we train the noisy model
and the denoised model prior to the final, target
training, on the noisy data D̃ and the trusted data
D̂, respectively. We then use this pair of models to
score all examples in D̃ and save the scores. In tar-
get model training, the example are retrieved into
the buffer with scores, without the need of com-
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Algorithm 2: Lightweight implementa-
tion of Algorithm 1. Actually used in ex-
periments.

1: Input: Noisy data D̃, trusted data D̂
2: Output: A denoised, better model with

learned parameters Θ.
3: Train p(y|x; θ̃) with small θ̃ on D̃.
4: p(y|x; θ̂)← denoise

(
p(y|x; θ̃); D̂

)
.

5: Score D̃ with θ̃ and θ̂ by Eq 4.
6: t = 0; Randomly initialize Θ̃0.
7: while t < T do
8: Randomly sample B̃random

t from D̃.
9: Sort B̃random

t by offline-computed noise
scores.

10: Sample bt from top rt of above sorted
buffer.

11: Train p(y|x; Θ̃t) on bt to produce new
model p(y|x; Θ̃t+1).

12: t← t+ 1.
13: end while

puting on the fly. Then the remaining is similar
to Algorithm 1. This effectively turns the per-step
data selection overhead in Algorithm 1 into con-
stant overhead.

We can also use smaller parameterization for
the noisy model and denoised model than the
target model. This may not affect their noise-
discerning capability as long as they are still
seq2seq models, the same as the target model.
This is because we define the noise score in terms
of logprob difference and use the scores for rank-
ing/selection (e.g., via top rt),

In summary, here is the lightweight method
that we eventually use to denoise NMT train-
ing with trusted data and online data selection:
Train p(y|x; θ̃) on noisy data D̃ with a small
parametrization. Denoise p(y|x; θ̃) on trusted data
D̂ to produce denoised model p(y|x; θ̂) (Eq 1).
Score the entire noisy data D̃ with the above two
models by Eq 4. Train the target model with the
above online, dynamic data selection. Algorithm 2
describes the idea.

We are going to use this implementation in ex-
periments. Note, however, that we find that the
general method in Algorithm 1 is very useful in
understanding the nature of the denoising problem
and thus cannot be ignored in the context. For ex-
ample, it makes us realize the denoising problem

is about how to (actively) meet what the model
needs, i.e., not standalone filtering. And also, the
bootstrapping behavior in Algorithm 1 further mo-
tivates the use of the noise-annealing online data
selection strategy and helps refine the lightweight
implementation.

6 Experiments

6.1 Setup

We carry out experiments for en/fr with two train-
ing datasets (D̃), respectively. Paracrawl3 en/fr
training raw data has 4 billion sentence pairs. Af-
ter removing identities and empty source/target,
about 300 million (M) sentence pairs are left.
WMT 2014 en/fr training data has about 36M sen-
tence pairs, with provided sentence alignment.

WMT newstest 2012-2013 is used as the de-
velopment set for early stopping of training. We
use three test sets: WMT (n)ewstest 2014 (n2014),
news (d)iscussion test 2015 (d2015), and a 2000-
line patent test set (patent)4. More test sets
than just n2014 are used in order to confirm that
the gain obtained is not only from news domain
adaptation but cross-domain, general accuracy im-
provement.

The WMT newstest 2010-2011 is used as the
trusted data. It contains 5500 sentence pairs. We
acknowledge that ideal trusted data would proba-
bly be both well-translated and domain-matched,
but we leave the study of trusted data properties to
future research.

We compute the detokenized and mixed-cased
BLEU scores against the original references (per
(Post, 2018)) with an in-house implementation of
script mteval-v14.pl.

We use an RNN-based NMT architecture sim-
ilar to (Wu et al., 2016). Our final model has 8
layers of encoder/decoder, 1024 dimensions with
512-dimension attention. The smaller selector
(noisy and denoised) models (in Algorithm 2) are
of 3 layers and 512 dimensions.5

Denoising a model on the small trusted dataset
is done by fine-tuning on it by SGD. The train-
ing is terminated with early stopping by checking
the perplexity on the development set. It is a tiny
dataset, but as we will show, its denoising impact
is quite impressive and surprising. Training on

3http://statmt.org/paracrawl
4Obtained from https://www.epo.org.
5Even smaller models like 2-layer x 256-dimension works,
too, when we examined on an internal dataset.
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such a small data can easily overfit, we thus use
a very small learning rate 5e-5 so that the training
progresses slow enough for us to reliably catch a
good checkpoint before training stops.

In Paracrawl trainings, we train for 3M steps
using SGD with learning rate 0.5 and start to an-
neal/reduce the learning rate at step 2M by halving
it every 200k steps. In WMT training, we train for
2M steps with learning rate 0.5 but start to anneal
learning rate at step 1.2M with the same pace. We
use dropout 0.2 for the WMT training. We did not
use dropout for Paracrawl training due to its large
training data amount.

To dynamically anneal the data batch quality
(Eq 5), we set hyper-parameter H to step 1.1M.
0.2 is used as the floor selection ratio, rt. The ra-
tionale for the choice ofH is so that when learning
rate annealing happens, rt is close to its minimum
value to ensure the training is indeed trained on the
desired, best selected data.

6.2 Training data cleanness
To measure how noisy the datasets are, we ran-
domly sample 2000 sentence pairs from the WMT
dataset. Human raters were asked to label each
sentence pair with scales in Table 2.

These ratings generally reflect how well-
translated a sentence pair is, however, a rating 4
does not necessarily mean that is exactly the type
of data a model needs – Model’s perspective on
good data may not completely consistent with hu-
man, because these ratings are not necessarily con-
nected to data loss of a model. We use these rat-
ings mainly to assess if our noise definition corre-
lates to these ratings to some extent, but the noise
definition could do more. The rater agreement on
good (>= 3) or bad (< 3) is 70% and we find
the averaged rating is very reliable and stable to
measure a small sentence pair sample.

Table 3 shows that WMT 2014 data is relatively
clean: it has 40% rated as perfect; its averaged
rating is 3.0 (4 being perfect). Noise introduced
by sentence alignment accounts for part of the low
ratings. We did not rate a Paracrawl sample, since
just eyeballing a sample of the data reveals that it
was noisy consisting of many boilerplates, wrong
language identification, wrong translations.

6.3 Noise score vs human rating
We expect the noise definition (Eq 4) to correlate
with the averaged cleanness of selected data and
the dynamic scheduling method schedules data
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Figure 1: Noise-discerning capability of different noise
scoring models. Curves are drawn by selecting, ac-
cording to Eq 4, top x% (x-axis) out of a rated sample
of 2000 random sentence pairs from the WMT en/fr
dataset. WMT: noise scoring models trained on WMT
training data, and trusted data. Paracrawl: noise scor-
ing models trained on Paracrawl data, and trusted data.
NNLM: neural net based LM selection models trained
on Paracrawl data, and trusted data. Trusted data are
the same dataset.

from noisy to clean. We verify this on the sam-
ple with human ratings.

We carry out steps 1 and 2 of the practical im-
plementation in Section 5.3.3 to produce the small
noisy model and its denoised model. Recall that
they are used to compute the noise in each sen-
tence pair by Eq 4. We repeat this on the Paracrawl
data and the WMT data, respectively, and thus we
have two pairs of models, one for each dataset.

We apply each pair of models to score the rated
WMT sample, sort the sentence pairs by noise
scores. We then select x% least noisy sentence
pairs. Each x% corresponds to a subset and we
compute the averaged human rating for that sub-
set. In Figure 1, x-axis shows x%, the percentage
out of the entire sample; y-axis shows the averaged
human rating for the x% selection subset. Going
from right to left, data indeed becomes cleaner as
selection becomes tighter for the scoring models
in our proposed method: WMT is noise scoring
models trained on WMT training data, and trusted
data. Paracrawl is the noise scoring models trained
on Paracrawl data, and trusted data. Trusted data
are the same dataset. We explain the dot-dashed
line in a later experiment (Section 6.6).

Ranking capability of the Paracrawl selector
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Rating scale Explanation
4 (Perfect) Almost all information (90-100%) in the sentences is conveyed in each other.
3 (Good) Most information (70-90%) in the sentences is conveyed.
2 (Not good) Some (30-70%) information in the sentences is conveyed, but some is not.
1 (Bad) (10-30%) A large amount of information in the sentences is lost or misinterpreted.
0 (Poor) (0-10%) The two sentences are nearly or completely unrelated, or in wrong languages.

Table 2: Scales for human rating sentence pairs. Percentage ranges refer to the amount of words well translated
across sentences in a pair.

Rating scale 4 3 2 1 0
WMT 47% 31% 10% 3% 9%

Table 3: Rating stats on an en/fr WMT training data
sample of 2000 sentence pairs.

System n2014 d2015 patent
Paracrawl dataset
P1 Paracrawl baseline 31.6 30.7 37.2
P2 Incr-denoise P1 34.0 33.7 44.7
P3 Online denoised 35.2 35.6 46.9
WMT dataset
W1 WMT baseline 36.2 35.8 45.7
W2 Incr-denoise W1 36.2 35.8 45.7
W3 Online denoised 36.9 36.4 46.1

Table 4: BLEU scores of Denoising experiments with
en/fr Paracrawl data and WMT data. “Incr-denoise
P1” refers to applying the incremental denoising on the
noisy baseline P1 with method in Section 5.1. Similarly
for “incr-denoise W1”. Under paired bootstrapped test
at p < 0.05, P3 is significantly better than P2, P3 than
P1, P2 than P1, on all test sets. W3 is significantly bet-
ter than W1 on n2014.

seems slightly better than the WMT one in dis-
cerning noisier sentence pairs. We speculate this
is because the noisy Paracrawl data “amplifies” the
contrastive effect of the pair of models.

6.4 BLEU scores
BLEU scores in Table 4 show the impact of de-
noising. For each training dataset, we have three
experiments: baseline, noisy training with random
data batch selection (P1 and W1); Denoising base-
line with trusted data by fine-tuning the baseline
on it (Eq 1) (P2 and W2); Training a model from
scratch with online training by dynamic, gradually
noise-reduced data selection (P3 and W3).

First of all, P1 vs P2, it is impressive that just
fine-tuning a noisy baseline on a small trusted
dataset yiels a big impact. P2 improves P1 by
+2.4 BLEU on n2014, +3 BLEU on d2015 and

+7.5 BLEU on patent. The Paracrawl experiments
and the above rating ranking curves (Figure 1) in-
dicate the power of simple incremental denoising
on trusted data (Section 5.1) when the background
data is very noisy. In NMT domain adaptation
literature (e.g., (van der Wees et al., 2017)), it is
known that fine-tuning on domain data improves
domain test sets, but it is also known that it may
hurt test sets that are out of domain (forgetting).
We think our experiments are the first to report
the incremental denoising power of fine-tuning on
a tiny trusted data. Notice incremental denoising
does not improve on WMT data (W1 vs W2) prob-
ably because WMT data is relatively cleaner. This,
however, would indicate that the gain for P1 vs P2
is less likely a domain adaptation effect.

P2 vs P3 shows that the online denoising ap-
proach reduced the training noise further more and
gains +1.2 n2014 BLEU, +1.9 d2015 BLEU and
+2.2 patent BLEU, on top of incremental denois-
ing on trusted data. On the WMT dataset, W2 vs
W3 shows that, even though the trusted data does
not directly help, the online denoising helps by
+0.7 n2014 BLEU, +0.6 d2015 BLEU and +0.4
patent BLEU. We carried out paired bootstrapped
statistical significance test (Koehn, 2004) between
systems, at p < 0.05, P3 is significantly better
than P2, P3 than P1, P2 than P1, across all test
sets; W3 is significantly better than W1 only on
n2014.

We also would like to note the strength of the
WMT baseline system (W1). Its n2014 BLEU is
36.2, detokenized, case-sensitive. Published lit-
eratures tend to report tokenized, case-sensitive
BLEU scores, for which W1 BLEU becomes 40.2
on the same test set. This is a strong score with a
standard LSTM RNN network, compared to pub-
lished results for this task.
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System n2014 d2015 patent
Paracrawl dataset
P1 Random order 31.6 30.7 37.2
P3 Online denoised 35.2 35.6 46.9
P4 Reverse order of P3 32.6 31.1 40.9

Table 5: Online denoising: NMT trained on data sorted
according to noisiness level. P3 is trained on noisier to
cleaner data order. Reversely, P4 is trained on cleaner
to noisier data order.

.

6.5 Data order

Our online denoising method dynamically selects
data batches whose noise is gradually reduced to
train the target model. We carry out two sets of
experiments to prove that this is necessary for de-
noising.

In the first experiment, we compare P3 (in pro-
posed data order) to the “reverse” of P3, where
data batches are dynamically scheduled in a re-
verse, noise gradually increasing order such that
the model is trained on cleaner data earlier and
then noisier data later (i.e., by simply flipping the
sign of Eq 4) – The entire training then becomes a
continuous reverse fine-tuning. Table 5 shows that
the reverse order (P4) clearly does not work as ef-
fective for denoising, even though P4 still slightly
improves the baseline with random data selection
(P1 in Table 4).

In another experiment, we select 3 data subsets
based on the amount of noise in each sentence pair,
each subset being noise-reduced to different de-
gree. For example, we select top 80% least noisy
sentence pairs (denoted as S80%) out the entire
Paracrawl data. Then we select the top half of
S80% which is essentially 40% of the Paracrawl
data. We denote it as S40%, similarly, S20%, there-
fore S80% ⊃ S40% ⊃ S20%. And we expect the
averaged noise in the smaller percentage would be
less according to Figure 1. Then we fine-tune P1
(noisy baseline) on S80% with early stopping on
devset, followed by the fine-tuning on S40% and
then S20%. Table 6 shows that each stricter subset
is able to boost the previous training across all test
sets, by further denoising. This also confirms the
importance of the right data order in denoising.

P3 vs P4 seems to confirm the spirit of Curricu-
lum Learning (Bengio et al., 2009) – CL promotes
ordering data to gradually focus on those most im-
portant examples, and here the training has a better

Subset n2014 d2015 patent
P1 31.6 30.7 37.2
P5 S80% 33.1 32.3 44.3
P6 S40% 33.9 34.4 45.1
P7 S20% 34.4 34.6 45.6

Table 6: Nested datasets: Data order is important for
denoising. S80% ⊃ S40% ⊃ S20% with stricter/smaller
set less noisy.

outcome (P3) by training on progressively noised-
reduced data.

6.6 Language model selection
The proposed method uses seq2seq NMT models
for online data selection. We can replace them
with neural network language models (NNLM)
with everything else the same, to confirm that the
LM based method that is popular for domain data
selection is not designed for denoising.

We first check if the NNLM selection scores
correlate with human ratings. As shown by the
dot-dashed line (red) in Figure 1, it does not seem
to – As we tighten the selection percentage (from
right to left), the averaged rating of sentence pairs
falling into that percentage does not increase, but
the method that employs the seq2seq models to
compute noise scores (Eq 4) does.

We also compare the BLEU scores of the
NNLM selection and the NMT selection. To that
end, we select top 20% data and use it to fine-tune
the noisy Paracrawl baseline (P1), for the NNLM
method and the proposed method, respectively.

We had to resolve an issue in the NNLM se-
lection experiment. Recall that the trusted data
we use is from WMT newstest 2010-2011 and the
development set we use for stopping the training
is WMT newstest 2012-2013. WMT newstests
across years do not seem to be in the same do-
main, as a result, the perplexity on devset never
drops in training with trusted data. This would be
additional evidence that improvements from our
proposed denoising approach is unlikely from do-
main adaptation. In the end, we had to extract ran-
domly 1000 lines out of the trusted data as the de-
vset for early stopping and use the remaining as
the trusted data when training the denoised model
θ̂ that is used to compute the noise scores (or data
relevance in the NNLM case) by Eq 4.

The BLEU scores in Table 7 show the clear
difference. The NNLM method does not dis-
cern noise and thus the top selection would be

141



System n2014 d2015 patent
P1 Paracrawl baseline 31.6 30.7 37.2
P8 P1+NMT 20% 34.3 34.7 45.8
P9 P1+NNLM 20% 31.8 30.5 35.4

Table 7: LM method does not denoise, but NMT
method (proposed) does; and a denoised model has im-
proved general translation accuracy. P1+NMT 20%:
fine-tune P1 with top 20% selection by NMT method.
P1+NNLM 20%: fine-tune P1 with top 20% selection
by NNLM method.

as noisy as the baseline data. As a result, fine-
tuning the noisy baseline (P1) would not improve.
As a matter of fact, the patent BLEU drops over
baseline, probably indicating that domain data se-
lection causes data bias. The proposed method,
on the other hand, performs clearly better (P8),
for example, compared to P9, +2.5 BLEU on
n2014, +3.8 BLEU on d2015 and +10.4 BLEU
on patent. These prove the effectiveness of the
proposed method in producing better systems on
noisy data.

6.7 Discussion
The research in (van der Wees et al., 2017) that
selects data with neural language models show
that dynamically selected parallel data for domain
adaptation improves domain test sets, but it can
hurt test sets that are out of domain. It also shows
that the dynamic online selection still underper-
forms the fine-tuning on domain parallel data. In
our denoising results, the online denoising (e.g.,
P3) can significantly outperform the simple fine-
tuning (e.g., P2).

We clarify that our method could potentially
work with other data filtering methods. For exam-
ple, if the underlying noisy data has already been
filtered, applying online denoising with trusted
data could potentially bring even further improve-
ment than no pre-filtering.

7 Conclusion and Future Research

Domain data selection and domain adaptation for
machine translation is a well-studied topic, but de-
noising training data or MT training is not yet, es-
pecially for NMT training. In this paper, we gener-
alize the recipes of effective domain data research
to address a different and important data quality
for NMT – data noise. We define how to mea-
sure noise and how to select noise-reduced data
batches to train NMT models online. We show that

the noise we define correlates with human ratings
and that the proposed approach yields significantly
better NMT models.

The method probably can be tried to denoising
for other seq2seq tasks like parsing, image label-
ing. It seems interesting to study and understand
the properties that trusted data should have. It also
sounds an interesting research to discover better
data orders.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
In Proceedings of the 26 th International Confer-
ence on Machine Learning, page 86–96, Montreal,
Canada.

Denny Britz, Quoc Le, and Reid Pryzant. 2017. Effec-
tive domain mixing for neural machine translation.
In Proceedings of the Second Conference on Ma-
chine Translation, pages 118–126. Association for
Computational Linguistics.

Boxing Chen and Fei Huang. 2016. Semi-supervised
convolutional networks for translation adaptation
with tiny amount of in-domain data. In Proceed-
ings of the 20th SIGNLL Conference on Computa-
tional Natural Language Learning (CoNLL), pages
314–323.

Boxing Chen, Roland Kuhn, George Foster, Colin
Cherry, and Fei Huang. 2016. Bilingual methods for
adaptive training data selection for machine transla-
tion. In AMTA.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
Yonghui Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent advances in neu-
ral machine translation. In ACL 2018.

142



Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Con-
volutional sequence to sequence learning. CoRR,
abs/1705.03122.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. CoRR, abs/1805.12282.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP 2004, pages 388–395, Barcelona, Spain.
Association for Computational Linguistics.

M. P. Kumar, Benjamin Packer, and Daphne Koller.
2010. Self-paced learning for latent variable mod-
els. In J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems
23, pages 1189–1197. Curran Associates, Inc.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. CoRR, abs/1711.00043.

Saab Mansour, Joern Wuebker, and Hermann Ney.
2011. Combining translation and language model
scoring for domain-specific data filtering. In In-
ternational Workshop on Spoken Language Trans-
lation, pages 222–229.

Spyros Matsoukas, Antti-Veikko I. Rosti, and Bing
Zhang. 2009. Discriminative corpus weight esti-
mation for machine translation. In Proceedings of
the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 708–717, Singa-
pore. Association for Computational Linguistics.

Mohammed Mediani. 2017. Learning from Noisy Data
in Statistical Machine Translation. Ph.D. thesis,
Fakultät für Informatik, Karlsruhe Institute of Tech-
nologie (KIT).

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference, pages 220–
224.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K
Ravikumar, and Ambuj Tewari. 2013. Learning
with noisy labels. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 1196–1204. Curran Associates,
Inc.

Matt Post. 2018. A call for clarity in report-
ing bleu scores. Computing Research Repository,
arXiv:1804.08771v1. Version 2.

Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Yonatan
Belinkov, and Stephan Vogel. 2017. Neural ma-
chine translation training in a multi-domain sce-
nario. arXiv preprint arXiv:1708.08712v2.

Burr Settles. 2010. Active learning literature survey.
Technical report, University of Wisconsin–Madison.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, , and Illia Polosukhin. 2017. Attention is
all you need. In CoRR abs/1706.03762.

Yogarshi Vyas, Xing Niu, and Marine Carpuat. 2018.
Identifying semantic divergences in parallel text
without annotations. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1, pages 1503–
1515. Association for Computational Linguistics.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. 2017. Instance weighting for
neural machine translation domain adaptation. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1482–1488. Association for Computational Linguis-
tics.

Marlies van der Wees, Arianna Bisazza, and Christof
Monz. 2017. Dynamic data selection for neural ma-
chine transaltion. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1400–1410.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the
gap between human and machine translation. arXiv
preprint arXiv:1609.08144.

143



Proceedings of the Third Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 144–155
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64015

Using Monolingual Data in Neural Machine Translation:
a Systematic Study

Franck Burlot
Lingua Custodia

1, Place Charles de Gaulle
78180 Montigny-le-Bretonneux

franck.burlot@linguacustodia.com

François Yvon
LIMSI, CNRS, Université Paris Saclay
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Abstract
Neural Machine Translation (MT) has radi-
cally changed the way systems are developed.
A major difference with the previous gener-
ation (Phrase-Based MT) is the way mono-
lingual target data, which often abounds, is
used in these two paradigms. While Phrase-
Based MT can seamlessly integrate very large
language models trained on billions of sen-
tences, the best option for Neural MT devel-
opers seems to be the generation of artificial
parallel data through back-translation - a tech-
nique that fails to fully take advantage of exist-
ing datasets. In this paper, we conduct a sys-
tematic study of back-translation, comparing
alternative uses of monolingual data, as well
as multiple data generation procedures. Our
findings confirm that back-translation is very
effective and give new explanations as to why
this is the case. We also introduce new data
simulation techniques that are almost as effec-
tive, yet much cheaper to implement.

1 Introduction

The new generation of Neural Machine Transla-
tion (NMT) systems is known to be extremely data
hungry (Koehn and Knowles, 2017). Yet, most ex-
isting NMT training pipelines fail to fully take ad-
vantage of the very large volume of monolingual
source and/or parallel data that is often available.
Making a better use of data is particularly criti-
cal in domain adaptation scenarios, where paral-
lel adaptation data is usually assumed to be small
in comparison to out-of-domain parallel data, or
to in-domain monolingual texts. This situation
sharply contrasts with the previous generation of
statistical MT engines (Koehn, 2010), which could
seamlessly integrate very large amounts of non-
parallel documents, usually with a large positive
effect on translation quality.

Such observations have been made repeatedly
and have led to many innovative techniques to in-

tegrate monolingual data in NMT, that we review
shortly. The most successful approach to date
is the proposal of Sennrich et al. (2016a), who
use monolingual target texts to generate artificial
parallel data via backward translation (BT). This
technique has since proven effective in many sub-
sequent studies. It is however very computation-
ally costly, typically requiring to translate large
sets of data. Determining the “right” amount (and
quality) of BT data is another open issue, but we
observe that experiments reported in the literature
only use a subset of the available monolingual re-
sources. This suggests that standard recipes for
BT might be sub-optimal.

This paper aims to better understand the
strengths and weaknesses of BT and to design
more principled techniques to improve its effects.
More specifically, we seek to answer the following
questions: since there are many ways to generate
pseudo parallel corpora, how important is the qual-
ity of this data for MT performance? Which prop-
erties of back-translated sentences actually matter
for MT quality? Does BT act as some kind of
regularizer (Domhan and Hieber, 2017)? Can BT
be efficiently simulated? Does BT data play the
same role as a target-side language modeling, or
are they complementary? BT is often used for do-
main adaptation: can the effect of having more in-
domain data be sorted out from the mere increase
of training material (Sennrich et al., 2016a)? For
studies related to the impact of varying the size of
BT data, we refer the readers to the recent work of
Poncelas et al. (2018).

To answer these questions, we have reimple-
mented several strategies to use monolingual data
in NMT and have run experiments on two lan-
guage pairs in a very controlled setting (see § 2).
Our main results (see § 4 and § 5) suggest promis-
ing directions for efficient domain adaptation with
cheaper techniques than conventional BT.
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Out-of-domain In-domain
Sents Token Sents Token

en-fr 4.0M 86.8M/97.8M 1.9M 46.0M/50.6M
en-de 4.1M 84.5M/77.8M 1.8M 45.5M/43.4M

Table 1: Size of parallel corpora

2 Experimental Setup

2.1 In-domain and out-of-domain data

We are mostly interested with the following train-
ing scenario: a large out-of-domain parallel cor-
pus, and limited monolingual in-domain data. We
focus here on the Europarl domain, for which
we have ample data in several languages, and
use as in-domain training data the Europarl cor-
pus1 (Koehn, 2005) for two translation directions:
English→German and English→French. As we
study the benefits of monolingual data, most of
our experiments only use the target side of this
corpus. The rationale for choosing this domain is
to (i) to perform large scale comparisons of syn-
thetic and natural parallel corpora; (ii) to study the
effect of BT in a well-defined domain-adaptation
scenario. For both language pairs, we use the
Europarl tests from 2007 and 20082 for evalua-
tion purposes, keeping test 2006 for development.
When measuring out-of-domain performance, we
will use the WMT newstest 2014.

2.2 NMT setups and performance

Our baseline NMT system implements the atten-
tional encoder-decoder approach (Cho et al., 2014;
Bahdanau et al., 2015) as implemented in Nematus
(Sennrich et al., 2017) on 4 million out-of-domain
parallel sentences. For French we use samples
from News-Commentary-11 and Wikipedia from
WMT 2014 shared translation task, as well as
the Multi-UN (Eisele and Chen, 2010) and EU-
Bookshop (Skadiņš et al., 2014) corpora. For Ger-
man, we use samples from News-Commentary-11,
Rapid, Common-Crawl (WMT 2017) and Multi-
UN (see table 1). Bilingual BPE units (Sennrich
et al., 2016b) are learned with 50k merge opera-
tions, yielding vocabularies of about respectively
32k and 36k for English→French and 32k and 44k
for English→German.

Both systems use 512-dimensional word em-
beddings and a single hidden layer with 1024 cells.
They are optimized using Adam (Kingma and Ba,

1Version 7, see www.statmt.org/europarl/.
2www.statmt.org/wmt08.

2014) and early stopped according to the valida-
tion performance. Training lasted for about three
weeks on an Nvidia K80 GPU card.

Systems generating back-translated data are
trained using the same out-of-domain corpus,
where we simply exchange the source and target
sides. They are further documented in § 3.1.

For the sake of comparison, we also train a sys-
tem that has access to a large batch of in-domain
parallel data following the strategy often referred
to as “fine-tuning”: upon convergence of the base-
line model, we resume training with a 2M sentence
in-domain corpus mixed with an equal amount
of randomly selected out-of-domain natural sen-
tences, with the same architecture and training pa-
rameters, running validation every 2000 updates
with a patience of 10. Since BPE units are selected
based only on the out-of-domain statistics, fine-
tuning is performed on sentences that are slightly
longer (ie. they contain more units) than for the
initial training. This system defines an upper-
bound of the translation performance and is de-
noted below as natural.

Our baseline and topline results are in Table 2,
where we measure translation performance using
BLEU (Papineni et al., 2002), BEER (Stanojević
and Sima’an, 2014) (higher is better) and char-
acTER (Wang et al., 2016) (smaller is better).
As they are trained from much smaller amounts
of data than current systems, these baselines are
not quite competitive to today’s best system, but
still represent serious baselines for these datasets.
Given our setups, fine-tuning with in-domain nat-
ural data improves BLEU by almost 4 points for
both translation directions on in-domain tests; it
also improves, albeit by a smaller margin, the
BLEU score of the out-of-domain tests.

3 Using artificial parallel data in NMT

A simple way to use monolingual data in MT is to
turn it into synthetic parallel data and let the train-
ing procedure run as usual (Bojar and Tamchyna,
2011). In this section, we explore various ways
to implement this strategy. We first reproduce re-
sults of Sennrich et al. (2016a) with BT of various
qualities, that we then analyze thoroughly.

3.1 The quality of Back-Translation

3.1.1 Setups
BT requires the availability of an MT system in
the reverse translation direction. We consider here
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English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
backtrans-bad 31.55 62.39 51.50 31.89 62.23 51.73 31.99 61.59 48.86
backtrans-good 32.99 63.43 49.58 33.25 63.08 49.29 33.52 62.62 47.23
backtrans-nmt 33.30 63.33 50.02 33.39 63.09 49.48 34.11 62.76 46.94
fwdtrans-nmt 31.93 62.55 50.84 32.62 62.66 49.83 33.56 62.44 47.65
backfwdtrans-nmt 33.09 63.19 50.08 33.70 63.25 48.83 34.00 62.76 47.22
natural 35.10 64.71 48.33 35.29 64.52 48.26 34.96 63.08 46.67

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
backtrans-bad 21.84 57.85 61.24 21.04 57.44 59.77 22.28 57.70 55.49
backtrans-good 23.33 59.03 58.84 23.11 57.14 57.14 22.87 58.09 54.91
backtrans-nmt 23.00 59.12 58.31 23.10 58.85 56.67 22.91 58.12 54.67
fwdtrans-nmt 21.97 57.46 61.99 21.89 57.53 59.71 22.52 57.93 55.13
backfwdtrans-nmt 22.99 58.37 60.45 22.82 58.14 58.80 23.04 58.17 54.96
natural 26.74 61.14 56.19 26.16 60.64 54.76 23.84 58.64 54.23

Table 2: Performance wrt. different BT qualities

French→English German→English
test-07 test-08 nt-14 unk test-07 test-08 nt-14 unk

backtrans-bad 18.86 19.27 20.49 3.22% 14.66 14.62 15.07 1.45%
backtrans-good 29.71 29.51 32.10 0.24% 24.19 24.19 25.75 0.73%
backtrans-nmt 31.10 31.43 31.27 0.0% 26.02 26.03 26.98 0.0%

Table 3: BLEU scores for (backward) translation into English

three MT systems of increasing quality:

1. backtrans-bad: this is a very poor SMT
system trained using only 50k parallel sen-
tences from the out-of-domain data, and no
additional monolingual data. For this system
as for the next one, we use Moses (Koehn
et al., 2007) out-of-the-box, computing align-
ments with Fastalign (Dyer et al., 2013), with
a minimal pre-processing (basic tokeniza-
tion). This setting provides us with a pes-
simistic estimate of what we could get in low-
resource conditions.

2. backtrans-good: these are much larger
SMT systems, which use the same parallel
data as the baseline NMTs (see § 2.2) and
all the English monolingual data available for
the WMT 2017 shared tasks, totalling ap-
proximately 174M sentences. These systems
are strong, yet relatively cheap to build.

3. backtrans-nmt: these are the best NMT
systems we could train, using settings that
replicate the forward translation NMTs.

Note that we do not use any in-domain (Eu-
roparl) data to train these systems. Their perfor-
mance is reported in Table 3, where we observe a

12 BLEU points gap between the worst and best
systems (for both languages).

As noted eg. in (Park et al., 2017; Crego and
Senellart, 2016), artificial parallel data obtained
through forward-translation (FT) can also prove
advantageous and we also consider a FT system
(fwdtrans-nmt): in this case the target side of
the corpus is artificial and is generated using the
baseline NMT applied to a natural source.

3.1.2 BT quality does matter

Our results (see Table 2) replicate the findings of
(Sennrich et al., 2016a): large gains can be ob-
tained from BT (nearly +2 BLEU in French and
German); better artificial data yields better trans-
lation systems. Interestingly, our best Moses sys-
tem is almost as good as the NMT and an order of
magnitude faster to train. Improvements obtained
with the bad system are much smaller; contrary to
the better MTs, this system is even detrimental for
the out-of-domain test.

Gains with forward translation are significant,
as in (Chinea-Rios et al., 2017), albeit about half
as good as with BT, and result in small improve-
ments for the in-domain and for the out-of-domain
tests. Experiments combining forward and back-
ward translation (backfwdtrans-nmt), each
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English→French English→German
Figure 1: Learning curves from backtrans-nmt and natural. Artificial parallel data is more prone to over-
fitting than natural data.

using a half of the available artificial data, do not
outperform the best BT results.

We finally note the large remaining difference
between BT data and natural data, even though
they only differ in their source side. This shows
that at least in our domain-adaptation settings, BT
does not really act as a regularizer, contrarily to
the findings of (Poncelas et al., 2018; Sennrich
et al., 2016b). Figure 3.1.1 displays the learn-
ing curves of these two systems. We observe that
backtrans-nmt improves quickly in the ear-
liest updates and then stays horizontal, whereas
natural continues improving, even after 400k
updates. Therefore BT does not help to avoid over-
fitting, it actually encourages it, which may be due
“easier” training examples (cf. § 3.2).

3.2 Properties of back-translated data
Comparing the natural and artificial sources of our
parallel data wrt. several linguistic and distribu-
tional properties, we observe that (see Fig. 2 - 3):

(i) artificial sources are on average shorter than
natural ones: when using BT, cases where
the source is shorter than the target are rarer;
cases when they have the same length are
more frequent.

(ii) automatic word alignments between artificial
sources tend to be more monotonic than when
using natural sources, as measured by the av-
erage Kendall τ of source-target alignments
(Birch and Osborne, 2010): for French-
English the respective numbers are 0.048
(natural) and 0.018 (artificial); for German-
English 0.068 and 0.053. Using more mono-

tonic sentence pairs turns out to be a facilitat-
ing factor for NMT, as also noted by Crego
and Senellart (2016).

(iii) syntactically, artificial sources are simpler
than real data; We observe significant differ-
ences in the distributions of tree depths.3

(iv) distributionally, plain word occurrences in ar-
tificial sources are more concentrated; this
also translates into both a slower increase of
the number of types wrt. the number of sen-
tences and a smaller number of rare events.

The intuition is that properties (i) and (ii) should
help translation as compared to natural source,
while property (iv) should be detrimental. We
checked (ii) by building systems with only 10M
words from the natural parallel data selecting these
data either randomly or based on the regularity of
their word alignments. Results in Table 4 show
that the latter is much preferable for the overall
performance. This might explain that the mostly
monotonic BT from Moses are almost as good as
the fluid BT from NMT and that both boost the
baseline.

4 Stupid Back-Translation

We now analyze the effect of using much simpler
data generation schemes, which do not require the
availability of a backward translation engine.

3Parses were automatically computed with CoreNLP
(Manning et al., 2014).
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(a) (b)

(c) (d)
Figure 2: Properties of pseudo-English data obtained with backtrans-nmt from French. The synthetic source
contains shorter sentences (a) and slightly simpler syntax (b). The vocabulary growth wrt. an increasing number
of observed sentences (c) and the token-type correlation (d) suggest that the natural source is lexically richer.

test-07 test-08 newstest-14
BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER

random 32.08 62.98 50.78 32.66 62.86 49.99 23.05 55.38 58.51
monotonic 33.52 63.75 49.51 33.73 63.59 48.91 32.16 61.75 48.64

Table 4: Selection strategies for BT data (English-French)

4.1 Setups
We use the following cheap ways to generate
pseudo-source texts:

1. copy: in this setting, the source side is a
mere copy of the target-side data. Since the
source vocabulary of the NMT is fixed, copy-
ing the target sentences can cause the occur-
rence of OOVs. To avoid this situation, Cur-
rey et al. (2017) decompose the target words
into source-side units to make the copy look
like source sentences. Each OOV found in
the copy is split into smaller units until all the
resulting chunks are in the source vocabulary.

2. copy-marked: another way to integrate

copies without having to deal with OOVs is to
augment the source vocabulary with a copy of
the target vocabulary. In this setup, Ha et al.
(2016) ensure that both vocabularies never
overlap by marking the target word copies
with a special language identifier. Therefore
the English word resume cannot be confused
with the homographic French word, which is
marked @fr@resume.

3. copy-dummies: instead of using actual
copies, we replace each word with “dummy”
tokens. We use this unrealistic setup to ob-
serve the training over noisy and hardly in-
formative source sentences.
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(a) (b)

(c) (d)
Figure 3: Properties of pseudo-English data obtained with backtrans-nmt (back-translated from German).
Tendencies similar to English-French can be observed and difference in syntax complexity is even more visible.

We then use the procedures described in § 2.2,
except that the pseudo-source embeddings in the
copy-marked setup are pretrained for three
epochs on the in-domain data, while all remaining
parameters are frozen. This prevents random pa-
rameters from hurting the already trained model.

4.2 Copy+marking+noise is not so stupid

We observe that the copy setup has only a small
impact on the English-French system, for which
the baseline is already strong. This is less true for
English-German where simple copies yield a sig-
nificant improvement. Performance drops for both
language pairs in the copy-dummies setup.

We achieve our best gains with the
copy-marked setup, which is the best way to
use a copy of the target (although the performance
on the out-of-domain tests is at most the same as
the baseline). Such gains may look surprising,
since the NMT model does not need to learn to
translate but only to copy the source. This is

indeed what happens: to confirm this, we built a
fake test set having identical source and target side
(in French). The average cross-entropy for this
test set is 0.33, very close to 0, to be compared
with an average cost of 58.52 when we process
an actual source (in English). This means that the
model has learned to copy words from source to
target with no difficulty, even for sentences not
seen in training. A follow-up question is whether
training a copying task instead of a translation
task limits the improvement: would the NMT
learn better if the task was harder? To measure
this, we introduce noise in the target sentences
copied onto the source, following the procedure
of Lample et al. (2017): it deletes random words
and performs a small random permutation of
the remaining words. Results (+ Source noise)
show no difference for the French in-domain
test sets, but bring the out-of-domain score to
the level of the baseline. Finally, we observe a
significant improvement on German in-domain
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English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
copy 31.65 62.45 52.09 32.23 62.37 52.20 32.80 61.99 49.05
copy-dummies 30.89 62.06 52.07 31.51 61.98 51.46 31.43 60.92 50.58
copy-marked 32.01 62.66 51.57 32.31 62.52 51.46 32.33 61.55 49.44
+ Source noise 31.87 62.52 52.69 32.64 62.55 51.63 33.04 62.11 48.47

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
copy 22.15 57.95 61.49 21.95 57.72 59.58 22.59 57.83 55.44
copy-dummies 21.73 57.84 61.35 21.38 57.38 60.10 21.12 56.81 57.21
copy-marked 22.58 58.23 61.10 22.47 57.97 59.24 22.53 57.54 55.85
+ Source noise 22.92 58.62 60.27 22.83 58.36 58.48 22.34 57.47 55.72

Table 5: Performance wrt. various stupid BTs

test sets, compared to the baseline (about +1.5
BLEU). This last setup is even almost as good as
the backtrans-nmt condition (see § 3.1) for
German. This shows that learning to reorder and
predict missing words can more effectively serve
our purposes than simply learning to copy.

5 Towards more natural pseudo-sources

Integrating monolingual data into NMT can be as
easy as copying the target into the source, which
already gives some improvement; adding noise
makes things even better. We now study ways
to make pseudo-sources look more like natural
data, using the framework of Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014), an
idea borrowed from Lample et al. (2017)4.

5.1 GAN setups

In our setups, we use a marked target copy, viewed
as a fake source, which a generator encodes so as
to fool a discriminator trained to distinguish a fake
from a natural source. Our architecture contains
two distinct encoders, one for the natural source
and one for the pseudo-source. The latter acts as
the generator (G) in the GAN framework, com-
puting a representation of the pseudo-source that
is then input to a discriminator (D), which has to
sort natural from artificial encodings. D assigns a
probability of a sentence being natural.

During training, the cost of the discriminator
is computed over two batches, one with natu-
ral (out-of-domain) sentences x and one with (in-
domain) pseudo-sentences x′. The discriminator is

4Our implementation is available at
https://github.com/franckbrl/
nmt-pseudo-source-discriminator

a bidirectional-Recurrent Neural Network (RNN)
of dimension 1024. Averaged states are passed to
a single feed-forward layer, to which a sigmoid
is applied. It inputs encodings of natural (E(x))
and pseudo-sentences (G(x′)) and is trained to op-
timize:

J (D) =− 1

2
Ex∼preal logD(E(x))

− 1

2
Ex′∼ppseudo log(1−D(G(x′)))

G’s parameters are updated to maximally fool
D, thus the loss J (G):

J (G) = −Ex′∼ppseudo logD(G(x′))

Finally, we keep the usual MT objective. (s is a
real or pseudo-sentence):

J (MT) = log p(y|s) = −Es∼pall logMT(s)

We thus need to train three sets of parame-
ters: θ(D), θ(G) and θ(MT) (MT parameters), with
θ(G) ∈ θ(MT). The pseudo-source encoder and
embeddings are updated wrt. both J (G) and J (MT).
Following (Goyal et al., 2016), θ(G) is updated
only when D’s accuracy exceeds 75%. On the
other hand, θ(D) is not updated when its accu-
racy exceeds 99%. At each update, two batches
are generated for each type of data, which are en-
coded with the real or pseudo-encoder. The en-
coder outputs serve to compute J (D) and J (G). Fi-
nally, the pseudo-source is encoded again (once
G is updated), both encoders are plugged into
the translation model and the MT cost is back-
propagated down to the real and pseudo-word em-
beddings. Pseudo-encoder and discriminator pa-
rameters are pre-trained for 10k updates. At test
time, the pseudo-encoder is ignored and inference
is run as usual.
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English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
copy-marked 32.01 62.66 51.57 32.31 62.52 51.46 32.33 61.55 49.44
+ GANs 31.95 62.55 52.87 32.24 62.47 52.16 32.86 61.90 48.97
copy-marked + noise 31.87 62.52 52.69 32.64 62.55 51.63 33.04 62.11 48.47
+ GANs 32.41 62.78 52.25 32.79 62.72 50.92 33.01 61.98 48.37
backtrans-nmt 33.30 63.33 50.02 33.39 63.09 49.48 34.11 62.76 46.94
+ Distinct encoders 32.29 62.83 51.55 32.98 62.91 51.19 33.60 62.43 48.06
+ GANs 32.91 63.08 51.17 33.24 62.93 50.82 33.77 62.42 47.80
natural 35.10 64.71 48.33 35.29 64.52 48.26 34.96 63.08 46.67

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
copy-marked 22.58 58.23 61.10 22.47 57.97 59.24 22.53 57.54 55.85
+ GANs 22.71 58.25 61.25 22.44 57.86 59.28 22.81 57.54 55.99
copy-marked + noise 22.92 58.62 60.27 22.83 58.36 58.48 22.34 57.47 55.72
+ GANs 23.01 58.66 60.22 22.53 58.16 58.65 22.64 57.70 55.48
backtrans-nmt 23.00 59.12 58.31 23.10 58.85 56.67 22.91 58.12 54.67
+ Distinct encoders 23.62 58.83 59.74 23.10 58.50 58.19 22.82 57.91 54.96
+ GANs 23.65 58.85 59.70 23.20 58.50 58.22 23.00 57.89 55.15
natural 26.74 61.14 56.19 26.16 60.64 54.76 23.84 58.64 54.23

Table 6: Performance wrt. different GAN setups

English→French
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 31.25 62.14 51.89 32.17 62.35 50.79 33.06 61.97 48.56
deep-fusion 31.85 62.52 52.27 32.25 62.40 51.64 33.65 62.40 48.24
copy-marked + noise + GANs 32.41 62.78 52.25 32.79 62.72 50.92 33.01 61.98 48.37
+deep-fusion 31.96 62.59 51.96 32.59 62.59 51.65 32.96 61.95 48.95

English→German
test-07 test-08 newstest-14

BLEU BEER CTER BLEU BEER CTER BLEU BEER CTER
Baseline 21.36 57.08 63.32 21.27 57.11 60.67 22.49 57.79 55.64
deep-fusion 21.65 57.57 62.38 21.33 57.33 60.54 23.10 58.06 55.33
copy-marked + noise + GANs 23.01 58.66 60.22 22.53 58.16 58.65 22.64 57.70 55.48
+deep-fusion 23.07 58.50 60.47 22.86 58.18 58.76 22.64 57.46 55.85

Table 7: Deep-fusion model

5.2 GANs can help

Results are in Table 6, assuming the same fine-
tuning procedure as above. On top of the
copy-marked setup, our GANs do not provide
any improvement in both language pairs, with the
exception of a small improvement for English-
French on the out-of-domain test, which we un-
derstand as a sign that the model is more ro-
bust to domain variations, just like when adding
pseudo-source noise. When combined with noise,
the French model yields the best performance we
could obtain with stupid BT on the in-domain
tests, at least in terms of BLEU and BEER. On
the News domain, we remain close to the baseline
level, with slight improvements in German.

A first observation is that this method brings
stupid BT models closer to conventional BT, at a

greatly reduced computational cost. While French
still remains 0.4 to 1.0 BLEU below very good
backtranslation, both approaches are in the same
ballpark for German - may be because BTs are bet-
ter for the former system than for the latter.

Finally note that the GAN architecture has two
differences with basic copy-marked: (a) a dis-
tinct encoder for real and pseudo-sentence; (b) a
different training regime for these encoders. To
sort out the effects of (a) and (b), we reproduce the
GAN setup with BT sentences, instead of copies.
Using a separate encoder for the pseudo-source
in the backtrans-nmt setup can be detrimen-
tal to performance (see Table 6): translation de-
grades in French for all metrics. Adding GANs on
top of the pseudo-encoder was not able to make
up for the degradation observed in French, but al-
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lowed the German system to slightly outperform
backtrans-nmt. Even though this setup is un-
realistic and overly costly, it shows that GANs are
actually helping even good systems.

6 Using Target Language Models

In this section, we compare the previous meth-
ods with the use of a target side Language Model
(LM). Several proposals exist in the literature to
integrate LMs in NMT: for instance, Domhan and
Hieber (2017) strengthen the decoder by integrat-
ing an extra, source independent, RNN layer in a
conventional NMT architecture. Training is per-
formed either with parallel, or monolingual data.
In the latter case, word prediction only relies on
the source independent part of the network.

6.1 LM Setup

We have followed Gulcehre et al. (2017) and reim-
plemented5 their deep-fusion technique. It re-
quires to first independently learn a RNN-LM on
the in-domain target data with a cross-entropy ob-
jective; then to train the optimal combination of
the translation and the language models by adding
the hidden state of the RNN-LM as an additional
input to the softmax layer of the decoder.

Our RNN-LMs are trained using dl4mt6 with
the target side of the parallel data and the Europarl
corpus (about 6M sentences for both French and
German), using a one-layer GRU with the same
dimension as the MT decoder (1024).

6.2 LM Results

Results are in Table 7. They show that
deep-fusion hardly improves the Europarl re-
sults, while we obtain about +0.6 BLEU over
the baseline on newstest-2014 for both languages.
deep-fusion differs from stupid BT in that
the model is not directly optimized on the in-
domain data, but uses the LM trained on Europarl
to maximize the likelihood of the out-of-domain
training data. Therefore, no specific improve-
ment is to be expected in terms of domain adap-
tation, and the performance increases in the more
general domain. Combining deep-fusion and

5Our implementation is part of the Nematus
toolkit (theano branch): https://github.com/
EdinburghNLP/nematus/blob/theano/doc/
deep_fusion_lm.md

6https://github.com/nyu-dl/
dl4mt-tutorial

copy-marked + noise + GANs brings slight im-
provements on the German in-domain test sets,
and performance out of the domain remains near
the baseline level.

7 Re-analyzing the effects of BT

As a follow up of previous discussions, we analyze
the effect of BT on the internals of the network.
Arguably, using a copy of the target sentence in-
stead of a natural source should not be helpful for
the encoder, but is it also the case with a strong
BT? What are the effects on the attention model?

7.1 Parameter freezing protocol

To investigate these questions, we run the
same fine-tuning using the copy-marked,
backtrans-nmt and backtrans-nmt se-
tups. Note that except for the last one, all train-
ing scenarios have access to same target training
data. We intend to see whether the overall perfor-
mance of the NMT system degrades when we se-
lectively freeze certain sets of parameters, mean-
ing that they are not updated during fine-tuning.

7.2 Results

BLEU scores are in Table 8. The
backtrans-nmt setup is hardly impacted
by selective updates: updating the only decoder
leads to a degradation of at most 0.2 BLEU. For
copy-marked, we were not able to freeze the
source embeddings, since these are initialized
when fine-tuning begins and therefore need to
be trained. We observe that freezing the encoder
and/or the attention parameters has no impact on
the English-German system, whereas it slightly
degrades the English-French one. This suggests
that using artificial sources, even of the poorest
quality, has a positive impact on all the compo-
nents of the network, which makes another big
difference with the LM integration scenario.

The largest degradation is for natural, where
the model is prevented from learning from infor-
mative source sentences, which leads to a decrease
of 0.4 to over 1.0 BLEU. We assume from these
experiments that BT impacts most of all the de-
coder, and learning to encode a pseudo-source,
be it a copy or an actual back-translation, only
marginally helps to significantly improve the qual-
ity. Finally, in the fwdtrans-nmt setup, freez-
ing the decoder does not seem to harm learning
with a natural source.
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English→French English→German
test-07 test-08 nt-14 test-07 test-08 nt-14

Baseline 31.25 32.17 33.06 21.36 21.27 22.49
backtrans-nmt 33.30 33.39 34.11 23.00 23.10 22.91
+ Freeze source embedd. 33.20 33.24 34.16 22.84 22.85 23.00
+ Freeze encoder 33.17 33.25 33.73 22.72 22.74 22.64
+ Freeze attention 33.13 33.22 33.47 23.03 23.01 22.85
copy-marked 32.01 32.31 32.33 22.58 22.47 22.53
+ Freeze encoder 31.70 32.39 32.90 22.59 22.30 22.81
+ Freeze attention 31.59 32.39 32.54 22.55 22.13 22.69
fwdtrans-nmt 31.93 32.62 33.56 21.97 21.89 22.52
+ Freeze decoder 31.84 32.62 33.35 21.91 21.65 13.61
natural 35.10 35.29 34.96 26.74 26.16 23.84
+ Freeze encoder 34.02 34.25 34.09 24.95 25.08 23.44
+ Freeze attention 34.13 34.42 34.19 25.13 24.97 23.35

Table 8: BLEU scores with selective parameter freezing

8 Related work

The literature devoted to the use of monolingual
data is large, and quickly expanding. We already
alluded to several possible ways to use such data:
using back- or forward-translation or using a target
language model. The former approach is mostly
documented in (Sennrich et al., 2016a), and re-
cently analyzed in (Park et al., 2017), which focus
on fully artificial settings as well as pivot-based
artificial data; and (Poncelas et al., 2018), which
studies the effects of increasing the size of BT
data. The studies of Crego and Senellart (2016);
Park et al. (2017) also consider forward translation
and Chinea-Rios et al. (2017) expand these results
to domain adaptation scenarios. Our results are
complementary to these earlier studies.

As shown above, many alternatives to BT exist.
The most obvious is to use target LMs (Domhan
and Hieber, 2017; Gulcehre et al., 2017), as we
have also done here; but attempts to improve
the encoder using multi-task learning also exist
(Zhang and Zong, 2016).

This investigation is also related to recent at-
tempts to consider supplementary data with a valid
target side, such as multi-lingual NMT (Firat et al.,
2016), where source texts in several languages are
fed in the same encoder-decoder architecture, with
partial sharing of the layers. This is another re-
alistic scenario where additional resources can be
used to selectively improve parts of the model.

Round trip training is another important source
of inspiration, as it can be viewed as a way to use
BT to perform semi-unsupervised (Cheng et al.,
2016) or unsupervised (He et al., 2016) training of
NMT. The most convincing attempt to date along
these lines has been proposed by Lample et al.

(2017), who propose to use GANs to mitigate the
difference between artificial and natural data.

9 Conclusion

In this paper, we have analyzed various ways to
integrate monolingual data in an NMT framework,
focusing on their impact on quality and domain
adaptation. While confirming the effectiveness of
BT, our study also proposed significantly cheaper
ways to improve the baseline performance, using
a slightly modified copy of the target, instead of
its full BT. When no high quality BT is available,
using GANs to make the pseudo-source sentences
closer to natural source sentences is an efficient
solution for domain adaptation.

To recap our answers to our initial questions:
the quality of BT actually matters for NMT (cf.
§ 3.1) and it seems that, even though artificial
source are lexically less diverse and syntactically
complex than real sentence, their monotonicity is
a facilitating factor. We have studied cheaper alter-
natives and found out that copies of the target, if
properly noised (§ 4), and even better, if used with
GANs, could be almost as good as low quality BTs
(§ 5): BT is only worth its cost when good BT can
be generated. Finally, BT seems preferable to in-
tegrating external LM - at least in our data condi-
tion (§ 6). Further experiments with larger LMs
are needed to confirm this observation, and also
to evaluate the complementarity of both strategies.
More work is needed to better understand the im-
pact of BT on subparts of the network (§ 7).

In future work, we plan to investigate other
cheap ways to generate artificial data. The experi-
mental setup we proposed may also benefit from a
refining of the data selection strategies to focus on
the most useful monolingual sentences.

153



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the first International Conference on Learning Rep-
resentations, San Diego, CA.

Alexandra Birch and Miles Osborne. 2010. LRscore
for evaluating lexical and reordering quality in MT.
In Proceedings of the Joint Fifth Workshop on Statis-
tical Machine Translation and MetricsMATR, WMT
’10, pages 327–332, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.
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Abstract

Both research and commercial machine trans-
lation have so far neglected the importance
of properly handling the spelling, lexical and
grammar divergences occurring among lan-
guage varieties. Notable cases are standard
national varieties such as Brazilian and Euro-
pean Portuguese, and Canadian and European
French, which popular online machine transla-
tion services are not keeping distinct. We show
that an evident side effect of modeling such va-
rieties as unique classes is the generation of
inconsistent translations. In this work, we in-
vestigate the problem of training neural ma-
chine translation from English to specific pairs
of language varieties, assuming both labeled
and unlabeled parallel texts, and low-resource
conditions. We report experiments from En-
glish to two pairs of dialects, European-
Brazilian Portuguese and European-Canadian
French, and two pairs of standardized vari-
eties, Croatian-Serbian and Indonesian-Malay.
We show significant BLEU score improve-
ments over baseline systems when translation
into similar languages is learned as a multilin-
gual task with shared representations.

1 Introduction

The field of machine translation (MT) is making
amazing progress, thanks to the advent of neural
models and deep learning. While just few years
ago research in MT was struggling to achieve use-
ful translations for the most requested and high-
resourced languages, the level of translation qual-
ity reached today has raised the demand and in-
terest for less-resourced languages and the so-
lution of more subtle and interesting translation
tasks (Bentivogli et al., 2018). If the goal of
machine translation is to help worldwide com-
munication, then the time has come to also cope
with dialects or more generally language vari-

eties1. Remarkably, up to now, even standard na-
tional language varieties, such as Brazilian and
European Portuguese, or Canadian and European
French, which are used by relatively large pop-
ulations have been quite neglected both by re-
search and industry. Prominent online commer-
cial MT services, such as Google Translate and
Bing, are currently not offering any variety of Por-
tuguese and French. Even worse, systems offering
such languages tend to produce inconsistent out-
puts, like mixing lexical items from different Por-
tuguese (see for instance the translations shown in
Table 1). Clearly, in the perspective of delivering
high-quality MT to professional post-editors and
final users, this problem urges to be fixed.

While machine translation from many to one
varieties is intuitively simpler to approach2, it is
the opposite direction that presents the most rel-
evant problems. First, languages varieties such
as dialects might significantly overlap thus mak-
ing differences among their texts quite subtle (e.g.,
particular grammatical constructs or lexical diver-
gences like the ones reported in the example). Sec-
ond, parallel data are not always labeled at the
level of language variety, making it hard to de-
velop specific NMT engines. Finally, training data
might be very unbalanced among different vari-
eties, due to the population sizes of their respec-
tive speakers or for other reasons. This clearly
makes it harder to model the lower-resourced va-
rieties (Koehn and Knowles, 2017).

In this work we present our initial effort to
systematically investigate ways to approach NMT
from English into four pairs of language varieties:

1In sociolinguistics, a variety is a specific form of lan-
guage, that may include dialects, registers, styles, and other
forms of language, as well as a standard language. See Ward-
haugh (2006) for a more comprehensive introduction.

2We will focus on this problem in future work and disre-
gard possible varieties in the source side, such as American
and British English, in this work.
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English (source) I’m going to the gym before breakfast. No, I’m not going to the gym.
pt (Google Translate) Eu estou indo para a academia antes do café da manhã. Não, eu não vou ao ginásio.
pt-BR (M-C2) Eu vou á academia antes do café da manhã. Não, eu não vou à academia.
pt-EU (M-C2) Vou para o ginásio antes do pequeno-almoço. Não, não vou para o ginàsio.
pt-BR (M-C2 L) Vou à academia antes do café da manhã. Não, não vou à academia.
pt-PT (M-C2 L) Vou ao ginásio antes do pequeno-almoço. Não, não vou ao ginásio.

Table 1: MT from English into Portuguese varieties. Example of mixed translations generated by Google Translate
(as of 20th July, 2018) and translations generated by our variety-specific models. For the underlined English terms
both their Brazilian and European translation variants are shown.

Portuguese European - Portuguese Brazilian, Eu-
ropean French - Canadian French, Serbian - Croa-
tian, and Indonesian - Malay3. For each couple of
varieties, we assume to have both parallel text la-
beled with the corresponding couple member, and
parallel text without such information. Moreover,
the considered target pairs, while all being mu-
tually intelligible, present different levels of lin-
guistic similarity and also different proportions of
available training data. For our tasks we rely on
the WIT3 TED Talks collection4, used for the In-
ternational Workshop of Spoken Language Trans-
lation, and OpenSubtitles2018, a corpus of subti-
tles available from the OPUS collection5.

After presenting related work (Section 2) on
NLP and MT of dialects and related languages,
we introduce (in Section 3) baseline NMT sys-
tems, either language/dialect specific or generic,
and multilingual NMT systems, either trained with
fully supervised (or labeled) data or with partially
supervised data. In Section 4, we introduce our
datasets, NMT set-ups based on the Transformer
architecture, and then present the results for each
evaluated system. We conclude the paper with a
discussion and conclusion in Sections 5 and 6.

2 Related work

2.1 Machine Translation of Varieties
Most of the works on translation between and
from/to written language varieties involve rule-
based transformations, e.g., for European and
Brazilian Portuguese (Marujo et al., 2011), In-
donesian and Malay (Tan et al., 2012), Turkish
and Crimean Tatar (Altintas and Çiçekli, 2002); or
phrase-based statistical MT (SMT) systems, e.g.,
for Croatian, Serbian, and Slovenian (Popović

3According to Wikipedia, Brazilian Portuguese is a di-
alect of European Portuguese, Canadian French is a dialect
of European French, Serbian and Croatian are standardized
registers of Serbo-Croatian, and Indonesian is a standardized
register of Malay.

4http://wit3.fbk.eu/
5http://opus.nlpl.eu/

et al., 2016), Hindi and Urdu (Durrani et al., 2010),
or Arabic dialects (Harrat et al., 2017). Notably,
Pourdamghani and Knight (2017) build an unsu-
pervised deciphering model to translate between
closely related languages without parallel data.
Salloum et al. (2014) handle mixed Arabic dialect
input in MT by using a sentence-level classifier
to select the most suitable model from an ensem-
ble of multiple SMT systems. In NMT, however,
there have been fewer studies addressing language
varieties. It is reported that an RNN model out-
performs SMT when translating from Catalan to
Spanish (Costa-jussà, 2017) and from European
to Brazilian Portuguese (Costa-Jussà et al., 2018).
Hassan et al. (2017) propose a technique to aug-
ment training data for under-resourced dialects via
projecting word embeddings from a resource-rich
related language, thus enabling training of dialect-
specific NMT systems. The authors generate spo-
ken Levantine-English data from larger Arabic-
English corpora and report improvement in BLEU
scores compared to a low-resourced NMT model.

2.2 Dialect Identification

A large body of research in dialect identifica-
tion stems from the DSL shared tasks (Zampieri
et al., 2014, 2015; Malmasi et al., 2016; Zampieri
et al., 2017). Currently, the best-performing meth-
ods include linear machine learning algorithms
such as SVM, naı̈ve Bayes, or logistic regression,
which use character and word n-grams as features
and are usually combined into ensembles (Jauhi-
ainen et al., 2018). Tiedemann and Ljubeši (2012)
present the idea of leveraging parallel corpora for
language identification: content comparability al-
lows capturing subtle linguistic differences be-
tween dialects while avoiding content-related bi-
ases. The problem of ambiguous sentences, i.e.,
those for which it is impossible to decide upon the
dialect tag, has been demonstrated for Portuguese
by Goutte et al. (2016) through inspection of dis-
agreement between human annotators.
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2.3 Multilingual NMT

In a one-to-many multilingual translation scenario,
Dong et al. (2015) proposed a multi-task learn-
ing approach that utilizes a single encoder for
source languages and separate attention mecha-
nisms and decoders for every target language. Lu-
ong et al. (2015) used distinct encoder and decoder
networks for modeling language pairs in a many-
to-many setting. Firat et al. (2016) introduced a
way to share the attention mechanism across mul-
tiple languages. A simplified and efficient mul-
tilingual NMT approach is proposed by Johnson
et al. (2016) and Ha et al. (2016) by prepend-
ing language tokens to the input string. This ap-
proach has greatly simplified multi-lingual NMT,
by eliminating the need of having separate en-
coder/decoder networks and attention mechanism
for every new language pair. In this work we fol-
low a similar strategy, by incorporating an artifi-
cial token as a unique variety flag.

3 NMT into Language Varieties

Our assumption is to translate from language E
(English) into each of two varieties A and B. We
assume to have parallel training data DE→A and
DE→B for each variety as well as unlabeled data
DE→A∪B . For the sake of experimentation we
consider three application scenarios in which a
fixed amount of parallel training data E-A and E-
B is partitioned in different ways:

• Supervised: all sentence pairs are respec-
tively put in DE→A and DE→B , leaving
DE→A∪B empty;

• Unsupervised: all sentence pairs are jointly
put in DE→A∪B , leaving DE→A and DE→B

empty;

• Semi-supervised: two-third of E-A and E-B
are, respectively, put in DE→A and DE→B ,
and the remaining sentence pairs are put in
DE→A∪B .

Supervised and Unsupervised Baselines. For
each translation direction we compare three base-
line NMT systems. The first system is an un-
supervised generic (Gen) system trained on the
union of the language varieties training data. No-
tice that Gen makes no distinction between A
and B and uses all data in an unsupervised way.
The second is a supervised variety-specific system

(Spec) trained on the corresponding language va-
riety training set. The third system (Ada) is ob-
tained by adapting the Gen system to a specific va-
riety.6 Adaptation is carried out by simply restart-
ing the training process from the generic model us-
ing all the available variety specific training data.
Supervised Multilingual NMT. We build on the
idea of multilingual NMT (Mul), where one single
NMT system is trained on the union ofDE→A and
DE→B . Each source sentence both at training and
inference time is prepended with the correspond-
ing target language variety label (A or B). Notice
that the multilingual architecture leverages the tar-
get forcing symbol both as input to the encoder to
build its states, and as initial input to the decoder
to trigger the first target word.
Semi-Supervised Multilingual NMT. We con-
sider here multilingual NMT models that make
also use of unlabeled data DE→A∪B . The first
model we propose, named M-U, uses the available
data DE→A, DE→B and DE→A∪B as they are, by
not specifying any label at training time for entries
from DE→A∪B . The second model, named M-C2,
works similarly to Mul, but relying on a language
variety identification module (trained on the target
data of DE→A and DE→B) that maps each unla-
beled data point either toA orB. The third model,
named M-C3, can be seen as an enhancement of
M-U, as the unlabeled data is automatically classi-
fied into one of three classes: A, B, or A∪B. For
the third class, like with M-U, no label is applied
on the source sentence.

4 Experimental Set-up

4.1 Dataset and Preprocessing
The experimental setting consists of eight target
varieties and English as source. We use pub-
licly available datasets from the WIT3 TED cor-
pus (Cettolo et al., 2012). The summary of the
partitioned training, dev, and test sets are given in
Table 2, where Tr. 2/3 is the labeled portion of the
training set used to train the semi-supervised mod-
els, while the other 1/3 are either held out as un-
labeled (M-U) or classified automatically (M-C2,
M-C3). In the preprocessing stages, we tokenize
the corpora and remove lines longer than 70 to-
kens. The Serbian corpus written in Cyrillic is
transliterated into Latin script with CyrTranslit7.
In addition, to also run a large-data experiment,

6We test this system only on the Portuguese varieties.
7https://pypi.org/project/cyrtranslit
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Train Ratio (%) Tr. 2/3 Dev Test
pt-BR 234K 58.23 156K 1567 1454
pt-EU 168K 47.77 56K 1565 1124
fr-CA 18K 10.26 12K 1608 1012
fr-EU 160K 89.74 106K 1567 1362

hr 110K 54.20 73K 1745 1222
sr 93K 45.80 62K 1725 1214
id 105k 96.71 70K 932 1448

ms 3.6K 3.29 2.4k 1024 738
pt-BR L 47.2M 64.91 31.4M 1567 1454
pt-EU L 25.5M 35.10 17M 1565 1124

Table 2: Number of parallel sentences of the TED Talks
used for training, development and testing. At the bot-
tom, the large-data set-up which uses the OpenSubtitles
(pt-BR L and pt-PT L) as additional training set.

we expand the English−European/Brazilian Por-
tuguese data with the corresponding OpenSubti-
tles2018 datasets from the OPUS corpus. Table 2
summarizes the augmented training data, while
keeping the same dev and test sets.

4.2 Experimental Settings

We trained all systems using the Transformer
model8 (Vaswani et al., 2018). We use the Adam
optimizer (Kingma and Ba, 2014) with an ini-
tial learning rate of 0.2 and a dropout also set to
0.2. A shared source and target vocabulary of size
16k is generated via sub-word segmentation (Wu
et al., 2016). The choice for the vocabulary size
follows the recommendations in Denkowski and
Neubig (2017) regarding training of NMT systems
on TED Talks data. Overall we use a uniform set-
ting for all our models, with a 512 embedding di-
mension and hidden units, and 6 layers of self-
attention encoder-decoder network. The training
batch size is of 6144 sub-word tokens and the max
length after segmentation is set to 70. Follow-
ing Vaswani et al. (2017) and for a fair compari-
son, experiments are run for 100k training steps,
i.e., in the low-resource settings all models are ob-
served to converge within these steps. Adapta-
tion experiments are run to convergence, which re-
quires roughly half of the steps (i.e., 50k) required
to train the generic low-resource model. On the
other hand, large-data systems are trained for up
to 800k steps, which also showed to be a conver-
gence point. For the final evaluation we take the
best performing checkpoint on the dev set. All
models are trained using Tesla V100-pcie-16gb on
a single GPU.

8https://github.com/tensorflow/tensor2tensor

pt sr-hr fr id-ms pt L
ROC AUC 82.29 88.12 80.99 81.99 52.75

Table 3: Performance of language identification on the
low-resource and high-resource (pt L) settings

4.3 Language Variety Identification
To automatically identify the language variety of
unlabeled target sentences, we train a fastText
model (Joulin et al., 2017), a simple yet efficient
linear bag of words classifier. We use both word-
and character-level n-grams as features. In the
low-resource condition, we train the classifier on
the 2/3 portion of the labeled training data. For
the large-data experiment, instead, we used a rel-
atively smaller and independent corpus consisting
of 3.3 million pt-BR−pt-EU parallel sentences ex-
tracted from OpenSubtitles2018 after filtering out
identical sentences pairs and sentences occurring
(in any of the two varieties) in the NMT train-
ing data. Additionally, low-resource training sen-
tences (fr-CA and ms) are randomly oversampled
to mitigate class imbalance.

For each pair of varieties, we train five base
classifiers differing in random initialization. In the
M-C2 experiments, prediction is determined based
on soft fusion voting, i.e., the final label is the
argmax of the sum of class probabilities. Due to
class skewness in the evaluation set, we report bi-
nary classification performance in terms of ROC
AUC (Fawcett, 2006) instead of accuracy in Ta-
ble 3. For M-C3 models, we handle ambiguous
examples using the majority voting scheme: in or-
der for a label to be assigned, its softmax probabil-
ity should be strictly higher than fifty percents ac-
cording to the majority of the base classifiers, oth-
erwise no tag is applied. On average, this resulted
in <1% of unlabeled sentences for the small data
condition, and about 2% of unlabeled sentences
for the large data condition.

5 Results and Discussion

We run experiments with all the systems intro-
duced in Section 3, on four pairs of languages va-
rieties. Results are reported in Table 4 for the low-
resource setting and in Table 5 for the large data
setting.

5.1 Low-resource setting
Among the supervised models, which are using
all the available training data, the multilingual
NMT model Mul outperforms the variety-specific
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pt-BR pt-EU average
Unsuper. Gen ↓36.52 ↓33.75 35.14
Supervis. Spec ↓35.85 ↓35.84 35.85

” Ada ↓36.54 ↓36.59 36.57
” Mul 37.86 38.42 38.14

Semi-sup. M-U ↓37.09 37.59 37.34
” M-C2 37.70 38.35 38.03
” M-C3 37.59 38.31 37.95

fr-EU fr-CA average
Unsuper. Gen 33.91 ↓30.91 32.41
Supervis. Spec 33.52 ↓17.13 25.33

” Mul 33.40 37.37 35.39
Semi-sup. M-U 33.28 37.96 35.62

” M-C2 33.79 ↑38.60 36.20
” M-C3 ↑34.16 ↑39.30 36.73

hr sr average
Unsuper. Gen ↓21.71 ↓19.20 20.46
Supervis. Spec ↓22.50 ↓19.92 21.21

” Mul 23.99 21.37 22.68
Semi-sup. M-U 24.30 21.53 22.91

” M-C2 24.14 21.26 22.70
” M-C3 24.22 21.97 23.10

id ms average
Unsuper. Gen 26.56 ↓13.86 20.21
Supervis. Spec 26.20 ↓2.73 14.47

” Mul 26.66 15.77 21.22
Semi-sup. M-U 26.52 15.58 21.05

” M-C2 26.36 16.31 21.34
” M-C3 26.40 15.23 20.82

Table 4: BLEU scores of the presented models, trained
with unsupervised, supervised and semi-supervised
data, from English to Brazilian Portuguese (pt-BR) and
European Portuguese (pt-EU), Canadian French (fr-
CA) and European French (fr-EU), Croatian (hr) and
Serbian (sr), and Indonesian (id) and Malay (ms). Ar-
rows ↓↑ indicate statistically significant differences cal-
culated against Mul using bootstrap resampling with
α = 0.05 (Koehn, 2004).

models on all considered directions. Remarkably,
the Mul model also outperforms the adapted Ada
model on the available translation directions. The
unsupervised generic model Gen, that mixes to-
gether all the available data, as expected tends to
perform better than the supervised specific mod-
els of the less resourced varieties. Particularly,
this improvement is observed for Malay (ms) and
Canadian French (fr-CA), which respectively rep-
resent the 3.3% and 10% of the overall training
data used by their corresponding (Gen) systems.

On the contrary, a degradation is observed for Eu-
ropean Portuguese (pt-Eu) and Serbian (sr), which
represent 42% and 45% of their respective train-
ing sets. Even though very low-resourced varieties
can benefit from the mix, it is also evident that the
Gen model can easily get biased because of the
imbalance between the datasets.

In the semi-supervised scenario, we report re-
sults with three multilingual systems that integrate
the 1/3 of unlabeled data to the training corpus
in three different ways: (i) without labels (M-U),
(ii) with automatic labels forcing one of two pos-
sible classes (M-C2), (iii) with automatic labels of
one of the two options or no label in case of low
confidence of the classifier (M-C3).

Results show that on average automatic tag-
ging of the unlabeled data is better than leaving
them unlabeled, although M-U still remains a bet-
ter choice than using specialized and generic sys-
tems. The best between M-C2 and M-C3 performs
on average from very close to better than the best
supervised method.

If we look at the single language variety, the
obtained figures are not showing a coherent pic-
ture. In particular, in the Croatian-Serbian and
Indonesian-Malay pairs the best resourced lan-
guage seems to benefit more from keeping the
data unlabeled (M-U). Interestingly, even the worst
semi-supervised model performs very close or
even better than the best supervised model, which
suggests the importance of taking advantage of all
available data even if they are not labeled.

Focusing on the statistically significant im-
provements, the best supervised (Mul) is better
than the unsupervised (Gen), whereas the best
semi-supervised (M-C2 or M-C3) is either com-
parable or better than the best supervised.

5.2 High-resource setting

Unlike what observed in the low-resource setting,
where Mul outperforms Spec in the supervised
scenario, in the large data condition, variety spe-
cific models apparently seem the best choice. No-
tice, however, that the supervised multilingual sys-
tem Mul provides just a slightly lower level of
performance with a simpler architecture (one net-
work in place of two). The unsupervised generic
model Gen, trained with the mix of the two va-
rieties datasets, performs significantly worse than
the other two supervised approaches, this is par-
ticularly visible for the pt-EU direction. Very
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pt-BR pt-EU average
Unsuper. Gen ↓ 39.78 ↓ 36.13 37.96
Supervis. Spec 41.54 40.42 40.98

” Mul 41.28 40.28 40.78
Semi-sup. M-U 41.21 39.88 40.55

” M-C2 41.20 40.02 40.61
” M-C3 41.56 40.22 40.89

Table 5: BLEU score on the test set of models trained
with large-scale data, from English to Brazilian Por-
tuguese (pt-BR) and European Portuguese (pt-EU). Ar-
rows ↓↑ indicate statistically significant differences cal-
culated against the Mul model.

likely, in addition to the ambiguities that arise
from naively mixing the data of the two different
dialects, there is also a bias effect towards pt-BR
which is due to the very unbalanced proportions of
data between the two dialects (almost 1:2).

Hence, in the considered high-resource setting,
the Spec and Mul models result as best possi-
ble solutions against which comparing our semi-
supervised approaches.

In the semi-supervised scenario, the obtained
results confirm that our approach of automatically
classifying the unlabeled data DE→A∪B improves
over using the data as they are (M-U). Neverthe-
less, M-U still confirms to perform better than the
fully unlabeled Gen model. In both translation di-
rections, M-C2 and M-C3 get quite close to the
performance of the supervised Spec model. In
particular, M-C3 shows to outperform the M-C2
model, and even outperforms on average the su-
pervised Mul model. In other words, the semi-
supervised model leveraging three-class automatic
labels (of DE→A∪B) seems to perform better than
the supervised model with two dialect labels. Be-
sides the comparable BLEU scores, the supervised
(Spec and Mul) perform in statistically insignifi-
cant way against the best semi-supervised (M-C3),
although outperforming the unsupervised (Gen)
model.

This result raises the question if relabeling all
the training data can be a better option than using a
combination of manual and automatic labels. This
issue is investigated in the next subsection.

Unsupervised Multilingual Models

As discussed in Section 4.3, the language classifier
for the large-data condition is trained on dialect-
to-dialect parallel data that does not overlap with
the NMT training data. This condition permits

pt-BR pt-EU average
Unsuper. M-C2 41.50 40.21 40.86

” M-C3 41.66 40.13 40.90

Table 6: BLEU scores on the test set by large scale
multi-lingual models trained under an unsupervised
condition, where all the training data are labeled au-
tomatically.

hence to investigate a fully unsupervised training
condition. In particular, we assume that all the
available training data is unlabeled and create au-
tomatic language labels for all 47.2M sentences
of pt-BR and 25.5M sentences of pt-EU (see Ta-
ble 2). In a similar way as in Table 5, we keep the
experimental setting of M-C2 and M-C3 models.

Table 6 reports the results of the multilingual
models trained under the above described unsu-
pervised condition. In comparison with the semi-
supervised condition, both M-C2 and M-C3 show
a slight performance improvement. In particular,
the three-label M-C3 performs on average slightly
better than the two-label M-C2 model. Actually,
the little difference is justified by the fact that the
classifier used the “third” label only for 6% of the
data. Remarkably, despite the relatively low per-
formance of the classifier, average score of the best
unsupervised model M-C2 is almost on par with
the supervised model Mul.

5.3 Translation Examples
Finally, in Table 7, we show an additional trans-
lation example produced by our semi-supervised
multilingual models (both under low and high re-
source conditions) translating into the Portuguese
varieties. For comparison we also include out-
put from Google Translate which offers only a
generic English-Portuguese direction. In partic-
ular, the examples contain the word refrigerator
that has specific dialect variants. All our variety-
specific systems show to generate consistent trans-
lations of this term, while Google Translate prefers
to use the Brazilian translation variants for these
sentences.

6 Conclusions

We presented initial work on neural machine
translation from English into dialects and related
languages. We discussed both situations where
parallel data is supplied or not supplied with tar-
get language/dialect labels. We introduced and
compared different neural MT models that can be
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English (source) We offer a considerable number of different refrigerator models. We have also developed a new
type of refrigerator. These include American-style side-by-side refrigerators.

pt (Google Translate) ferecemos um número considerável de modelos diferentes de refrigeradores. Nós também
desenvolvemos um novo tipo de geladeira. Estes incluem refrigeradores lado a lado estilo
americano.

Low-resource models

pt-BR (M-C2) Nós oferecemos um número considerável de diferentes modelos de refrigerador. Também de-
senvolvemos um novo tipo de refrigerador. Eles incluem o estilo americano nas geladeiras lado
a lado.

pt-EU (M-C2) Oferecemos um número considerável de modelos de refrigeração diferentes. Também desen-
volvemos um novo tipo de frigorı́fico. Também desenvolvemos um novo tipo de frigorı́fico.

High-resource models

Spec-pt-BR Oferecemos um nmero considerável de modelos de geladeira diferentes. Também desenvolve-
mos um novo tipo de geladeira. Isso inclui o estilo americano lado a lado refrigeradores.

Spec-pt-PT Oferecemos um número considerável de modelos de frigorı́fico diferentes. Também desen-
volvemos um novo tipo de frigorfico. Estes incluem frigorı́ficos americanos lado a lado.

pt-BR (M-C3 L) Oferecemos um número considerável de diferentes modelos de geladeira. Também desenvolve-
mos um novo tipo de geladeira. Estes incluem estilo americano lado a lado, geladeiras.

pt-PT (M-C3 L) Oferecemos um número considerável de diferentes modelos frigorı́ficos. Também desenvolve-
mos um novo tipo de frigorfico. Estes incluem estilo americano lado a lado frigorı́ficos.

Table 7: English to Portuguese translation generated by Google Translate (as of 20th July, 2018) and translations
into Brazilian and European Portuguese generated by our semi-supervised multilingual (M-C2 and M-C3 L) and
supervised Spec models. For the underlined English terms both their Brazilian and European translation variants
are shown.

trained under unsupervised, supervised, and semi-
supervised training data regimes. We reported ex-
perimental results on the translation from English
to four pairs of language varieties with systems
trained under low-resource conditions. We show
that in the supervised regime, best performance is
achieved by training a multilingual NMT system.
For the semi-supervised regime, we compared dif-
ferent automatic labeling strategies that permit to
train multilingual neural MT systems with perfor-
mance comparable to the best supervised NMT
system. Our findings were also confirmed by large
scale experiments performed on English to Brazil-
ian and European Portuguese. In this scenario,
we have also shown that multilingual NMT fully
trained on automatic labels can perform very sim-
ilarly to its supervised version.

In future work, we plan to extend our approach
to language varieties in the source side, as well
as investigate the possibility of applying transfer-
learning (Zoph et al., 2016; Nguyen and Chiang,
2017) for language varieties by expanding our
Ada adaptation approach.
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Abstract
This paper presents an effective approach for
parallel corpus mining using bilingual sen-
tence embeddings. Our embedding models are
trained to produce similar representations ex-
clusively for bilingual sentence pairs that are
translations of each other. This is achieved
using a novel training method that introduces
hard negatives consisting of sentences that are
not translations but have some degree of se-
mantic similarity. The quality of the result-
ing embeddings are evaluated on parallel cor-
pus reconstruction and by assessing machine
translation systems trained on gold vs. mined
sentence pairs. We find that the sentence em-
beddings can be used to reconstruct the United
Nations Parallel Corpus (Ziemski et al., 2016)
at the sentence-level with a precision of 48.9%
for en-fr and 54.9% for en-es. When adapted
to document-level matching, we achieve a par-
allel document matching accuracy that is com-
parable to the significantly more computa-
tionally intensive approach of Uszkoreit et al.
(2010). Using reconstructed parallel data, we
are able to train NMT models that perform
nearly as well as models trained on the orig-
inal data (within 1-2 BLEU).

1 Introduction

Volumes of quality parallel training data are criti-
cal to neural machine translation (NMT) systems.
While large distributed systems have proven use-
ful for mining parallel documents (Uszkoreit et al.,
2010; Antonova and Misyurev, 2011), these ap-
proaches are computationally intensive and rely on
heavily engineered subsystems. Recent work has
approached the problem by training lightweight
end-to-end models based on word and sentence-
level embeddings (Grégoire and Langlais, 2017;
Bouamor and Sajjad, 2018; Schwenk, 2018).
We propose a novel method for training bilin-
gual sentence embeddings that proves useful for

∗ equal contribution
†Work done during an internship at Google AI.

sentence-level mining of parallel data. Sen-
tences are encoded using Deep Averaging Net-
works (DANs) (Iyyer et al., 2015), a simple bag
of n-grams architecture that has been shown to
provide surprisingly competitive performance on
a number of tasks including sentence classifica-
tion (Iyyer et al., 2015; Cer et al., 2018), conversa-
tion input-response prediction (Yang et al., 2018),
and email response prediction (Henderson et al.,
2017). Separate encoders are used for each lan-
guage with candidate source and target sentences
being paired based on the dot-product of their em-
bedded representations. Training maximizes the
dot-product score of sentence pairs that are trans-
lations of each other at the expense of sampled
negatives. We contrast using random negatives
with carefully selected hard negatives that chal-
lenge the model to distinguish between true trans-
lation pairs versus non-translation pairs that ex-
hibit some degree of semantic similarity.

The efficiency of the sentence encoders and the
use of a dot-product operation to score candidate
sentence pairs is well suited for parallel corpus
mining. Efficient encoders reduce the amount of
computational resources required to obtain sen-
tence embeddings for a large collection of un-
paired sentences. Once the sentence embeddings
are available, efficient nearest neighbour search
(Vanderkam et al., 2013; Johnson et al., 2017) can
be used to identify candidate translation pairs.

The language pairs English-French (en-fr) and
English-Spanish (en-es) are used in our experi-
ments. Our results show that introducing hard neg-
ative sentence pairs, which are semantically simi-
lar but that are not translations of each other, sys-
tematically outperforms using randomly selected
negatives. Our method can be used to reconstruct
the United Nations Parallel Corpus (Ziemski et al.,
2016) at the sentence-level with a level of preci-
sion of 48.9% P@1 for en-fr and 54.9% P@1 for
en-es. When we adapt our method to document-
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level pairings we achieve a matching accuracy that
is comparable to that of the much heavier weight
and more computationally intensive approach of
Uszkoreit et al. (2010). Training an NMT model
using the reconstructed corpus results in models
that perform nearly as well as those trained on
the original parallel corpus (within 1-2 BLEU).
Finally, our method has a modest degree of cor-
relation with the pair quality scores provided by
Zipporah (Xu and Koehn, 2017). However, our
method has higher agreement with human judg-
ments, and our approach to filter the ParaCrawl
corpus results in NMT systems with higher BLEU
scores.

2 Approach

This section introduces our bilingual sentence em-
bedding model and the translation candidate rank-
ing task we use for training. We then present
our method for selecting hard negative sentence
pairs that are not translations of each other but
have some degree of semantic similarity. Finally,
we detail the use of our bilingual sentence em-
beddings to search for sentences that are transla-
tions of each other, as well as an adaptation to the
matching process to parallel documents.

2.1 Translation Candidates Ranking Task
Given a pair of sentences that are translations of
each other x and y, the translation candidate rank-
ing task attempts to rank the true translation y over
all other sentences, Y , in the given language. This
can be accomplished by modeling the translation
probability distribution P (y | x). Provided with a
scoring function φ that assesses the compatibility
between x and y, the distribution can be expressed
as the following log-linear model:

P (y | x) =
eφ(x,y)

∑
ȳ∈Y e

φ(x,ȳ)
(1)

To avoid summing over all possible target sen-
tences, the normalization term is approximated by
summing over the compatibility score for match-
ing x toK−1 sampled negatives together with the
compatibility score for the positive candidate:

Papprox(y | x) =
eφ(x,y)

∑K
k=1 e

φ(x,yk)
(2)

This formulation is similar to early work on dis-
criminative training of log-linear translation de-
coding models (Och and Ney, 2002). However,

rather than using a weighted sum of manually
engineered features, we define φ to be the dot-
product of sentence embeddings for the source, u,
and target, v, with φ(x, y) = u> · v. A similar
log-linear sentence embedding based formulation
of P (y|x) has been previously used for conver-
sation and e-mail response prediction (Henderson
et al., 2017; Yang et al., 2018).

2.2 Bilingual Sentence Embeddings

Bilingual sentence embeddings are obtained us-
ing the dual-encoder architecture illustrated in
Figure 1. We use Deep Averaging Networks
(DANs) (Iyyer et al., 2015) to compute sentence-
level embedding vectors by first averaging word
and bi-gram level embeddings, denoted as Ψ(x)
and Ψ(y), for the source and target sentences, re-
spectively. 1 The word and bi-gram level embed-
dings are not pretrained but are rather learned dur-
ing training of the sentence encoders. The aver-
aged representation is provided to a feedforward
deep neural network (DNN). Across hidden layers
we include residual connections with a skip level
of 1. The final bilingual sentence embeddings are
u and v, which are taken from the last layer of
the source and target encoders, respectively. The
dot-product of the sentence embeddings, uT ·v, is
used to compute the translation score, φ(x, y).

Ψ(x) Ψ(y)

hidden layer

hidden layer

hidden layer

hidden layer
u

hidden layer

hidden layer

hidden layer

hidden layer
v

φ(x, y) = uTv

Figure 1: Dual-encoder architecture, where a group of
hidden layers encodes source sentence x to u and a sepa-
rate group encodes target sentence y to v such that the score
φ(x, y) is the dot-product uT · v.

The dual-encoders are trained for the translation
candidate ranking task by maximizing the log like-
lihood of Papprox. This objective is particularly

1Our implementation sums the word and bi-gram embed-
dings and then divides the result by sqrt(n), where n is the
sentence length. The intuition behind dividing by sqrt(n)
is as follows: We want our input embeddings to be sensitive
to length. However, we also want to ensure that, for short
sequences, the relative differences in the representations are
not dominated by sentence length effects.
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Source (Target) Negatives

en-fr

Random Sa respiration devient laborieuse
How to display and access shared files Benoit Faucon Lieu London

(Comment afficher et accéder aux fichiers partagés) Hard Accès l’environment des fichiers partagés
Des éléments comme des fichiers de dossiers

Random RCS 871, où le juge Fauteux explique
The General Delegation for Armaments Avis sur les hôtels

(La délégation générale pour l’armement) Hard La 9e armée , commandée par le général Foch
La délégation militaire hongroise composée de ...

en-es

Random Alquiler mensual desde : 890 USD
Oil and gas investments ¿Qué más se deja para preguntar?

(Inversiones en petróleo y gas) Hard Petróleo y gas
Petróleo y Gas Petroquı́mica página

Random Ve el perfil completo de Fleishman
In Spain, it has clearly chosen the gratuity León de montaña en roca

(En España, se ha elegido claramente la gratuidad) Hard Dejar propina es una costumbre chilena
Este es un tı́pico restaurante español de España

Table 1: Example of random negatives and hard negatives for en-fr and en-es.

well suited for mini-batch training. As illustrated
in Figure 2, within a batch, each source and tar-
get translation pair serves as a positive example
for that particular pairing with alternative pairings
within the same batch treated as negative exam-
ples. Given an ordered collection of embeddings
for source and target translation pairs, all of the
dot-product scores necessary to compute Papprox
can be determined using a single matrix multipli-
cation of the encoding matrices, U and V>.2 Af-
ter the matrix multiplication the scores assigned
to true translation pairs can be found on the di-
agonal while the scores for incorrect pairings are
off-diagonal.

Within our experiments, models differ in their
selection of the K − 1 sampled negatives. Our
preliminary models make use of the random sam-
pling strategy that has been proven successful in
prior work (Henderson et al., 2017; Yang et al.,
2018). Using this strategy consists of randomly
composing batches of translation pairs and us-
ing the matrix multiplication approach described
above to obtain within batch negatives for each in-
correct pairing We employ random shuffling dur-
ing training resulting in different random negatives
for each ui across epochs. As described below
we also explore introducing additional hard neg-
atives. This is achieved by extending the target
embeddings matrix V with the sentence embed-
dings for the hard negatives, which introduces ad-
ditional off-diagonal values within the matrix of
dot-product scores.

2The encoding matrices are composed of the ordered
sentence embeddings for all of the source and target sen-
tences within a batch, U = (u0,u1, ...,uk−1) and V =
(v0,v1, ...,vk−1).

Figure 2: Matrix multiply trick for dot product model with
random sampling.

2.3 Semantically Similar Hard Negatives

As illustrated in Table 1, randomly selected neg-
atives result in many pairings that are obviously
incorrect without requiring a careful assessment
of whether the source and randomly sampled tar-
gets are true translations. Within a mini-batch, the
model could likely achieve a reasonable level of
performance by simply identifying which source
and target sentences are on the same topic or are
otherwise semantically related. However, when
mining for parallel data, extracting sentence pairs
that are not translations of each other but that are
rather merely topically related is expected to harm
downstream MT systems that are trained on the
erroneous pairs. Given the increased sensitivity
of NMT models to data quality issues, perfor-
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mance might even be harmed by including seman-
tically similar sentences with sufficient differences
in meaning between them. 3

We improve the mining of true translation
pairs by making model training more challenging
through the introduction of hard negatives – se-
mantically similar translations that are close but
not quite identical to the correct translation. The
hard negatives are selected using a baseline model
trained with randomly sampled negatives. For
each source sentence, we identify M hard nega-
tives with target embeddings that achieve high dot-
product scores with the source sentence embed-
ding but that are not the correct translation. Exam-
ples of hard negatives extracted using the baseline
model are provided in Table 1. Compared to the
random negatives, hard negatives are semantically
more similar to the correct target translation.

As described above, the hard negatives are ap-
pended to the target embedding matrix V. There-
fore, instead of training with K candidates, each
translation input will be compared withK+K∗M
candidates, where K is the batch size. In practice,
getting hard negatives for the entire dataset is very
time consuming. We only obtain hard negatives
for 20% of the data and use random negative sam-
pling for the remainder of the training set.

2.4 Mining Parallel Data
One approach to mining parallel data with bilin-
gual sentence-level embeddings is to indepen-
dently pair individual source and target candidates
based on the similarity of their embeddings. Prior
work that explored this approach found that the re-
sulting mined sentence pairs produced poor BLEU
scores when used for MT training unless they
were combined with traditional human translated
corpora with known alignments (Schwenk, 2018).
We explore both sentence-level and document-
level mining of parallel corpora. For document-
level mining, we introduce a novel selection crite-
rion that takes into account the confidence of sen-
tence alignments within a document and sentence
position information.

2.4.1 Document Matching
Parallel documents are identified as follows: For
a given source document, we first run an approxi-
mate nearest neighbor (ANN) search for each sen-
tence in the document. This gives us N target sen-

3e.g., adding or removing important details according to
the sentence similarity scale proposed by Agirre et al. (2012).

tences for each source sentence (ranked in order
of closest match). Let Y be the bag of all tar-
get sentences that appear as a match for at least
one source sentence. Then for each sentence in
Y , we look up the document from which they
came. We score each candidate document using
Eq 3.4 This scoring function takes into account the
sentence-level nearest neighbor rank of the match
for source sentence x to target sentence y in the
document being scored, r(x, y). The match rank
is linearly combined with a normalized confidence
score, f1(x, y), for the match between x and y as
well as the absolute difference between the sen-
tence position index of the source and target sen-
tences, f2(x, y). The sum of the scoring terms is
weighted by the hyperparameters, w1 and w2.

∑

y∈D∩Y
−r(x, y) + w1 ∗ f1(x, y) + w2 ∗ f2(x, y)

(3)

2.4.2 Calibrated Confidence Score
The raw dot product score, φ(x, y), is a poor
choice for the confidence score, f1(x, y). The
score from φ(x, y) provides a relative metric of a
translated sentence’s match quality with respect to
the source sentence, but it is not a globally consis-
tent measurement of how good a translation pair
is. Scores are not necessarily in the same range
nor do they have comparable relative values for
different input source sentences. As a result, if we
choose φ(x, y) to score confidence, there is no sin-
gle threshold we can use to filter out bad results.

In order to obtain more consistent confidence
scores, we propose a novel score normalization
model based on dynamic scaling and shifting of
the dot product scores. As illustrated in Figure 3,
the dynamic scaling and shifting values are com-
puted from the source embedding, u, and a point-
wise squaring of the values within the source em-
bedding, u2. The vectors u and u2 are concate-
nated. The scale and bias terms are computed as

4Selecting the target document that appears the most in
Y should give us a rough idea of which target document is
most likely to be the translation of a source document. How-
ever, this approach is quite naive since we are ignoring many
pieces of information: 1. The rank at which each target sen-
tence appeared, 2. The dot product score between the target
sentence and the source sentence, and 3. The indices of the
target sentence and the source sentence (i.e. the position of
the sentences within their respective documents). Since the
first two factors indicate the model’s confidence in the sen-
tence match, it is desirable to incorporate this information
into our scoring of document matches.
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a weighted sum of the concatenated vectors val-
ues. After the dynamic scaling and bias terms are
used to calibrate the dot-product score, the result-
ing calibrated dot-product is passed to a sigmoid
in order to obtain a final confidence value between
0 and 1. The weights used to compute the scale
and bias terms are trained on held out supervised
data.

hidden layer
u

hidden layer
v

φ(x, y) = uTv[u,u2]

hidden layer
scale

hidden layer
bias

scale ∗ φ(x, y) + bias

sigmoid

Figure 3: Scoring model based on dual-encoder architec-
ture.

It is worth noting that because the hidden lay-
ers for scale and bias only use features from the
source embeddings, it will not affect the ranking
of targets. Thus, we still always use dot-product
similarity, φ(x, y), to retrieve targets via nearest
neighbor search. For document-level matching,
we convert the dot-product values into the cali-
brated confidence scores, f1(x, y), without need-
ing to reinspect the target embeddings.

3 Experiments

We train our proposed model on two language
pairs: English-French (en-fr) and English-Spanish
(en-es). First, we evaluate the performance on the
translation candidate ranking task, comparing the
dual-encoder architectures with random negative
sampling versus using hard negatives. Then, we
present results for document-level matching using
Uszkoreit et al. (2010)’s method as a strong base-
line. We explore training NMT systems using our
method to both filter and re-construct parallel cor-
pora. Finally, we assess the level or agreement be-
tween our method and human judgments.

3.1 Data

For training the model, we construct a parallel
corpus using a system similar to the approach
described in Uszkoreit et al. (2010). The final
constructed corpus contains around 600M en-fr
sentence pairs and 470M en-es sentence pairs.

To assess the quality of the parallel corpus, we
ask human annotators to manually evaluate the
constructed pairs. The human annotators judge
whether 200 randomly selected sentence pairs for
both en-fr and en-es are GOOD or BAD transla-
tions. We find that the GOOD translation rate is
around 80% for both language pairs. The con-
structed parallel corpus is split into two parts: a
training set (90%) and a held-out dev set (10%),
with the held-out dev set being used for our pre-
liminary reconstruction experiments.

The UN corpus (Ziemski et al., 2016) is used for
additional corpus reconstruction experiments. The
corpus consists of 800k manually translated UN
documents from 1990 to 2014 for the six official
UN languages. 86k of these documents are fully
aligned at the sentence-level for all 15 language
pairs. We make use of the fully aligned en-fr and
en-es document pairs and extract all aligned sen-
tence pairs from those document pairs. There are
a total of 11.3 million aligned sentence pairs each
for en-fr and en-es. Assuming that we have no
knowledge about which documents and sentences
are aligned, the task is to reconstruct the document
and sentence pairs.

We evaluate trained translation models on
wmt13 (Bojar et al., 2013) and wmt14 (Bojar
et al., 2014) for en-es and en-fr, respectively.
Translation models are trained using data taken
from the parallel corpus described above that
was constructed using Uszkoreit et al. (2010)’s
method. Additional translation experiments make
use of ParaCrawl5, a dataset containing 4 billion
noisy translation pairs for en-fr and 2 billion pairs
for en-es. Within Paracrawl, each pair contains
pre-computed scores by Zipporah (Xu and Koehn,
2017) and the Bicleaner tool, which estimates the
translation quality of the pair. We make use of
the Zipporah scores to compare translation models
trained on filtered versions of the corpus selected
using Zipporah versus our method.

3.2 Experimental Configuration

Model configuration and hyperparameters for our
sentence embedding models are set mostly based
on defaults taken from prior work with very min-
imal tuning on the held-out dev set. For each lan-
guage, we build a vocabulary consisting of 200
thousands unigram and 200 thousands bi-gram to-
kens. All inputs are tokenized and normalized be-

5https://paracrawl.eu
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fore being fed to the model. We employ an SGD
optimizer with a batch size of 128. The learning
rate is set to 0.01 with a learning decay of 0.96 ev-
ery 5 million steps. We train for 50 million steps.

For each encoder layer, we employ a four-layer
DNN model which contains 320, 320, 500 and 500
hidden units for each layer respectively. We apply
a ReLU activation in the first three layers and no
activation in the final layer. We enable residual
connections between layers with a skip level of 1.
There is no parameter sharing between the source
and target encoder layers. The size of the unigram
and bi-gram embeddings is set to 320 and the em-
beddings are updated during the training process.
The sentence embedding size is set to 512 for both
source and target languages.

The calibrated confidence score is trained
jointly with the translation candidate ranking task
but with a stop gradient that prevents the con-
fidence task from modifying the bilingual sen-
tence encoders. The tasks are trained in a mul-
titask framework with multiple workers, where
90% of the workers optimize the translation can-
didate ranking task and the remaining 10% opti-
mize the confidence task. We use the same config-
uration for confidence as when training the trans-
lation candidate ranking task. Both use the same
batch size 128, meaning there is 1 positive and 127
negative candidates selected for each pass over an
example. We apply a dropout of 0.4 before feed-
ing the feature vector [u,u2] into the hidden layers
that calculate scale and bias.

3.3 Dev Set Sentence-level Matching

We first evaluate the trained models on the trans-
lation target retrieval task and use precision at N
(P@N) as our evaluation metric. For every source
sentence in the dev set, we run the model and find
the nearest neighbors from a set of possible tar-
get sentences. Previous work (Henderson et al.,
2017; Yang et al., 2018) usually evaluated P@N
from 100 examples (1 positive and 99 negatives).
We find that this does not work well for the trans-
lation target ranking task. Rather, the P@N of 100
metric goes up to 99.9% quickly and provides no
differentiation between models trained with differ-
ent configurations.

In this work, we evaluate the P@N from the
true target sentence (positive) and 10 million ran-
dom selected target (negatives) given a source sen-
tence. We score all selected targets using the trans-

lation pair scoring model and rank them accord-
ingly. The P@N score evaluates if the true trans-
lation target (positive) is in the top N target candi-
dates. We evaluate the model with random sam-
pling and M hard negatives for M=5, 10, 20.
Recall that the number of negatives is equal to
the batch size for the models trained with random
sampling. The number of negatives for hard neg-
ative models, however, is K + K ∗M where K
is the batch size. To make a fair comparison, we
also evaluate a model trained with additional ran-
dom samples, by augmenting the number of ran-
dom negatives to K +K ∗ 20.

Table 2 shows the P@N results of the proposed
models for N=1, 3, 10. The model with random
negatives provides a strong baseline for finding
the right translation target, with a P@1 metric of
70.49% for en-fr and 67.81% for en-es. The aug-
mented random negative model performs better
than the base random negative model for en-es.
However, the hard negative models outperform the
random negative models across all metrics. Even
with only 5 hard negatives, the P@1 metrics im-
proved by 8% for en-fr and 3% for en-es. The ad-
dition of more hard negatives, however, does not
always further improve performance.

4 Reconstructing the United Nations
Corpus

In this section, we demonstrate that the proposed
model can be used to efficiently reconstruct the
United Nations (UN) Parallel Corpus (Ziemski
et al., 2016).

4.1 UN Sentence-level Matching

We first apply the dual-encoder model to mine
target candidates at the sentence-level. As men-
tioned in section 1, one of the advantages of the
dual-encoder model is that it is straightforward
to use it to encode the source and target sen-
tences separately. Taking advantage of this prop-
erty, we first pre-encode all target sentences into
a target database, and then we iterate through the
source sentences to retrieve the potential targets
for each one of them using an approximated near-
est neighbour (ANN) search (Vanderkam et al.,
2013). The target sentence retrieval pipeline us-
ing ANN search is shown in Figure 4.

Once again we first use P@N as the evaluation
metric for target retrieval, for N=1, 3, 10. We
evaluate the two random sampling models and a
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Negative Selection Approach
en-fr en-es

P@1 P@3 P@10 P@1 P@3 P@10
Random Negatives 70.49 80.03 86.39 67.81 77.37 84.42

Random Negatives (Augmented) 70.67 79.99 86.14 70.47 79.79 86.33
(5) Hard Negatives 78.31 85.30 89.52 73.46 82.37 87.75

(10) Hard Negatives 77.06 84.04 88.70 74.92 83.29 88.14
(20) Hard Negatives 78.29 85.06 89.58 74.84 82.86 88.23

Table 2: Precision at N (P@N) results on the evaluation set for models built using the random negatives
and (M ) hard negatives. Models attempt to select the true translation target for a source sentence against
10M randomly selected targets.

source sentence x

encode source sentence

Approximated
Nearest

Neighbour
(ANN) Search

Pre-encoded
target sentences

Y

Selected targets
(y1, . . . , yk)

u

Figure 4: Target sentence retrieval pipeline.

hard negative model with 20 hard negatives for
each example. As shown in table 3, with ran-
dom negatives, the P@1 metric is 34.83% for en-
fr and 44.89% for en-es. Adding hard negatives
boosts the performance on all metrics, improving
the P@1 metric more than 10% absolute in both
en-fr and en-es – 48.9% for en-fr and 54.9% for
en-es.

4.2 UN Document-level Matching

In our final reconstruction experiment, we make
use of the document-level matching method out-
lined in section 2.4.1. The hyperparameters N ,
w1, and w2 are set to 10, 5, and −2, respectively,
based on prior experiments with the translation
matching task on the dev set. We compare using
the document matching score proposed by Eq. (3)
to scoring document pairs by counting the num-
ber of Viterbi aligned sentences linking the two
together. As a strong baseline, we also include the

application of Uszkoreit et al. (2010)’s method to
the UN dataset.

Table 4 shows the document matching accura-
cies. Using Eq. (3) to score document matches
outperforms counting mutually aligned sentences.
Moreover, while our approach is simpler and less
computationally intensive than Uszkoreit et al.
(2010)’s, it obtains a promising level of perfor-
mance.

5 Evaluation Using a Translation Model

As a proof of concept on using our mined trans-
lation pairs as training data, we train translation
models with original versus mined parallel sen-
tence pairs from UN corpus, and with filtered
ParaCrawl data using Zipporah score versus us-
ing our model’s confidence score. We evaluate
on wmt13 (Bojar et al., 2013) and wmt14 (Bo-
jar et al., 2014) testing sets for en-es and en-
fr, respectively, with performance assessed using
BLEU (Papineni et al., 2002).

The translation models are based on Trans-
former architecture (Vaswani et al., 2017), and
make use of a model dimension of 512 and a
hidden dimension of 2048, with 6 layers and 8
attention heads. The models use the Adam op-
timizer with the training schedule described in
Vaswani et al. (2017). For each language pair, sen-
tence pairs are segmented using a shared 32,000
wordpiece vocabulary (Schuster and Nakajima,
2012). Sentence pairs are then batched together
by approximate sequence length with variable
batch sizes based on sequence length. The aver-
age batch size per step is 120 pairs per batch.
We train each model until convergence (approxi-
mately 120K steps).
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Negative Selection Approach
en-fr en-es

P@1 P@3 P@10 P@1 P@3 P@10
Random Negative 34.83 47.99 61.20 44.89 58.13 70.36

Random Negative (Augmented) 36.51 49.07 61.37 47.08 59.55 71.34
(20) Hard Negative 48.90 62.26 73.03 54.94 67.78 78.06

Table 3: Precision at N (P@N) of target sentence retrieval on the UN corpus. Models attempt to select the
true translation target for a source sentence from the entire corpus (11.3 million aligned sentence pairs.)

Matching method en-fr en-es
Alignment Counts 82.1 85.1

Our approach Eq. (3) 89.0 90.4
Uszkoreit et al. (2010) 93.4 94.4

Table 4: Accuracy of document matching on UN
corpus.

5.1 Mined UN Corpus
We compare translation models trained on the re-
constructed UN corpora for en-fr and en-es with
models trained on the original UN pairs, which we
use as Oracle models.

We examine two versions of the reconstructed
corpora. In the first version, we take the highest
scoring match at the sentence-level as the mined
parallel sentence pairs and these pairs are then fil-
tered by their calibrated confidence score6 with
default threshold 0.5. In the second version, we
perform document-level matching over the UN
dataset. Within paired documents, we follow
Uszkoreit et al. (2010) and employ a dynamic pro-
gramming sentence alignment algorithm informed
by sentence length and multilingual probabilistic
dictionaries. In both versions, we drop sentence
pairs where both sides are either identical or a lan-
guage detector declares them to be in the wrong
language. As a post-processing step, the resulting
translations are resegmented using the Moses to-
kenizer and true-cased before evaluation (Koehn
et al., 2007).

Table 5 shows the results obtained from the
models trained on the different variations of the
parallel data. The models trained with mined pairs
perform very close to the Oracle model, demon-
strating the effectiveness of the proposed parallel
corpus mining approach. Training on the mined
sentence-level pairs even does slightly better than
using the Oracle data for en-es. This is presum-

6The confidence model is trained with a dev set which
consist of 1/10 of UN corpora, these data are removed from
training.

en-fr en-es
(wmt14) (wmt13)

Mined sentence-level 29.63 29.03
Mined document-level 30.05 27.09

Oracle 30.96 28.81

Table 5: BLEU scores on WMT testing sets of the
NMT models trained on original UN pairs (Ora-
cle) and on two versions of mined UN corpora.

en-fr en-es
(wmt14) (wmt13)

WMT 38.38 32.69
Our data 39.81 33.75
Zipporah 39.29 33.58

WMT + Our data 40.30 34.15
WMT + Zipporah 39.29 34.07

Table 6: BLEU scores on WMT testing sets of the
NMT models trained on different data: 1) WMT
training sets, 2) filtered ParaCrawl data, and 3)
combined data of WMT and filtered ParaCrawl.

ably because the mined pairs are cleaner due to
the filtering step. We notice, however, that training
on the UN corpus gives translation results that are
much lower than the state-of-the-art on the WMT
evaluation sets. This is likely due to the fact that
the UN parallel corpus is small and drawn from a
particularly restricted domain.

5.2 Filtered ParaCrawl data

We compare the performance of training trans-
lation models7 on ParaCrawl data filtered using
Zipporah scores versus our scoring method. For
this experiment, our confidence score is fine-
tuned on the ParaCrawl corpus using an addi-
tional 900k positive and 900k negative exam-
ples selected based on having extreme Zipporah

7Using the same model parameters as earlier experiments.
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scores.8 With Zipporah, we select all examples
from ParaCrawl with a Zipporah score greater than
or equal to 0, which is the threshold used in the of-
ficial release. There are 43 million such pairs in
en-fr and 24 million in en-es. We then select the
same number of pairs from the ParaCrawl data that
have the highest scores from our fine-tuned model.
As illustrated in Table 6, the performance achieved
by the ParaCrawl trained models on the WMT
test data is quite high, both achieves better perfor-
mance comparing with the baseline model trained
on WMT training set. This suggests that fil-
tered ParaCrawl data is a good source of general-
purpose training material. Models trained on our
filtered data slightly outperform those trained on
data filtered by Zipporah. Row 4 and 5 also show
the performance of models trained on the com-
bined data of WMT and our filtered ParaCrawl and
combined data of WMT and Zipporah filtered data
respectively9. Combining the datasets further im-
proves the translation performance about 0.5 blue
score, and model trained on WMT and our filtered
ParaCrawl data achieves the best performance.

5.3 Qualitative Analysis of Filtered
ParaCrawl Data

On the ParaCrawl corpus we find that the Pear-
son’s r between Zipporah and our calibrated con-
fidence scores is only 0.4. This correlation is
quiet low given the level of translation perfor-
mance achieved by both methods when they are
used to select training pairs for an NMT system
and suggests that the two methods may provide
complementary information.

We access the agreement of the two methods
on extreme score values.10 We sample a balanced
data set consisting of 100k pairs with extreme pos-
itive Zipphora values and 100k pairs with extreme
negative values. At a threshold of 0.5 and with-
out an fine-tuning, our method agrees with the ex-
treme Zipporah scores with an accuracy of 78.2%
for en-fr and 80.5% for en-es. However, using the
confidence scores fine-tuned to ParaCrawl from

8Extreme positive score values from Zipporah are consid-
ered to be those in the top 1% of the agreement scores found
in the ParaCrawl corpus. Extreme negative score values are
considered to be agreement scores in the bottom 50% of the
Zipporah scores for ParaCrawl.

9The sizes of WMT training set and filtered ParaCrawl are
very close, so we simply mix the data together without any up
sampling or down sampling.

10For this analysis we use the same definition of extreme
Zipporah scores as in section 5.2

en-fr en-es
zipporah 72.0 74.0

our model 76.0 74.5

Table 7: GOOD translation rate (%) annotated by
translation professionals.

section 5.2, we achieve a high level of agreement
of 98.4% for en-fr and 98.6% with fine-tuning.

We perform an evaluation using human judg-
ments comparing our scoring model against Zip-
porah scores on the ParaCrawl data. As in the fil-
tering experiments, we select all examples from
ParaCrawl with a Zipporah score greater than or
equal to zero and then select a matching number
of pairs with the highest scores from our model.
We then sample 200 examples from each set and
send them to translation professionals for evalua-
tion. Each example is examined by one annota-
tor that labels the pair as either a GOOD or BAD
translation. A GOOD translation means more than
70% of a sentence is correctly translated in the
paired sentences, meaning most of the information
is conveyed.

Table 7 shows the GOOD translation rate for
each sampled subset. The performance between
the two approaches is close for en-es and the pro-
posed score normalization model is 4% better for
en-fr. In our analysis of the BAD translation pairs,
one common failure pattern from the proposed
model is that one of the sentences is only partially
translated in the other sentence. This is likely be-
cause we are still missing enough of these types
of hard negatives in the training data. We also
find our model produces more pairs where the sen-
tences on both sides are identical. These identical
pairs are mostly labeled as BAD translations be-
cause they are unlikely to be actual translations.

6 Related Work

The problem of obtaining high-quality parallel
corpora, or bitexts, is one of the most critical is-
sues in machine translation. One longstanding ap-
proach for extracting parallel corpora is to mine
documents from the web (Resnik, 1999). Much
of the previous work on parallel document min-
ing has relied on using metadata, such as docu-
ment titles (Yang and Li, 2002), publication dates
(Munteanu and Marcu, 2005, 2006) or document
structure (Chen and Nie, 2000; Resnik and Smith,
2003; Shi et al., 2006), to identify bitexts.
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Another direction, however, is to identify bi-
texts using only textual information, as the meta-
data associated with documents can often be
sparse or unreliable (Uszkoreit et al., 2010). Some
text-based approaches for identifying bitexts rely
on methods such as n-gram scoring (Uszkor-
eit et al., 2010), named entity matching (Do
et al., 2009), and cross-language information re-
trieval (Utiyama and Isahara, 2003; Munteanu and
Marcu, 2005).

There is active research on using embedding-
based approaches where texts are mapped to an
embedding space in order to determine whether
they are bitexts. Grégoire and Langlais (2017) use
a Siamese network (Yin et al., 2015) to map source
and target language sentences into the same space,
then classify whether the sentences are parallel
based on labelled data. Hassan et al. (2018) ob-
tain English and Chinese sentence embeddings in
a shared space by averaging encoder states from a
bilingual shared encoder NMT system. The cosine
similarity between these sentence embeddings is
then used as a measure of cross-lingual similarity
between the sentences, which can then be used to
filter out noisy sentence pairs. Schwenk (2018)
use a similar approach but learn a joint embedding
over nine languages. Our model differs from pre-
vious approaches, as it uses a dual-encoder archi-
tecture instead of an encoder-decoder architecture.
Not only is the dual-encoder architecture is more
efficient (Henderson et al., 2017), it also allows
us to directly train toward extracting parallel sen-
tences from a collection of candidates.

7 Conclusion

In this paper, we present an effective parallel cor-
pus mining approach using sentence embeddings
produced by a bilingual dual-encoder model. The
proposed model encodes source sentences and tar-
get sentences into sentence embeddings separately
and then calculates the dot-product score for these
two embedding vectors to assess translation pair
quality. We propose the selection of hard negatives
that consist of semantically similar sentence pairs
that are not translations of each other. Our exper-
iments reveal that using hard negatives improves
the ability of our model to identify true translation
pairs. We find the proposed method to be useful
for both mining and filtering parallel data. Our
method compares favorably to Zipporah for filter-
ing, while for mining it provides a lightweight al-

ternative to Uszkoreit et al. (2010)’s method.
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Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

This work investigates the alignment prob-
lem in state-of-the-art multi-head attention
models based on the transformer architecture.
We demonstrate that alignment extraction in
transformer models can be improved by aug-
menting an additional alignment head to the
multi-head source-to-target attention compo-
nent. This is used to compute sharper atten-
tion weights. We describe how to use the
alignment head to achieve competitive per-
formance. To study the effect of adding the
alignment head, we simulate a dictionary-
guided translation task, where the user wants
to guide translation using pre-defined dictio-
nary entries. Using the proposed approach,
we achieve up to 3.8% BLEU improvement
when using the dictionary, in comparison to
2.4% BLEU in the baseline case. We also
propose alignment pruning to speed up decod-
ing in alignment-based neural machine trans-
lation (ANMT), which speeds up translation
by a factor of 1.8 without loss in translation
performance. We carry out experiments on the
shared WMT 2016 English→Romanian news
task and the BOLT Chinese→English discus-
sion forum task.

1 Introduction

Attention-based neural machine translation
(NMT) (Bahdanau et al., 2015) uses an atten-
tion layer to determine which part of the input
sequence to focus on during decoding. This com-
ponent eliminates the need for explicit alignment
modeling. In conventional phrase-based statistical
machine translation (Koehn et al., 2003), word
alignment is modeled explicitly, making it clear
which word or phrase is being translated. The
lack of explicit alignment use in attention-based
models makes it harder to determine which target
words are generated using which source words.
While this is not necessarily needed for trans-

lation itself, alignments can be useful in certain
applications, e.g. when the customer wants to
enforce specific translation of certain words.

One simple solution is to use maximum atten-
tion weights to extract the alignment, but this can
result in wrong alignments in the case where the
maximum attention weight is not pointing to the
word being translated. Such cases are not uncom-
mon in NMT, making the use of attention weights
as alignment replacement non-trivial (Chatterjee
et al., 2017; Hasler et al., 2018). Alignment ex-
traction is even less clear for transformer models
(Vaswani et al., 2017), which currently produce
state-of-the-art results. These models use multiple
attention components for each of the stacked de-
coder layers. In this work we focus our study on
these models since they usually outperform single-
attention-head recurrent neural network (RNN) at-
tention models.1

Alignment-based NMT (Alkhouli et al., 2016)
uses neural models trained using explicit hard
alignments to generate translation. These systems
include explicit alignment modeling, making them
more convenient for tasks where the source-to-
target alignment is needed. However, it is not clear
whether these systems are able to compete with
strong attention-based NMT systems. Alkhouli
and Ney (2017) present results for alignment-
based neural machine translation (ANMT) using
models trained on CPUs, limiting them to small
models of 200-node layers, and they only inves-
tigate RNN models. Wang et al. (2018) present
results using only one RNN encoder layer, and do
not include attention layers in their models. In this
work, we investigate the performance of large and
deep state-of-the-art transformer models. We keep
the multi-head attention component and propose
to augment it with an additional alignment head, to

1The transformer models won in most of the WMT 2018
news translation tasks: http://matrix.statmt.org.
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Figure 1: An example from the Chinese→English system. The figures illustrate the accumulated attention
weights of the baseline transformer model (left), the alignment-assisted transformer model (middle),
and the alignment-assisted model guided by a dictionary entry. We simulate a scenario where the user
wants to translate the Chinese word “强大” to “powerful”. Both the baseline and alignment-assisted
transformer models generate the translation “strong” instead. To enforce the translation, we use the
maximum attention weight to determine the source word being translated. Left: The maximum attention
of the baseline case incorrectly points to the sentence end when translating the designated Chinese word,
therefore we cannot enforce the translation in this case. Middle: The alignment looks sharper because the
system has an augmented alignment head. In this case the maximum attention is pointing to the correct
Chinese word. Right: using the maximum attention, the translation “strong” is successfully replaced with
the translation “powerful” as suggested by the user using our proposed alignment-assisted transformer.

combine the benefits of the two. We demonstrate
that we can train these models to achieve compet-
itive results in comparison to strong state-of-the-
art baselines. Moreover, we demonstrate that this
variant has clear advantage in tasks that require
alignments such as dictionary-guided translation.

Translation in NMT can be performed without
explicit alignment. However, there are tasks where
translation needs to be constrained given spe-
cific user requirements. Examples include interac-
tive machine translation, and scenarios where cus-
tomers demand domain-specific words or phrases
to be translated according to a pre-defined dic-
tionary. We demonstrate that the explicit use of
alignment in ANMT can be leveraged to gener-
ate guided translation. Figure (1) illustrates an ex-
ample. The figures are generated using attention
weights averaged over all attention components in
each system.

The contribution of this work is as follows.
First, we propose a method to integrate alignment
information into the multi-head attention compo-
nent of the transformer model (Section 3.1). We
describe how such models can be trained to main-
tain the strong baseline performance while also us-
ing external alignment information (Section 3.3).
We also introduce alignment models that use self-
attentive layers for faster evaluation (Section 3.2).

Second, we introduce alignment pruning during
search to speed up evaluation without affecting
translation quality (Section 4). Third, we de-
scribe how to extract alignments from multi-head
attention models (Section 5), and demonstrate that
alignment-assisted transformer systems perform
better than baseline systems in dictionary-guided
translation tasks (Section 7). We present speed and
performance results in Section 6.

2 Related Work

Alignment-based neural models have explicit de-
pendence on the alignment information either at
the input or at the output of the network. They
have been extensively and successfully applied on
top of conventional phrase-based systems (Sun-
dermeyer et al., 2014; Tamura et al., 2014; Devlin
et al., 2014). In this work, we focus on using the
models directly to perform standalone neural ma-
chine translation.

Alignment-based neural models were proposed
in (Alkhouli et al., 2016) to perform neural ma-
chine translation. They mainly used feedfor-
ward alignment and lexical models in decoding.
Alkhouli and Ney (2017) used recurrent models
instead, and presented an attention component bi-
ased using external alignment information. In this

178



work, we explore the use of transformer models in
ANMT instead of recurrent models.

Deriving neural models for translation based on
the hidden Markov model (HMM) framework can
also be found in (Yang et al., 2013; Yu et al.,
2017). Alignment-based neural models were also
applied to perform summarization and morpho-
logical inflection (Yu et al., 2016). Their work
used a monotonous alignment model, where train-
ing was done by marginalizing over the align-
ment hidden variables, which is computationally
expensive. In this work, we use non-monotonous
alignment models. In addition, we train using
pre-computed Viterbi alignments which speeds up
neural training. In (Yu et al., 2017), alignment-
based neural models were used to model align-
ment and translation from the target to the source
side (inverse direction), and a language model was
included in addition. They showed results on a
small translation task. In this work, we present re-
sults on translation tasks containing tens of mil-
lions of words. We do not include a language
model in any of our systems.

There is plenty of work on modifying atten-
tion models to capture more complex dependen-
cies. Cohn et al. (2016) introduce structural biases
from word-based alignment concepts like fertility
and Markov conditioning. These are internal mod-
ifications that leave the model self-contained. Our
modifications introduce alignments as external in-
formation to the model. Arthur et al. (2016) in-
clude lexical probabilities to bias attention. Chen
et al. (2016) and Mi et al. (2016) add an extra term
dependent on the alignments to the training objec-
tive function to guide neural training. This is only
applied during training but not during decoding.
Our work makes use of alignments during training
and also during decoding.

There are several approaches to perform con-
strained translation. One possibility is includ-
ing this information in training, but this requires
knowing the constraints at training time (Crego
et al., 2016). Post-processing the hypotheses is
another possibility, but this comes with the down-
side that offline modification of the hypotheses
happens out of context. A third possibility is to
do constrained decoding (Hokamp and Liu, 2017;
Chatterjee et al., 2017; Hasler et al., 2018; Post
and Vilar, 2018). This does not require knowledge
of the constraints at training time, and it also al-
lows dynamic changes of the rest of the hypothe-

sis when the constraints are activated. We perform
experiments where the translation is guided on-
line during decoding. We focus on the case where
translation suggestions are to be used when a word
in the source sentence matches the source side
of a pre-defined dictionary entry. We show that
alignment-assisted transformer-based NMT out-
performs standard transformer models in such a
task.

3 Alignment-Based Neural Machine
Translation

Alignment-based NMT divides translation into
two steps: (1) alignment and (2) word genera-
tion. The system is composed of an alignment
model and a lexical model that can be trained
jointly or separately. During translation, the align-
ment is hypothesized first, and the lexical score is
computed next using the hypothesized alignment
(Alkhouli et al., 2016). Hence, each translation
hypothesis has an underlying alignment used to
generate it. The alignment model scores the align-
ment path.

Formally, given a source sentence fJ1 =
f1...fj ...fJ , a target sentence eI1 = e1...ei...eI ,
and an alignment sequence bI1 = b1...bi...bI ,
where j = bi ∈ {1, 2, ..., J} is the source position
aligned to the target position i ∈ {1, 2, ..., I}, we
model translation using an alignment model and a
lexical model:

p(eI1|fJ1 ) =
∑

bI1

p(eI1, b
I
1|fJ1 ) (1)

≈ max
bI1

I∏

i=1

p(ei|bi, bi−11 , ei−11 , fJ1 )︸ ︷︷ ︸
lexical model

·

p(bi|bi−11 , ei−11 , fJ1 )︸ ︷︷ ︸
alignment model

.

Both the lexical model and the alignment model
have rich dependencies including the full source
context fJ1 , the full alignment history bi−11 , and the
full target history ei−11 . The lexical model has an
extra dependence on the current source position bi.

While previous work focused on RNN struc-
tures for the lexical and alignment models
(Alkhouli and Ney, 2017), we use multi-head self-
attentive transformer model structures instead.
The next two subsections describe the structural
details of these models.
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3.1 Transformer-Based Lexical Model
In this work we propose to use lexical models
based on the transformer architecture (Vaswani
et al., 2017). This architecture has the following
main components:

• self-attentive layers replacing recurrent lay-
ers. These layers are parallelizable due to the
lack of sequential dependencies that recurrent
layers have.

• multi-head source-to-target attention: sev-
eral attention heads are used to attend to the
source side. Each attention head computes a
normalized probability distribution over the
source positions. The attention heads are
concatenated. Each decoder layer in the
model has its own multi-head attention com-
ponent.

We propose to condition the lexical model on
the alignment information. We add a special align-
ment head

α(j|bi) =

{
1, if j = bi

0, otherwise.

defined for the source positions j, bi ∈
{1, 2, ..., J}. This is a one-hot distribution
that has a value of 1 at position j that matches
the aligned position bi. This head is then con-
catenated to the rest of the attention heads as
shown in Figure (2). The one-hot alignment
distribution is used similar to attention weights
to weight the encoded source representations,
effectively selecting the representation hbi which
corresponds to the aligned word.

3.2 Self-Attentive Alignment Model
In this work we use self-attentive layers instead
of RNN layers in the alignment model. This re-
moves the sequential dependency of computing
RNN activations and allows for parallelization.
We replace the bidirectional RNN encoder of the
alignment model by multi-head self-attentive lay-
ers as described in (Vaswani et al., 2017). We also
use multi-head self-attentive layers to replace the
RNN layers in the decoder part of the network.
There are two main differences when comparing
this self-attentive alignment model to the trans-
former architecture described in (Vaswani et al.,
2017). (1) The output is a probability distribution
over possible source jumps ∆i = bi − bi−1, that

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

Linear Linear Linear

K

h1, h2, ..., hJ h1, h2, ..., hJ ri−1

Concat

Linear

h1, h2, ..., hJ

Alignment

hbi

Figure 2: Alignment-assisted multi-head attention
component. h1, h2, ..., hJ : the encoder states at
all J source positions, hbi : the encoder state at
the aligned source position bi, ri−1: the previ-
ous decoder state, K: number of attention heads.
Removing the alignment block results in the de-
fault multi-head source-to-target attention compo-
nent of (Vaswani et al., 2017).

is, the model predicts the likelihood of jumping
from the previous source position bi−1 to the cur-
rent source position bi. (2) There is no multi-head
source-to-target attention layer as in the trans-
former network. Rather, we use a single-head hard
attention layer. This layer is not computed like at-
tention weights, but it is constructed using the pre-
vious alignment point bi−1 using

α(j|bi−1) =

{
1, if j = bi−1
0, otherwise.

defined for the source positions j, bi−1 ∈
{1, 2, ..., J}. When multiplied by the source en-
codings, α effectively selects the source encoding
hbi−1

of the previous aligned position. This is then
summed up with the decoder state ri−1.

3.3 Training
Our attempts to train the alignment-assisted trans-
former lexical model from scratch achieved sub-
optimal results. This could happen because the
model could choose to over-rely on the alignment
information, risking that the remaining attention
heads would become useless, especially during the
early stages of training. To overcome this, we
first trained the transformer baseline parameters
without the alignment information until conver-
gence, and used the trained parameters to initial-
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Algorithm 1 Alignment-Based Pruned Decoding

1: procedure TRANSLATE(fJ
1 , beamSize, threshold)

2: hyps← initHyp .init. set of partial hypotheses
3: while GETBEST(hyps) not terminated do
4: .compute alignment distribution in batch mode
5: alignDists←ALIGNMENTDIST(hyps)
6: .hypothesize source alignment points
7: activePos← {}
8: for pos From 1 to J do
9: .position computed if at least one

10: .beam entry surpasses the threshold
11: for b From 1 to beamSize do
12: if alignDists[b, pos] > threshold then
13: activePos.Append(pos)
14: break
15: .evaluate all positions if none survived pruning
16: if activePos is empty then
17: activePos← {1, ...J}
18: .compute lexical distributions of all
19: .hypotheses in hyps in batch mode
20: lexDists← LEXICALDIST(hyps, activePos)
21: .combine lexical and alignment scores
22: hyps← Combine(lexDists, alignDists)
23: .prune to fit the beam
24: hyps← Prune(hyps, beamSize)

25: .return the best scoring hypothesis
26: return GETBEST(hyps)

ize the alignment-assisted model training. This re-
sulted in better systems compared to training from
scratch. We were able to see significant perplex-
ity improvements in the second stage of training
indicating that the model was making use of the
newly introduced information. Further details are
discussed in Section 6.1.

4 Alignment Pruning

Alignment-based decoding requires hypothesizing
alignment positions in addition to word transla-
tions. The algorithm is shown in Algorithm (1).
Each lexical hypothesis has an underlying align-
ment hypothesis (activePos) that is used to com-
pute it (line 20). This is done as a part of beam
search. To speed up decoding, we compute the
alignment model output first for all beam entries
(line 5). This gives a distribution over the next
possible source positions. We prune all source
positions that have a probability below a fixed
threshold (lines 12–14 ). We only evaluate the
lexical model for those positions that survive the
threshold. If the pruning threshold is too aggres-
sive to let any of the source positions survive,
pruning is disabled for that time step (lines 16–
17).

5 Alignment Extraction

We use attention weights to extract the alignments
at each time step during decoding. We look up the
source word having the maximum accumulated at-
tention weight

j(i) = argmax
ĵ∈{1...J}

{
L∑

l=1

K∑

k=1

αi,k,l(ĵ)

}

where K is the number of attention heads per de-
coder layer, L is the number of decoder layers,
αi,k,l(ĵ) is the attention weight at source position
ĵ ∈ {1, ..., J} for target position i of the k-th head
computed for the the l-th decoder layer. This is
an extension of using maximum attention weights
in single-head attention models (Chatterjee et al.,
2017). In the alignment-assisted transformer, the
aligned position is given by:

j(i, j′) = argmax
ĵ∈{1...J}

{
L∑

l=1

( K∑

k=1

αi,k,l(ĵ) + α(ĵ|j′)
)}

where j′ ∈ {1, ..., J} is the hypothesized source
position during search, and α(ĵ|j′) is the align-
ment indicator which is equal to 1 if ĵ = j′ and
zero otherwise. This effectively gives a prefer-
ence for the hypothesized position over all other
positions. Note that the hypothesized positions
are scored during translation using the alignment
model described in Section 3.2.

6 Experiments

We run experiments on the WMT 2016
English→Romanian news task,2 and on BOLT
Chinese→English which is a discussion forum
task. The corpora statistics are shown in Table (1).

All transformer models use 6 encoder and 6 de-
coder self-attentive layers. We use 8 scaled dot
product attention heads and augment an additional
alignment head to the source-to-target attention
component. We use an embedding size of 512.
The size of feedforward layers is 2048 nodes. We
use source and target weight tying for the WMT
English→Romanian task, and no tying for BOLT
Chinese→English.

The structure of the RNN models is as follows.
The English→Romanian lexical and alignment
models use 1 bidirectional encoder layer. The

2http://www.statmt.org/wmt16/
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WMT 2016 BOLT
English Romanian Chinese English

Train sentence pairs 604K 4.1M
Train running words 15.5M 15.8M 80M 88M
Dev sentence pairs 1000 1845
Test sentence pairs 1999 1124
Vocabulary 92K 128K 380K 815K
Neural network vocabulary 50K 50K 50K 50K

Table 1: Corpora statistics.

WMT En→Ro BOLT Zh→En
newstest2016 test

# System Layer size PPL BLEU
[%]

TER
[%]

PPL BLEU
[%]

TER
[%]

baselines
1 Attention baseline 1000 10.2 24.7 58.9 8.0 20.0 65.6
2 Transformer baseline 2048 6.2 27.9 54.6 6.0 22.5 62.1
3 (Alkhouli and Ney, 2017) 200 - 24.8 58.1 - - -

this work
4 RNN Attention align.-biased 1000 7.2 26.4 56.1 5.6 19.6 62.3
5 Align.-assisted Transformer 2048 5.0 28.1 54.3 4.7 22.7 61.8

Table 2: Translation results for the WMT 2016 English→Romanian task and the BOLT Chinese→English
task. We include the lexical model perplexities.

Chinese→English models have 1 bidirectional en-
coder and 3 stacked unidirectional encoder lay-
ers. All models use 2 decoder layers. The base-
line attention models have similar structures. We
use LSTM layers of 1000 nodes and embeddings
of size 620. We train using the Adam optimizer
(Kingma and Ba, 2015). All alignment models
predict source jumps of maximum width of 100
source positions (forward and backward).

The alignments used during training are the re-
sult of IBM1/HMM/IBM4 training using GIZA++
(Och and Ney, 2003). All results are measured
in case-insensitive BLEU[%] (Papineni et al.,
2002). TER[%] scores are computed with TER-
Com (Snover et al., 2006). We implement the
models in Sockeye (Hieber et al., 2017), which al-
lows efficient training of large models on GPUs.

6.1 Performance Comparison

Table (2) presents results on the two tasks. The
RNN attention (row 1) and transformer (row 2)
baselines are shown. The transformer baseline
outperforms the attention baseline by a large mar-
gin. We also include the English→Romanian
system of Alkhouli and Ney (2017). This is

an alignment-based RNN attention system which
uses 200-node layers. We also trained our
own alignment-based RNN attention system us-
ing larger layers of 1000 nodes. This is shown
in row 4. Our RNN system outperforms the pre-
viously published alignment-based results (row 3)
by 1.6% BLEU and 2.0% TER. This is due to the
increase in model size.

Our proposed alignment-assisted transformer
system is shown in row 5. This system out-
performs the RNN alignment-based system of
row 4 by 1.7% BLEU on the English→Romanian
task, establishing a new state-of-the-art result for
alignment-based neural machine translation. We
also achieve 3.1% BLEU improvement over our
RNN alignment-biased attention system on the
Chinese→English task. In comparison to the
transformer baseline (row 2), the proposed sys-
tem achieves similar performance on both tasks.
We compare the development perplexity to check
whether the lexical model makes use of the align-
ment information. Indeed, the baseline trans-
former development perplexity drops from 6.2 to
5.0 on English→Romanian and from 6.0 to 4.7
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WMT En→Ro BOLT Zh→En
# Alignment #entries BLEU

[%]
TER

[%]
#entries BLEU

[%]
TER

[%]

1 Transformer baseline - 27.3 55.6 - 24.2 61.5
2 + dictionary 3.1K 29.7 55.4 4.6K 25.5 61.0
3 Alignment-assisted Transformer - 27.2 55.5 - 24.2 60.8
4 + dictionary 3.1K 31.0 53.0 4.6K 26.4 58.6

Table 3: Improvements after using the dictionary of the development sets. The tokenized references of
the English→Romanian and Chinese→English development sets have 26.7K and 46.6K running words
respectively.
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Figure 3: Speed up and translation quality in
BLEU vs. pruning threshold on the WMT
English→Romanian task.

on Chinese→English, indicating that the model is
making use of the alignment information.

6.2 Decoding Speed Up

Figure (3) shows the speed-up factor and perfor-
mance in BLEU over different threshold values.
The speed-up factor is computed against the no-
pruning case (i.e. threshold 0). The batch size
used in these experiments is 5. We speed up trans-
lation by a factor of 1.8 without loss in translation
quality at threshold 0.15. Higher threshold val-
ues result in more aggressive pruning and hence a
degradation in translation quality. It is interesting
to note that at threshold 0.05 we achieve a speed up
of 1.7, implying that significant pruning happens
at low threshold values. At high threshold values,
speed starts to go down, since we have more cases
where no alignment points survive the threshold,
in which case pruning is disabled as discussed in
Algorithm (1, lines 16–17).

7 Dictionary Suggestions

We evaluate the use of attention weights as align-
ments in a dictionary suggestion task, where a pre-
defined dictionary of suggested one-to-one trans-
lations is given. We perform a relaxed form of
constrained translation, i.e. we do not ensure
that the suggestion will make it to the translation.
To this end, we use attention weights to extract
the alignments at each time step during decod-
ing as described in Section 5. We look up the
source word fj(i) having the maximum accumu-
lated attention weight in the dictionary. If the word
matches the source-side of a dictionary entry, we
enforce the translation to match the dictionary sug-
gestion e(fj(i)) by setting an infinite cost for all
but the suggested word.

We create a simulated dictionary using the ref-
erence side of the development set. We map the
reference to the source words using IBM4 align-
ment. The development set is concatenated with
the training data to obtain good-quality alignment.
We exclude English stop words,3 and only use
source words aligned one-to-one to target words.
We include up to 4 dictionary entries per sentence,
and add reference translations only if they are not
part of the baseline (i.e. unconstrained) transla-
tion, similar to (Hasler et al., 2018).

Table (3) shows results for the dictionary sug-
gestions task described in Section (7). The
English→Romanian dictionary covers 11.6% of
the reference set, while the Chinese→English dic-
tionary has 9.9% coverage. We observe larger
improvement when using the dictionary entries
in the alignment-assisted transformer system in
comparison to the transformer baseline systems.
Our system improves BLEU by 3.8%, while the
baseline is improved only by 2.4% BLEU on the
English→Romanian task. We also observe larger

3Long stop list: https://www.ranks.nl/stopwords
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improvements in the Chinese→English case. This
suggests that the maximum attention weights in
alignment-assisted systems can point more accu-
rately to the word being translated, allowing the
use of more dictionary entries. As shown in Fig-
ure (1), the accumulated attention weights are
sharper when the system has an augmented align-
ment head. This explains the larger improvements
our systems achieve.

8 Conclusion

We proposed augmenting transformer models with
an alignment head to help extract alignments
in scenarios such as dictionary-guided transla-
tion. We demonstrated that the alignment-
assisted systems can achieve competitive per-
formance compared to strong transformer base-
lines. We also showed that the alignment-assisted
systems outperformed standard transformer mod-
els when used for dictionary-guided translation
on two tasks. Finally, we achieved a speed-
up factor of 1.8 by pruning alignment hypothe-
ses in alignment-based decoding while maintain-
ing translation quality. In future work we plan
to investigate alternative pruning methods like
histogram pruning. We also plan to investigate
the performance of alignment-assisted transformer
models in constrained decoding settings, where
the user demands specific translation of certain
words.
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Abstract

The field of machine translation faces an
under-recognized problem because of incon-
sistency in the reporting of scores from its
dominant metric. Although people refer to
“the” BLEU score, BLEU is in fact a param-
eterized metric whose values can vary wildly
with changes to these parameters. These pa-
rameters are often not reported or are hard
to find, and consequently, BLEU scores be-
tween papers cannot be directly compared. I
quantify this variation, finding differences as
high as 1.8 between commonly used configu-
rations. The main culprit is different tokeniza-
tion and normalization schemes applied to the
reference. Pointing to the success of the pars-
ing community, I suggest machine translation
researchers settle upon the BLEU scheme used
by the annual Conference on Machine Trans-
lation (WMT), which does not allow for user-
supplied reference processing, and provide a
new tool, SACREBLEU,1 to facilitate this.

1 Introduction

Science is the process of formulating hypothe-
ses, making predictions, and measuring their out-
comes. In machine translation research, the pre-
dictions are made by models whose development
is the focus of the research, and the measurement,
more often than not, is done via BLEU (Papineni
et al., 2002). BLEU’s relative language indepen-
dence, its ease of computation, and its reason-
able correlation with human judgments have led
to its adoption as the dominant metric for ma-
chine translation research. On the whole, it has
been a boon to the community, providing a fast
and cheap way for researchers to gauge the perfor-
mance of their models. Together with larger-scale
controlled manual evaluations, BLEU has shep-

1https://github.com/awslabs/sockeye/
tree/master/contrib/sacrebleu

herded the field through a decade and a half of
quality improvements (Graham et al., 2014).

This is of course not to claim there are no
problems with BLEU. Its weaknesses abound, and
much has been written about them (cf. Callison-
Burch et al. (2006); Reiter (2018)). This paper is
not, however, concerned with the shortcomings of
BLEU as a proxy for human evaluation of quality;
instead, our goal is to bring attention to the rela-
tively narrower problem of the reporting of BLEU
scores. This problem can be summarized as fol-
lows:

• BLEU is not a single metric, but requires a
number of parameters (§2.1).

• Preprocessing schemes have a large effect
on scores (§2.2). Importantly, BLEU scores
computed against differently-processed ref-
erences are not comparable.

• Papers vary in the hidden parameters and
schemes they use, yet often do not report
them (§2.3). Even when they do, it can be
hard to discover the details.

Together, these issues make it difficult to evaluate
and compare BLEU scores across papers, which
impedes comparison and replication. I quantify
these issues and show that they are serious, with
variances bigger than many reported gains. Af-
ter introducing the notion of user- versus metric-
supplied tokenization, I identify user-supplied ref-
erence tokenization as the main cause of this in-
compatibility. In response, I suggest the com-
munity use only metric-supplied reference tok-
enization when sharing scores,2 following the an-
nual Conference on Machine Translation (Bojar
et al., 2017, WMT). In support of this, I release a

2Sometimes referred to as detokenized BLEU, since it re-
quires that system output be detokenized prior to scoring.
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Python package, SACREBLEU,3 which automati-
cally downloads and stores references for common
test sets, thus introducing a “protective layer” be-
tween them and the user. It also provides a number
of other features, such as reporting a version string
which records the parameters used and which can
be included in published papers.

2 Problem Description

2.1 Problem: BLEU is underspecified
“BLEU” does not signify a single concrete
method, but a constellation of parameterized
methods. Among these parameters are:

• The number of references used;

• for multi-reference settings, the computation
of the length penalty;

• the maximum n-gram length; and

• smoothing applied to 0-count n-grams.

Many of these are not common problems in prac-
tice. Most often, there is only one reference, and
the length penalty calculation is therefore moot.
The maximum n-gram length is virtually always
set to four, and since BLEU is corpus level, it is
rare that there are any zero counts.

But it is also true that people use BLEU scores
as very rough guides to MT performance across
test sets and languages (comparing, for example,
translation performance into English from Ger-
man and Chinese). Apart from the wide intra-
language scores between test sets, the number of
references included with a test set has a large
effect that is often not given enough attention.
For example, WMT 2017 includes two references
for English–Finnish. Scoring the online-B sys-
tem with one reference produces a BLEU score of
22.04, and with two, 25.25. As another example,
the NIST OpenMT Arabic–English and Chinese–
English test sets4 provided four references and
consequently yielded BLEU scores in the high 40s
(and now, low 50s). Since these numbers are all
gathered together under the label “BLEU”, over
time, they leave an impression in people’s minds
of very high BLEU scores for some language pairs
or test sets relative to others, but without this crit-
ical distinguishing detail.

3pip3 install sacrebleu
4https://catalog.ldc.upenn.edu/

LDC2010T21

2.2 Problem: Different reference
preprocessings cannot be compared

The first problem dealt with parameters used in
BLEU scores, and was more theoretical. A second
problem, that of preprocessing, exists in practice.

Preprocessing includes input text modifications
such as normalization (e.g., collapsing punc-
tuation, removing special characters), tokeniza-
tion (e.g., splitting off punctuation), compound-
splitting, the removal of case, and so on. Its gen-
eral goal is to deliver meaningful white-space de-
limited tokens to the MT system. Of these, to-
kenization is one of the most important and cen-
tral. This is because BLEU is a precision metric,
and changing the reference processing changes the
set of n-grams against which system n-gram pre-
cision is computed. Rehbein and Genabith (2007)
showed that the analogous use in the parsing com-
munity of F1 scores as rough estimates of cross-
lingual parsing difficulty were unreliable, for this
exact reason. BLEU scores are often reported as
being tokenized or detokenized. But for comput-
ing BLEU, both the system output and reference
are always tokenized; what this distinction refers
to is whether the reference preprocessing is user-
supplied or metric-internal (i.e., handled by the
code implementing the metric), respectively. And
since BLEU scores can only be compared when
the reference processing is the same, user-supplied
preprocessing is error-prone and inadequate for
comparing across papers.

Table 1 demonstrates the effect of computing
BLEU scores with different reference tokeniza-
tions. This table presents BLEU scores where a
single WMT 2017 system (online-B) and the ref-
erence translation were both processed in the fol-
lowing ways:

• basic. User-supplied preprocessing with the
MOSES tokenizer (Koehn et al., 2007).5

• split. Splitting compounds, as in Luong et al.
(2015a):6 e.g., rich-text→ rich - text.

• unk. All word types not appearing at least
twice in the target side of the WMT training
data (with “basic” tokenization) are mapped
to UNK. This hypothetical scenario could

5Arguments -q -no-escape -protected
basic-protected-patterns -l LANG.

6Their use of compound splitting is not mentioned in
the paper, but only here: http://nlp.stanford.edu/
projects/nmt.
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English→ ? ?→English
config en-cs en-de en-fi en-lv en-ru en-tr cs-en de-en fi-en lv-en ru-en tr-en
basic 20.7 25.8 22.2 16.9 33.3 18.5 26.8 31.2 26.6 21.1 36.4 24.4
split 20.7 26.1 22.6 17.0 33.3 18.7 26.9 31.7 26.9 21.3 36.7 24.7
unk 20.9 26.5 25.4 18.7 33.8 20.6 26.9 31.4 27.6 22.7 37.5 25.2
metric 20.1 26.6 22.0 17.9 32.0 19.9 27.4 33.0 27.6 22.0 36.9 25.6
range 0.6 0.8 0.6 1.0 1.3 1.4 0.6 1.8 1.0 0.9 0.5 1.2
basiclc 21.2 26.3 22.5 17.4 33.3 18.9 27.7 32.5 27.5 22.0 37.3 25.2
splitlc 21.3 26.6 22.9 17.5 33.4 19.1 27.8 32.9 27.8 22.2 37.5 25.4
unklc 21.4 27.0 25.6 19.1 33.8 21.0 27.8 32.6 28.3 23.6 38.3 25.9
metriclc 20.6 27.2 22.4 18.5 32.8 20.4 28.4 34.2 28.5 23.0 37.8 26.4
rangelc 0.6 0.9 0.5 1.1 0.6 1.5 0.7 1.7 1.0 1.0 0.5 1.2

Table 1: BLEU score variation across WMT’17 language arcs for cased (top) and uncased (bottom) BLEU. Each
column varies the processing of the “online-B” system output and its references. basic denotes basic user-supplied
tokenization, split adds compound splitting, unk replaces words not appearing at least twice in the training data
with UNK, and metric denotes the metric-supplied tokenization used by WMT. The range row lists the difference
between the smallest and largest scores, excluding unk.

easily happen if this common user-supplied
preprocessing were inadvertently applied to
the reference.

• metric. Only the metric-internal tokeniza-
tion of the official WMT scoring script,
mteval-v13a.pl, is applied.7

The changes in each column show the effect
these different schemes have, as high as 1.8 for
one arc, and averaging around 1.0. The biggest
is the treatment of case, which is well known, yet
many papers are not clear about whether they re-
port cased or case-insensitive BLEU.

Allowing the user to handle pre-processing of
the reference has other traps. For example, many
systems (particularly before sub-word splitting
(Sennrich et al., 2016) was proposed) limited the
vocabulary in their attempt to deal with unknown
words. It’s possible that these papers applied this
same unknown-word masking to the references,
too, which would artificially inflate BLEU scores.
Such mistakes are easy to introduce in researcher
pipelines.8

2.3 Problem: Details are hard to come by
User-supplied reference processing precludes di-
rect comparison of published numbers, but if
enough detail is specified in the paper, it is at

7https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/mteval-v13a.pl

8This paper’s observations stem in part from an early ver-
sion of a research workflow I was using, which applied pre-
processing to the reference, affecting scores by half a point.

paper configuration
Chiang (2005) metriclc
Bahdanau et al. (2014) (unclear)
Luong et al. (2015b) user or metric (unclear)
Jean et al. (2015) user
Wu et al. (2016) user or userlc (unclear)
Vaswani et al. (2017) user or userlc (unclear)
Gehring et al. (2017) user, metric

Table 2: Benchmarks set by well-cited papers use dif-
ferent BLEU configurations (Table 1). Which one was
used is often difficult to determine.

least possible to reconstruct comparable numbers.
Unfortunately, this is not the trend, and even for
meticulous researchers, it is often unwieldy to in-
clude this level of technical detail. In any case,
it creates uncertainty and work for the reader. One
has to read the experiments section, scour the foot-
notes, and look for other clues which are some-
times scattered throughout the paper. Figuring out
what another team did is not easy.

The variations in Table 1 are only some of the
possible configurations, since there is no limit to
the preprocessing that a group could apply. But
assuming these represent common, concrete con-
figurations, one might wonder how easy it is to de-
termine which of them was used by a particular
paper. Table 2 presents an attempt to recover this
information from a handful of influential papers in
the literature. Not only are systems not compa-
rable due to different schemes, in many cases, no
easy determination can be made.
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Figure 1: The proper pipeline for computing reported
BLEU scores. White boxes denote user-supplied pro-
cessing, and the black box, metric-supplied. The user
should not touch the reference, while the metric applies
its own processing to the system output and reference.

2.4 Problem: Dataset specification
Other tricky details exist in the management of
datasets. It has been common over the past few
years to report results on the English→German
arc of the WMT’14 dataset. It is unfortunate,
therefore, that for this track (and this track alone),
there are actually two such datasets. One of them,
released for the evaluation, has only 2,737 sen-
tences, having removed about 10% of the origi-
nal data after problems were discovered during the
evaluation. The second, released after the evalu-
ation, restores this missing data (after correcting
the problem) and has 3,004 sentences. Many re-
searchers are unaware of this fact, and do not spec-
ify which version they use when reporting, which
itself contributes to variance.

2.5 Summary
Figure 1 depicts the ideal process for comput-
ing sharable scores. Reference tokenization must
identical in order for scores to be comparable. The
widespread use of user-supplied reference pre-
processing prevents this, needlessly complicating
comparisons. The lack of details about prepro-
cessing pipelines exacerbates this problem. This
situation should be fixed.

3 A way forward

3.1 The example of PARSEVAL
An instructive comparison comes from the eval-
uation of English parsing scores, where num-
bers have been safely compared across papers for
decades using the PARSEVAL metric (Black et al.,

1991). PARSEVAL works by taking labeled spans
of the form (N, i, j) representing a nonterminal
N spanning a constituent from word i to word
j. These are extracted from the parser output and
used to compute precision and recall against the
gold-standard set taken from the correct parse tree.
Precision and recall are then combined to compute
the F1 metric that is commonly reported and com-
pared across parsing papers.

Computing parser F1 comes with its own set
of hidden parameters and edge cases. Should
one count the TOP (ROOT) node? What about
-NONE- nodes? Punctuation? Should any la-
bels be considered equivalent? These boundary
cases are resolved by that community’s adoption
of a standard codebase, evalb,9 which included
a parameters file that answers each of these ques-
tions.10 This has facilitated almost thirty years of
comparisons on treebanks such as the Wall Street
Journal portion of the Penn Treebank (Marcus
et al., 1993).

3.2 Existing scripts
MOSES11 has a number of scoring scripts. Un-
fortunately, each of them has problems. Moses’
multi-bleu.perl cannot be used because it
requires user-supplied preprocessing. The same
is true of another evaluation framework, MultEval
(Clark et al., 2011), which explicitly advocates for
user-supplied tokenization.12 A good candidate
is Moses’ mteval-v13a.pl, which makes use
of metric-internal preprocessing and is used in the
annual WMT evaluations. However, this script in-
conveniently requires the data to be wrapped into
XML. Nematus (Sennrich et al., 2017) contains a
version (multi-bleu-detok.perl) that re-
moves the XML requirement. This is a good idea,
but it still requires the user to manually handle the
reference translations. A better approach is to keep
the reference away from the user entirely.

3.3 SACREBLEU

SACREBLEU is a Python script that aims to treat
BLEU with a bit more reverence:

• It expects detokenized outputs, applying its
own metric-internal preprocessing, and pro-
duces the same values as WMT;

9http://nlp.cs.nyu.edu/evalb/
10The configuration file, COLLINS.PRM, answers these

questions as no, no, no, and ADVP=PRT.
11http://statmt.org/moses
12https://github.com/jhclark/multeval
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• it automatically downloads and stores WMT
(2008–2018) and IWSLT 2017 (Cettolo et al.,
2017) test sets, obviating the need for the user
to handle the references at all; and

• it produces a short version string that docu-
ments the settings used.

SACREBLEU can be installed via the Python
package management system:

pip3 install sacrebleu

It can then be used to download the source
side of test sets as decoder input—all WMT test
sets are available, as well as recent IWSLT test
sets, and others are being added. After decoding
and detokenization, it can then used to produce
BLEU scores.13 The following command selects
the WMT’14 EN-DE dataset used in the official
evaluation:

cat output.detok \
| sacrebleu -t wmt14 -l en-de

(The restored version that was released after
the evaluation (§2.4) can be selected by us-
ing -t wmt14/full.) It prints out a version
string recording all the parameters as ’+’ de-
limited KEY.VALUE pairs (here shortened with
--short):

BLEU+c.mixed+l.en-de+#.1+s.exp
+t.wmt14+tok.13a+v.1.2.10

recording:

• mixed case evaluation

• on EN-DE

• with one reference

• and exponential smoothing

• on the WMT14 dataset

• using the WMT standard ’13a’ tokenization

• with SACREBLEU 1.2.10.

SACREBLEU is open source software released
under the Apache 2.0 license.

13The CHRF metric is also available via the -m flag.

4 Summary

Research in machine translation benefits from the
regular introduction of test sets for many different
language arcs, from academic, government, and
industry sources. It is a shame, therefore, that we
are in a situation where it is difficult to directly
compare scores across these test sets. One might
be tempted to shrug this off as an unimportant de-
tail, but as was shown here, these differences are in
fact quite important, resulting in large variances in
the score that are often much higher than the gains
reported by a new method.

Fixing the problem is relatively simple. Re-
search groups should only report BLEU computed
using a metric-internal tokenization and prepro-
cessing scheme for the reference, and they should
be explicit about the BLEU parameterization they
use. With this, scores can be directly compared.
For backwards compatibility with WMT results, I
recommend the processing scheme used by WMT,
and provide a new tool that makes it easy to do so.
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Abstract

A popular application of machine translation
(MT) is gisting: MT is consumed as is to
make sense of text in a foreign language.
Evaluation of the usefulness of MT for gist-
ing is surprisingly uncommon. The classical
method uses reading comprehension question-
naires (RCQ), in which informants are asked
to answer professionally-written questions in
their language about a foreign text that has
been machine-translated into their language.
Recently, gap-filling (GF), a form of cloze test-
ing, has been proposed as a cheaper alter-
native to RCQ. In GF, certain words are re-
moved from reference translations and read-
ers are asked to fill the gaps left using the
machine-translated text as a hint. This paper
reports, for the first time, a comparative evalu-
ation, using both RCQ and GF, of translations
from multiple MT systems for the same for-
eign texts, and a systematic study on the effect
of variables such as gap density, gap-selection
strategies, and document context in GF. The
main findings of the study are: (a) both RCQ
and GF clearly identify MT to be useful; (b)
global RCQ and GF rankings for the MT sys-
tems are mostly in agreement; (c) GF scores
vary very widely across informants, making
comparisons among MT systems hard, and (d)
unlike RCQ, which is framed around docu-
ments, GF evaluation can be framed at the sen-
tence level. These findings support the use of
GF as a cheaper alternative to RCQ.

1 Introduction

1.1 Machine translation for gisting

Machine translation (MT) applications fall in two
main groups: assimilation or gisting, and dissem-
ination. Assimilation refers to the use of the raw
MT output to make sense of foreign texts. Dis-
semination refers to the use of the MT output as
a draft translation that can be post-edited into a

publishable translation. The needs of both groups
of applications are quite different; for instance,
an otherwise perfect Russian to English transla-
tion but with no articles (some, a, the), is likely to
be fine for assimilation, but would need substan-
tial post-editing for dissemination. State-of-the-art
MT systems are however usually evaluated —even
if manually— (and optimized) with respect to their
ability to produce translations that resemble refer-
ences, regardless of the intended application for
the system.

Assimilation is by far the main use of MT
in number of words translated. It is either ex-
plicitly invoked, for instance, by visiting web-
pages such as Google Translate, or integrated into
browsers and social networks. Raw MT may
sometimes be the only feasible option,1 for in-
stance when dealing with user-generated content
or ephemeral material (such as product descrip-
tions in e-commerce).

1.2 Evaluation of MT for gisting

A straightforward (but costly) way to evaluate MT
for gisting measures the performance of target-
language readers in a text-mediated task —for
instance, a software installation task (Castilho
et al., 2014)— by using raw MT and compares it
with the performance reached using a professional
translation of the text.

However, there may be scenarios without an ob-
vious associated task: news, product and service
reviews, or literature. On the other hand, even
with a clear associated task, task completion eval-
uation is also quite expensive. It is therefore desir-
able to have alternative objective indicators which
work as good surrogates for actual task-oriented

1Twenty-five years ago, (Sager, 1993, p. 261) already
hinted at MT-only scenarios: “there may, indeed, be no single
situation in which either human or machine would be equally
suitable.”
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success.
Some authors have proposed eye-tracking (Do-

herty and O’Brien, 2009; Doherty et al., 2010;
Stymne et al., 2012; Doherty and O’Brien, 2014;
Castilho et al., 2014; Klerke et al., 2015; Castilho
and O’Brien, 2016; Sajjad et al., 2016) as a mea-
sure of machine translation usefulness, but the
technique is expensive and the evidence gathered
is rather indirect and does not have a straightfor-
ward interpretation in terms of usefulness.

There are many methods in which informants
are asked to judge the quality of machine-
translated sentences, usually as regards their
monolingual fluency (nativeness, grammaticality),
their bilingual adequacy (how much of the infor-
mation in the source sentence is present in the
machine-translated sentence), or even monolin-
gual adequacy (how much of the information in
the reference sentence is present in the machine-
translated sentence); informants may be asked ei-
ther to directly assess MT outputs by giving values
to these indicators in a predetermined scale or to
rank a number of MT outputs for the same source
sentence (sometimes being asked to consider as-
pects such as adequacy, fluency, or both). Direct
assessments of adequacy and MT ranking are the
official evaluation procedure for the most recent
WMT translation shared task campaigns (Bojar
et al., 2016, 2017). Other researchers use post-task
questionnaires (Stymne et al., 2012; Doherty and
O’Brien, 2014; Klerke et al., 2015; Castilho and
O’Brien, 2016) to assess the perceived usefulness
of MT output.

Direct assessment, ranking or post-task ques-
tionnaire evaluation methods are clearly subjec-
tive and require informants to make “in vitro”
judgements about the quality of MT outputs, with-
out considering their usefulness for a specific “in
vivo”, real-world application.

1.3 Reading comprehension questionnaires

Reading comprehension questionnaires (RCQ), as
used in the assessment of foreign-language learn-
ing, are the standard approach to evaluate MT for
gisting that measures reader performance in re-
sponse to MT. Readers answer questions using
either a machine-translated or a professionally-
translated version of the source text and their per-
formance on the tests (i.e. to what extent they an-
swer questions correctly) using the two sets of
texts is then compared. RCQ are however quite

costly: a human translation is needed for a con-
trol group and questions need to be professionally
written and often manually marked.

RCQ has a long history as an MT evalua-
tion method. Tomita et al. (1993), Fuji (1999),
and Fuji et al. (2001) evaluate the informative-
ness or usefulness of English–Japanese MT by
using standardized English-as-a-foreign-language
RCQs (TOEFL, TOEIC) which have been ma-
chine translated into Japanese and they are some-
times capable of distinguishing MT systems.
Jones et al. (2005b), Jones et al. (2005a), Jones
et al. (2007), and Jones et al. (2009) use the struc-
ture of standardized language proficiency tests
(Defence Language Proficiency Test, Interagency
Language Roundtable) to evaluate the readabil-
ity of Arabic–English MT texts. MT’ed docu-
ments are found to be harder to understand than
professional translations, and that they may be
assigned an intermediate level of English profi-
ciency. Berka et al. (2011) collected a set of En-
glish short paragraphs in various domains, created
yes/no questions in Czech about them, and ma-
chine translated the English paragraphs into Czech
with different MT systems. They found that out-
puts produced by different MT systems lead to dif-
ferent accuracy in the annotators’ answers. Weiss
and Ahrenberg (2012) evaluate comprehension of
Polish–English translations using RCQ tests and
found that a text with more MT errors have less
correct answers than a text with fewer MT errors.
Finally, Stymne et al. (2012) use RCQ to vali-
date eye-tracking as a tool for MT error analy-
sis for English–Swedish. Interestingly, for one of
their systems, the number of correct answers in the
RCQ tests were higher than for the human transla-
tion. However, test takers were more confident in
answering questions about the human translations
than about the MT outputs.

In this paper we explore RCQ as a measure of
MT quality by using the CREG-mt-eval corpus
(Scarton and Specia, 2016). In contrast to previ-
ous work, this paper presents an evaluation of MT
quality based on open questions that have different
levels of difficulty (as presented in Section 2) for
a considerable amount of documents (36 in con-
trast to only 2 analysed by Weiss and Ahrenberg
(2012)).
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1.4 An alternative: evaluation via gap-filling

An alternative approach to RCQs, gap filling
(GF), has been recently proposed (Trosterud and
Unhammer, 2012; O’Regan and Forcada, 2013;
Ageeva et al., 2015; Jordan-Núñez et al., 2017)
based on another typical way of measuring reading
comprehension: cloze (or closure) testing (Taylor,
1953). Instead of a question, readers get an incom-
plete sentence with one or more words replaced
by gaps, and are asked to fill the gaps. Indeed,
GF may be seen as equivalent to the answering of
simple reading comprehension questions: for in-
stance, a question like Who was the president of
the Green Party in 2011? would be equivalent to
the sentence with one gap In 2011, was
the president of the Green Party.

GF tasks are prepared by automatically punch-
ing gaps in reference sentences taken from a pro-
fessional translation of the source text. Infor-
mants are given the machine-translated sentence
as a “hint” for the gap-filling task; therefore, we
may view GF as a way of automatically generating
questions to evaluate the MT output. The evalua-
tion measure is the proportion of gaps that can be
successfully filled using MT as a hint. This can be
compared with the success rate in the case where
no hint (MT) is provided, to give an estimate of
the usefulness of MT output.

Note that cloze testing evaluation of machine
translation was attempted decades ago in a com-
pletely different readability setting: gaps were
then punched in machine-translated output and in-
formants tried to complete them without any fur-
ther hint (Crook and Bishop, 1965; Sinaiko and
Klare, 1972). This work was reviewed and ex-
tended later by Somers and Wild (2000). But fill-
ing gaps in machine-translated output may be un-
necessarily challenging and therefore make eval-
uation less adequate: for instance, informants
would sometimes have to fill gaps in disfluent or
ungrammatical text, which is much harder than
filling them in a fluent, professionally translated
reference, or, even in fluent output, a crucial con-
tent word that has been removed may be very hard
to guess unless the surrounding text is very redun-
dant. Moreover, the GF method described here has
an easier interpretation in terms of its analogy to
RCQ.

This paper systematically builds upon previous
work on GF to obtain experimental evidence that
gap-filling is a viable, lower-cost alternative to

RCQ evaluation. Its main contributions are:

• While Trosterud and Unhammer (2012),
O’Regan and Forcada (2013), and Ageeva et
al. (2015) used GF just to demonstrate the
usefulness of a single rule-based MT system
for each language pair studied, this paper,
like Jordan et al.’s (2017), performs a com-
parison of several MT systems for the same
language pair.

• Previous work (Trosterud and Unhammer,
2012; O’Regan and Forcada, 2013; Ageeva
et al., 2015; Jordan-Núñez et al., 2017) sim-
ply assumes the validity of GF as an evalu-
ation method for MT gisting, in some cases
arguing about its equivalence to RCQ. Ours
is the first work to actually compare GF and
RCQ evaluation of the same MT systems.

• Previous work used sentences (Trosterud and
Unhammer, 2012; O’Regan and Forcada,
2013; Ageeva et al., 2015) or short excerpts
of text (Jordan-Núñez et al., 2017), but did
not study the influence of a larger, document-
level machine-translated context around the
target sentence, as it is done here.

• This paper explores for the first time a gap-
positioning strategy based on an approximate
computation of gap entropy, and compares it
to random placing of gaps.

The paper is organized as follows: section 2
describes the design and implementation of both
evaluation methods, RCQ and GF; then section 3
reports and discusses the results obtained; and, fi-
nally, concluding remarks (section 4) close the pa-
per.

2 Methodology

2.1 Data and informants
We use an extended version of CREG-mt-eval
(Scarton and Specia, 2016), a version of the
expert-built CREG reading comprehension cor-
pus (Ott et al., 2012) for 2nd-language learners of
German. CREG was originally created to build
and evaluate systems that automatically correct
answers to open questions. CREG-mt-eval con-
tains 108 source (German) documents with differ-
ent domains, including literature, news, job ad-
verts, and others (on average 372 words and 33
sentences per document). The original documents
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were machine-translated in December 2015 into
English using four systems: an in-house baseline2

statistical phrase-based Moses (Koehn et al., 2007)
system trained on WMT 2015 data (Bojar et al.,
2015), Google Translate,3 Bing4 and Systran.5

CREG-mt-eval also contains professional transla-
tions of a subset of 36 documents (90–1500 words)
as a control group to check whether the questions
are adequate for the task. All questions from the
CREG original questionnaires (in German) were
professionally translated to English. On average,
there are 8.8 questions per document.

The questions in CREG-mt-eval are classified
(Meurers et al., 2011) as: literal, when they can
be answered directly from the text and refer to
explicit knowledge, such as names, dates (79%
of the total number of questions); reorganization,
also based on literal text understanding, but requir-
ing the combination of information from different
parts of the text (12% of the total number of ques-
tions); and inference, which involve combining lit-
eral information with world knowledge (9% of the
total number of questions).

Following Scarton and Specia (2016), test tak-
ers (informants) for both GF and RCQ were fluent
English-speaking volunteers, staff and students at
the University of Sheffield, who were paid (with
a 10 GBP online gift certificate) to complete the
task.

2.2 Reading comprehension questionnaire
task

For the version of CREG-mt-eval used herein,
thirty informants were given a set of six doc-
uments each and answered three to five ques-
tions per document, using only the English doc-
ument (either machine- or human-translated) pro-
vided. Therefore, for each of the 36 original doc-
uments, questions were answered using each ma-
chine translation system or the human translation.
Each document was only evaluated by one infor-
mant. The original German document was not
given. The guidelines were similar to those used
in other reading comprehension tests: test takers
were asked to answer the questions based on the

2http://www.statmt.org/moses/?n=moses.
baseline

3http://translate.google.co.uk/, presum-
ably a statistical system at that time.

4https://www.bing.com/translator/, also
presumably a statistical system at that time.

5http://www.systransoft.com/, presumably a
hybrid rule-based / statistical system at that time.

document provided. They were also advised to
read the questions first and then look for the infor-
mation required on the text in order to speed up the
task. Questions in CREG-mt-eval were marked as
proposed by Ott et al. (2012): correct answer (1
mark), if the answer is correct and complete; extra
concept (0.75 marks), when incorrect additional
concepts are added; missing concept (0.5 marks),
when important concepts are missing; blend (0.25
marks) when there are both extra and missing con-
cepts; and incorrect (0 marks), when the answer is
incorrect or missing.

Given the marks and the type of question, RCQ
overall scores (f ) are calculated as:

f = α · 1
Nl

Nl∑

k=1

lk + β · 1

Nr

Nr∑

k=1

rk + γ · 1
Ni

Ni∑

k=1

ik,

where Nl, Nr and Ni are the number of literal, re-
organization and inference questions, respectively,
lk, rk and ik are real values between 0 and 1, ac-
cording to the mark of question k, and α, β and γ
are weights for the different types of questions.

We experiment with three different types of
scores: simple (same weight for all question types:
α = β = γ = 1.0), i.e. marks are averaged giv-
ing all questions the same importance; weighted,
i.e. marks are averaged using different weights for
different types of question (α = 1, β = 2 and
γ = 3);6 and literal, where only marks for literal
questions are used to compute the average qual-
ity score (α = 1, β = γ = 0). The last score is
interesting because literal questions are the most
similar to gap-filling problems and correspond to
almost 80% of the corpus and they should be eas-
ier to answer than other types. Therefore, prob-
lems in answering a literal question may be a sign
of a bad quality translation.

Figure 1 shows an example of the question-
naires presented to the test takers. In this example,
the first, second and last questions are inference
questions, whilst the third and fourth questions are
literal questions.

2.3 Gap filling task
Twenty different kinds of configurations were
used in problems posed to informants. Sixteen
configurations used the four MT systems to gen-
erate hints, in two modalities (showing the full

6These values reflect the expected relative difficulty of
questions: inference harder than reorganization, and reorga-
nization harder than literal.
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Figure 1: A screenshot of a RCQ questionnaire.

machine-translated document, or just the prob-
lem sentence) and with two different gap densities
(10% or 20%). We added 4 additional configura-
tions with no hint, using the same two gap den-
sities, and with two different gap-selection strate-
gies (statistical language model entropy and ran-
dom).

The gap entropy at position k of sentence wN
1 is

given by,

H(k,wN
1 ) = −

∑

x∈V
p(x|wn

1 , k) log2 p(x|wn
1 , k),

with V the target vocabulary (including the un-
known word UNK), and with

p(x|wn
1 , k) =

p(wk−1
1 xwN

k+1)∑

x′∈V
p(wk−1

1 x′wN
k+1)

,

estimated using a 3-gram language model trained
trained using KenLM (Heafield, 2011) on the En-
glish NewsCommentary version 8 corpus.7 Gaps

7http://www.statmt.org/wmt13

are punched in order of decreasing entropy, disal-
lowing gaps at stop-words or punctuation, and en-
suring that two gaps are never consecutive or sep-
arated only by stop-words or punctuation.

To select important sentences for the test, for
each of the reference documents, the best single-
sentence summary was selected as the problem
sentence using GenSim.8

Each of 60 informants was given exactly one
problem per document. Problem configurations
were assigned such that each informant tackled at
least one problem in each configuration, and each
document was evaluated 3 times in each configu-
ration. The mean time per problem was about 1
minute.

To create the user interface for the task we mod-
ified9 Ageeva et al.’s (2015) version of an older

8https://rare-technologies.com/
text-summarization-with-gensim/; the per-
centage of text to be kept in the summary is reduced until it
contains a single sentence.

9https://github.com/mlforcada/Appraise
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version (2014) of Federmann’s (2012) Appraise.10

Each problem was presented in Appraise in a sin-
gle screen, divided in three sections. The top of
each screen reminded informants about the objec-
tive of the task. Immediately below, a machine-
translated Hint text is provided for those 16 con-
figurations that have one. The sentence in the
hint text corresponding to the problem sentence
is highlighted when a complete document is pro-
vided. At the bottom of the screen, the Problem
sentence containing the gaps to be filled is pro-
vided. Figure 2 shows a screenshot of the inter-
face, where a whole machine-translated document
is shown as a hint, with the key sentence high-
lighted. The score for each problem and config-
uration is simply the ratio of correctly filled gaps.

3 Results

Table 1 shows, for each system, the averaged in-
formant performance (see Appendix A for details)
for the GF and RCQ quality scores explained pre-
viously; BLEU and NIST scores are also given as
a reference. In view that score distributions are
actually very far from normality, the usual signif-
icance tests (such as Welch’s t-test) are not ap-
plicable; therefore, statistical significances of dif-
ferences between RCQ and GF scores will be re-
ported throughout using the distribution-agnostic
Kolmogorov–Smirnov test.11 Note that previous
work in RCQ did not provide statistical signif-
icance when comparing different hinting condi-
tions, and that only Jordan et al. (2017) provided
that information for GF.

3.1 Reading comprehension questionnaire
scores

According to all three variations of RCQ scores,
and contrary to BLEU and NIST, Systran appears
to be better than the homebrew Moses. The RCQ
scores for the professionally translated documents
(’Human’ row on the table) are higher than those
for the best MT system, which shows that the
questions are answerable from the texts and that
informants did follow the guidelines as expected.

We also report the statistical significance of
score differences and find (a) the only statisti-
cally significant difference at α < 0.05 between
MT systems for any score type is between Google

10https://github.com/cfedermann/
Appraise

11https://en.wikipedia.org/wiki/
Kolmogorov-Smirnov_test

and the homebrew Moses; (b) all three scores
of Bing, Google and Systran are statistically in-
distinguishable among them; (c) some (but not
all) scores obtained with the professional transla-
tion are not statistically different from those ob-
tained with Google, Bing or Systran MT output;
and (d) all three scores obtained with the profes-
sional translation are statistically distinguishable
from those with Moses output.

3.2 Gap-filling

Gap placement strategy: Filling of gaps in the
absence of a hint was done in two configurations:
one where gaps were punched at random, and one
where gaps were punched where LM entropy was
maximum. Entropy appears to make gap filling
more difficult in the absence of hints (19.6% vs.
25.8% success rate) The value of pKS = 0.081,
above the customaryα = 0.05 significance thresh-
old, would however tentatively support our use of
entropy-selected gaps in all situations where MT
was used as a hint.

Comparing MT systems: Taking all MT sys-
tems together, one can see that the success rate
(58%) is, as expected, 3 times larger than that ob-
tained without MT using the entropy-driven gap
placing strategy (19%) and this difference is statis-
tically significant. The homebrew Moses system is
the least helpful (55.9%), and Bing the most help-
ful (62.6%), but the only statistically significant
difference is between these two (pKS = 0.005)
and between Bing and Systran (pKS = 0.044).
Even with 432 problems solved for each system,
MT systems were hard to distinguish by success
rate (Jordan et al. (2017) report clearer differ-
ences between systems, but the paper does not
clarify whether they are running the same prob-
lems through all MT systems to ensure the inde-
pendence of their comparisons).

Figure 3 shows box-and-whisker plots of the
distribution of performance across all 60 infor-
mants for each MT system. The large overlap ob-
served among the four MT systems illustrates how
hard it is to simply average gap-filling scores to
evaluate them.

Even if annotators are quite different, each one
of them may still be consistent in the relative
scores they give to different MT systems. Plot-
ting the average score each informant gives to
each MT system against their average score for all
systems after removing four clearly outlying in-
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Figure 2: A screenshot of the gap-filling evaluation interface, showing a whole machine-translated document as a hint (with
the key sentence highlighted).

BLEU NIST RCQ scores GF scores
Simple Weighted Literal Overall 10% 20%

Google 0.306 4.66 0.753 0.748 0.776 0.592 0.565 0.619
Bing 0.281 4.40 0.709 0.695 0.734 0.618 0.595 0.640

Homebrew 0.241 4.51 0.594 0.577 0.608 0.550 0.547 0.553
Systran 0.203 3.05 0.680 0.670 0.701 0.569 0.544 0.595

MT Average 0.684 0.673 0.705 0.582 0.563 0.602

Human 1.000 10.0 0.813 0.810 0.872

No hint (random) 0.258 0.302 0.213
No hint (entropy) 0.193 0.191 0.195
No hint (average) 0.225 0.247 0.204

Table 1: A comparison of BLEU and NIST scores, RCQ marks in the three possible weightings, and GF success rates at
different densities.

formants, Pearson correlations are only moderate
(ranging between 0.47 and 0.73), and the slopes
asystem of line fits of the form score(system) =
asystemscore(all) show the same ranking as aver-
age scores: ahomebrew = 0.95, aSystran = 0.97,
aGoogle = 1.00, aBing = 1.06, but are very close
to each other and their confidence intervals over-
lap substantially.

Effect of context: In half of the configurations
with MT hints, a single machine-translated sen-
tence was shown; in the other half, the whole
machine-translated document was shown as a hint.
The results indicate that extended context, instead
of helping, seems to make the task slightly more
difficult (58.3% vs. 59.5% success rate), but dif-
ferences are not statistically significant; therefore,
GF scores in Table 1 are average scores obtained
with and without context. This supports evaluation

through simpler GF tasks based on single-sentence
hints.

Effect of gap density: Gaps were punched with
two different densities, 10% and 20%, to check
if a higher gap density would make the problem
harder. Contrary to intuition, the task becomes
easier when gap density is higher, and the result
is statistically significant (pKS < 0.001). This
unexpected result is however easily explained as
follows: problems with 20% gap density contain
all of the high-entropy gaps present in 10% prob-
lems, plus additional lower-entropy gaps, which
are easier to fill successfully, and therefore, the
average success rate rises. In the no-hint situa-
tion, however, as shown in Table 1, higher densi-
ties would seem to make the problem harder, per-
haps because the only information available to fill
the gaps comes from the problem sentence itself,
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Figure 3: Box-and-whisker plots of the distribution of informant performance for each MT system.

and higher gap densities substantially reduce the
number of available content words in the sentence.
However, the differences are not statistically sig-
nificant.

Gap density and MT evaluation: When com-
paring MT systems using only the 10% gap den-
sity problems, no differences are found to be sta-
tistically significant. This means that for very hard
gaps, systems would appear to behave similarly.
When selecting a value of 20% for the gap density
(some easier gaps are included), Bing and Google
do appear to be significantly better than the home-
brew Moses.

Inter-annotator agreement: As 3 different in-
formants filled the gaps for exactly the same set
of problems and configurations, with 20 such sets
available, we studied the pairwise Pearson corre-
lation r of their GF success in each of the 36 prob-
lems.12 All values of r were found to be positive,
averaging around 0.58, a sign of rather good inter-
annotator agreement. After removing two outlying
informants (r < 0.1), results did not appreciably
change.

Allowing for synonyms: The GF success scores
reported thus far have been computed by giving
credit only to exact matches. We have studied
giving credit to synonyms observed in informant
work, namely to those appearing at least twice (in
the work of all informants) that, according to one

12The usual Fleiss’ kappa statistic cannot be applied here
because the labels are not nominal or taken from a discrete
set, but rather numerical success rates.

of the authors, preserved the meaning of the prob-
lem sentence, or were trivial spelling or case vari-
ations. A total of 124 frequent valid substitutions
were considered. As expected, GF success rates
(see table 2) increase considerably, for example,
from 22.7% to 32.2% for no hint, or from 58.9% to
75.5% for all systems averaged. The relative rank-
ing of MT systems is maintained; the statistical
significance of the homebrew Moses results ver-
sus Bing results is maintained, and two additional
statistically significant differences appear: Google
vs. homebrew Moses and Systran vs. homebrew
Moses. The statistical significance of the effect
of gap density disappears when allowing for syn-
onyms. This indicates that it would be beneficial
to assign credit to synonyms if the necessary lan-
guage resources are available or if further analysis
of actual GF results is feasible.

3.3 Correlation between GF and RCQ

One of our main goals was to explore whether
GF would be able to reproduce the results of the
established method in the field, RCQ. Table 1
shows reasonable agreement between RCQ and
GF scores: both give the homebrew Moses system
the worst score, and commercial statistical sys-
tems (Bing and Google) get the best scores. Also,
as commonly found for subjective judgements (for
example, Callison-Burch et al. (2006)), BLEU and
NIST penalize the rule-based Systran system with
respect to the statistical homebrew system, while
measurements of human performance do not, but
the differences observed are however not statisti-
cally significant.
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GF scores with synonyms GF scores without synonyms
System Overall 10% 20% Overall 10% 20%
Google 0.757 0.711 0.776 0.592 0.565 0.619
Bing 0.795 0.785 0.804 0.618 0.595 0.640

Homebrew 0.704 0.711 0.697 0.550 0.547 0.553
Systran 0.765 0.750 0.781 0.569 0.544 0.595

MT Average 0.755 0.746 0.765 0.582 0.563 0.602

No hint (random) 0.339 0.379 0.299 0.258 0.302 0.213
No hint (entropy) 0.306 0.322 0.290 0.193 0.191 0.195
No hint (average) 0.322 0.350 0.294 0.225 0.247 0.204

Table 2: Effect in success rates of allowing for synonyms in GF

On the other hand, GF and RCQ scores assigned
to specific (document, MT system) pairs show low
correlation. This may be due to the scarcity of
RCQ data (only one data point per document–MT
system pair, as compared to of 12 data points for
GF), or to the fact that, while RCQ takes the whole
document into account, GF only looks at a specific
sentence. In addition, the RCQ tests and the sen-
tence selected for GF for a given document may
not directly correspond, i.e. the information re-
quired from the document to answer the RCQ tests
may differ from the information required to fill the
gaps in a given sentence. This happens because
the comprehension questions may target different
parts of the text and do not require the sentence
selected by our GF approach. A natural follow up
of this work is to use sentences for GF directly re-
lated to the RCQ tests.

4 Concluding remarks

We have compared two methods for the evalu-
ation of MT in gisting applications: the well-
established method using reading comprehension
questionnaires and an alternative method: gap fill-
ing. While RCQ require the manual preparation
of questionnaires for each document, and grading
of answers to open questions, GF is cheaper, as
it only needs reference translations for one or a
few sentences in each document and both ques-
tions and scores can be obtained automatically. GF
is fast and easily crowdsourceable.

In GF, without a hint, we found that entropy-
selected gaps appear to be harder than random
gaps. We therefore recommend using entropy-
selected gaps to discourage guesswork and incen-
tivize annotators to rely on the MT hints. Provid-
ing the whole machine-translated document as a
hint does not seem to help as compared with pro-

viding only the machine-translated version of the
problem sentence. This would suggest the possi-
bility of framing GF evaluation around single sen-
tences.

RCQ scores obtained using a machine-
translated text range between 70% and 95% of the
scores obtained using a professionally-translated
text. In GF, the presence of a machine-translated
text clearly improves performance (by about
3 times). Both results are a clear indication of the
usefulness of raw MT in gisting applications.

Both RCQ and GF rank a low-quality home-
brew Moses system worst, but differ as regards the
best MT system, although differences are not al-
ways statistically significant. It would seem as if
informants make do with any MT system regard-
less of small differences in quality. The discrimi-
native power of RCQ and GF evaluations is, how-
ever, quite low; this may be due to the scarcity
of data; if one expects that the collection of larger
amounts of human evaluation data (like the crowd-
sourced direct assessment (judgement) results de-
scribed by Bojar et al. (2016)) would increase the
discriminative power of the evaluation method,
this would be much more feasible using GF, than
the more costly RCQ.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt
Post, Raphael Rubino, Lucia Specia, and Marco
Turchi. 2017. Findings of the 2017 conference on
machine translation. In Proceedings of the Sec-
ond Conference on Machine Translation: Volume
2, Shared Task Papers, volume 2, pages 169–214,
Copenhagen, Denmark.
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Portorož, Slovenia.

Sheila Castilho, Sharon O’Brien, Fabio Alves, and
Morgan O’Brien. 2014. Does post-editing increase
usability? a study with Brazilian Portuguese as tar-
get language. In Proceedings of the 17th Annual
conference of the European Association for Machine
translation, EAMT 2014, pages 183–190. European
Association for Machine Translation.

M Crook and H Bishop. 1965. Evaluation of machine
translation, final report. Technical report, Institute
for Psychological Research, Tufts University, Med-
ford, MA.

Stephen Doherty and Sharon O’Brien. 2009. Can MT
output be evaluated through eye tracking? In The
12th Machine Translation Summit, pages 214–221,
Ottawa, Canada.

Stephen Doherty and Sharon O’Brien. 2014. Assessing
the Usability of Raw Machine Translated Output:
A User-Centred Study using Eye Tracking. Inter-
national Journal of Human-Computer Interaction,
30(1):40–51.

Stephen Doherty, Sharon O’Brien, and Michael Carl.
2010. Eye tracking as an automatic MT evaluation
technique. Machine Translation, 24:1–13.

Christian Federmann. 2012. Appraise: An open-source
toolkit for manual evaluation of machine translation
output. The Prague Bulletin of Mathematical Lin-
guistics, 98:25–35.

M. Fuji, N. Hatanaka, E. Ito, S. Kamei, H. Kumai,
T. Sukehiro, T. Yoshimi, and H. Isahara. 2001. Eval-
uation Method for Determining Groups of Users
Who Find MT “Useful”. In The Eightth Machine
Translation Summit, pages 103–108, Santiago de
Compostela, Spain.

Masaru Fuji. 1999. Evaluation experiment for read-
ing comprehension of machine translation outputs.
In The Seventh Machine Translation Summit, pages
285–289, Singapore, Singapore.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguis-
tics.

Douglas Jones, Edward Gibson, Wade Shen, Neil Gra-
noien, Martha Herzog, Douglas Reynolds, and Clif-
ford Weinstein. 2005a. Measuring human readabil-
ity of machine generated text: three case studies in
speech recognition and machine translation. In Pro-
ceedings.(ICASSP’05). IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing,
2005., volume 5, pages v:1009–v:1012. IEEE.

Douglas Jones, Martha Herzog, Hussny Ibrahim,
Arvind Jairam, Wade Shen, Edward Gibson, and
Michael Emonts. 2007. ILR-based MT compre-
hension test with multi-level questions. In Hu-
man Language Technologies 2007: The Conference
of the North American Chapter of the Association
for Computational Linguistics; Companion Volume,
Short Papers, pages 77–80. Association for Compu-
tational Linguistics.

Douglas Jones, Wade Shen, and Martha Herzog. 2009.
Machine translation for government applications.
Lincoln Laboratory Journal, 18(1).

Douglas A. Jones, Edward Gibson, Wade Shen, Neil
Granoien, Martha Herzog, Douglas Reynolds, and
Clifford Weinstein. 2005b. Measuring Translation
Quality by Testing English Speakers with a New De-
fense Language Proficiency Test for Arabic. In The

201



International Conference on Intelligence Analysis,
McLean, VA.
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A Supplemental material

Raw gap-filling results for 2159 prob-
lems,13 60 informants, 36 documents, and
20 configurations, are available for down-
load at the following address: http:
//www.dlsi.ua.es/˜mlf/wmt2018/
raw-gap-filling-results.csv.

Raw reading comprehension test results
for 36 documents, four different MT systems
(Google, Bing, Moses and Systran) and one
human reference are available, totalling 180
documents. Each document was assessed by one
test taker. The markings for questions available
in each document and the final document scores

13Should have been 2160 = 36 × 60, but data for one
specific document, informant and configuration, was lost due
to a bug in the Appraise system.
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used in this paper (namely simple, weighted or
literal) are available for download at: http:
//www.dlsi.ua.es/˜mlf/wmt2018/
raw-reading-comprehension-results.
csv.
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Abstract

Neural Machine Translation (NMT) typically
leverages monolingual data in training through
backtranslation. We investigate an alterna-
tive simple method to use monolingual data
for NMT training: We combine the scores of
a pre-trained and fixed language model (LM)
with the scores of a translation model (TM)
while the TM is trained from scratch. To
achieve that, we train the translation model to
predict the residual probability of the train-
ing data added to the prediction of the LM.
This enables the TM to focus its capacity on
modeling the source sentence since it can rely
on the LM for fluency. We show that our
method outperforms previous approaches to
integrate LMs into NMT while the architec-
ture is simpler as it does not require gating
networks to balance TM and LM. We observe
gains of between +0.24 and +2.36 BLEU on
all four test sets (English-Turkish, Turkish-
English, Estonian-English, Xhosa-English) on
top of ensembles without LM. We compare
our method with alternative ways to uti-
lize monolingual data such as backtranslation,
shallow fusion, and cold fusion.

1 Introduction

Machine translation (MT) relies on parallel train-
ing data, which is difficult to acquire. In contrast,
monolingual data is abundant for most languages
and domains. Traditional statistical machine trans-
lation (SMT) effectively leverages monolingual
data using language models (LMs) (Brants et al.,
2007). The combination of LM and TM in SMT
can be traced back to the noisy-channel model
which applies the Bayes rule to decompose a

0This work was done when the first author was on an in-
ternship at Facebook.

translation system (Brown et al., 1993):

ŷ =argmax
y

P (y|x)

= argmax
y

PTM (x|y)PLM (y)
(1)

where x = (x1, . . . , xm) is the source sentence,
y = (y1, . . . , yn) is the target sentence, and
PTM (·) and PLM (·) are translation model and lan-
guage model probabilities.

In contrast, NMT (Sutskever et al., 2014; Bah-
danau et al., 2014) uses a discriminative model and
learns the distribution P (y|x) directly end-to-end.
Therefore, the vanilla training regimen for NMT is
not amenable to integrating an LM or monoglin-
gual data in a straightforward manner.

An early attempt to use LMs for NMT, also
known as shallow fusion, combines LM and
NMT scores at inference time in a log-linear
model (Gulcehre et al., 2015, 2017). In contrast,
we integrate the LM scores during NMT train-
ing. Our training procedure first trains an LM on
a large monolingual corpus. We then hold the LM
fixed and train the NMT system to optimize the
combined score of LM and NMT on the parallel
training set. This allows the NMT model to fo-
cus on modeling the source sentence, while the
LM handles the generation based on the target-
side history. Sriram et al. (2017) explored a simi-
lar idea for speech recognition using a gating net-
work for controlling the relative contribution of
the LM. We show that our simpler architecture
without an explicit control mechanism is effective
for machine translation. We observe gains of up to
more than 2 BLEU points from adding the LM to
TM training. We also show that our method can
be combined with backtranslation (Sennrich et al.,
2016a), yielding further gains over systems with-
out LM.
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2 Related Work

2.1 Inference-time Combination
Shallow fusion (Gulcehre et al., 2015) integrates
an LM by changing the decoding objective to:

ŷ = argmax
y

logPTM(y|x) + λ logPLM(y). (2)

PLM(·) is produced by an LSTM-based RNN-
LM (Mikolov et al., 2010) which has been
trained on monolingual target language data.
PTM(·) can be a typical encoder-decoder Seq2Seq
model (Sutskever et al., 2014; Bahdanau et al.,
2014; Luong et al., 2015a). λ is a hyper-parameter
which is tuned on the development set.

2.2 Cold Fusion
Shallow fusion combines a fixed TM with a fixed
LM at inference time. Sriram et al. (2017) pro-
posed to keep the LM fixed, but train a sequence
to sequence (Seq2Seq) NMT model from scratch
which includes the LM as a fixed part of the net-
work. They argue that this approach allows the
Seq2Seq network to use its model capacity for the
conditioning on the source sequence since the lan-
guage modeling aspect is already covered by the
LM. Their cold fusion architecture includes a gat-
ing network which learns to regulate the contribu-
tions of the LM at each time step. They demon-
strated superior performance of cold fusion on a
speech recognition task.

2.3 Other Approaches
Gulcehre et al. (2015, 2017) suggest to combine a
pre-trained RNN-LM with a pre-trained NMT sys-
tem using a controller network that dynamically
adjusts the weights between RNN-LM and NMT
at each time step (deep fusion). Both deep fusion
and n-best reranking with count-based LMs have
been used in WMT evaluation systems (Jean et al.,
2015; Wang et al., 2017). An important limitation
of these approaches is that LM and TM are trained
independently.

A second line of research augments the parallel
training data with additional synthetic data from a
monolingual corpus in the target language. The
source sentences can be generated with a sepa-
rate translation system (Schwenk, 2008; Sennrich
et al., 2016a) (backtranslation), or simply copied
over from the target side (Currey et al., 2017).
Since data augmentation methods rely on some

balance between real and synthetic data (Sennrich
et al., 2016a; Currey et al., 2017; Poncelas et al.,
2018), they can often only use a small fraction of
the available monolingual data. A third class of
approaches change the NMT training loss func-
tion to incorporate monolingual data. For exam-
ple, Cheng et al. (2016); Tu et al. (2017) pro-
posed to add autoencoder terms to the training
objective which capture how well a sentence can
be reconstructed from its translated representation.
However, training with respect to the new loss is
often computationally intensive and requires ap-
proximations. Alternatively, multi-task learning
has been used to incorporate source-side (Zhang
and Zong, 2016) and target-side (Domhan and
Hieber, 2017) monolingual data. Another way
of utilizing monolingual data in both source and
target language is to warm start Seq2Seq train-
ing from pre-trained encoder and decoder net-
works (Ramachandran et al., 2017; Skorokhodov
et al., 2018). We note that pre-training can be used
in combination with our approach.

An extreme form of leveraging monolingual
training data is unsupervised NMT (Lample et al.,
2017; Artetxe et al., 2017) which removes the need
for parallel training data entirely. In this work, we
assume to have access to some amount of parallel
training data, but aim to improve the translation
quality even further by using a language model.

3 Translation Model Training under
Language Model Predictions

In spirit of the cold fusion technique of Sriram
et al. (2017) we also keep the LM fixed when train-
ing the translation network. However, we greatly
simplify the architecture by removing the need for
a gating network. We follow the usual left-to-right
factorization in NMT:

P (y|x) =
n∏

t=1

P (yt|yt−11 ,x). (3)

Let STM(yt|yt−11 ,x) be the output of the TM
projection layer without softmax, i.e., what we
would normally call the logits. We investigate
two different ways to parameterize P (yt|yt−11 ,x)
using STM(yt|yt−11 ,x) and a fixed and pre-
trained language model PLM(·): POSTNORM and
PRENORM.

POSTNORM This variant is directly inspired by
shallow fusion (Eq. 2) as we turn STM(yt|yt−11 ,x)
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into a probability distribution using a softmax
layer, and sum its log-probabilities with the log-
probabilities of the LM, i.e. multiply their proba-
bilities:

P (yt|yt−11 ,x) =softmax(STM(yt|yt−11 ,x))

· PLM(yt|yt−11 ).
(4)

PRENORM Another option is to apply normal-
ization after combining the raw STM(yt|yt−11 ,x)
scores with the LM log-probability:

P (yt|yt−11 ,x) =softmax
(
STM(yt|yt−11 ,x)

+ logPLM(yt|yt−11 )
)
.

(5)

3.1 Theoretical Discussion of POSTNORM

and PRENORM

Note that P (yt|yt−11 ,x) might not represent a
valid probability distribution under the POST-
NORM criterion since, as component-wise prod-
uct of two distributions, it is not guaranteed to
sum to 1. A way to fix this issue would be to
combine TM and LM probabilities in the proba-
bility space rather than in the log space. However,
we have found that probability space combination
does not work as well as POSTNORM in our exper-
iments. We can describe STM(yt|yt−11 ,x) under
POSTNORM informally as the residual probability
added to the prediction of the LM.

It is interesting to investigate what signal is
actually propagated into STM(yt|yt−11 ,x) when
training with the PRENORM strategy. We can
rewrite P (yt|yt−11 ,x) as:

P (yt|yt−11 ,x) =
P (yt, y

t−1
1 |x)

P (yt−11 |x)

=
P (yt,x|yt−11 )

P (x|yt−11 )

=
P (x|yt, yt−11 )

P (x|yt−11 )
P (yt|yt−11 ).

(6)

Alternatively, we can decompose P (yt|yt−11 ,x) as

Language pair # Sentences
Turkish-English (WMT) 207.7K
Estonian-English (WMT) 2,178.0K
Xhosa-English (INTERNAL) 739.2K

Table 1: Parallel training data.

Language # Sentences LM Perplexity
dev test

English (WMT) 26.9M 91.16 87.77
Turkish (WMT) 3.0M 59.19 70.46
English (INTERNAL) 20.0M 105.28 108.19

Table 2: Monolingual training data.

follows using Eq. 5:

P (yt|yt−11 ,x) =softmax
(
STM(yt|yt−11 ,x)

+ logPLM(yt|yt−11 )
)

∝ exp
(
STM(yt|yt−11 ,x)

+ logPLM(yt|yt−11 )
)

=exp(STM(yt|yt−11 ,x))

· PLM(yt|yt−11 ).

(7)

Combining Eq. 6 and Eq. 7 leads to:

exp(STM(yt|yt−11 ,x)) ∝ P (x|yt1)
P (x|yt−11 )

(8)

This means that STM(yt|yt−11 ,x) under
PRENORM is trained to predict how much
more likely the source sentence becomes when a
particular target token yt is revealed.

4 Experimental Setup

We evaluate our method on a variety of pub-
licly available and proprietary data sets. For
our Turkish-English (tr-en), English-Turkish (en-
tr), and Estonian-English (et-en) experiments we
use all available parallel data from the WMT18
evaluation campaign to train the translation mod-
els. Our language models are trained on News
Crawl 2017. We use news-test2017 as develop-
ment (“dev”) set and news-test2018 as test set.

Additionally, we collected our own proprietary
corpus of public posts on Facebook. We refer to
it as ‘INTERNAL’ data set. This corpus consists
of monolingual English in-domain sentences and
parallel data in Xhosa-English. Training set sizes
are summarized in Tables 1 and 2.

Our preprocessing consists of lower-casing, to-
kenization, and subword-segmentation using joint
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Architecture Hyperparameters
Source vocab size (BPE) 16,000
Target vocab size (BPE) 16,000
Embedding size (all) 256
Encoder LSTM units 512
Encoder layers 2
Decoder LSTM units 512
Decoder layers 2
Attention type dot product

Training Settings
Optimization Vanilla SGD
Learning rate 0.5
Batch size 32
Label smoothing ε 0.1
Checkpoint averaging Last 10

Table 3: Summary of NMT settings for all models.

byte pair encoding (Sennrich et al., 2016b) with
16K merge operations. On Turkish, we addition-
ally remove diacritics from the text.

On WMT we use lower-cased Sacre-
BLEU1 (Post, 2018) to be comparable with
the literature.2 On our internal data we report
tokenized BLEU scores.

Our Seq2Seq models are encoder-decoder ar-
chitectures (Sutskever et al., 2014; Bahdanau
et al., 2014) with dot-product attention (Luong
et al., 2015b) trained with our PyTorch Trans-
late library.3 Both decoder and encoder consist
of two 512-dimensional LSTM layers and 256-
dimensional embeddings. The first encoder layer
is bidirectional, the second one runs from right to
left. Our training and architecture hyperparame-
ters are summarized in Tab. 3. Our LSTM-based
LMs have the same size and architecture as the de-
coder networks, but do not use attention and do not
condition on the source sentence. We run beam
search with beam size of 6 in all our experiments.

For each setup we train five models using SGD
(batch size of 32 sentences) with learning rate
decay and label smoothing, and either select the
best one (single system) or ensemble the four best
models based on dev set BLEU score.

5 Results

Tab. 4 compares our methods PRENORM and
POSTNORM on the tested language pairs. Shal-
low fusion (Sec. 2.1) often leads to minor im-
provements over the baseline for both single sys-
tems and ensembles. We also reimplemented the

1SacreBLEU signature for tr-en test-2017:
BLEU+c.lc+l.tr-en+#.1+s.exp+t.wmt17+tok.13a+v.1.2.10

2For translation into Turkish we evaluate after diacritics
removal.

3https://github.com/pytorch/translate

English-Turkish (WMT)
Method Single 4-Ensemble

dev test dev test
Baseline (no LM) 12.23 11.56 14.17 13.35
Shallow fusion 12.45 11.61 14.43 13.51
Cold fusion 12.39 11.54 14.20 13.23
This work: PRENORM 12.82 11.93 14.78 13.41
This work: POSTNORM 13.30 12.27 14.77 13.61

Turkish-English (WMT)
Method Single 4-Ensemble

dev test dev test
Baseline (no LM) 16.14 16.60 18.01 18.67
Shallow fusion 16.11 16.70 18.01 18.67
Cold fusion 16.25 16.21 17.99 18.40
This work: PRENORM 15.88 16.39 17.95 18.40
This work: POSTNORM 16.59 17.03 18.38 19.17

Estonian-English (WMT)
Method Single 4-Ensemble

dev test dev test
Baseline (no LM) 16.02 16.57 16.83 17.91
Shallow fusion 16.02 16.57 16.83 17.91
Cold fusion 15.40 15.99 16.48 17.79
This work: PRENORM 16.80 17.44 17.78 19.01
This work: POSTNORM 16.43 17.10 17.62 18.63

Xhosa-English (INTERNAL)
Method Single 4-Ensemble

dev test dev test
Baseline (no LM) 10.39 11.49 13.87 15.43
Shallow fusion 10.69 11.65 14.06 15.54
Cold fusion 10.72 11.29 13.66 15.13
This work: PRENORM 11.06 12.13 14.50 16.07
This work: POSTNORM 12.34 13.27 15.45 17.79

Table 4: Comparison of our PRENORM and POST-
NORM combination strategies with shallow fu-
sion (Gulcehre et al., 2015) and cold fusion (Sriram
et al., 2017) under an RNN-LM.

cold fusion technique (Sec. 2.2) for comparison.
For our machine translation experiments we re-
port mixed results with cold fusion, with per-
formance ranging between 0.33 BLEU gain on
Xhosa-English and slight BLEU degradation in
most of our Turkish-English experiments.

Both of our methods, PRENORM and POST-
NORM yield significant improvements in BLEU
across the board. We report more consistent gains
with POSTNORM than with PRENORM. All our
POSTNORM systems outperform both shallow fu-
sion and cold fusion on all language pairs, yielding
test set gains of up to +2.36 BLEU (Xhosa-English
ensembles).

6 Discussion and Analysis

Backtranslation A very popular technique to
use monolingual data for NMT is backtransla-
tion (Sennrich et al., 2016a). Backtranslation
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Figure 1: Performance using backtranslation on
English-Turkish. Synthetic sentences are mixed at a
ratio of 1:n where n is plotted on the x-axis.

Figure 2: Convergence of NMT training with and with-
out LM on English-Turkish.

uses a reverse NMT system to translate mono-
lingual target language sentences into the source
language, and adds the newly generated sentence
pairs to the training data. The amount of monolin-
gual data which can be used for backtranslation is
usually limited by the size of the parallel corpus
as the translation quality suffers when the mix-
ing ratio between synthetic and real source sen-
tences is too large (Poncelas et al., 2018). This
is a severe limitation particularly for low-resource
MT. Fig. 1 shows that both our baseline system
without LM and our POSTNORM system benefit
greatly from backtranslation up to a mixing ratio
of 1:8, but degrade slightly if this ratio is exceeded.
POSTNORM is significantly better than the base-
line even when using it in combination with back-
translation.

Training convergence We have found that
training converges faster under the POSTNORM

loss. Fig. 2 plots the training curves of our sys-

English-Turkish (WMT, single system)
Method Dev set Test set

FFN RNN FFN RNN
Baseline (no LM) 12.23 11.56
Shallow fusion 12.25 12.45 11.53 11.61
Cold fusion 12.33 12.39 11.51 11.54
This work: PRENORM 12.76 12.82 11.82 11.93
This work: POSTNORM 12.65 13.30 11.79 12.27

Table 5: Comparison between using a recurrent LM
(RNN) and an n-gram based feedforward LM (FFN)
on English-Turkish.

English-Turkish (WMT), POSTNORM strategy
LM type Single 4-Ensemble

FFN RNN dev test dev test
12.23 11.56 14.17 13.35

X 12.65 11.79 14.36 13.48
X 13.30 12.27 14.77 13.61

X X 12.86 12.02 14.72 13.70

Table 6: Combining an RNN-LM and a feedforward
LM with the translation model using the POSTNORM
strategy.

tems. The baseline (orange curve) reaches its max-
imum of 19.39 BLEU after 28 training epochs.
POSTNORM surpasses this BLEU score already
after 12 epochs.

Language model type So far we have used re-
current neural network language models (Mikolov
et al., 2010, RNN-LM) with LSTM cells in all
our experiments. We can also parameterize an
n-gram language model with a feedforward neu-
ral network (Bengio et al., 2003, FFN-LM). In
order to compare both language model types we
trained a 4-gram feedforward LM with two 512-
dimensional hidden layers and 256-dimensional
embeddings on Turkish monolingual data. Tab. 5
shows that the PRENORM strategy works particu-
larly well for the n-gram LM. However, using an
RNN-LM with the POSTNORM strategy still gives
the best overall performance. Using both RNN
and n-gram LM at the same time does not improve
translation quality any further (Tab. 6).

Impact on the TM distribution With the POST-
NORM strategy, the TM still produces a distribu-
tion over the target vocabulary as the scores are

Method Perplexity Average entropy
Baseline (no LM) 23.46 3.19
RNN-LM 59.19 4.66
TM under POSTNORM 113.69 1.82

Table 7: Perplexity and average entropies of the dis-
tributions generated by our systems on the English-
Turkish dev set.
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Method BLEU Precisions BP
1-gram 2-gram 3-gram 4-gram

Baseline (no LM) 17.91 53.0 23.7 12.3 6.6 0.996
This work: PRENORM 19.01 54.0 24.9 13.4 7.4 1.000
Relative improvement +6.14% +1.89% +5.06% +8.94% +12.12% –

Table 8: BLEU n-gram precisions for Estonian-English.

Source Eestis ja Hispaanias peeti kinni neli Kemerovo grupeeringu liiget
Reference Four members of the Kemerovo group arrested in Estonia and Spain
Baseline (no LM) In Estonia and Spain, four kemerovo groups were held
This work (PRENORM) Four Kemerovo group members were held in Estonia and Spain
Source Ta tleb, et elab aastaid hiljem endiselt hirmus.
Reference He says that years later, he still lives in fear.
Baseline (no LM) He says that, for years, he still lives in fear.
This work (PRENORM) He says that many years later he still lives in fear.
Source “Ma kardan,” tleb ta.
Reference “I’m afraid,” he says.
Baseline (no LM) “I fear,” says he.
This work (PRENORM) “I am afraid,” he says.

Table 9: Translation samples from the Estonian-English test set.

normalized before the combination with the LM.
This raises a natural question: How different are
the distributions generated by a TM trained un-
der POSTNORM loss from the distributions of the
baseline system without LM? Tab. 7 gives some
insight to that question. As expected, the RNN-
LM has higher perplexity than the baseline as it is
a weaker model of translation. The RNN-LM also
has a higher average entropy which indicates that
the LM distributions are smoother than those from
the baseline translation model. The TM trained
under POSTNORM loss has a much higher per-
plexity which suggests that it strongly relies on the
LM predictions and performs poorly when it is not
combined with it. However, the average entropy is
much lower (1.82) than both other models, i.e. it
produces much sharper distributions.

Language models improve fluency A tradi-
tional interpretation of the role of an LM in MT
is that it is (also) responsible for the fluency of
translations (Koehn, 2009). Thus, we would ex-
pect more fluent translations from our method than
from a system without LM. Tab. 8 breaks down
the BLEU score of the baseline and the PRENORM

ensembles on Estonian-English into n-gram preci-
sions. Most of the BLEU gains can be attributed to
the increase in precision of higher order n-grams,
indicating improvements in fluency. Tab. 9 shows
some examples where our PRENORM system pro-
duces a more fluent translation than the baseline.

Training set size We artificially reduced the size
of the English-Turkish training set even further

Figure 3: English-Turkish BLEU over training set size.

to investigate how well our method performs in
low-resource settings (Fig. 3). Our POSTNORM

strategy outperforms the baseline regardless of the
number of training sentences, but the gains are
smaller on very small training sets.

7 Conclusion

We have presented a simple yet very effective
method to use language models in NMT which in-
corporates the LM already into NMT training. We
reported significant and consistent gains from us-
ing our method in four language directions over
two alternative ways to integrate LMs into NMT
(shallow fusion and cold fusion) and showed that
our approach works well even in combination with
backtranslation and on top of ensembles. Our
method leads to faster training convergence and
more fluent translations than a baseline system
without LM.
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Abstract

We study two problems in neural machine
translation (NMT). First, in beam search,
whereas a wider beam should in principle help
translation, it often hurts NMT. Second, NMT
has a tendency to produce translations that are
too short. Here, we argue that these prob-
lems are closely related and both rooted in la-
bel bias. We show that correcting the brevity
problem almost eliminates the beam problem;
we compare some commonly-used methods
for doing this, finding that a simple per-word
reward works well; and we introduce a simple
and quick way to tune this reward using the
perceptron algorithm.

1 Introduction

Although highly successful, neural machine trans-
lation (NMT) systems continue to be plagued by a
number of problems. We focus on two here: the
beam problem and the brevity problem.

First, machine translation systems rely on
heuristics to search through the intractably large
space of possible translations. Most commonly,
beam search is used during the decoding process.
Traditional statistical machine translation systems
often rely on large beams to find good translations.
However, in neural machine translation, increas-
ing the beam size has been shown to degrade per-
formance. This is the last of the six challenges
identified by Koehn and Knowles (2017).

The second problem, noted by several authors,
is that NMT tends to generate translations that
are too short. Jean et al. (2015) and Koehn
and Knowles address this by dividing translation
scores by their length, inspired by work on au-
dio chords (Boulanger-Lewandowski et al., 2013).
A similar method is also used by Google’s pro-
duction system (Wu et al., 2016). A third sim-
ple method used by various authors (Och and Ney,
2002; He et al., 2016; Neubig, 2016) is a tunable

reward added for each output word. Huang et al.
(2017) and Yang et al. (2018) propose variations
of this reward that enable better guarantees during
search.

In this paper, we argue that these two problems
are related (as hinted at by Koehn and Knowles)
and that both stem from label bias, an undesirable
property of models that generate sentences word
by word instead of all at once.

The typical solution is to introduce a sentence-
level correction to the model. We show that mak-
ing such a correction almost completely eliminates
the beam problem. We compare two commonly-
used corrections, length normalization and a word
reward, and show that the word reward is slightly
better.

Finally, instead of tuning the word reward using
grid search, we introduce a way to learn it using a
perceptron-like tuning method. We show that the
optimal value is sensitive both to task and beam
size, implying that it is important to tune for every
model trained. Fortunately, tuning is a quick post-
training step.

2 Problem

Current neural machine translation models are ex-
amples of locally normalized models, which es-
timate the probability of generating an output se-
quence e = e1:m as

P(e1:m) =

m∏

i=1

P(ei | e1:i−1).

For any partial output sequence e1:i, let us call
P(e′ | e1:i), where e′ ranges over all possible com-
pletions of e1:i, the suffix distribution of e1:i. The
suffix distribution must sum to one, so if the model
overestimates P(e1:i), there is no way for the suf-
fix distribution to downgrade it. This is known as
label bias (Bottou, 1991; Lafferty et al., 2001).
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a/0.
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chopper/0.3
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Figure 1: Label bias causes this toy word-by-word
translation model to translate French un hélicoptère in-
correctly to an autogyro.

2.1 Label bias in sequence labeling

Label bias was originally identified in the con-
text of HMMs and MEMMs for sequence-labeling
tasks, where the input sequence f and output se-
quence e have the same length, and P(e1:i) is con-
ditioned only on the partial input sequence f1:i. In
this case, since P(e1:i) has no knowledge of future
inputs, it’s much more likely to be incorrectly es-
timated. For example, suppose we had to trans-
late, word-by-word, un hélicoptère to a helicopter
(Figure 1). Given just the partial input un, there is
no way to know whether to translate it as a or an.
Therefore, the probability for the incorrect transla-
tion P(an) will turn out to be an overestimate. As a
result, the model will overweight translations be-
ginning with an, regardless of the next input word.

This effect is most noticeable when the suffix
distribution has low entropy, because even when
new input (hélicoptère) is revealed, the model
will tend to ignore it. For example, suppose that
the available translations for hélicoptère are heli-
copter, chopper, whirlybird, and autogyro. The
partial translation a must divide its probability
mass among the three translations that start with a
consonant, while an gives all its probability mass
to autogyro, causing the incorrect translation an
autogyro to end up with the highest probability.

In this example, P(an), even though overesti-
mated, is still lower than P(a), and wins only be-
cause its suffixes have higher probability. Greedy
search would prune the incorrect prefix an and
yield the correct output. In general, then, we might
expect greedy or beam search to alleviate some
symptoms of label bias. Namely, a prefix with
a low-entropy suffix distribution can be pruned if
its probability is, even though overestimated, not
among the highest probabilities. Such an observa-
tion was made by Zhang and Nivre (2012) in the

context of dependency parsing, and we will see
next that precisely such a situation affects output
length in NMT.

2.2 Length bias in NMT

In NMT, unlike the word-by-word translation ex-
ample in the previous section, each output symbol
is conditioned on the entire input sequence. Nev-
ertheless, it’s still possible to overestimate or un-
derestimate p(e1:i), so the possibility of label bias
still exists. We expect that it will be more visi-
ble with weaker models, that is, with less training
data.

Moreover, in NMT, the output sequence is of
variable length, and generation of the output se-
quence stops when </s> is generated. In effect,
for any prefix ending with </s>, the suffix dis-
tribution has zero entropy. This situation paral-
lels example of the previous section closely: if the
model overestimates the probability of outputting
</s>, it may proceed to ignore the rest of the input
and generate a truncated translation.

Figure 2 illustrates how this can happen. Al-
though the model can learn not to prefer shorter
translations by predicting a low probability for
</s> early on, at each time step, the score of </s>
puts a limit on the total remaining score a transla-
tion can have; in the figure, the empty translation
has score −10.1, so that no translation can have
score lower than −10.1. This lays a heavy burden
on the model to correctly guess the total score of
the whole translation at the outset.

As in our label-bias example, greedy search
would prune the incorrect empty translation. More
generally, consider beam search: at time step t,
only the top k partial or complete translations are
retained while the rest are pruned. (Implementa-
tions of beam search vary in the details, but this
variant is simplest for the sake of argument.) Even
if a translation ending at time t scores higher than a
longer translation, as long as it does not fall within
the top k when compared with partial translations
of length t (or complete translations of length at
most t), it will be pruned and unable to block
the longer translation. But if we widen the beam
(k), then translation accuracy will suffer. We call
this problem (which is Koehn and Knowles’s sixth
challenge) the beam problem. Our claim, hinted at
by Koehn and Knowles (2017), is that the brevity
problem and the beam problem are essentially the
same, and that solving one will solve the other.
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Figure 2: A locally normalized model must determine,
at each time step, a “budget” for the total remaining
log-probability. In this example sentence, “The British
women won Olymp ic gold in p airs row ing,” the empty
translation has initial position 622 in the beam. Already
by the third step of decoding, the correct translation
has a lower score than the empty translation. However,
using greedy search, a nonempty translation would be
returned.

3 Correcting Length

To address the brevity problem, many designers of
NMT systems add corrections to the model. These
corrections are often presented as modifications to
the search procedure. But, in our view, the brevity
problem is essentially a modeling problem, and
these corrections should be seen as modifications
to the model (Section 3.1). Furthermore, since
the root of the problem is local normalization, our
view is that these modifications should be trained
as globally-normalized models (Section 3.2).

3.1 Models
Without any length correction, the standard model
score (higher is better) is:

s(e) =

m∑

i=1

log P(ei | e1:i).

To our knowledge, there are three methods in
common use for adjusting the model to favor
longer sentences.

Length normalization divides the score by m
(Koehn and Knowles, 2017; Jean et al., 2015;
Boulanger-Lewandowski et al., 2013):

s′(e) = s(e) / m.

Google’s NMT system (Wu et al., 2016) relies
on a more complicated correction:

s′(e) = s(e)
/ (5 + m)α

(5 + 1)α
.

Finally, some systems add a constant word re-
ward (He et al., 2016):

s′(e) = s(e) + γm.

If γ = 0, this reduces to the baseline model. The
advantage of this simple reward is that it can be
computed on partial translations, making it easier
to integrate into beam search.

3.2 Training
All of the above modifications can be viewed as
modifications to the base model so that it is no
longer a locally-normalized probability model.

To train this model, in principle, we should use
something like the globally-normalized negative
log-likelihood:

L = − log
exp s′(e∗)∑
e exp s′(e)

where e∗ is the reference translation. However, op-
timizing this is expensive, as it requires perform-
ing inference on every training example or heuris-
tic approximations (Andor et al., 2016; Shen et al.,
2016).

Alternatively, we can adopt a two-tiered model,
familiar from phrase-based translation (Och and
Ney, 2002), first training s and then training s′

while keeping the parameters of s fixed, possibly
on a smaller dataset. A variety of methods, like
minimum error rate training (Och, 2003; He et al.,
2016), are possible, but keeping with the globally-
normalized negative log-likelihood, we obtain, for
the constant word reward, the gradient:

∂L
∂γ

= −|e∗| + E[|e|].

If we approximate the expectation using the mode
of the distribution, we get

∂L
∂γ
≈ −|e∗| + |ê|

where ê is the 1-best translation. Then the stochas-
tic gradient descent update is just the familiar per-
ceptron rule:

γ ← γ + η (|e∗| − |ê|),
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although below, we update on a batch of sentences
rather than a single sentence. Since there is only
one parameter to train, we can train it on a rela-
tively small dataset.

Length normalization does not have any addi-
tional parameters, with the result (in our opin-
ion, strange) that a change is made to the model
without any corresponding change to training. We
could use gradient-based methods to tune the α in
the GNMT correction, but the perceptron approx-
imation turns out to drive α to ∞, so a different
method would be needed.

4 Experiments

We compare the above methods in four set-
tings, a high-resource German–English system,
a medium-resource Russian–English system, and
two low-resource French–English and English–
French systems. For all settings, we show that
larger beams lead to large BLEU and METEOR
drops if not corrected. We also show that the opti-
mal parameters can depend on the task, language
pair, training data size, as well as the beam size.
These values can affect performance strongly.

4.1 Data and settings

Most of the experimental settings below follow
the recommendations of Denkowski and Neubig
(2017). Our high-resource, German–English data
is from the 2016 WMT shared task (Bojar et al.,
2016). We use a bidirectional encoder-decoder
model with attention (Bahdanau et al., 2015).1

Our word representation layer has 512 hidden
units, while other hidden layers have 1024 nodes.
Our model is trained using Adam with a learning
rate of 0.0002. We use 32k byte-pair encoding
(BPE) operations learned on the combined source
and target training data (Sennrich et al., 2016).
We train on minibatches of size 2012 words and
validate every 100k sentences, selecting the final
model based on development perplexity.

Our medium-resource, Russian–English system
uses data from the 2017 WMT translation task,
which consists of roughly 1 million training sen-
tences (Bojar et al., 2017). We use the same archi-
tecture as our German–English system, but only
have 512 nodes in all layers. We use 16k BPE
operations and dropout of 0.2. We train on mini-

1We use Lamtram (Neubig, 2015) for all experiments and
our modifications have been added to the project.

batches of 512 words and validate every 50k sen-
tences.

Our low-resource systems use French and En-
glish data from the 2010 IWSLT TALK shared
task (Paul et al., 2010). We build both French–
English and English–French systems. These net-
works are the same as for the medium Russian-
English task, but use only 6k BPE operations. We
train on minibatches of 512 words and validate ev-
ery 30k sentences, restarting Adam when the de-
velopment perplexity goes up.

To tune our correction parameters, we use 1000
sentences from the German–English development
dataset, 1000 sentences from the Russian–English
development dataset, and the entire development
dataset for French–English (892 sentences)2. We
initialize the parameter, γ = 0.2. We use batch
gradient descent, which we found to be much more
stable than stochastic gradient descent, and use a
learning rate of η = 0.2, clipping gradients for γ
to 0.5. Training stops if all parameters have an
update of less than 0.03 or a max of 25 epochs
was reached.

4.2 Solving the length problem solves the
beam problem

Here, we first show that the beam problem is in-
deed the brevity problem. We then demonstrate
that solving the length problem does solve the
beam problem. Tables 1, 2, and 3 show the re-
sults of our German–English, Russian–English,
and French–English systems respectively. Each
table looks at the impact on BLEU, METEOR,
and the ratio of the lengths of generated sentences
compared to the gold lengths (Papineni et al.,
2002; Denkowski and Lavie, 2014). The baseline
method is a standard model without any length
correction. The reward method is the tuned con-
stant word reward discussed in the previous sec-
tion. Norm refers to the normalization method,
where a hypothesis’ score is divided by its length.

4.2.1 Baseline
The top sections of Tables 1, 2, 3 illustrate the
brevity and beam problems in the baseline mod-
els. As beam size increases, the BLEU and ME-
TEOR scores drop significantly. This is due to
the brevity problem, which is illustrated by the
length ratio numbers that also drop with increased

2We found through preliminary experiments that this size
of dev subset was an adequate trade-off between tuning speed
and performance.
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Russian–English (medium) Beam Size
10 50 75 100 150 1000

baseline BLEU 24.9 23.8 23.6 23.3 22.5 3.7
METEOR 30.9 30.0 29.7 29.4 28.8 12.8
length 0.90 0.86 0.85 0.84 0.81 0.31

reward BLEU 26.5 26.6 26.5 26.5 26.5 25.7
METEOR 32.0 32.0 31.9 31.9 31.9 31.2
length 0.98 0.98 0.98 0.98 0.98 1.02
γ 0.716 0.643 0.640 0.633 0.617 0.562

norm BLEU 26.2 26.3 26.3 26.3 26.3 25.3
METEOR 31.8 31.8 31.8 31.7 31.7 31.2
length 0.96 0.96 0.96 0.96 0.97 1.02

Table 1: Results of the Russian–English translation system. We report BLEU and METEOR scores, as well as the
ratio of the length of generated sentences compared to the correct translations (length). γ is the word reward score
discovered during training. Here, we examine a much larger beam (1000). The beam problem is more pronounced
at this scale, with the baseline system losing over 20 BLEU points when increasing the beam from size 10 to 1000.
However, both our tuned length reward score and length normalization recover most of this loss.

German–English (large) Beam Size
10 50 75

baseline BLEU 29.6 28.6 28.2
METEOR 34.0 33.1 32.8
length 0.95 0.90 0.89

reward BLEU 30.3 30.6 30.6
METEOR 34.9 34.8 34.9
length 1.02 1.00 1.00
γ 0.67 0.57 0.58

norm BLEU 30.7 31.0 30.9
METEOR 34.9 35.0 35.0
length 1.00 1.00 1.00

Table 2: Results of the high-resource German–English system. Rows: BLEU, METEOR, length = ratio of output
to reference length; γ = learned parameter value. While baseline performance decreases with beam size due to the
brevity problem, other methods perform more consistently across beam sizes. Length normalization (norm) gets
the best BLEU scores, but similar METEOR scores to the word reward.

216



French–English (small) Beam Size
10 50 100 150 200

baseline BLEU 30.0 28.9 25.4 21.9 19.4
METEOR 32.4 31.3 28.6 25.9 24.1
length 0.94 0.89 0.80 0.71 0.64

reward BLEU 29.4 29.7 29.7 29.8 29.8
METEOR 32.8 32.9 32.9 32.9 32.9
length 1.03 1.03 1.03 1.03 1.03
γ 1.20 1.05 1.01 0.99 0.97

norm BLEU 30.7 30.8 30.7 30.7 30.7
METEOR 32.8 32.8 32.8 32.7 32.7
length 0.97 0.97 0.97 0.96 0.96

English–French (small) Beam Size
10 50 100 150 200

baseline BLEU 25.8 26.1 26.1 25.5 24.3
METEOR 47.8 47.5 47.2 46.3 44.2
length 1.03 1.01 1.00 0.97 0.92

reward BLEU 25.5 25.5 25.5 25.5 25.5
METEOR 48.3 48.5 48.5 48.5 48.4
length 1.05 1.05 1.05 1.05 1.05
γ 0.353 0.444 0.465 0.474 0.475

norm BLEU 25.4 25.5 25.5 25.5 25.5
METEOR 48.4 48.4 48.4 48.4 48.4
length 1.06 1.05 1.05 1.05 1.05

Table 3: Results of low-resource French–English and English–French systems. Rows: BLEU, METEOR, length =

ratio of output to reference length; γ = learned parameter value. While baseline performance decreases with beam
size due to the brevity problem, other methods perform more consistently across beam sizes. Word reward gets the
best scores in both directions on METEOR. Length normalization (norm) gets the best BLEU scores in Fra-Eng
due to the slight bias of BLEU towards shorter translations.

beam 10 50 75 100 150 200

French–English (small) 6.9 27.2 52.4 71.1 105.9 176.6
English–French (small) 12.6 44.2 67.3 88.1 107.5 111.2
German–English (large) 6.8 132.6 1066

Table 4: Tuning time on top of baseline training time. Times are in minutes on 1000 dev examples (German–
English) or 892 dev examples (French–English). Due to the much larger model size, we only looked at beam sizes
up to 75 for German–English.
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beam size. For larger beam sizes, the length of
the generated output sentences are a fraction of
the lengths of the correct translations. For the
lower-resource French–English task, the drop is
more than 8 BLEU when increasing the beam size
from 10 to 150. The issue is even more evident
in our Russian-English system where we increase
the beam to 1000 and BLEU scores drop by more
than 20 points.

4.2.2 Word reward
The results of tuning the word reward, γ, as de-
scribed in Section 3.2, is shown in the second sec-
tion of Tables 1, 2, and 3. In contrast to our base-
line systems, our tuned word reward always fixes
the brevity problem (length ratios are approxi-
mately 1.0), and generally fixes the beam problem.
An optimized word reward score always leads to
improvements in METEOR scores over any of the
best baselines. Across all language pairs, reward
and norm have close METEOR scores, though the
reward method wins out slightly. BLEU scores for
reward and norm also increase over the baseline in
most cases, despite BLEU’s inherent bias towards
shorter sentences. Most notably, whereas the base-
line Russian–English system lost more than 20
BLEU points when the beam was increased to
1000, our tuned reward score resulted in a BLEU
gain over any baseline beam size. Whereas in our
baseline systems, the length ratio decreases with
larger beam sizes, our tuned word reward results
in length ratios of nearly 1.0 across all language
pairs, mitigating many of the issues of the brevity
problem.

4.2.3 Wider beam
We note that the beam problem in NMT exists
for relatively small beam sizes – especially when
compared to traditional beam sizes in SMT sys-
tems. On our medium-resource Russian–English
system, we investigate the full impact of this prob-
lem using a much larger beam size of 1000. In Ta-
ble 1, we can see that the beam problem is particu-
larly pronounced. The first row of the table shows
the uncorrected, baseline score. From a beam of
10 to a beam of 1000, the drop in BLEU scores is
over 20 points. This is largely due to the brevity
problem discussed earlier. The second row of the
table shows the length of the translated outputs
compared to the lengths of the correct translations.
Though the problem persists even at a beam size
of 10, at a beam size of 1000, our baseline system

generates less than one third the number of words
that are in the correct translations. Furthermore,
37.3% of our translated outputs have sentences of
length 0. In other words, the most likely transla-
tion is to immediately generate the stop symbol.
This is the problem visualized in Figure 2.

However, when we tune our word reward score
with a beam of 1000, the problem mostly goes
away. Over the uncorrected baseline, we see a
22.0 BLEU point difference for a beam of 1000.
Over the uncorrected baseline with a beam of 10,
the corrected beam of 1000 gets a BLEU gain of
0.8 BLEU. However, the beam of 1000 still sees
a drop of less than 1.0 BLEU over the best cor-
rected version. The word reward method beats the
uncorrected baseline and the length normalization
correction in almost all cases.

4.2.4 Short sentences
Another way to demonstrate that the beam prob-
lem is the same as the brevity problem is to look
at the translations generated by baseline systems
on shorter sentences. Figure 3 shows the BLEU
scores of the Russian–English system for beams of
size 10 and 1000 on sentences of varying lengths,
with and without correcting lengths. The x-axes of
the figure are cumulative: length 20 includes sen-
tences of length 0–20, while length 10 includes 0–
10. It is worth noting that BLEU is a word-level
metric, but the systems were built using BPE; so
the sequences actually generated are longer than
the x-axes would suggest.

The baseline system on sentences with 10 words
or less still has relatively high BLEU scores—even
for a beam of 1000. Though there is a slight drop
in BLEU (less than 2), it is not nearly as severe as
when looking at the entire test set (more than 20).
When correcting for length with normalization or
word reward, the problem nearly disappears when
considering the entire test set, with reward do-
ing slightly better. For comparison, the rightmost
points in each of the subplots correspond to the
BLEU scores in columns 10 and 1000 of Table 1.
This suggests that the beam problem is strongly
related to the brevity problem.

4.2.5 Length ratio
The interaction between the length problem and
the beam problem can be visualized in the his-
tograms of Figure 4 on the Russian–English sys-
tem. In the upper left plot, the uncorrected model
with beam 10 has the majority of the generated
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Figure 3: Impact of beam size on BLEU score when varying reference sentence lengths (in words) for Russian–
English. The x-axis is cumulative moving right; length 20 includes sentences of length 0-20, while length 10
includes 0-10. As reference length increases, the BLEU scores of a baseline system with beam size of 10 remain
nearly constant. However, a baseline system with beam 1000 has a high BLEU score for shorter sentences, but a
very low score when the entire test set is used. Our tuned reward and normalized models do not suffer from this
problem on the entire test set, but take a slight performance hit on the shortest sentences.

Figure 4: Histogram of length ratio between generated sentences and gold varied across methods and beam size
for Russian–English. Note that the baseline method skews closer 0 as the beam size increases, while our other
methods remain peaked around 1.0. There are a few outliers to the right that have been cut off, as well as the peaks
at 0.0 and 1.0.
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sentences with a length ratio close to 1.0, the gold
lengths. Going down the column, as the beam size
increases, the distribution of length ratios skews
closer to 0. By a beam size of 1000, 37% of the
sentences have a length of 0. However, both the
word reward and the normalized models remain
very peaked around a length ratio of 1.0 even as
the beam size increases.

4.3 Tuning word reward

Above, we have shown that fixing the length prob-
lem with a word reward score fixes the beam prob-
lem. However these results are contingent upon
choosing an adequate word reward score, which
we have done in our experiments by optimization
using a perceptron loss. Here, we show the sen-
sitivity of systems to the value of this penalty, as
well as the fact that there is not one correct penalty
for all tasks. It is dependent on a myriad of factors
including, beam size, dataset, and language pair.

4.3.1 Sensitivity to γ
In order to investigate how sensitive a system is
to the reward score, we varied values of γ from 0
to 1.2 on both our German–English and Russian–
English systems with a beam size of 50. BLEU
scores and length ratios on 1000 heldout devel-
opment sentences are shown in Figure 5. The
length ratio is correlated with the word reward
as expected, and the BLEU score varies by more
than 5 points for German–English and over 4.5
points for Russian–English. On German–English,
our method found a value of γ = 0.57, which is
slightly higher than optimal; this is because the
heldout sentences have a slightly shorter length
ratio than the training sentences. Conversely, on
Russian–English, our found value of γ = 0.64 is
slightly lower than optimal as these heldout sen-
tences have a slightly higher length ratio than the
sentences used in training.

4.3.2 Optimized γ values
Tuning the reward penalty using the method de-
scribed in Section 3.2 resulted in consistent im-
provements in METEOR scores and length ratios
across all of our systems and language pairs. Ta-
bles 1, 2, and 3 show the optimized value of γ for
each beam size. Within a language pair, the op-
timal value of γ is different for every beam size.
Likewise, for a given beam size, the optimal value
is different for every system. Our French–English
and English–French systems in Table 3 have the
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Figure 5: Effect of word penalty on BLEU and hy-
pothesis length for Russian–English (top) and German-
English (bottom) on 1000 unseen dev examples with
beams of 50. Note that the vertical bars represent the
word reward that was found during tuning.

exact same architecture, data, and training criteria.
Yet, even for the same beam size, the tuned word
reward scores are very different.

Training dataset size Low-resource neural ma-
chine translation performs significantly worse than
high-resource machine translation (Koehn and
Knowles, 2017). Table 5 looks at the impact of
training data size on BLEU scores and the beam
problem by using 10% and 50% of the available
Russian–English data. Once again, the optimal
value of γ is different across all systems and beam
sizes. Interestingly, as the amount of training data
decreases, the gains in BLEU using a tuned reward
penalty increase with larger beam sizes. This sug-
gests that the beam problem is more prevalent in
lower-resource settings, likely due to the fact that
less training data can increase the effects of label
bias.
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Russian–English (medium) Beam Size
Dataset Size 10 50 75 100 150

baseline 24.9 23.8 23.6 23.3 22.5
100% reward 26.5 26.6 26.5 26.5 26.5

γ 0.716 0.643 0.640 0.633 0.617

baseline 22.8 21.4 20.8 20.4 19.2
50% reward 24.7 25.0 24.9 24.9 25.0

γ 0.697 0.645 0.638 0.636 0.646

baseline 17.0 16.2 15.8 15.6 15.1
10% reward 17.6 18.0 18.0 18.0 18.1

γ 0.892 0.835 0.773 0.750 0.800

Table 5: Varying the size of the Russian–English training dataset results in different optimal word reward scores
(γ). In all settings, the tuned score alleviates the beam problem. As the datasets get smaller, using a tuned larger
beam improves the BLEU score over a smaller tuned beam. This suggests that lower-resource systems are more
susceptible to the beam problem.

4.3.3 Tuning time
Fortunately, the tuning process is very inexpen-
sive. Although it requires decoding on a develop-
ment dataset multiple times, we only need a small
dataset. The time required for tuning our French–
English and German–English systems is shown in
Table 4. These experiments were run on an Nvidia
GeForce GTX 1080Ti. The tuning usually takes
a few minutes to hours, which is just a fraction of
the overall training time. We note that there are nu-
merous optimizations that could be taken to speed
this up even more, such as storing the decoding
lattice for partial reuse. However, we leave this
for future work.

4.4 Word reward vs. length normalization

Tuning the word reward score generally had
higher METEOR scores than length normaliza-
tion across all of our settings. With BLEU, length
normalization beat the word reward on German-
English and French–English, but tied on English-
French and lost on Russian–English. For the
largest beam of 1000, the tuned word reward had
a higher BLEU than length normalization. Over-
all, the two methods have relatively similar per-
formance, but the tuned word reward has the more
theoretically justified, globally-normalized deriva-
tion – especially in the context of label bias’ influ-
ence on the brevity problem.

5 Conclusion

We have explored simple and effective ways to al-
leviate or eliminate the beam problem. We showed

that the beam problem can largely be explained
by the brevity problem, which results from the
locally-normalized structure of the model. We
compared two corrections to the model and intro-
duced a method to learn the parameters of these
corrections. Because this method is helpful and
easy, we hope to see it included to make stronger
baseline NMT systems.

We have argued that the brevity problem is an
example of label bias, and that the solution is a
very limited form of globally-normalized model.
These can be seen as the simplest case of the more
general problem of label bias and the more general
solution of globally-normalized models for NMT
(Wiseman and Rush, 2016; Venkatraman et al.,
2015; Ranzato et al., 2015; Shen et al., 2016).
Some questions for future research are:

• Solving the brevity problem leads to signif-
icant BLEU gains; how much, if any, im-
provement remains to be gained by solving
label bias in general?

• Our solution to the brevity problem re-
quires globally-normalized training on only
a small dataset; can more general globally-
normalized models be trained in a similarly
inexpensive way?
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Abstract

Data selection is a process used in select-
ing a subset of parallel data for the training
of machine translation (MT) systems, so that
1) resources for training might be reduced,
2) trained models could perform better than
those trained with the whole corpus, and/or 3)
trained models are more tailored to specific do-
mains. It has been shown that for statistical
MT (SMT), the use of data selection helps im-
prove the MT performance significantly. In
this study, we reviewed three data selection
approaches for MT, namely Term Frequency–
Inverse Document Frequency, Cross-Entropy
Difference and Feature Decay Algorithm, and
conducted experiments on Neural Machine
Translation (NMT) with the selected data us-
ing the three approaches. The results showed
that for NMT systems, using data selection
also improved the performance, though the
gain is not as much as for SMT systems.

1 Introduction

Data selection is a technology used to improve
Machine Translation (MT) performance by choos-
ing a subset of the corpus for the training of MT
systems (Chen et al., 2016). There are additional
benefits using subsets instead of the whole corpus
for MT training. Firstly, the training time could
be reduced significantly. In some application sce-
narios, a much shorter training time would be very
useful. Secondly, we could select data with the
aim to make trained systems perform well for spe-
cific domains. In MT, models built with in-domain
data perform better, as the vocabulary and sentence
structures used in one domain (e.g. legal) differs
from another unrelated domain (e.g. biotechnol-
ogy).

There are several studies on data selection meth-
ods for SMT, showing good improvements over the
baselines in which the whole corpora were used

for training (Chen et al., 2016). A popular data
selection method is cross-entropy difference (CED)
(Moore and Lewis, 2010). In particular its bilingual
variant (Axelrod et al., 2011) showed a positive im-
pact of data selection for MT.

Term Frequency-Inverse Document Frequency
(TF-IDF) (Salton and Yang, 1973) has also been
used as a baseline data selection method in the liter-
ature. Data selection with cleaning was proposed to
improve the robustness of training with divergent
sentences (Carpuat et al., 2017).

Feature Decay Algorithms (FDA) are data se-
lection methods that try to extract the subset of
sentences by which the coverage of target language
features is maximized (Biçici and Yuret, 2011). It
has been used to select sentences from parallel data
for SMT and NMT (Poncelas et al., 2018) in order
to obtain a subset of data that is more tailored to a
given test set.

Most of these results focused on comparing train-
ing of models from scratch for use in specific do-
mains. The aforementioned papers do not include
a focus on the impact of such techniques in fine-
tuning the resulting trained model, which could be
useful in the case where a baseline model works
as an initialization and can be reused for any do-
main and thus reduce the time required to train the
models for specific domains (van der Wees et al.,
2017).

In this paper we evaluate the impact of data se-
lection methods on Neural Machine Translation
(NMT) systems. We would like to answer the fol-
lowing questions: Do data selection approaches
improve domain NMT performance? Which of the
three commonly used methods delivers the best
results on data selection for NMT? How does the
size of the seed and the selected training sentences
affect the performance?

The paper is organised as follows. In Section 2,
we give an overview of data selection approaches.
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Experimental setup and results are presented in
Section 3 and Section 4. Conclusions and future
work are given in Section 5.

2 Data Selection Methods

In order to train an MT model for a specific domain,
it is best to use those sentences in a data set that are
the most related to that domain. We use different
data selection techniques to retrieve the sentences.
These techniques aim to extract a subset of data
from large datasets. The application of these tech-
niques can be used to limit the amount of resource
consumption, removing noise and/or adapting the
data to a particular domain.

Among different data selection techniques
(Eetemadi et al., 2015), in this work, we focus on
three particular methods: Cross Entropy Difference
(Section 2.1), TF-IDF Data Selection (Section 2.2),
and Feature Decay Algorithms (Section 2.3).

2.1 Cross Entropy Difference
The Cross Entropy Difference method was first
introduced by (Moore and Lewis, 2010) as a way to
build more accurate in-domain Language Models
for use in several tasks. The method is a variant
of scoring by perplexity, since cross-entropy and
perplexity are tightly coupled as shown in 1, where
b is the used base.

b−
∑

x ·p(x) log q(x) = bH(p,q) (1)

Given a general language model LMG, built
with out-of-domain data, and an in-domain
language-model LMD, the method ranks sentences
s using the cross-entropy difference in both lan-
guage models, as in (2):

CED(s) = HD(s)−HG(s) (2)

Although different ranking methods have been
introduced, this method still remains popular
among data selection approaches, having been used
in recent work such as for the selection of mono-
lingual data (Junczys-Dowmunt and Grundkiewicz,
2016), and for the selection of conversational data
(Lewis and Federmann, 2015). Some work was
also published on the use of neural language mod-
els for this purpose, such as Duh et al. (2013), but
this applied to Statistical Machine Translation.

In our experiments, we built n-gram language
models of order 5 using the KenLM tool1 (Heafield,

1https://github.com/kpu/kenlm

2011). We then use the language model probability
scores normalized by sentence length to compute
the cross-entropy difference and rank the entire
generic corpus.

2.2 TF-IDF data selection
The TF-IDF (Salton and Yang, 1973) method is
widely known for its use in several information
retrieval applications. It is defined in (3), where
tft,d is the term frequency in the document, i.e. the
ratio between the number of times the term appears
in the sentence and the total number of terms, and
idft,d is the inverse document frequency, the ratio
between the total number of documents and the
number of documents containing the term.

tf-idft,d = tft,d ·
N

dft
(3)

To compute the TF-IDF measure in our experi-
ments, we apply tokenization, remove punctuation
and common stopwords in the texts, and finally
truecase the sentences. We then consider every sen-
tence in the domain corpus as a query sentence, and
every sentence in the generic corpus as a document.
Then, we obtain for each query a ranking of the
documents, computed with cosine-similarity.

This ranking is stored for every query sentence
and used to retrieve the K-nearest neighbours
(KNN) necessary to obtain different data selection
sizes.

2.3 Feature Decay Algorithms
Feature Decay Algorithms (FDA) (Biçici and Yuret,
2011; Biçici, 2013) are methods of data selection
that try to extract, from a set of sentences, those
that better represent a seed. It has been used in
SMT to extract sentences from parallel corpora in
order to obtain a subset of data more adapted to
a given test set. These methods select sentences
based on two criteria: a) the similarity with the
seed (the more sequence of words it shares with the
seed the better); and b) the variability of the words
(the occurrences of the words shared with the seed
should be well distributed, and avoid having too
many occurrences of a few words).

These algorithms extract the n-grams from the
seed as features. Each feature is assigned an initial
value, indicating the relevance of being selected,
and the sentences are scored as the normalized
sum of values of contained features. Then, the
sentences are iteratively selected. Each time a sen-
tence is selected, the values of contained features
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are decayed. Accordingly, it promotes selecting
features that have not been previously selected in
the process.

The decay function is defined in Equation (4):

decay(f) = init(f)
dCL(f)

(1 + CL(f))c
(4)

where L is the set of selected sentences and CL(f)
is the count of the feature f in L. init(f) is an
initialization function. The variables d ∈ (0, 1] and
c ∈ [0,∞) are parameters that regulate how much
the value of the feature f should decay. These
values are by default (Biçici and Yuret, 2011) 0.5
and 0.0 for d and c, respectively (so, by using de-
fault values the decay function in Equation (4) is
decay(f) = init(f)0.5CL(f)). There are alterna-
tive ways of setting the values (Poncelas et al.,
2016, 2017) that can obtain better results. However,
in this work we used the default configuration of
d = 0.5, c = 0.0 and used trigrams as features.

3 Experimental Setup

3.1 Data description
For the experiments we use English–French par-
allel data from two different domains/corpora:
EMEA2 and DGT3 from the Open Parallel Cor-
pus (OPUS) (Tiedemann, 2009). The first consists
of medical data and the second a translation mem-
ory in the legal domain. We chose these domains in
particular because they are categories more distant
from the generic data, which is comprised of news
data. The MultiUN corpus (Ziemski et al., 2016) is
used for the training of generic models. Moreover,
we use only its 6-way subset corpora, to be able to
run the experiments in a more comparable setting.

3.2 Seed preparation
Although each data selection method has provided
its own approach to select subsets from large cor-
pora, in practice they would better perform if given
a good initial subset (i.e. seed) to start with.

To prepare such an initial seed (the same seed
is used in the three data selection algorithms), we
remove noisy sentences considering punctuation
and numerical character. In particular, we remove
sentences where:

1. a source (or target) sentence contains fewer
than tchars non-punctuation characters,

2http://opus.nlpl.eu/EMEA.php
3http://opus.nlpl.eu/DGT.php

2. a source (or target) sentence contains fewer
than twords words,

3. the source (or target) sentence ratio between
punctuation characters and non-punctuation
characters is above tratio.

where tchars, twords and tratio are thresholds.
For both domains and language pairs, tchars=5,
twords=2 and tratio=0.5 are used. We then removed
duplicates using the source as reference and com-
pile the remaining sentences into three parts: a val-
idation set (2000 lines); a test set (2000 lines); and
the remaining lines comprise the seed domain data.
The EMEA domain corpus gave rise to a seed with
238K lines, and the DGT was truncated to a similar
size, 250K, to keep experiments comparable.

3.3 Neural Machine Translation

The aim of this work is to assess the impact of data
selection techniques on NMT. For this purpose,
we use the Marian framework4 (Junczys-Dowmunt
et al., 2018) to train models using the attention-
based encoder–decoder architecture as described
in Sennrich et al. (2017).

For all experiments a preprocessing routine sim-
ilar to the one in Moses5 (Koehn et al., 2007) is
used. The preprocessing consists of the following
steps: entity replacement (on numbers, emails, urls
and alphanumeric entities), tokenisation, truecas-
ing and Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) with 89,500 merge operations.

4 Experiments

We present MT results using the three data selec-
tion methods and then use the best of the three
methods to conduct a series of experiments to as-
sess the impact of data selection on NMT mod-
els. We present two evaluation scores, BLEU
(Papineni et al., 2002) and Translation Error Rate
(TER) (Snover et al., 2006), in the tables. These
scores give an estimation of how good the trans-
lation is: For BLEU, higher scores indicate better
translations, while for TER, as it measures an error
rate, lower scores indicate better translation perfor-
mance.

We performed three different experiments:

• A comparison of the three data selection meth-
ods introduced in this paper (Section 4.1).

4https://marian-nmt.github.io/
5http://www.statmt.org/moses/
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TF-IDF CED FDA
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

Seed .384 .535 .384 .535 .384 .535
+ 240K (1:1) .417 .506 .409 .513 .439 .487
+ 480K (1:1) .433 .497 .422 .497 .441 .484
+ 480K (2:1) .453 .470 .443 .483 .464 .467
+ 1M (1:1) .443 .477 .433 .493 .445 .476
+ 1M (4:1) .466 .470 .456 .473 .477 .457
+ 2M (1:1) .449 .479 .440 .483 .452 .469
+ 2M (8:1) .488 .445 .479 .453 .491 .446

Table 1: Results of running three different data selection methods on different selection sizes for EMEA EN→FR. Both BLEU
and TER are presented. The top result for each slice of selected data is presented in bold.

• A comparison of the data selection methods
using different seeds (Section 4.2).

• The impact of the best data selection method
in NMT (Section 4.3)

4.1 Comparison of methods
We start by comparing the three methods for the
EMEA domain for English–French. Several exper-
iments are run with different data selection sizes,
between 250K and 2M lines, from the MultiUN
corpus. We create different sizes of selected data
in between these values, corresponding to a factor
of 1, 2, 4 and 8 in relation to the size of the original
seed. The comparison is not extended to larger se-
lection sizes since a bigger slice, for example 4M,
would already represent almost half of the total
data available.

Table 1 shows the results of the three methods
for models trained from scratch using seed data and
different selected data. We present two approaches
of combining the data. The first is a simple con-
catenation of the seed and the selected data. The
second tries to balance the seed and the selected
data in terms of the number of sentences used for
training, by oversampling the seed a number of
times such that there are approximately the same
number of sentences in the selected data.

Two visible outcomes are shown in these experi-
ments. The first is the overall gain of the Feature
Decay Algorithm technique over its two counter-
parts. For every test (corresponding to a line in
the table), the BLEU scores are better using the
FDA method, followed by TF-IDF, with the CED
method showing lower NMT performance. This
result is interesting, since CED is one of the most
common used methods for data selection and it has
shown good results in several data selection experi-

ments. However, these results are typically related
to SMT, and in fact previous work in data selection
has shown that these methods do not achieve the
same performance for NMT.

The second result is that best performance was
obtained when balancing the seed data with the
selected data. We use this knowledge to guide the
following experiments. Finally, in all experiments
TER is also computed, and the results are consistent
with those shown in BLEU scores.

4.2 Seed size variation

In previous experiments we used all the domain
data available that passed our quality threshold,
described in Section 3.2, and selected from the
MultiUN corpus, which has little relation to the
domain data. We conduct further experiments to
analyse whether the previous results are dependent
on the initial seed size and also to what extend the
seed size impacts or limits the data selection gains.

We start with a seed of about 240K lines. To
study the impact of the seed size we retrieve two
subsets from the original seed with 50K lines and
100K lines. For each subset, we randomly sample
the amount of lines from the original seed three
different times and keep only the best subset, where
the quality is evaluated by running a baseline MT
experiment. Taking advantage of this preliminary
experiment, we guarantee that the seed we choose
from is not the worst to start with, increasing the
reliability of these experiments.

Regarding our first goal, we can conclude that
the previous results are not dependent on the ini-
tial seed size, from the results presented in Ta-
ble 2, which consistently show that FDA performs
best for all seeds. All experiments were run using
balanced data since this showed enhanced perfor-
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TF-IDF CED FDA
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

240K .384 .535 .384 .535 .384 .535
+ 240K .417 .506 .409 .513 .439 .487
+ 480K .453 .470 .443 .483 .464 .467
+ 1M .466 .470 .456 .473 .477 .457
100K .306 .613 .306 .613 .306 .613
+ 240K .394 .520 .361 .550 .396 .523
+ 480K .419 .507 .396 .533 .425 .498
+ 1M .430 .498 .420 .505 .432 .489
50K .219 .685 .219 .685 .219 .685
+ 240K .368 .554 .296 .633 .370 .552
+ 480K .379 .545 .339 .595 .390 .537
+ 1M .391 .531 .384 .547 .394 .535

Table 2: Results of running different data selection methods on different seed sizes for EMEA EN→FR. The top result for
each seed size and slice of data selected is presented in bold. The ratio in the parentheses indicate the number of times seed was
oversampled

mance, as mentioned in the previous section.
For the impact of the seed size on the data selec-

tion gains, the results show that for similar selected
data, the score decreases with the seed, which is
visible from the seed score to the 1M data selection.
This is an intuitive result, since the amount of infor-
mation contained in the full size seed is obviously
larger than its counterparts.

However, it also shows that the gains from the
baseline to the data selection are actually bigger
for smaller seeds, with around 5–9 BLEU points
increase for the full seed, 9–13 for the 100K sample
and 16–18 points for the smaller 50K sample. This
is consistent with the fact that the amount of data
used has a bigger impact in NMT, especially when
compared with previous knowledge about these
methods in SMT.

4.3 Impact of data selection in NMT

Using the previous results as starting points, we
focus now only on the FDA method for data selec-
tion and use oversampling of the seed to obtain a
balanced training set.

4.3.1 Full training
Several experiments are run for both domains,
EMEA and DGT. To increase the confidence in
our results, we repeat the experiment for English-
Spanish, by selecting the corresponding Spanish
sentences in both domain datasets.6 All experi-

6Both the DGT and EMEA datasets are available in EN–
FR, EN–ES, and ES–FR, where part of the lines are aligned
across the three languages.

ments for each language pair share the same seed
data, oversampled to obtain a balanced corpus.

The results presented in Table 3 seem to support
some of the previous conclusions that data selec-
tion does not yield as much gain for the NMT as
it did for SMT. The best results are mostly data
selection of 2M or 4M. However, the values are
very close to the baseline obtained with the en-
tire MultiUN data combined with the seed, which
is balanced in the same way as the data selection
methods. The results with 6M are also very close
or slightly higher than the baseline, showing that
more data helps almost as much as selected data.

4.3.2 Adaptation from generic models
To try and separate the impact of the huge amount
of data the generic model represents, we ran the
same experiments in a fine-tuning scenario. In
this context, a model is firstly trained with all the
generic data until convergence, without any added
domain knowledge. Then, a new training pass is
ran until convergence with the domain data, where
we add the selected data to the seed as pseudo-
domain data. We mean to compare these selections
with a baseline using only the seed, since using the
full data here is redundant.

The data selection performed in the fine-tuning
scenario has a negative impact, as shown in Table
4, where most of the data selection sets used ob-
tain scores lower than the original seed baseline.
One possible factor is that the MultiUN data con-
tains very little domain data. As mentioned in the
previous section, this experiment would gain from

228



EMEAEN→FR DGTEN→FR EMEAEN→ES DGTEN→ES
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

Seed .384 .535 .427 .469 .432 .485 .413 .453
+ 250K .439 .487 .438 .436 .486 .434 .458 .410
+ 500K .464 .467 .464 .417 .511 .418 .476 .397
+ 1M .477 .457 .472 .409 .525 .403 .494 .382
+ 2M .491 .446 .482 .403 .531 .396 .496 .383
+ 4M .492 .441 .478 .404 .535 .398 .495 .379
+ 6M .489 .448 .434 .453 .534 .399 .494 .385
+ all data (11M) .487 .454 .482 .405 .495 .449 .493 .384

Table 3: BLEU and TER scores for NMT training with different slices of selected data, using FDA for data selection. The top
two results for each column are shaded, with the top result presented in bold

gathering a larger and more diverse generic corpus.
Moreover, all fine-tuning results are below the

fully trained models with all data from the previ-
ous section. The most important factor here seems
to be the highly technical vocabulary the models
can have access to. While the model trained with
all data has access to both the generic and domain
vocabulary, the fine-tuned models are built on top
of the generic vocabulary only. Thus, the model’s
input vocabulary of the first contains the most rele-
vant domain words, while in the second these are
split into subwords, as would happen to rare words.

4.3.3 Human evaluation
We also conducted a human evaluation using Un-
babel’s quality control system. For each language
pair, translation direction and domain, 150 sen-
tences were chosen randomly for evaluation. We
then shuffled the content and provided it to evalu-
ators ( professional linguists) for Fluency and Ad-
equacy assessment. This assessment is done by
rating each sentence from 1 to 5, and then com-
puting the average for each model. The evaluators
were not provided with the information as to which
model was used to generate sentences. The defi-
nitions of Fluency and Adequacy, as used by the
Unbabel Quality Team, are as follows.

Fluency addresses the linguistic well-
formedness and naturalness of the text. Fluency
errors include grammar, spelling or unintelligible
text, sentence structure and word order issues, etc.
In sum, these errors affect the reading and the
comprehension of the text. The evaluation is done
on the resulting translations without revealing their
source sentences to the evaluators, to avoid biasing
Fluency scores.

Adequacy addresses the relationship of the tar-
get text to the source text and can only be assessed

by providing both translations and their source sen-
tences to the editors. In other words, Adequacy ad-
dresses the extent to which a target text accurately
renders the meaning of a source text. Adequacy er-
rors include changes in intended meaning, addition
and omission of content or any type of mistransla-
tion, etc. In sum, Adequacy measures if the target
text accurately reflect the meaning conveyed in the
source text (Way, 2018).

The results of human evaluation on Fluency and
Adequacy are presented in Table 5. The figures in
the table correspond to the top scores in Tables 3
and 4. The results show that with fine-tuning of the
training of models, Fluency is improved, especially
for the EMEA models. Adequacy is also signifi-
cantly improved in both EN-to-FR and EN-to-ES
models. It shows very clear that data selection does
improve the performance of all MT systems evalu-
ated in this paper, in both Adequacy and Fluency.

It was also shown in Table 4 and Table 5 that
for EN-to-FR, BLEU .452 of MT translated French
sentences approximately corresponds to Fluency
4.25, and for EN-to-ES, BLEU .485 of MT trans-
lated Spanish sentences approximately corresponds
to Fluency 4.50. In the future, we would like to
make more comparisons between human evalua-
tion metrics, e.g. Adequacy and Fluency as defined
by Unbabel Quality Team, with commonly used
MT performance metrics, e.g. BLEU and TER.

5 Conclusions

In this paper, we reviewed three commonly used
data selection methods, i.e. TF-IDF, CED and FDA,
for NMT. These methods improve the performance
significantly for SMT. The results showed that FDA
outperformed the other two methods. Although
the gain in MT performance is not as much as
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EMEAEN→FR DGTEN→FR EMEAEN→ES DGTEN→ES
BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓ BLEU ↑ TER ↓

MultiUN .208 .699 .338 .528 .247 .657 .361 .495
Seed .438 .481 .476 .413 .486 .432 .487 .388
+ 250K .429 .485 .462 .418 .469 .442 .473 .399
+ 500K .439 .476 .462 .416 .471 .438 .476 .396
+ 1M .436 .478 .465 .414 .478 .440 .477 .397

Table 4: Fine-tuning approach for NMT training with data selection. The top two results for each column are shaded, with the
top result presented in bold

Models trained EMEAEN→FR DGTEN→FR EMEAEN→ES DGTEN→ES
AD ↑ FL ↑ AD ↑ FL ↑ AD ↑ FL ↑ AD ↑ FL ↑

From Scratch
Seed 1.02 4.01 3.28 3.99 3.82 4.06 3.61 3.99
+ best slice 4.18 3.95 3.87 4.39 4.25 4.42 4.22 4.50
+ all data (11M) 4.1 3.95 3.78 4.29 3.99 4.33 4.19 4.47

With Fine-tuning
Seed 4.17 4.03 3.96 4.28 4.41 4.51 4.29 4.53
+ best slice 4.22 4.05 4.12 4.45 4.43 4.50 4.30 4.52

Table 5: Human evaluation of Adequacy (AD) and Fluency (FL) for top scores in previous experiments in Tables 3 and 4

that in SMT systems, our experiments showed that
using EMEA and MultiUN corpora, NMT systems
trained with FDA-selected data still outperform
systems trained with the whole corpus, in terms of
both BLEU and TER.

In addition to using data selection, training with
fine-tuning from pre-trained models is also em-
ployed to further improve MT performance. We
conducted human evaluation by professional lin-
guists, in which Adequacy and Fluency are as-
sessed. The results show that models trained with
selected data constantly outperformed those trained
with the whole corpus, in both human evaluation
measures. By employing fine-tuning on top of data
selection, MT performance is further improved sig-
nificantly in both Adequacy and Fluency.
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Abstract

We work on translation from rich-resource lan-
guages to low-resource languages. The main
challenges we identify are the lack of low-
resource language data, effective methods for
cross-lingual transfer, and the variable-binding
problem that is common in neural systems.
We build a translation system that addresses
these challenges using eight European lan-
guage families as our test ground. Firstly, we
add the source and the target family labels
and study intra-family and inter-family influ-
ences for effective cross-lingual transfer. We
achieve an improvement of +9.9 in BLEU
score for English-Swedish translation using
eight families compared to the single-family
multi-source multi-target baseline. Moreover,
we find that training on two neighboring fam-
ilies closest to the low-resource language is
often enough. Secondly, we construct an ab-
lation study and find that reasonably good
results can be achieved even with consid-
erably less target data. Thirdly, we address
the variable-binding problem by building
an order-preserving named entity translation
model. We obtain 60.6% accuracy in qualita-
tive evaluation where our translations are akin
to human translations in a preliminary study.

1 Introduction

We work on translation from a rich-resource lan-
guage to a low-resource language. There is usu-
ally little low-resource language data, much less
parallel data available (Duong et al., 2016; Anas-
tasopoulos et al., 2017); Despite of the challenges
of little data and few human experts, it has many
useful applications. Applications include translat-
ing water, sanitation and hygiene (WASH) guide-
lines to protect Indian tribal children against water-
borne diseases, introducing earthquake prepared-
ness techniques to Indonesian tribal groups liv-
ing near volcanoes and delivering information to

the disabled or the elderly in low-resource lan-
guage communities (Reddy et al., 2017; Barrett,
2005; Anastasiou and Schäler, 2010; Perry and
Bird, 2017). These are useful examples of trans-
lating a closed text known in advance to the low-
resource language.

There are three main challenges. Firstly, most of
previous works research on individual languages
instead of collective families. Cross-lingual im-
pacts and similarities are very helpful when there
is little data in low-resource language (Shoemark
et al., 2016; Sapir, 1921; Odlin, 1989; Cenoz,
2001; Toral and Way, 2018; De Raad et al., 1997;
Hermans, 2003; Specia et al., 2016). Secondly,
most of the multilingual Neural Machine Trans-
lation (NMT) works assume the same amount of
training data for all languages. In the low-resource
case, it is important to exploit low or partial data
in low-resource language to produce high quality
translation. The third issue is the variable-binding
problem that is common in neural systems, where
“John calls Mary” is treated the same way as
“Mary calls John” (Fodor and Pylyshyn, 1988;
Graves et al., 2014). It is more challenging when
both “Mary” and “John” are rare words. Solving
the binding problem is crucial because the mis-
takes in named entities change the meaning of the
translation. It is especially challenging in the low-
resource case because many words are rare words.

Our contribution in addressing these issues
is three-fold, extending from multi-source multi-
target attentional NMT. Firstly, to examine intra-
family and inter-family influences, we add source
and target language family labels in training.
Training on multiple families improves BLEU
score significantly; moreover, we find training
on two neighboring families closest to the low-
resource language gives reasonably good BLEU
scores, and we define neighboring families closely
in Section 3.2. Secondly, we conduct an ablation
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study to explore how generalization changes with
different amounts of data and find that we only
need a small amount of low-resource language
data to produce reasonably good BLEU scores.
We use full data except for the ablation study. Fi-
nally, to address the variable-binding problem, we
build a parallel lexicon table across twenty-three
European languages and devise a novel method of
order-preserving named entity translation method.
Our method works in translation of any text with
a fixed set of named entities known in advance.
Our goal is to minimize manual labor, but not to
fully automate to ensure the correct translation of
named entities and their ordering.

In this paper, we begin with introduction and re-
lated work in Section 1 and 2. We introduce our
methods in addressing three issues that are impor-
tant for translation into low-resource language in
Section 3.2, as proposed extensions to our base-
line in Section 3.1. Finally, we present our results
in Section 4 and conclude in Section 5.

2 Related Work

2.1 Multilingual Attentional NMT

Attentional NMT is trained directly in an end-to-
end system and has flourished recently (Wu et al.,
2016; Sennrich et al., 2016; Ling et al., 2015). Ma-
chine polyglotism, training machines to be pro-
ficient in many languages, is a new paradigm of
multilingual NMT (Johnson et al., 2017; Ha et al.,
2016; Firat et al., 2016; Zoph and Knight, 2016;
Dong et al., 2015; Gillick et al., 2016; Al-Rfou
et al., 2013; Tsvetkov et al., 2016). Many multilin-
gual NMT systems involve multiple encoders and
decoders, and it is hard to combine attention for
quadratic language pairs bypassing quadratic at-
tention mechanisms (Firat et al., 2016). In multi-
source scenarios, multiple encoders share a com-
bined attention mechanism (Zoph and Knight,
2016). In multi-target scenarios, every decoder
handles its own attention with parameter shar-
ing (Dong et al., 2015). Attention combination
schemes include simple combination and hierar-
chical combination (Libovickỳ and Helcl, 2017).

The state-of-the-art of multilingual NMT is
adding source and target language labels in train-
ing a universal model with a single attention
scheme, and Byte-Pair Encoding (BPE) is used at
preprocessing stage (Ha et al., 2016). This method
is elegant in its simplicity and its advancement
in low-resource language translation as well as

zero-shot translation using pivot-based translation
scheme (Johnson et al., 2017). However, these
works have training data that increases quadrati-
cally with the number of languages (Dong et al.,
2015; Gillick et al., 2016), rendering training on
massively parallel corpora difficult.

2.2 Sub-word Level NMT
Many NMT systems lack robustness with out-
of-vocabulary words (OOVs) (Wu et al., 2016).
Most OOVs are treated as unknowns ($UNKs)
uniformly, even though they are semantically im-
portant and different (Ling et al., 2015; Sennrich
et al., 2016). To tackle the OOV problem, re-
searchers work on byte-level (Gillick et al., 2016)
and character-level models (Ling et al., 2015;
Chung et al., 2016). Many character-level mod-
els do not work as well as word-level models, and
do not produce optimal alignments (Tiedemann,
2012). As a result, many researchers shift to sub-
word level modeling between character-level and
word-level. One prominent direction is BPE which
iteratively learns subword units and balances se-
quence length and expressiveness with robustness
(Sennrich et al., 2016).

2.3 Lexiconized NMT
Much research is done in translating lexicons and
named entities in NMT (Nguyen and Chiang,
2017; Wang et al., 2017; Arthur et al., 2016).
Some researchers create a separate character-level
named entity model and mark all named entities as
$TERMs to train (Wang et al., 2017). This method
learns people’s names well but does not improve
BLEU scores (Wang et al., 2017). It is time-
consuming and adds to the system complexity.
Other researchers attempt to build lexicon trans-
lation seamlessly with attentional NMT by us-
ing an affine transformation of attentional weights
(Nguyen and Chiang, 2017; Arthur et al., 2016).
Some also attempt to embed cross-lingual lexicons
into the same vector space for transfer of informa-
tion (Duong et al., 2017).

3 Translation System

3.1 Baseline Translation System
Our baseline is multi-source multi-target atten-
tional NMT within one language family through
adding source and target language labels with a
single unified attentional scheme, with BPE used
at the preprocessing stage. The source and target
vocabulary are not shared.
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Families Languages
Germanic German (de) Danish (dn) Dutch (dt) Norwe-

gian (no) Swedish (sw) English (en)
Slavic Croatian (cr) Czech (cz) Polish (po) Russian

(ru) Ukrainian (ur) Bulgarian (bg)
Romance Spanish (es) French (fr) Italian (it) Portuguese

(po) Romanian (ro)
Albanian Albanian (ab)
Hellenic Greek (gk)
Italic Latin (ln) [descendants: Romance languages]
Uralic Finnish (fn) Hungarian (hg)
Celtic Welsh (ws)

Table 1: Language families. Language codes are in brackets.

3.2 Proposed Extensions

We present our methods in solving three issues rel-
evant to translation into low-resource language as
our proposed extensions.

3.2.1 Language Families and Cross-lingual
Learning

Cross-lingual and cross-cultural influences and
similarities are important in linguistics (Shoe-
mark et al., 2016; Levin et al., 1998; Sapir, 1921;
Odlin, 1989; Cenoz, 2001; Toral and Way, 2018;
De Raad et al., 1997; Hermans, 2003; Specia
et al., 2016). The English word, “Beleaguer” orig-
inates from the Dutch word “belegeren”; “fidget”
originates from the Nordic word “fikja”. English
and Dutch belong to the same family and their
proximity has effect on each other (Harding and
Sokal, 1988; Ross et al., 2006). Furthermore, lan-
guages that do not belong to the same family affect
each other too (Sapir, 1921; Ammon, 2001; Toral
and Way, 2018). “Somatic” stems from the Greek
word “soma”; “広告” (Japanese), “광고”(Korean),
“Quảng cáo”(Vietnamese) are closely related to
the Traditional Chinese word “廣告”. Indeed,
many cross-lingual similarities are present.

In this paper, we use the language phylogenetic
tree as the measure of closeness of languages and
language families (Petroni and Serva, 2008). The
distance measure of language families is the col-
lective of all of the component languages. Lan-
guage families that are next to each other in the
language phylogenetic tree are treated as neigh-
boring families in our paper, like Germanic family
and Romance family. In our discussion in this pa-
per, we will often refer to closely related families
in the language phylogenetic tree as neighboring
families.

We prepend the source and target family labels,
in addition to the source and target language labels
to the source sentence to improve convergence
rate and increase translation performance. For ex-

ample, all French-to-English translation pairs are
prepended with four labels, the source and target
family labels and the source and target languages
labels, i.e., __opt_family_src_romance
__opt_family_tgt_germanic
__opt_src_fr __opt_tgt_en. In Sec-
tion 4, we examine intra-family and inter-family
effects more closely.

3.2.2 Ablation Study on Target Training data
To achieve high information transfer from rich-
resource language to low-resource target language,
we would like to find out how much target training
data is needed to produce reasonably good per-
formance. We vary the amount of low-resource
training data to examine how to achieve reason-
ably good BLEU score using limited low-resource
data. In the era of Statistical Machine Translation
(SMT), researchers have worked on data sampling
and sorting measures (Eck et al., 2005; Axelrod
et al., 2011).

To rigorously determine how much low-
resource target language is needed for reasonably
good results, we do a range of control experiments
by drawing samples from the low-resource lan-
guage data randomly with replacement and dupli-
cate them if necessary to ensure all experiments
carry the same number of training sentences. We
keep the amount of training data in rich-resource
languages the same, and vary the amount of train-
ing data in low-resource language to conduct rig-
orous control experiments. Our data selection pro-
cess is different from prior research in that only
the low-resource training data is reduced, simulat-
ing the real world scenario of having little data in
low-resource language. By comparing results from
control experiments, we determine how much low-
resource data is needed.

3.2.3 Order-preserving Lexiconized NMT
The variable-binding problem is an inherent is-
sue in connectionist architectures (Fodor and
Pylyshyn, 1988; Graves et al., 2014). “John calls
Mary” is not equivalent to “Mary calls John”, but
neural networks cannot distinguish the two easily
(Fodor and Pylyshyn, 1988; Graves et al., 2014).
The failure of traditional NMT to distinguish the
subject and the object of a sentence is detrimental.
For example, in the narration “John told his son
Ryan to help David, the brother of Mary”, it is a se-
rious mistake if we reverse John and Ryan’s father-
son relationships or confuse Ryan’s and David’s
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lan de dn dt en no sw
de N.A. 37.5 43.4 45.1 41.1 35.8
dn 39.0 N.A. 37.1 41.1 42.6 37.4
dt 43.5 36.3 N.A. 45.1 39.0 34.3
en 40.4 34.5 41.1 N.A. 37.1 34.0
no 40.5 42.7 40.4 42.8 N.A. 40.6
sw 39.4 38.9 37.5 40.4 43.0 N.A.

Table 2: (Baseline model) Germanic family multi-source
multi-target translation. Each row represents source, each col-
umn represents target. Language codes follow Table 1.

relationships with Mary.
In our research on translation, we focus mainly

on text with a fixed set of named entities known
in advance. We assume that experts help to trans-
late a given list of named entities into low-resource
language first before attempting to translate any
text. Under this assumption, we propose an order-
preserving named entity translation mechanism.
Our solution is to first create a parallel lexicon
table for all twenty-three European languages us-
ing a seed English lexicon table and fast-aligning
it with the rest (Dyer et al., 2013). Instead of using
$UNKs to replace the named entities, we use $NEs
to distinguish them from the other unknowns. We
also sequentially tag named entities in a sentence
as $NE1, $NE2, . . . , to preserve their ordering. For
every sentence pair in the multilingual training, we
build a target named entity decoding dictionary
by using all target lexicons from our lexicon ta-
ble that matches with those appeared in the source
sentence. During the evaluation stage, we replace
all the numbered $NEs using the target named en-
tity decoding dictionary to present our final trans-
lation. This method improves translation accuracy
greatly and preserves the order.

As a result of our contribution, the experts only
need to translate a few lexicons and a small amount
of low-resource text before passing the task to our
system to obtain good results. Post-editing and mi-
nor changes may be required to achieve 100% ac-
curacy before the releasing the translation to the
low-resource language communities.

4 Experiments and Results

We choose the Bible corpus as a test ground for
our proposed extensions because the Bible is the
most translated text that exists and is freely acces-
sible. Though it has limitations, it does not have
copyright issues like most of literary works that
are translated into many languages do. There are
many research works done using the Bible (Naai-
jer and Roorda, 1993; Mayer and Cysouw, 2014;
Scannell, 2006; Dufter and Schütze, 2018; Resnik

et al., 1999; Chan and Pollard, 2001; Banchs
and Costa-Jussà, 2011; Christodouloupoulos and
Steedman, 2015; Beale et al., 2005). Unlike many
past research works where only New Testament is
used (Dufter and Schütze, 2018), we use both Old
Testament and New Testament in our Bible cor-
pus. We align all Bible verses across different lan-
guages.

We train our proposed model on twenty-three
European languages across eight families on a
parallel Bible corpus. For our purpose, we treat
Swedish as our hypothetical low-resource target
language, English as our rich-resource language
in the single-source single-target case and all
other Germanic languages as our rich-resource
languages in the multi-source multi-target case.

Firstly, we present our data and training pa-
rameters. Secondly, we add family tags in differ-
ent configurations of language families showing
intra-family and inter-family effects. Thirdly, we
conduct an ablation study and plot the general-
ization curves by varying the amount of training
data in Swedish, and we show that training on
one fifth of the data give reasonably good BLEU
scores. Lastly, we devise an order-preserving lexi-
con translation method by building a parallel lexi-
con table across twenty-three European languages
and tagging named entities in order.

4.1 Data and Training Parameters
We clean and align the Bible in twenty-three Eu-
ropean languages in Table 1. We randomly sam-
ple the training, validation and test sets according
to the 0.75, 0.15, 0.10 ratio. Our training set con-
tains 23K verses, but is massively parallel. In our
control experiments, we also use the experiment
training on the WMT’14 French-English dataset
together with French and English Bibles to com-
pare with our results. Note that our WMT baseline
contains French and English Bibles in addition to
the WMT’14 data, and is used to contrast our re-
sults with the effect of increasing data.

In all our experiments, we use a minibatch size
of 64, dropout rate of 0.3, 4 RNN layers of size
1000, a word vector size of 600, learning rate of
0.8 across all LSTM-based multilingual experi-
ments. For single-source single-target translation,
we use 2 RNN layers of size 500, a word vector
size of 500, and learning rate of 1.0. All learning
rates are decaying at the rate of 0.7 if the valida-
tion score is not improving or it is past epoch 9. We
use SGD as our learning algorithm. We build our
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expt S G GS GR 3F 8F
de2sw 4.0 35.8 42.0 42.2 42.5 42.8
dn2sw 16.9 37.4 43.4 41.8 42.7 41.7
dt2sw 4.8 34.3 41.4 41.6 42.8 42.5
en2sw 6.9 34.0 40.3 40.2 41.8 42.1
no2sw 16.8 40.6 43.6 44.0 44.5 43.1

Table 3: Inter-family and intra-family effects on BLEU
scores with respect to increasing addition of language fam-
ilies.
S: single-source single-target NMT.
G: training on Germanic family.
GS: training on Germanic, Slavic family.
GR: training on Germanic, Romance family.
3F: training on Germanic, Slavic, Romance family.
8F: training on all 8 European families together.

Figure 1: Intra-family and inter-family effects on BLEU
scores with respect to increasing addition of language fam-
ilies.

code based on OpenNMT (Klein et al., 2017). For
the ablation study, we train on BLEU scores di-
rectly until the Generalization Loss (GL) exceeds a
threshold of α = 0.1 (Prechelt, 1998). GL at epoch
t is defined as GL(t) = 100(1 − Et

val

Et
opt

), modi-
fied by us to suit our objective using BLEU scores
(Prechelt, 1998). Et

val is the validation score at
epoch t andEt

opt is the optimal score up to epoch t.
We evaluate our models using both BLEU scores
(Papineni et al., 2002) and qualitative evaluation.

4.2 Family labels and Intra-family &
Inter-family Effects

We first investigate intra-family and inter-family
influences and the effects of adding family labels.
We use full training data in this subsection. Adding
family labels not only improves convergence rate,
but also increases BLEU scores.

Languages have varying closeness to each
other: Single-source single-target translations of
different languages in Germanic family to Swedish
show huge differences in BLEU scores as shown
in Table 3. These differences are well aligned with
the multi-source multi-target results. Norwegian-
Swedish and Danish-Swedish translations have
much higher BLEU scores than the rest. This hints
that Norwegian and Danish are closer to Swedish
than the rest in the neural representation.

Multi-source multi-target translation im-

expt S G GSl GRl 3Fl 8Fl
de2sw 4.0 35.8 41.8 42.2 42.5 44.3
dn2sw 16.9 37.4 43.0 41.5 42.5 42.8
dt2sw 4.8 34.3 41.4 41.8 42.7 42.3
en2sw 6.9 34.0 40.9 40.4 41.7 43.9
no2sw 16.8 40.6 43.7 44.3 44.2 44.7

Table 4: Effects of adding family labels on BLEU scores with
respect to increasing addition of language families.
S and G: same as in Table 3.
GSl: Germanic, Slavic family with family labels.
GRl: Germanic, Romance family with family labels.
3Fl: Germanic, Slavic, Romance family with family labels.
8Fl: all 8 European families together with family labels

Figure 2: Effects of adding family labels on BLEU scores
with respect to increasing addition of language families.

proves greatly from single-source single-tar-
get translation: English-Swedish single-source
single-target translation gives a low BLEU score
of 6.9 as shown in Table 3, which is understand-
able as our dataset is very small. BLEU score for
English-Swedish translation improves greatly to
34.0 in multi-source multi-target NMT training on
Germanic family as shown in Table 2. In this pa-
per, we treat Germanic multi-source multi-target
NMT as our baseline model. Complete tables of
multi-source and multi-target experiments are in
the appendices. We present only relevant columns
important for cross-lingual learning and transla-
tion into low-resource language here.

Adding languages from other families into
training improves translation quality within
each family greatly: English-Swedish transla-
tion’s BLEU score improves significantly from
34.0 to 40.3 training on Germanic and Slavic fam-
ilies, and 40.2 training on Germanic and Romance
families as shown in Table 3. After we add all
three families in training, BLEU score for English-
Swedish translation increases further to 41.8 in
Table 3. Finally, after we add all eight families,
BLEU score for English-Swedish translation in-
creases to 42.1 in Table 3.

A Plateau is observed after adding more than
one neighboring family: A plateau is observed
when we plot Table 3 in Figure 1. The increase
in BLEU scores after adding two families is much
milder than that of the first addition of a neighbor-
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Figure 3: Comparison of different ways of increasing train-
ing Data in French-English translation.
Family: Adding data from other languages based on the fam-
ily unit
WMT’14: Adding WMT’14 data as control experiment
Sparse: Adding data from other languages that spans the eight
European families

ing family. This hints that using unlimited number
of languages to train may not be necessary.

Adding family labels not only improves con-
vergence rate, but also increases BLEU scores:
We observe in Table 4 that BLEU scores for most
language pairs improve with the addition of fam-
ily labels. Training on eight language families, we
achieve a BLEU score of 43.9 for English-Swedish
translation, +9.9 above the Germanic baseline. In-
deed, the more families we have, the more helpful
it is to distinguish them.

Training on two neighboring families near-
est to the low-resource language gives better re-
sult than training on languages that are further
apart: Our observation of the plateau hints that
training on two neighboring families nearest to the
low-resource language is good enough as shown in
Table 3. Before jumping to conclusion, we com-
pare results of adding languages by family with
that of adding languages by random samples that
span all eight families, defined as the following.

Definition 4.1 (Language Spanning). A set of lan-
guages spans a set of families when it contains at
least one language from each family.

In Figure 3, we conduct a few experiments on
French-English translation using different ways of
adding training data. Let family addition describe
the addition of training data through adding close-
by language families based on the unit of family;
let sparse addition describe the addition of train-
ing data through adding language sets that spans
eight language families. In sparse addition, lan-
guages are further apart as each may represent a
different family. We find that family addition gives
better generalization than that of sparse addition. It
strengthens our earlier results that training on two
families closest to our low-resource language is a
reliable way to reach good generalization.

Figure 4: Single-source single-target English-Swedish
BLEU plots against increasing amount of Swedish data.

Figure 5: Multi-source multi-target Germanic-family-trained
BLEU plots against increasing amount of Swedish data.

Generalization is not merely an effect of in-
creasing amount of data: In Figure 3, we com-
pare all methods of adding languages against a
WMT’14 curve by using equivalent amount of
WMT’14 French-English data in each experiment.
The WMT’14 curve serve as our benchmark of
observing the effect of increasing data, we ob-
serve that our addition of other languages improve
BLEU score much sharply than the increase in the
benchmark, showing that our generalization is not
merely an effect of increasing data. We also ob-
serve that though increase WMT’14 data initially
increases BLEU score, it reaches a plateau and
adding more WMT’14 data does not increase per-
formance from very early point.

4.3 Ablation Study on Target Training Data

We use full training data from all rich-resource
languages, and we vary the amount of training data
in Swedish, our low-resource language, spanning
from one tenth to full length uniformly. We dupli-
cate the subset to ensure all training sets, though
having a different number of unique sentences,
have the same number of total sentences.

Power-law relationship is observed between
the performance and the amount of training
data in low-resource language: Figure 5 shows
how BLEU scores vary logarithmically with the
number of unique sentences in the low-resource
training data. It follows a linear pattern for single-
source single-target translation from English to
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Data 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
#w 53589 107262 161332 214185 268228 322116 375439 429470 483440 538030
log#w 4.73 5.03 5.21 5.33 5.43 5.51 5.57 5.63 5.68 5.73
en2sw 25.2 30.6 32.9 32.7 34.2 34.2 33.8 33.6 34.3 34.9
de2sw 26.5 33.4 34.8 35.7 36.7 36.5 37.1 37.1 36.4 37.5
dn2sw 27.2 34.8 35.8 37.1 37.6 37.1 38.5 38.0 37.4 38.4
dt2sw 26.1 32.5 34.2 34.9 36.0 35.8 36.0 35.7 35.8 36.6
no2sw 27.7 36.9 37.9 39.5 39.4 39.2 41.3 40.8 39.2 40.5

Table 5: Ablation Study on Germanic Family. #w is the word count of unique sentences in Swedish data.

en de cz es fn sw
Joseph Joseph Jozef José Joseph Josef
Peter Petrus Petr Pedro Pietari Petrus
Zion Zion Sion Sion Zionin Sion
John Johannes Jan Juan Johannes Johannes
Egypt Ägypten Egyptské Egipto Egyptin Egyptens
Noah Noah Noé Noé Noa Noa
Table 6: A few examples from the parallel lexicon table.

expt G OG OG1 OGM
de2sw 35.8 36.6 36.6 36.9
dn2sw 37.4 37.0 37.2 36.9
dt2sw 34.3 35.8 35.6 35.9
en2sw 34.0 33.6 33.9 33.4
no2sw 40.6 41.2 41.0 41.4

Table 7: Summary of order-preserving lexicon translation.
G: training on Germanic family without using order-
preserving method.
OG: order-preserving lexicon translation.
OG1: OG translation using lexicons with frequency 1.
OGM: OG translation using lexicons with manual selection.

Swedish as shown in Figure 4. We also observe
a linear pattern for the multi-source multi-target
case, though more uneven in Figure 5. The linear
pattern with BLEU scores against the logarithmic
data shows the power-law relationship between the
performance in translation and the amount of low-
resource training data. Similar power-law relation-
ships are also found in past research and con-
temporary literature (Turchi et al., 2008; Hestness
et al., 2017).

We achieve reasonably good BLEU scores us-
ing one fifth of random samples: For the multi-
source multi-target case, we find that using one
fifth of the low-resource training data gives rea-
sonably good BLEU scores as shown in Figure 5.
This is helpful when we have little low-resource
data. For translation into low-resource language,
the experts only need to translate a small amount
of seed data before passing it to our system 1.

4.4 Order-preserving Lexiconized NMT

We devise a mechanism to build a parallel lexi-
con table across twenty-three European languages

1Note that using nine tenth of random samples yields
higher performance than using full data, but it may not be
generalized to other datasets.

using very little data and zero manual work. A
few lexicon examples are shown in Table 6. We
first extract named entities from the English Bible
(Manning et al., 2014) and combine them with
English biblically named entities from multiple
sources (Easton, 1897; Nave, 1903; Smith et al.,
1967; Hitchcock, 1874; Rice, 2015). Secondly,
we carefully automate the filtering process to ob-
tain a clean English lexicon list. Using this list as
the seed, we build a parallel lexicon table across
all twenty-three languages through fast-aligning
(Dyer et al., 2013). The final parallel lexicon ta-
ble has 2916 named entities. In the translation
task into low-resource language, we assume that
the experts first translate these lexicon entries, and
then translate approximately one fifth random sen-
tences before we train our NMT. If necessary, the
experts evaluate and correct translations before re-
leasing the final translations to the low-resource
language community. We aim to reduce human ef-
fort in post-editing and increase machine accuracy.
After labeling named entities in each sentence pair
in order, we train and obtain good translation re-
sults.

We observe 60.6% accuracy in human evalu-
ation where our translations are parallel to hu-
man translations: In Table 8, we show some ex-
amples of machine translated text, we also show
the expected correct translations for comparison.
Not only the named entities are correctly mapped,
but also the ordering of the subject and the object
is preserved. In a subset of our test set, we conduct
human evaluation on 320 English-Swedish results
to rate the translations into three categories: accu-
rate (parallel to human translation), almost accu-
rate (needing minor corrections) and inaccurate.
More precisely, each sentence is evaluated using
three criteria: correct set of named entities, correct
positioning of named entities, and accurate mean-
ing of overall translation. If a sentence achieves all
three, then it is termed as accurate; if either a name
entity is missing or its position is wrong, then it
is termed as almost accurate (needing minor cor-
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Source Sentence NMT Translation
without Order Preser-
vation (Before)

NMT Translation
with Order Preserva-
tion (After)

Correct Target Trans-
lation

Frequency of Named
Entities

And Noah fathered three
sons, Shem, Ham, and
Japheth.

Och Noa födde tre
söner, Sem, Ham och
Jafet.

Och Noa födde tre
söner, Sem Ham och
Jafet

Och Noa födde tre
söner: Sem, Ham och
Jafet.

Noah: 58, Shem: 18,
Ham: 17, Japheth: 11

And Saul spoke to his son
Jonathan, and to all his
servants, to kill David.

Och Saul sade till
Jonatan, hans son,
och alla hans tjänare,
så att de skulle döda
David.

Och Saul talade till
sin son Jonatan och
alla hans tjänare för
att döda David

Och Saul talade med
sin son Jonatan och
med alla sina tjänare
om att döda David

Saul: 424, Jonathan:
121, David: 1134

And they killed Parshan-
datha, and Dalphon, and
Aspatha, and Poratha,
and Adalia, and Ari-
datha, and Parmashta,
and Arisai, and Aridai,
and Vajezatha,

Och de dräpte
Kedak, Ir-Fittim,
Aquila, dörrvaktarna,
Amarja, Bered, vidare
Bet-Hadt, Berota,
Gat-Rimmon,

Och de dräpte
Parsandata Dalefon
och Aspata Porata
Adalja Aridata Par-
masta Arisai Aridai
Vajsata

Och Parsandata,
Dalefon, Aspata, Po-
rata, Adalja, Aridata,
Parmasta, Arisai,
Aridai och Vajsata,

Parshandatha: 1,
Dalphon: 1, Aspatha:
1, Poratha: 1, Adalia:
1, Aridatha: 1, Par-
mashta: 1, Arisai: 1,
Aridai: 1, Vajezatha:
1

Table 8: Examples of order-preserving lexicon-aware translation for English to Swedish. The frequency of the named entities
are the number of occurrences each named entity appears in the whole dataset; for example, all named entities in the last
sentence only appear in the test set once, and do not appear in the training data.

rection); if the meaning of the sentence is entirely
wrong, then it is inaccurate. Our results are 60.6%
accurate, 33.8% needing minor corrections, and
5.6% inaccurate. Though human evaluation car-
ries bias and the sample is small, it does give us
perspective on the performance of our model.

Order-preservation performs well especially
when the named entities are rare words: In
Table 8, NMT without order-preservation lexi-
conized treatment performs well when named en-
tities are common words, but fails to predict the
correct set of named entities and their ordering
when named entities are rare words. The last col-
umn shows the number of occurrences of each
named entity. For the last example, there are many
named entities that only occur in data once, which
means that they never appear in training and only
appear in the test set. The normal NMT without
order-preservation lexiconized treatment predicts
the wrong set of named entities with the wrong
ordering. Our lexiconized order-preserving NMT,
on the contrary, performs well at both the head
and tail of the distribution, predicts the right set
of named entities with the right ordering.

Prediction with longer sentences and many
named entities are handled well: In Table 8, we
see that normal NMT without order-preservation
lexiconized treatment performs well with short
sentences and few named entities in a sentence.
But as the number of the name entities per sen-
tence increases, especially when the name enti-
ties are rare unknowns as discussed before, nor-
mal NMT cannot make correct prediction of the
right set of name entities with the correct ordering

8. Our lexiconized order-preserving NMT, on the
contrary, gives very high accuracy when there are
many named entities in the sentence and maintains
their correct ordering.

Trimming the lexicon list that keeps the tail
helps to increase BLEU scores: Different from
most of the previous lexiconized NMT works
where BLEU scores never increase (Wang et al.,
2017), our BLEU scores show minor improve-
ments. BLEU score for German-Swedish transla-
tion increases from 35.8 to 36.6 in Table 7. As an
attempt to increase our BLEU scores even further,
we conduct two more experiments. In one setting,
we keep only the tail of the lexicon table that occur
in the Bible once. In another setting, we keep only
a manual selection of lexicons. Note that this is
the only place where manual work is involved and
is not essential. There are minor improvements in
BLEU scores in both cases.

33.8% of the translations require minor cor-
rections: The sentence length for these transla-
tions that require minor corrections is often longer.
We notice that some have repetitions that do not
affect meaning, but need to be trimmed. Some
have the under-prediction problem where certain
named entities in the source sentence never ap-
pear; in this case, missing named entities need to
be added. Some have minor issues with plurality
and tense. We show a few examples of the transla-
tions that need minor corrections in the appendices
for reference. Typically, sentences with longer sen-
tence length and more complicated named entity
relationships require minor corrections to achieve
high translation quality.
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5 Conclusion and Future Directions

We present our order-preserving translation sys-
tem for cross-lingual learning in European lan-
guages. We examine three issues that are impor-
tant to translation into low-resource language: the
lack of low-resource data, effective cross-lingual
transfer, and the variable-binding problem.

Firstly, we add the source and the target family
labels in training and examined intra-family and
inter-family effects. We find that training on mul-
tiple families, more specifically, training on two
neighboring families nearest to the low-resource
language improves BLEU scores to a reasonably
good level. Secondly, we devise a rigorous abla-
tion study and show that we only need a small por-
tion of the low-resource target data to produce rea-
sonably good BLEU scores. Thirdly, to address the
variable-binding problem, we build a parallel lexi-
con table across twenty-three European languages
and design a novel order-preserving named en-
tity translation method by tagging named entities
in each sentence in order. We achieve reasonably
good quantitative and qualitative improvements in
a preliminary study.

The order-preserving named entity translation
labels named entities in order. Since there are
relatively less number of long sentences with
many named entities than short sentences with few
named entities, underprediction of named entities
in long sentences may occur. To seek solution to
the underprediction problem, we are looking at
randomized labeling of the named entities. More-
over, our order-preserving named entity translation
method works well with a fixed pool of named en-
tities in any static document known in advance.
This is due to our unique use cases for applica-
tions like translating water, sanitation and hygiene
(WASH) guidelines written in the introduction.
We devise our method to ensure high accuracy
targeting translating named entities in static doc-
ument known in advance. However, researchers
may need to translate dynamic document to low-
resource language in real-time. We are actively re-
searching into the dynamic timely named entity
discovery with high accuracy.

We are actively extending our work to cover
more world languages, more diverse domains, and
more varied sets of datasets to show our methods
are generalizable. Since our experiments shown
in this paper are using European languages, we
are also interested on non-European languages

like Arabic, Indian, Chinese, Indonesian and many
others to show that our model is widely general-
izable. We also expect to discover interesting re-
search ideas exploring a wider universe of linguis-
tically dissimilar languages.

Our work is helpful for translation into low-
resource language, where human translators only
need to translate a few lexicons and a partial set of
data before passing it to our system. Human trans-
lators may also be needed during post-editing be-
fore a fully accurate translation is released. Our fu-
ture goal is to minimize the human correction ef-
forts and to present high quality translation timely.

We would also like to work on real world low-
resource tribal languages where there is no or
little training data. Translation using limited re-
sources and data in these tribal groups that fits
with the culture-specific rules will be very impor-
tant (Levin et al., 1998). Real world low-resource
languages call for cultural-aware translation.
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Abstract

Transfer learning has been proven as an ef-
fective technique for neural machine transla-
tion under low-resource conditions. Exist-
ing methods require a common target lan-
guage, language relatedness, or specific train-
ing tricks and regimes. We present a simple
transfer learning method, where we first train
a “parent” model for a high-resource language
pair and then continue the training on a low-
resource pair only by replacing the training
corpus. This “child” model performs signifi-
cantly better than the baseline trained for low-
resource pair only. We are the first to show
this for targeting different languages, and we
observe the improvements even for unrelated
languages with different alphabets.

1 Introduction

Neural machine translation (NMT) has made a big
leap in performance and became the unquestion-
able winning approach in the past few years (Bah-
danau et al., 2014; Sutskever et al., 2014; Sennrich
et al., 2017; Vaswani et al., 2017). The main rea-
son behind the success of NMT in realistic con-
ditions was the ability to handle large vocabulary
(Sennrich et al., 2016b) and to utilize large mono-
lingual data (Sennrich et al., 2016a). However,
NMT still struggles if the parallel data is insuffi-
cient (e.g. fewer than 1M parallel sentences), pro-
ducing fluent output unrelated to the source and
performing much worse than phrase-based ma-
chine translation (Koehn and Knowles, 2017).

Many strategies have been used in MT in the
past for employing resources from additional lan-
guages, see e.g. Wu and Wang (2007), Nakov and
Ng (2012), El Kholy et al. (2013), or Hoang and
Bojar (2016). For NMT, a particularly promising
approach is transfer learning or “domain adapta-
tion” where the “domains” are the different lan-
guages.

For example, Zoph et al. (2016) train a “par-
ent” model in a high-resource language pair, then
use some of the trained weights as the initializa-
tion for a “child” model and further train it on the
low-resource language pair. In Zoph et al. (2016),
the parent and child pairs shared the target lan-
guage (English) and a number of modifications
of the training process were needed to achieve an
improvement in translation from Hansa, Turkish,
and Uzbek into English with the help of French-
English data.

Nguyen and Chiang (2017) explore a related
scenario where the parent language pair is also
low-resource but it is related to the child language
pair. They improved the previous approach by us-
ing a shared vocabulary of subword units (BPE,
Sennrich et al., 2016b). Additionally, they used
transliteration to improve their results.

In this paper, we contribute empirical evidence
that transfer learning for NMT can be simplified
even further. We leave out the restriction on re-
latedness of the languages and extend the experi-
ments to parent–child pairs where the target lan-
guage changes. Moreover, we do not utilize any
special modifications to the training regime or data
pre-preprocessing.

In contrast to previous work, we test the method
with the Transformer model (Vaswani et al.,
2017), instead of the recurrent approaches (Bah-
danau et al., 2014). As documented in e.g. Popel
and Bojar (2018) and anticipated in WMT18,1 the
Transformer model seems superior to other NMT
approaches.

2 Method Description

The proposed method is extremely simple: We
train the parent language pair for a number of iter-

1http://www.statmt.org/wmt18/
translation-task.html
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ations and switch the training corpus to the child
language pair for the rest of the training, without
resetting any of the training (hyper)parameters.

As such, this method is similar to the transfer
learning proposed by Zoph et al. (2016) but uses
the shared vocabulary as in Nguyen and Chiang
(2017). The novelty is that we are removing the
restriction about relatedness of the language pairs,
and in contrast to the previous papers, we show
that this simple style of transfer learning can be
used on both sides (i.e. either the source or the
target language), not only with the target language
common to both parent and child model. In fact,
the method is effective also for fully unrelated lan-
guage pairs.

Our method does not need any modification of
existing NMT frameworks. The only requirement
is to use a shared vocabulary of subword units (we
use wordpieces, Johnson et al., 2017) across both
language pairs. This is achieved by learning word-
piece segmentation from the concatenated source
and target sides of both the parent and child lan-
guage pairs. All other parameters of the model
stay the same as for the standard NMT training.

During the training we first train the NMT
model for the high-resource language pair until
convergence. This model is called “parent”. After
that, we train the child model without any restart,
i.e. only by changing the training corpora to the
low-resource language pair.

2.1 Details on Shared Vocabulary

Current NMT systems use vocabularies of sub-
word units instead of whole words. Using sub-
word units gives a balance between the flexibil-
ity of separate characters and efficiency of whole
words. It solves the out-of-vocabulary words
problem and reduces the vocabulary size. The ma-
jority of NMT systems use either the byte pair en-
coding (Sennrich et al., 2016b) or wordpieces (Wu
et al., 2016). Given a training corpus and the de-
sired maximal vocabulary size, either method pro-
duces deterministic rules for word segmentation to
achieve the fewest possible splits.

Our method requires the vocabulary shared
across both the parent (translating from language
XX to YY) and the child model (translating from
AA to BB). This is obtained by concatenating both
training corpora into one corpus of sentences in
languages AA, BB, XX and YY. 2

2Having separate vocabularies for the parent and child and

Due to our focus on low-resource language
pairs, we decided to generate the vocabulary in
a balanced way by selecting the same amount of
sentences from both language pairs. We thus use
the same number of sentence pairs of the parent
corpus as there are in the child corpus.

We did not experiment with any other balanc-
ing of the vocabulary. Future research could also
investigate the impact of using only the child cor-
pus for vocabulary generation or various amounts
of used sentences.

We generated vocabularies aiming at 32k sub-
word types. The exact size of the vocabulary
varies from 26.1k to 34.8k. All experiments of a
given language set use the same vocabulary. Vo-
cabulary overlap in each language set is further
studied in Section 6.1.

3 Model Description

We use the Transformer sequence-to-sequence
model (Vaswani et al., 2017) as implemented
in Tensor2Tensor (Vaswani et al., 2018) version
1.4.2. Our models are based on the “big single
GPU” configuration as defined in the paper. To fit
the model to our GPUs (NVIDIA GeForce GTX
1080 Ti with 11 GB RAM), we set the batch size
to 2300 tokens and limit sentence length to 100
wordpieces.

We use exponential learning rate decay with the
starting learning rate of 0.2 and 32000 warm up
steps and Adam optimized. In our experiments,
we find that it is undesirable to reset learning rate
as it leads to the loss of the performance from the
parent model. Therefore the transfer learning is
handled only by changing the training corpora and
nothing else.

Decoding uses the beam size of 8 and the length
normalization penalty is set to 1.

The models were trained for 1M steps (approx.
140 hours), which was sufficient for models to
converge to the best performance. We selected the
model with the best performance on the develop-
ment test for the final evaluation on the testset.

4 Datasets

In our experiments, we compare low-resource and
high-resource language pairs spanning two orders

switching from the XX-YY to AA-BB vocabulary when we
switch the training corpus leads on an expected drop in per-
formance. Independent vocabularies use different IDs even
for identical subwords and the network cannot rely on any of
its weights from the parent training.
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Lang. Sent. Words Vocabulary
pair pairs First Second First Second
ET,EN 0.8 M 14 M 20 M 631 k 220 k
FI,EN 2.8 M 44 M 64 M 1697 k 545 k
SK,EN 4.3 M 82 M 95 M 1059 k 610 k
RU,EN 12.6 M 297 M 321 M 2202 k 3161 k
CS,EN 40.1 M 491 M 563 M 6253 k 4130 k
AR,RU 10.2 M 243 M 252 M 2299 k 2099 k
FR,RU 10.0 M 295 M 238 M 1339 k 2045 k
ES,FR 10.0 M 297 M 288 M 1426 k 1323 k
ES,RU 10.0 M 300 M 235 M 1433 k 2032 k

Table 1: Datasets sizes overview. We consider Esto-
nian and Slovak low-resource languages in our paper.
Word counts and vocabulary sizes are from the original
corpus, tokenizing only at whitespace and preserving
the case.

of magnitude of training data sizes. We consider
Estonian (ET) and Slovak (SK) as low-resource
languages compared to the Finnish (FI) and Czech
(CS) counterparts.

The choice of languages was closely related to
the languages in this year’s WMT 2018 shared
tasks. In particular, Estonian and Finnish (paired
with English) were suggested as the main focus
for their relatedness. We added Czech and Slovak
as another closely related language pair. Russian
(RU) for the parent model was chosen for two rea-
sons: (1) written in Cyrillic, there will be hardly
any intersection in the shared vocabulary with the
child language pairs, and (2) previous work uses
transliteration to handle Russian, which is a nice
contrast to our work. Finally, we added Arabic
(AR), French (FR) and Spanish (ES) for experi-
ments with unrelated languages.

The sizes of the training datasets are in Table 1.
If not specified otherwise we use training, de-

velopment and test sets from WMT.3 Pairs with
training sentences with less than 4 words or more
than 75 words on either the source or the target
side are removed to allow for a speedup of Trans-
former by capping the maximal length and allow-
ing a bigger batch size. The reduction of train-
ing data is small and based on our experiments, it
does not change the performance of the translation
model.

We use the Europarl and Rapid corpora for
Estonian-English. We disregard Paracrawl due to
its noisiness. The development and test sets are
from WMT news 2018.

The Finnish-English was prepared as in Östling
et al. (2017), removing Wikipedia headlines. The

3http://www.statmt.org/wmt18/

dev and test sets are from WMT news 2015.
For English-Czech, we use all paralel data al-

lowed in WMT2018 except Paracrawl. The main
resource is CzEng 1.7 (the filtered version, Bojar
et al., 2016). The devset is WMT newstest2011
and the testset is WMT newstest2017.

Slovak-English uses corpora from Galušcáková
and Bojar (2012), detokenized by Moses.4 WMT
newstest2011 serves as the devset and testset.

The Russian-English training set was created
from News Commentary, Yandex and UN Corpus.
As the devset, we use WMT newstest 2012.

The language pairs Arabic-Russian, French-
Russian, Spanish-French and Spanish-Russian
were selected from UN corpus (Ziemski et al.,
2016), which provides over 10 million multi-
parallel sentences in 6 languages.

5 Results

In this section, we present results of our approach.
Statistical significance of the winner (marked with
‡) is tested by paired bootstrap resampling against
the baseline (child-only) setup (1000 samples,
conf. level 0.05; Koehn, 2004).

As customary, we label the models with the pair
of the source and target language codes, for ex-
ample the English-to-Estonian translation model is
denoted by ENET.

The vocabularies are generated as described in
2.1 separately for each experimented combination
of parent and child. The same vocabulary is used
whenever the parent and child use the same set of
languages, i.e. disregarding the translation direc-
tion and model stage (parent or child).

5.1 English as the Common Language

Table 2 summarizes our results for various combi-
nations of high-resource parent and low-resource
child language pairs when English is shared be-
tween the child and parent either in the encoder or
in the decoder.

We confirm that sharing the target language im-
proves performance as previously shown (Zoph
et al., 2016; Nguyen and Chiang, 2017). This
gains up to 2.44 BLEU absolute for ETEN with
the FIEN parent. Using only the parent (FIEN)
model to translate the child (ETEN) test set gives
a miserable performance, confirming the need for
transfer learning or “finetuning”.

4https://github.com/moses-smt/
mosesdecoder
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Baselines: Only
Parent - Child Transfer Child Parent
enFI - enET 19.74‡ 17.03 2.32
FIen - ETen 24.18‡ 21.74 2.44
enCS - enET 20.41‡ 17.03 1.42
enRU - enET 20.09‡ 17.03 0.57
RUen - ETen 23.54‡ 21.74 0.80
enCS - enSK 17.75‡ 16.13 6.51
CSen - SKen 22.42‡ 19.19 11.62
enET - enFI 20.07‡ 19.50 1.81
ETen - FIen 23.95 24.40 1.78
enSK - enCS 22.99 23.48‡ 6.10
SKen - CSen 28.20 29.61‡ 4.16

Table 2: Transfer learning with English reused either
in source (encoder) or target (decoder). The column
“Transfer” is our method, baselines correspond to train-
ing on one of the corpora only. Scores (BLEU) are
always for the child language pair and they are compa-
rable only within lines or when the child language pair
is the same. “Unrelated” language pairs in bold. Up-
per part: parent larger, lower part: child larger. (“EN”
lowercased just to stand out.)

A novel result is that the method works also for
sharing the source language, improving ENET by
up to 2.71 BLEU thanks to ENFI parent.

Furthermore, the improvement is not restricted
only to related languages as Estonian and Finnish
as shown in previous works. Unrelated language
pairs (shown in bold in Table 2) like Czech and
Estonian work too and in some cases even better
than with the related datasets. We reach an im-
provement of 3.38 BLEU for ENET when parent
model was ENCS, compared to improvement of
2.71 from ENFI parent. This statistically signifi-
cant improvement contradicts Dabre et al. (2017)
who concluded that the more related the languages
are, the better transfer learning works. We see it as
an indication that the size of the parent training set
is more important than relatedness of languages.

The results with Russian parent for Estonian
child (both directions) show that transliteration is
also not necessary. Because there is no vocab-
ulary sharing between Russian Cyrilic and Esto-
nian Latin (except numbers and punctuation, see
Section 6.1 for further details), the improvement
could be attributed to a better coverage of English;
an effect similar to domain adaptation.

On the other hand, this transfer learning works
well only when the parent has more training data
than the child. As presented in the bottom part of
Table 2, low-resource parents do not generally im-
prove the performance of better-resourced childs
and sometimes, they even (significantly) decrease

Child Training Sents Transfer BLEU Baseline BLEU
800k 19.74 17.03
400k 19.04 14.94
200k 17.95 11.96
100k 17.61 9.39
50k 15.95 5.74
10k 12.46 1.95

Table 3: Maximal score reached by ENET child for
decreasing sizes of child training data, trained off an
ENFI parent (all ENFI data are used and models are
trained for 800k steps). The baselines use only the re-
duced ENET data.

it. This is another indication, that the most impor-
tant is the size of the parent corpus compared to
the child one.

The baselines are either models trained purely
on the child parallel data or only on the parent
data. The second baseline only indicates the relat-
edness of languages because it is only tested but
never trained on the child language pair. Also, we
do not add any language tag as in Johnson et al.
(2017). This also highlights that the improvement
of our method cannot be directly attributed to the
relatedness of languages: e.g. Czech and Slo-
vak are much more similar than Czech and Es-
tonian (Parent Only BLEU of translation out of
English is 6.51 compared to 1.42) and yet the
gain from transfer learning is larger for Estonian
(+3.38) than from Slovak (+1.62).

5.2 Simulated Very Low Resources

In Table 3, we simulate very low-resource settings
by downscaling the data for the child model. It
is a common knowledge, that gains from transfer
learning are more pronounced for smaller childs.
The point of Table 3 is to illustrate that our ap-
proach is applicable even to extremely small child
setups, with as few as 10k sentence pairs. Our
transfer learning (“start with a model for what-
ever parent pair”) may thus resolve the issue of
applicability of NMT for low resource languages
as pointed out by Koehn and Knowles (2017).

5.3 Parent Convergence

Figure 1 compares the performance of the child
model when trained from various training stages
of the parent model. The performance of the child
clearly correlates with the performance of the par-
ent. Therefore, it is better to use a parent model
that already converged and reached its best perfor-
mance.
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Figure 1: Learning curves on dev set for ENFI parent
and ENET child where the child model started training
after various numbers of the parent’s training steps.

Parent - Child Transfer Baseline Aligned
enFI - ETen 22.75‡ 21.74 24.18
FIen - enET 18.19‡ 17.03 19.74
enRU - ETen 23.12‡ 21.74 23.54
enCS - ETen 22.80‡ 21.74 not run
RUen - enET 18.16‡ 17.03 20.09
enET - ETen 22.04‡ 21.74 21.74
ETen - enET 17.46 17.03 17.03

Table 4: Results of child following a parent with
swapped direction. “Baseline” is child-only training.
“Aligned” is the more natural setup with English ap-
pearing on the “correct” side of the parent, the numbers
in this column thus correspond to those in Table 2.

5.4 Direction Swap in Parent and Child

Relaxing the setup in Section 5.1, we now allow a
mismatch in translation direction of the parent and
child. The parent XX-EN is thus followed by an
EN-YY child or vice versa. It is important to note
that Transformer shares word embeddings for the
source and target side. The gain can be thus due to
better English word embeddings, but definitely not
due to a better English language model. It would
be interesting to study the effect of not sharing the
embeddings but we leave it for some future work.

The results in Table 4 document that an im-
provement can be reached even when none of the
involved languages is reused on the same side.
This interesting result should be studied in more

Parent - Child Transfer Baseline
ARRU - ETEN 22.23 21.74
ESFR - ETEN 22.24‡ 21.74
ESRU - ETEN 22.52‡ 21.74
FRRU - ETEN 22.40‡ 21.74

Table 5: Transfer learning with parent and child not
sharing any language.

detail. Firat et al. (2016) hinted possible gains
even when both languages are distinct from the
low-resource languages but in a multilingual set-
ting. Not surprisingly, the improvements are better
when the common language is aligned.

The bottom part of Table 4 shows a particu-
larly interesting trick: the parent is not any high-
resource pair but the very same EN-ET corpus
with source and target swapped. We see gains
in both directions, although not always statisti-
cally significant. Future work should investigate if
this performance boost is possible even for high-
resource languages. Similar behavior has been
shown in Niu et al. (2018), where in contrast to
our work they mixed the data together and added
an artificial token indicating the target language.

5.5 No Language in Common

Our final set of experiments examines the perfor-
mance of ETEN child trained off parents in totally
unrelated language pairs. Without any common
language, the gains cannot be attributed, e.g., to
the shared English word embeddings. The vocab-
ulary overlap is mostly due to short n-grams or
numbers and punctuations.

We see gains from transfer learning in all cases,
mostly significant. The only non-significant gain
is from Arabic-Russian which does not share the
script with the child Latin at all. (Sharing of
punctuation and numbers is possible across all the
tested scripts.) The gains are quite similar (+0.49–
+0.78 BLEU), supporting our assumption that the
main factor is the size of the parent (here, all have
10M sentence pairs) rather than language related-
ness.

6 Analysis

Here we provide a rather initial analysis of the
sources of the gains.

6.1 Vocabulary Overlap

Out method relies on the vocabulary estimated
jointly from the child and parent model. In Trans-
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ET EN RU % Subwords
X - - 29.93%
- X - 20.69%
- - X 29.03%
X X - 10.06%
- X X 1.39%
X - X 0.00%
X X X 8.89%
Total 28.2k (100%)
From parent 41.03%

Table 6: Breakdown of subword vocabulary of exper-
iments involving ET, EN and RU.

former, the vocabulary is even shared across en-
coder and decoder. With a large overlap, we could
expect a lot of “information reuse” between the
parent and the child.

Since the subword vocabulary depends on the
training corpora, a little clarification is needed.
We take the vocabulary of subword units as cre-
ated e.g. for ENRU-ENET experiments, see Sec-
tion 2.1. This vocabulary contains 28.2k subwords
in total. We then process the training corpora for
each of the languages with this shared vocabulary,
ignore all subwords that appear less than 10 times
in each of the languages (these subwords will have
little to no impact on the result of the training) and
break down the total 28.2k subwords into classes
depending on the languages in which the particu-
lar subword was observed, see Table 6.

We see that the vocabulary is reasonably bal-
anced, with each language having 20–30% of sub-
words unique to it. English and Estonian share
10% subwords not seen in Russian while Russian
shares only 0–1.39% of subwords with each of the
other languages. Overall 8.89% of subwords are
seen in all three languages.

A particularly interesting subset is the one
where parent languages help the child model, in
other words subwords appearing anywhere in En-
glish and also tokens common to Estonian and
Russian. For this set of languages, this amounts
to 20.69+10.06+1.39+0.0+8.89 = 41.03%. We list
this number on a separate line in Table 6, “From
parent”. These subwords get their embeddings
trained better thanks to the parent model.

Table 7 summarizes this analysis for several lan-
guage sets, listing what portion of subwords is
unique to individual languages in the set, what
portion is shared by all the languages and what
portion of subwords benefits from the parent train-
ing. We see a similar picture across the board, only
AR-RU-ET-EN stands out with the very low num-

Languages Unique in a Lang. In All From Parent
ET-EN-FI 24.4-18.2-26.2 19.5 49.4
ET-EN-RU 29.9-20.7-29.0 8.9 41.0
ET-EN-CS 29.6-17.5-21.2 20.3 49.2
AR-RU-ET-EN 28.6-27.7-21.2-9.1 4.6 6.2
ES-FR-ET-EN 15.7-13.0-24.8-8.8 18.4 34.1
ES-RU-ET-EN 14.7-31.1-21.3-9.3 6.0 21.4
FR-RU-ET-EN 12.3-32.0-22.3-8.1 6.3 23.1

Table 7: Summary of vocabulary overlaps for the var-
ious language sets. All figures in % of the shared vo-
cabulary.

BLEU nPER nTER nCDER chrF3 nCharacTER
Base ENET 16.13 47.13 32.45 36.41 48.38 33.23
ENRU+ENET 19.10 50.87 36.10 39.77 52.12 39.39
ENCS+ENET 19.30 51.51 36.84 40.42 52.71 40.81

Table 8: Various automatic scores on ENET test set.
Scores prefixed “n” reported as (1 − score) to make
higher numbers better.

ber of subwords (6.2%) available already in the
parent. The parent AR-RU thus offered very lit-
tle word knowledge to the child and yet lead to a
gain in BLEU.

6.2 Output Analysis

Since we rely on automatic analysis, we need to
prevent some potential overestimations of trans-
lation quality due to BLEU. For this, we took a
closer look at the baseline ENET model (BLEU
of 17.03 in Table 2) and two ENET childs derived
from ENCS (BLEU of 20.41) and ENRU parent
(BLEU 20.09).

Table 8 confirms the improvements are not an
artifact of uncased BLEU. The gains are apparent
with several (now cased) automatic scores.

As documented in Table 9, the improved out-
puts are considerably longer. In the table, we show
also individual n-gram precisions and brevity
penalty (BP) of BLEU. The longer output clearly
helps to reduce the incurred BP but the improve-
ments are also apparent in n-gram precisions.
In other words, the observed gain cannot be at-
tributed solely to producing longer outputs.

Table 10 explains the gains in unigram preci-
sions by checking which tokens in the improved
outputs (the parent followed by the child) were
present also in the baseline (child-only, denoted
“b” in Table 10) and/or confirmed by the refer-
ence (denoted “r”). We see that about 44+20% of
tokens of improved outputs can be seen as “un-
changed” compared to the baseline because they
appear already in the baseline output (“b”). (The
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Length BLEU Components BP
Base ENET 35326 48.1/21.3/11.3/6.4 0.979
ENRU+ENET 35979 51.0/24.2/13.5/8.0 0.998
ENCS+ENET 35921 51.7/24.6/13.7/8.1 0.996

Table 9: Candidate total length, BLEU n-gram preci-
sions and brevity penalty (BP). The reference length in
the matching tokenization was 36062.

ENRU+ENET ENCS+ENET
rb 15902 (44.2 %) 15924 (44.3 %)
- 9635 (26.8 %) 9485 (26.4 %)
b 7209 (20.0 %) 7034 (19.6 %)
r 3233 (9.0 %) 3478 (9.7 %)
Total 35979 (100.0 %) 35921 (100.0 %)

Table 10: Comparison of improved outputs vs. the
baseline and reference.

44% “rb” tokens are actually confirmed by the ref-
erence.)

The differing tokens are more interesting: “-”
denotes the cases when the improved system pro-
duced something different from the baseline and
also from the reference. Gains in BLEU are due to
“r” tokens, i.e. tokens only in the improved out-
puts and the reference but not the baseline “b”.
For both parent setups, there are about 9–9.7 %
of such tokens. We looked at these 3.2k and 3.5k
tokens and we have to conclude that these are reg-
ular Estonian words; no Czech or Russian leaks to
the output and the gains are not due to simple to-
ken types common to all the languages (punctua-
tion, numbers or named entities). We see identical
BLEU gains even if we remove all such simple to-
kens from the candidates and references. A better
explanation of the gains thus still has to be sought
for.

7 Related Work

Firat et al. (2016) propose multi-way multi-lingual
systems, with the main goal of reducing the to-
tal number of parameters needed to cater multiple
source and target languages. To keep all the lan-
guage pairs “active” in the model, a special train-
ing schedule is needed. Otherwise, catastrophic
forgetting would remove the ability to translate
among the languages trained earlier.

Johnson et al. (2017) is another multi-lingual
approach: all translation pairs are simply used at
once and the desired target language is indicated
with a special token at the end of the source side.
The model implicitly learns translation between

many languages and it can even translate among
language pairs never seen together.

Lack of parallel data can be tackled by unsu-
pervised translation (Artetxe et al., 2018; Lample
et al., 2018). The general idea is to mix monolin-
gual training of autoencoders for the source and
target languages with translation trained on data
translated by the previous iteration of the system.

When no parallel data are available, the train-
set of closely related high-resource pair can be
used with transliteration approach as described in
Karakanta et al. (2018).

Aside from the common back-translation (Sen-
nrich et al., 2016a; Kocmi et al., 2018), simple
copying of target monolingual data back to source
(Currey et al., 2017) has been also shown to im-
prove translation quality in low-data conditions.

Similar to transfer learning is also curriculum
learning (Bengio et al., 2009; Kocmi and Bojar,
2017), where the training data are ordered from
foreign out-of-domain to the in-domain training
examples.

8 Conclusion

We presented a simple method for transfer learn-
ing in neural machine translation based on train-
ing a parent high-resource pair followed a low-
resource language pair dataset. The method works
for shared source or target side as well as for lan-
guage pairs that do not share any of the translation
sides. We observe gains also from totally unre-
lated language pairs, although not always signifi-
cant.

One interesting trick we propose for low-
resource languages is to start training in the oppo-
site direction and swap to the main one afterwards.

The reasons for the gains are yet to be explained
in detail but our observations indicate that the key
factor is the size of the parent corpus rather than
e.g. vocabulary overlaps.
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Petra Galušcáková and Ondrej Bojar. 2012. Improving
smt by using parallel data of a closely related lan-
guage. In Proc. of HLT, pages 58–65.

Duc Tam Hoang and Ondrej Bojar. 2016. Pivoting
methods and data for czech-vietnamese translation
via english. Baltic Journal of Modern Computing,
4(2):190–202.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,

Fernand a Vigas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Alina Karakanta, Jon Dehdari, and Josef van Genabith.
2018. Neural machine translation for low-resource
languages without parallel corpora. Machine Trans-
lation, 32(1):167–189.
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Abstract

In multi-source sequence-to-sequence tasks,
the attention mechanism can be modeled in
several ways. This topic has been thoroughly
studied on recurrent architectures. In this
paper, we extend the previous work to the
encoder-decoder attention in the Transformer
architecture. We propose four different in-
put combination strategies for the encoder-
decoder attention: serial, parallel, flat, and hi-
erarchical. We evaluate our methods on tasks
of multimodal translation and translation with
multiple source languages. The experiments
show that the models are able to use multiple
sources and improve over single source base-
lines.

1 Introduction

The Transformer model (Vaswani et al., 2017) re-
cently demonstrated superior performance in neu-
ral machine translation (NMT) and other sequence
generation tasks such as text summarization or im-
age captioning (Kaiser et al., 2017). However, all
of these setups consider only a single input to the
decoder part of the model.

In the Transformer architecture, the represen-
tation of the source sequence is supplied to the
decoder through the encoder-decoder attention.
This attention sub-layer is applied between the
self-attention and feed-forward sub-layers in each
Transformer layer. Such arrangement leaves many
options for the incorporation of multiple encoders.

So far, attention in sequence-to-sequence learn-
ing with multiple source sequences was mostly
studied in the context of recurrent neural networks
(RNNs). Libovický and Helcl (2017) explicitly
capture the distribution over multiple inputs by
projecting the input representations to a shared
vector space and either computing the attention
over all hidden states at once, or hierarchically, us-
ing another level of attention applied on the con-

text vectors. Zoph and Knight (2016) employ a
gating mechanism for combining the context vec-
tors. Voita et al. (2018) adapted the gating mech-
anism for use within the Transformer model for
context-aware MT. The other aproaches are how-
ever not directly usable in the Transformer model.

We propose a number of strategies of com-
bining the different sources in the Transformer
model. Some of the strategies described in this
work are an adaptation of the strategies previously
used with recurrent neural networks (Libovický
and Helcl, 2017), whereas the rest of them is a
novel contribution devised for the Transformer ar-
chitecture. We test these strategies on multimodal
machine translation (MMT) and multi-source ma-
chine translation (MSMT) tasks.

This paper is organized as follows. In Sec-
tion 2, we briefly describe the decoder part of
the Transformer model. We propose a number of
input combination strategies for the multi-source
Transformer model in Section 3. Section 4 de-
scribes the experiments we performed, and Sec-
tion 5 shows the results of quantitative evaluation.
An overview of the related work is given in Sec-
tion 6. We discuss the results and conclude in
Section 7.

2 Transformer Decoder

The Transformer architecture is based on the use
of attention. Attention, as conceptualized by
Vaswani et al. (2017), can be viewed as a soft-
lookup function operating on an associative mem-
ory. For each query vector in query set Q, the at-
tention computes a set of weighted sums of values
V associated with a set of keys K, based on their
similarity to the query.

The variant of the attention function used in
the Transformer architecture is called multi-head
scaled dot-product attention. Scaled dot-product
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of queries and keys is used as the similarity mea-
sure. Given the dimension of the input vectors d,
the attention is computed as follows:

A(Q,K, V ) = softmax

(
QK>√

d

)
V. (1)

In the multi-head variant, the vectors that represent
the queries, keys, and values are linearly trans-
formed to a number of projections (usually with
smaller dimension), called attention heads. The
attention is computed in each head independently
and the outputs are concatenated and projected
back to the original dimension:

Ah(Q,K, V ) =
h∑

i=1

CiW
O
i (2)

where WO
i ∈ Rdh×d are trainable parameter ma-

trices used as projections of the attention head out-
puts of dimension dh to the model dimension d,
and

Ci = A(QWQ
i ,KW

K
i , V W

V
i ) (3)

where WQ, WK , and W V ∈ Rd×dh , are trainable
projection matrices used to project the attention in-
puts to the attention heads.

The model itself consists of a number of lay-
ers, each of which is divided in three sub-layers:
self-attention, encoder-decoder (or cross) atten-
tion, and a feed-forward layer. Both of the at-
tention types use identical sets for keys and val-
ues. The states of the previous layer are used
as the query set. The self-attention sub-layer at-
tends to the previous decoder layer (i.e. the sets of
queries and keys are identical). Since the decoder
works autoregressively from left to right, during
training, the self-attention is masked to prevent
attending to the future positions in the sequence.
The encoder-decoder attention sub-layer attends to
the final layer of the encoder. The feed-forward
sub-layer consists of a single non-linear projec-
tion (usually to a space with larger dimension),
followed by a linear projection back to the vec-
tor space with the original dimension. The input
of each sub-layer is summed with the output, cre-
ating a residual connection chain throughout the
whole layer stack.

3 Proposed Strategies

We propose four input combination strategies for
multi-source variant of the Transformer network,

self-attention

⊕

cross-attention # 1encoder # 1

⊕

cross-attention # 2encoder # 2

⊕

feed-forward layer

⊕

(a) serial

self-attention

⊕

cross-attention # 1

encoder # 1

⊕

cross-attention # 2

encoder # 2

feed-forward layer

⊕

(b) parallel

self-attention

⊕

encoder # 1

encoder # 2

concat

cross-attention

⊕

feed-forward layer

⊕

(c) flat

self-attention

⊕

cross-attention # 1

encoder # 1

cross-attention # 2

encoder # 2

attention over contexts

⊕

feed-forward layer

⊕

(d) hierarchical

Figure 1: Schemes of computational steps for
the serial, parallel, flat, and hierarchical attention
combination in a single layer of the decoder.
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as illustrated in Figure 1. Two of them, serial
and parallel, model the encoder-decoder attentions
independently and are a natural extension of the
sub-layer scheme in the transformer decoder. The
other two versions, flat and hierarchical, are in-
spired by approaches proposed for RNNs by Li-
bovický and Helcl (2017) and model joint distri-
butions over the inputs.

Serial. The serial strategy (Figure 1a) computes
the encoder-decoder attention one by one for each
input encoder. The query set of the first cross-
attention is the set of the context vectors computed
by the preceding self-attention. The query set of
each subsequent cross-attention is the output of the
preceding sub-layer. All of these sub-layers are in-
terconnected with residual connections.

Parallel. In the parallel combination strategy
(Figure 1b), the model attends to each encoder in-
dependently and then sums up the context vectors.
Each encoder is attended using the same set of
queries, i.e. the output of the self-attention sub-
layer. Residual connection link is used between
the queries and the summed context vectors from
the parallel attention.

Ah
para(Q,K1:n, V1:n) =

n∑

i=1

Ah(Q,Ki, Vi) (4)

Flat. The encoder-decoder attention in the flat
combination strategy (Figure 1c) uses all the states
of all input encoders as a single set of keys and val-
ues. Thus, the attention models a joint distribution
over a flattened set of all encoder states. Unlike the
approach taken in the recurrent setup (Libovický
and Helcl, 2017), where the flat combination strat-
egy requires an explicit projection of the encoder
states to a shared vector space, in the Transformer
models, the vector spaces of all layers are tied with
residual connections. Therefore, the intermediate
projection of the states of each encoder is not nec-
essary.

Kflat = Vflat = concati(Ki) (5)

Ah
flat(Q,K1:n, V1:n) = Ah(Q,Kflat , Vflat) (6)

Hierarchical. In the hierarchical combination
(Figure 1d), we first compute the attention inde-
pendently over each input. The resulting contexts
are then treated as states of another input and the

attention is computed once again over these states.

Khier = Vhier = concati(Ah(Q,Ki, Vi)) (7)

Ah
hier (Q,K1:n, V1:n) = Ah(Q,Khier , Vhier ) (8)

4 Experiments

We conduct our experiments on two different
tasks: multimodal translation and multi-source
machine translation. We use Neural Monkey
(Helcl and Libovický, 2017)1 for design, training,
and evaluation of the experiments.

In all experiments, the encoder part of the net-
work follows the Transformer architecture as de-
scribed by Vaswani et al. (2017).

We optimize the model parameters using Adam
optimizer (Kingma and Ba, 2014) with initial
learning rate 0.2, and Noam learning rate decay
(Vaswani et al., 2017) with β1 = 0.9, β2 = 0.98,
ε = 10−9, and 4,000 warm-up steps. The size of a
mini-batch size of 32 for MMT, and 24 for multi-
source MT experiments.

During decoding, we use beam search of width
10 and length normalization of 1.0 (Wu et al.,
2016).

4.1 Multimodal Translation
The goal of MMT (Specia et al., 2016) is trans-
lating image captions from one language into an-
other given both the source and image as the in-
put. We use Multi30k dataset (Elliott et al., 2016)
containing triplets of images, English captions and
their English translations into German, French and
Czech. The dataset contains 29k triplets for train-
ing, 1,014 for validation and a test set of 1,000.
We experiment with all language pairs available in
this dataset.

We extract image feature using the last convo-
lutional layer of the ResNet network (He et al.,
2016) trained for ImageNet classification. We ap-
ply a linear projection into 512 dimensions on the
image representation, so it has the same dimen-
sion as the rest of the model. For each language
pair, we create a shared wordpiece-based vocabu-
lary of approximately 40k subwords. We share the
embedding matrices across the languages and we
use the transposed embedding matrix as the output
projection matrix as proposed by Press and Wolf
(2017).

We use 6 layers in the textual encoder and de-
coder, and set the model dimension to 512. We

1http://github.com/ufal/neuralmonkey
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set the dimension of the hidden layers in the feed-
forward sub-layers to 4096. We use 16 heads in
the attention layers.

During the evaluation, we follow the prepro-
cessing used in WMT Multimodal Translation
Shared Task (Specia et al., 2016).

Conclusions of previous work show (Elliott and
Kádár, 2017) that the improved performance of
the multimodal models compared to textual mod-
els can come from improving the input representa-
tion. In order to test whether it is also the case with
our models or the models explicitly use the visual
input, we perform an adversarial evaluation simi-
lar to Elliott (2018). We evaluate the model while
providinng a random image and observe how it af-
fects the score and observe whether their quality
drops.

4.2 Multi-Source MT

In this set of experiment, we attempt to generate
a sentence in a target language, given equivalent
sentences in multiple source languages.

We use the Europarl corpus (Tiedemann, 2012)
for training and testing the MSMT. We use Span-
ish, French, German, and English as source lan-
guages and Czech as a target language. We se-
lected an intersection of the bilingual sub-corpora
using English as a pivot language. Our dataset
contains 511k 5-tuples of sentences for training,
1k for validation and another 1k for testing.

Due of the memory demands of having four en-
coders, we use a smaller model than in the previ-
ous experiment. The encoders only have 4 layers
and the decoder has 6 layers with embeddings size
256, feed-forward layers dimension 2048, and 8
attention heads. We use a shared word-piece vo-
cabulary of 48k subwords. As in the MMT exper-
iments, the transposition of the embedding matrix
is reused as the parameters of the output projection
layer (Press and Wolf, 2017).

We use bilingual English-to-Czech translation
as a single source baseline. The baseline uses vo-
cabulary of 42k subwords from Czech and English
only.

Similarly to the MMT, we also perform adver-
sarial evaluation. To evaluate the importance of
the source languages for the translation quality,
when randomizing one of the source languages.

5 Results

We evaluate the results using BLEU (Papineni
et al., 2002) and METEOR (Denkowski and Lavie,
2011) as implemented in MultEval. 2 The results
of the MMT task are tabulated in Table 1. The re-
sults of the multi-source MT are shown in Table 2.

In MMT, the input combination significantly
surpassed the text-only baseline in English-to-
French translation. The performance in other tar-
get languages is only slightly better than the tex-
tual baseline.

The only worse score was achieved by the flat
combination strategy. We hypothesize this might
be because the optimization failed to find a com-
mon representation of the input modalities that
could be used to compute the joint distribution.

The adversarial evaluation with randomly se-
lected input images shows that all our models rely
on both inputs while generating the target sentence
and that providing incorrect visual input harms the
model performance. The modality gating in the
hierarchical attention combination seems to make
the models more robust to noisy visual input.

In the multi-source translation task, all the pro-
posed strategies perform better than single-source
translation from English to Czech. Among the
combination strategies, the best-scoring is the se-
rial stacking of the attentions. In multimodal
translation, the flat combination has shown to be
the best-performing strategy.

Analysis of the attention distribution shows that
the serial strategy use information from all source
languages. The parallel strategy almost does not
use the Spanish source and the flat strategy prefers
the English source. The hierarchical strategy uses
information from all source languages, however
the attentions are sometimes more fuzzy than in
the previous strategies. Figure 2 shows what
source languages were attended on different lay-
ers of the encoder. Other examples of the attention
visualization are shown in Appendix A.

The adversarial evaluation shows all the models
used English as a primary source. Providing incor-
rect English source harms. Introducing noise into
other languages affects the score in much smaller
scale.
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MMT: en)de MMT: en)fr MMT: en)cs
BLEU METEOR adv.BLEU BLEU METEOR adv.BLEU BLEU METEOR adv.BLEU

baseline 38.3 ± .8 56.7 ± .7 — 59.6 ± .9 72.7 ± .7 — 30.9 ± .8 29.5 ± .4 —
serial 38.7 ± .9 57.2 ± .6 37.3 ± .6 60.8 ± .9 75.1 ± .6 58.9 ± .9 31.0 ± .8 29.9 ± .4 29.7 ± .8

parallel 38.6 ± .9 57.4 ± .7 38.2 ± .8 60.2 ± .9 74.9 ± .6 58.9 ± .9 31.1 ± .9 30.0 ± .4 30.4 ± .8

flat 37.1 ± .8 56.5 ± .6 35.7 ± .8 58.0 ± .9 73.3 ± .7 57.0 ± .9 29.9 ± .8 29.0 ± .4 28.2 ± .8

hierarchical 38.5 ± .8 56.5 ± .6 38.1 ± .8 60.8 ± .9 75.1 ± .6 60.2 ± .9 31.3 ± .9 30.0 ± .4 31.0 ± .8

Table 1: Quantitative results of the MMT experiments on the 2016 test set. Column ‘adv. BLEU’ is an
adversarial evaluation with randomized image input.

MSMT Adversarial evaluation (BLEU)
BLEU METEOR en de fr es

baseline 16.5 ± .5 20.5 ± .3 — — — —
serial 20.5 ± .6 23.5 ± .5 8.1 ± .4 19.7 ± .5 19.5 ± .6 18.4 ± .5

parallel 20.5 ± .6 23.3 ± .3 1.4 ± .2 18.7 ± .5 17.9 ± .5 20.3 ± .5

flat 20.4 ± .6 23.3 ± .3 0.2 ± .1 19.9 ± .6 20.0 ± .6 19.6 ± .5

hierarchical 19.4 ± .5 22.7 ± .3 4.2 ± .3 18.3 ± .5 18.3 ± .5 15.3 ± .5

Table 2: Quantitative results of the MMT experiment. The adversarial evaluation shows the BLEU score
when one input language was changed randomly.

es fr de en

layer 0

layer 1

layer 2

layer 3

layer 4

layer 5
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Attention over contexts in the hiearchical
strategy over the decoder layers.

6 Related Work

MMT was so far solved only within the RNN-
based architectures. Elliott et al. (2015) report sig-
nificant improvements with a non-attentive model.
With attentive models (Bahdanau et al., 2014), the
additional visual information usually did not im-
prove the models significantly (Caglayan et al.,
2016; Helcl and Libovický, 2017) in terms of
BLEU score. Our models slightly outperform
these models in the single model setup.

2https://github.com/jhclark/multeval

Except for using the image features direct in-
put to the model, they can be used as an auxil-
iary objective (Elliott and Kádár, 2017). In this
setup, the visually grounded representation, im-
proves the MMT significantly, achieving similar
results that our models achieved using only the
Multi30k dataset.

To our knowledge, multi-source MT has also
been studied only using the RNN-based models.
Dabre et al. (2017) use simple concatenation of
source sentences in various languages and process
them with a single multilingual encoder.

Zoph and Knight (2016) try context concate-
nation and hierarchical gating method for com-
bining context vectors in attention models with
multiple inputs encoded by separate encoders. In
all of their experiments, the multi-source meth-
ods significantly surpass the single-source base-
line. Nishimura et al. (2018) extend the former ap-
proach for situations when of the source languages
is missing, so that the translation system does not
overly rely on a single source language like some
of the models presented in this work.

7 Conclusions

We proposed several input combination strate-
gies for multi-source sequence-to-sequence learn-
ing using the Transformer model (Vaswani et al.,
2017). Two of the strategies are a straightfor-
ward extension of cross-attention in the Trans-
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former model: the cross-attentions are combined
either serially interleaved by residual connections
or in parallel. The two remaining strategies are
an adaptation of the flat and the hierarchical at-
tention combination strategies introduced by Li-
bovický and Helcl (2017) in context of recurrent
sequence-to-sequence models.

The results on the MMT task show similar
properties an in RNN-based models (Caglayan
et al., 2017; Libovický and Helcl, 2017). Adding
visual features significantly improves translation
into French and brings minor improvements on
other language pairs. All the attention combina-
tions perform similarly with the exception of the
flat strategy which probably struggles with learn-
ing a shared representation of the input tokens and
the image representation.

Evaluation on multi-source MT shows signif-
icant improvements over the single-source base-
line. However, the adversarial evaluation suggests
that the model relies heavily on the English input
and only uses the additional source languages for
minor modifications of the output. All attention
combinations performed similarly.
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A Attention Visualizations

We show cross-attention visualizations for the four
proposed combination strategies on Multi-source
MT. The Czech target wordpieces are in rows,
the source Spanish, French, German, and En-
glish wordpieces are concatenated and shown in
columns. These attentions were taken form the

decoder’s fourth layer and were averaged across
the individual heads. For serial and parallel strat-
egy the cross-attention weights sum to one for
each language separately, the flat strategy has only
one common cross-attention, and for the hier-
archical strategy visualization the cross-attention
weights for individual languages are multiplied by
the weights of the attention over contexts.
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Abstract

In multilingual neural machine translation, it
has been shown that sharing a single trans-
lation model between multiple languages can
achieve competitive performance, sometimes
even leading to performance gains over bilin-
gually trained models. However, these im-
provements are not uniform; often multilin-
gual parameter sharing results in a decrease
in accuracy due to translation models not be-
ing able to accommodate different languages
in their limited parameter space. In this work,
we examine parameter sharing techniques that
strike a happy medium between full sharing
and individual training, specifically focusing
on the self-attentional Transformer model. We
find that the full parameter sharing approach
leads to increases in BLEU scores mainly
when the target languages are from a similar
language family. However, even in the case
where target languages are from different fam-
ilies where full parameter sharing leads to a
noticeable drop in BLEU scores, our proposed
methods for partial sharing of parameters can
lead to substantial improvements in translation
accuracy.1

1 Introduction

Neural machine translation (NMT; Sutskever et al.
(2014); Cho et al. (2014)) is now the de-facto stan-
dard in MT research due to its relative simplicity
of implementation, ability to perform end-to-end
training, and high translation accuracy. Early ap-
proaches to NMT used recurrent neural networks
(RNNs), usually LSTMs (Hochreiter and Schmid-
huber, 1997), in their encoder and decoder layers,
with the addition of an attention mechanism (Bah-
danau et al., 2014; Luong et al., 2015) to focus
more on specific encoded source words when de-
ciding the next translation target output. Recently,

1Data and code of this paper is available at:
https://github.com/DevSinghSachan/multilingual_nmt

Shared Encoder

Decoder 2Source Language: "En"

Target Language 2: "Nl"

Decoder 1

Target Language 1: "De"

(a) Shared encoder, separate decoder (Dong et al., 2015).

Shared Encoder
Source Language: "En" Target Language 2: "Nl"

Shared Decoder

Target Language 1: "De"

(b) Shared encoder and decoder (Johnson et al., 2017).

Shared Encoder

Decoder 2

Source Language: "En"

Target Language 2: "Nl"

Target Language 1: "De"
Decoder 1

Shareable
Parameters

(c) Proposed shared decoder with partial parameter sharing.

Figure 1: Examples of MTL frameworks for the
translation of one source language (for example

“En”) to two target languages (for example “De”,
“Nl”). The principle remains the same with more
than two target languages. Best viewed in color.

the NMT research community has been transition-
ing from RNNs to an alternative method for encod-
ing sentences using self-attention (Vaswani et al.,
2017), represented by the so-called “Transformer”
model, which both improves the speed of process-
ing sentences on computational hardware such as
GPUs due to its lack of recurrence, and achieves
impressive results.

In parallel to this transition to self-attentional
models, there has also been an active interest in
the multilingual training of NMT systems (Fi-
rat et al., 2016; Johnson et al., 2017; Ha et al.,
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2016). In contrast to the standard bilingual mod-
els, multilingual models follow the multi-task train-
ing paradigm (Caruana, 1997) where models are
jointly trained on training data from several lan-
guage pairs, with some degree of parameter shar-
ing. The objective of this is two-fold: First, com-
pared to individually training separate models for
each language pair of interest, this maintains com-
petitive translation accuracy while reducing the
total number of models that need to be stored, a
considerable advantage when deploying practical
systems. Second, by utilizing data from multiple
language pairs simultaneously, it becomes possi-
ble to improve the translation accuracy for each
language pair.

In multilingual translation, one-to-many transla-
tion —translation from a common source language
(for example English) to multiple target languages
(for example German and Dutch) — is considered
particularly difficult. Previous multi-task learning
(MTL) models for this task broadly consist of two
approaches as shown in Figure 1: (a) a model with
a shared encoder and one decoder per target lan-
guage (Dong et al. (2015), shown in Figure 1a).
This approach has the advantage of being able to
model each target separately but comes with the
cost of slower training and increased memory re-
quirements. (b) a single unified model consisting
of a shared encoder and a shared decoder for all
the language pairs (Johnson et al. (2017), shown
in Figure 1b). This simple approach is trivially im-
plementable using a standard bilingual translation
model and has the advantage of having a constant
number of trainable parameters regardless of the
number of languages, but has the caveat that the
decoder’s ability to model multiple languages can
be significantly reduced.

In this paper, we propose a third alternative:
(c) a model with a shared encoder and multiple
decoders such that some decoder parameters are
shared (shown in Figure 1c). This hybrid approach
combines the advantages from both the approaches
mentioned above. It carefully moderates the types
of parameters that are shared between the multi-
ple languages to provide the flexibility necessary
to decode two different languages, but still shares
as many parameters as possible to take advantage
of information sharing across multiple languages.
Specifically, we focus on the aforementioned self-
attentional Transformer models, with the set of
shareable parameters consisting of the various at-

tention weights, linear layer weights, or embedding
weights contained therein. The full sharing and
no sharing of decoder parameters used in previous
work are special cases (refer to Section 2.2 for a
detailed description).

To empirically examine the utility of this ap-
proach, we examine the case of translation from
a common source language to multiple target lan-
guages, where the target languages can be either
related or unrelated. Our work reveals that while
full parameter sharing works reasonably well when
using target languages from the same family, par-
tial parameter sharing is essential to achieve the
best accuracy when translating into multiple dis-
tant languages.

2 Method

In this section, we will first briefly describe the key
elements of the Transformer model followed by
our proposed approach of parameter sharing.

2.1 Transformer Architecture

As is common in sequence-to-sequence (seq2seq)
models for NMT, the self-attentional Transformer
model (Figure 2; Vaswani et al. (2017)) consists
of an embedding layer, multiple encoder-decoder
layers, and an output generation layer. Each en-
coder layer consists of two sublayers in sequence:
self-attentional and feed-forward networks. Each
decoder layer consists of three sublayers: masked
self-attention, encoder-decoder attention, and feed-
forward networks. The core building blocks in
all these layers consist of different sets of weight
matrices that compute affine transforms.

First, an embedding layer obtains the source
and target word vectors from the input words:
WE ∈ Rdm×V, where dm is model size, and V is
vocabulary size. After the embedding lookup step,
word vectors are multiplied by a scaling factor of√
dm. To capture the relative position of a word

in the input sequence, position encodings defined
in terms of sinusoids of different frequencies are
added to the scaled word vectors of the source and
target.

The encoder layer maps the input word vectors to
continuous hidden state representations. As men-
tioned earlier, it consists of two sublayers. The
first sublayer performs multi-head dot-product self-
attention. In the single-head case, defining the
input to the sublayer as x = (x1, . . . , xT) and the
output as z = (z1, . . . , zT), where xi, zi ∈ Rdm ,
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Figure 2: Block diagram illustrating the Trans-
former decoder’s shareable parameters (in color)
that includes embedding layer weights (WE), tied
linear layer weights (WT

E ), transformation weights
as a part of self-attention (W 1

K ,W
1
V ,W

1
Q ,W

1
F ),

encoder-decoder attention (W 2
K ,W

2
V ,W

2
Q ,W

2
F ),

and feed-forward network (WL1 ,WL2) sublayers.
Best viewed in color.

the input is linearly transformed to obtain key (ki),
value (vi), and query (qi) vectors

ki = xiWK, vi = xiWV, qi = xiWQ.

Next, similarity scores (eij) between query and
key vectors are computed by performing a scaled

dot-product

eij =
1√
dm
qik

T
j .

Next, attention coefficients (αij) are computed by
applying softmax function over these similarity
values.

αij =
exp eij∑T
l=1 exp eil

Self-attention output (zi) is computed by the con-
vex combination of attention weights with value
vectors followed by a linear transformation

zi = (

T∑

j=1

αijvj)WF.

In the above equations, WK,WV,WQ,WF are
learnable transformation matrices of shape Rdm×dm .
To extend to multi-head attention (`), one can split
the key, value, and query vectors into ` vectors, per-
form the attention computation in parallel for each
of the ` vectors followed by concatenating before
the final linear transformation byWF. The second
sublayer consists of a two-layer deep position-wise
feed-forward network (FFN) with ReLU activa-
tion (Glorot et al., 2011).

FFN(zi) = max(0, ziWL1 + b1)WL2 + b2

where WL1 ∈ Rdm×dh , WL2 ∈ Rdh×dm , b1 and b2
are biases, and dh is hidden size. The FFN sublayer
outputs are subsequently given as input to the next
encoder layer.

The decoder layer consists of three sublayers.
The first sublayer, similar to the encoder, performs
masked self-attention where masks are used to pre-
vent positions from attending to subsequent po-
sitions. The second sublayer performs encoder-
decoder inter-attention where the input to the query
vector comes from the decoder layer while the in-
put to the key and value vectors comes from the
encoder’s last layer. To denote parameters in these
two sublayers, the transformation weights of the
masked self-attention sublayer are referenced as
W 1

K ,W
1
V ,W

1
Q ,W

1
F and encoder-decoder atten-

tion sublayer asW 2
K ,W

2
V ,W

2
Q ,W

2
F , which is also

indicated in Figure 2. The third sublayer consists of
an FFN. To generate predictions for the next word,
there is a linear layer on top of the decoder layer.
The weight of this linear layer is shared with the
weight of the embedding layer (Inan et al., 2016).

263



Embedding Layer

Masked Self-Attention

Enc-Dec Attention

Feed-Forward Network

  

Embedding Layer

Masked Self-Attention

Enc-Dec Attention

Feed-Forward Network

Decoder 1
Shareable 

Parameters
Decoder 2

Embedding Layer

Self-Attention

Feed-Forward Network

Encoder

Source Language: ''En" Target Language 1: "De" Target Language 2: "Nl"

Tied Linear Layer Tied Linear Layer

Figure 3: Block diagram illustrating our MTL approach for one-to-many multilingual translation task that
is based on the partial sharing of parameters between the multiple decoders. Best viewed in color.

Residual connections (He et al., 2016) and layer
normalization (Ba et al., 2016) are applied on each
sublayer and to the output vector from the final
encoder and decoder layers.

2.2 Parameter Sharing Strategies

In this paper, our objective is to investigate effective
parameter sharing strategies for the Transformer
model using MTL, mainly for one-to-many multi-
lingual translation. Here, we will use the symbol Θ
to denote the set of shared parameters in our model.
These parameter sharing strategies are described
below:

• The base case consists of separate bilingual
translation models for each language pair(
Θ = ∅

)
.

• Use of a common embedding layer for all
the bilingual models

(
Θ = {WE}

)
. This will

result in a significant reduction of the total
parameters by sharing parameters across com-
mon words present in the source and target
sentences (Wu et al., 2016).

• Use of a common encoder for the source lan-
guage and a separate decoder for each target
language

(
Θ = {WE, θENC}

)
. This has the

advantage that the encoder will now see more
source language training data (Dong et al.,
2015).

Next, we also include the decoder parameters
among the set of shared parameters. While do-
ing so, we will assume that the embedding and the
encoder parameters are always shared between the

bilingual models. Because there can be exponen-
tially many combinations considering all the dif-
ferent feasible sets of shared parameters between
the multiple decoders, we only select a subset of
these combinations based on our preliminary re-
sults. These selected weights are shared in all the
layers of the decoder unless stated otherwise. A
schematic diagram illustrating the various possi-
ble parameter matrices that can be shared in each
sublayer of our MTL model is shown in Figure 3.

• We share only the FFN sublayer parameters(
Θ =

{
WE, θENC,WL1 ,WL2

})
.

• Sharing the weights of the self-attention sub-
layer

(
Θ =

{
WE, θENC, W 1

K , W 1
Q , W 1

V ,
W 1

F

})
.

• Sharing the weights of the encoder-decoder
attention sublayer

(
Θ =

{
WE, θENC, W 2

K ,
W 2

Q ,W 2
V ,W 2

F

})
.

• We limit the attention parameters that are
shared to only include either the key and
query weights

(
Θ =

{
WE, θENC, W 1

K , W 1
Q ,

W 2
K , W 2

Q

})
or the key and value weights(

Θ =
{
WE, θENC,W 1

K ,W 1
V ,W 2

K ,W 2
V

})
.

The motivation for doing so is so that the
shared attention sublayer weights can model
the common aspects of the target languages
while the individual FFN sublayer weights
can model the distinctive or unique aspects of
each language.

• We share all the parameters of the decoder to
have a single unified model

(
Θ =

{
WE, θENC,
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Language Pair Training Dev Test

EN−RO 180,484 3,904 4,631
EN−FR 192,304 4,320 4,866
EN−NL 183,767 4,459 5,006
EN−DE 167,888 4,148 4,491
EN−JA 204,090 4,429 5,565
EN−TR 182,470 4,045 5,029

Table 1: Number of sentences in the training, dev,
and test splits for each language pair used in our ex-
periments. The languages are represented by their
ISO 639-1 codes En:English, Fr:French, Nl:Dutch,
De:German, Ja:Japanese, Tr:Turkish.

θDEC
})

. Fewer parameters in the decoder in-
dicates limited modeling ability, and we ex-
pect this method to obtain good translation
accuracy mainly when the target languages
are related (Johnson et al., 2017).

3 Experimental Setup

In this section, first, we describe the datasets used
in this work and the evaluation criteria. Then, we
describe the training regimen followed in all our
experiments. All of our models were implemented
in PyTorch framework (Paszke et al., 2017) and
were trained on a single GPU.

3.1 Datasets and Evaluation Metric

To perform multilingual translation experiments,
we select six language pairs from the openly avail-
able TED talks dataset (Qi et al., 2018) whose
statistics are mentioned in Table 1. This dataset
already contains predefined splits for training, de-
velopment, and test sets. Among these languages,
Romanian (RO) and French (FR) are Romance lan-
guages, German (DE) and Dutch (NL) are Ger-
manic languages while Turkish (TR) and Japanese
(JA) are unrelated languages that come from distant
language families. For all language pairs, tokeniza-
tion was carried out using the Moses tokenizer,2

except for Japanese, where word segmentation was
performed using the KyTea tokenizer (Neubig
et al., 2011). To select training examples, we fil-
ter sentences with a maximum length of 70 tokens.
For evaluation, we report the model’s performance
using the standard BLEU score metric (Papineni
et al., 2002). We use the mtevalv14.pl script

2https://github.com/moses-
smt/mosesdecoder/tree/master/scripts/tokenizer

from the Moses toolkit to compute the tokenized
BLEU scores.

3.2 Training Protocols
In this work, we follow the same training process
for all the experiments. We jointly encode the
source and target language words with subword
units by applying byte pair encoding (Gage, 1994)
with 32,000 merge operations (Sennrich et al.,
2016). These subword units restrict the vocabu-
lary size and prevent the need for explicitly han-
dling out-of-vocabulary symbols as the vocabulary
can be used to represent any word. We use LeCun
uniform initialization (LeCun et al., 1998) for all
the trainable model parameters. Embedding layer
weights are randomly initialized according to trun-
cated Gaussian distributionWE ∼ N (0, dm

−1/2).
In all the experiments, we use Transformer base

model configuration (Vaswani et al., 2017) that
consists of six encoder-decoder layers, dm = 512,
dh = 2, 048, and ` = 8. For optimization, we
use SGD with Adam optimizer (Kingma and Ba,
2014) with β1 = 0.9, β2 = 0.997, and ε = 1e−9.3

The learning rate (lr) schedule is varied at every
optimization step (step) according to:

lr = 2d−0.5
m min

(
step−0.5, step · 16000−1.5

)

Each mini-batch consists of approximately 3, 000
source and 3, 000 target tokens such that similar
length sentences are bucketed together. We train
the models until convergence and save the best
checkpoint using development set performance.
For model regularization, we use label smoothing
(ε = 0.1) (Pereyra et al., 2017) and apply dropout
(with pdrop = 0.1) (Srivastava et al., 2014) to the
word embeddings, attention coefficients, ReLU ac-
tivation, and to the output of each sublayer before
the residual connection. During decoding, we use
beam search with beam width 5 and length normal-
ization with α = 1 (Wu et al., 2016).

3.3 Multilingual Training
During the multilingual model’s training and in-
ference, we include an additional token represent-
ing the desired target language at the start of each
source sentence (Johnson et al., 2017). The pres-
ence of this additional token will help the model
learn the target language to translate to during de-
coding. For preprocessing, we apply byte pair en-

3These hyperparameter values are based on the single GPU
transformer model from the open-source tensor2tensor toolkit.
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coding over the combined dataset of all the lan-
guage pairs. We perform model training using
balanced mini-batches i.e. it contains roughly an
equal number of sentences for every target lan-
guage. While training, we compute weighted av-
erage cross-entropy loss where the weighting term
is proportional to the total word count observed in
each of the target language sentences.

4 Results

In this section, we will describe the results of
our proposed parameter sharing techniques and
later present the broader context by comparing
them with bilingual translation models and pre-
vious benchmark methods.

4.1 Parameter Sharing

Here, we first analyze the results of one-to-many
multilingual translation experiments when there are
two target languages and both of them belong to
the same language family. The first set of experi-
ments are on Romance languages (EN→RO+FR)
and the second set of experiments are on Germanic
languages (EN→DE+NL). We report the BLEU
scores in Table 2a when different sets of parameters
are shared in these experiments. We observe that
sharing only the embedding layer weight between
the multiple models leads to the lowest scores.
Sharing the encoder weights results in significant
improvement for EN→RO+FR but leads to a small
decrease in EN→DE+NL scores.

We then gradually include both the decoder’s
weights to the set of shareable parameters. Specif-
ically, we include the parameters of FFN, self-
attention, encoder-decoder attention, both the at-
tention sublayers, key, query, value weights from
both the attention sublayers, and finally all the pa-
rameters of the decoder layer. From the results,
we note that the sharing of the encoder-decoder
attention weights leads to substantial gains. Finally,
sharing the entirety of the parameters (i.e. hav-
ing one model) leads to the best BLEU scores for
EN→RO+FR and sharing only the key and query
matrices from both the attention layers leads to the
best BLEU scores for EN→DE+NL. One of the
reasons for such large increase in BLEU is that en-
coder has access to more English language training
data and for the decoder, as the target languages be-
long to the same family, they may contain common
vocabulary, thus improving the generalization error
for both the target languages.

Next, we analyze the results of one-to-many
translation experiments when both the target lan-
guages belong to distant language families and
are unrelated. The first set of experiments are on
Germanic, Turkic languages (EN→DE+TR) and
the second set of experiments are on Germanic,
Japonic languages (EN→DE+JA). We present the
results in Table 2b when different sets of parame-
ters are shared. Here, we observe that the approach
of sharing all the parameters leads to a noticeable
drop in the BLEU scores for both the considered
language pairs. Similar to the above discussion,
sharing the key and query matrices results in a large
increase in the BLEU scores. We hypothesize that
in this partial parameter sharing strategy, the shar-
ing of key and query attention weights effectively
models the common linguistic properties while the
separate FFN sublayer weights model the unique
characteristics of each target language, thus over-
all leading to a large improvement in the BLEU
scores. The results of other decoder parameter
sharing approaches lie close to the key and query
parameter sharing method. As the target languages
are from different families, their vocabularies may
have some overlap but will be significantly differ-
ent from each other. In this scenario, a useful al-
ternative is to consider a separate embedding layer
for every source-target language pair while sharing
all the encoder and decoder parameters. However,
we did not experiment with this approach, as the
inclusion of separate embedding layers will lead
to a large increase in the model parameters and as
a result model training will become more mem-
ory intensive. We leave the investigation of such
parameter sharing strategy to future work.

4.2 Overall Comparison
In Table 3, we show an overall performance com-
parison of no parameter sharing, full parameter
sharing for both GNMT (Wu et al., 2016) and
Transformer models, and the best approaches ac-
cording to maximum BLEU score from our par-
tial parameter sharing strategies. For training the
GNMT models, we use its open-source implemen-
tation4 (Luong et al., 2017) with four layers5 and
default parameter settings. First, we note that the
BLEU scores of the Transformer model are always
better than the GNMT model by a significant mar-
gin for both bilingual (no sharing) and multilingual

4https://github.com/tensorflow/nmt
5We found that the four layer model for GNMT didn’t

overfit and obtained the best BLEU scores.
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Set of shared parameters (Θ)
EN→RO+FR EN→DE+NL params

→RO →FR →DE →NL ×106

WE 27.21 43.36 30.32 33.51 105
WE, θENC 27.82 43.83 29.97 33.33 86
WE, θENC, W1, W2 27.78 43.87 29.95 33.12 74
WE, θENC, W 1

K , W 1
Q, W 1

V , W 1
F 27.80 43.76 30.68 33.99 80

WE, θENC, W 2
K , W 2

Q, W 2
V , W 2

F 28.36 44.19 30.50 33.75 80
WE, θENC, W 1

K , W 1
V , W 2

K , W 2
V 27.77 43.83 30.54 34.00 80

WE, θENC, W 1
K , W 1

Q, W 2
K , W 2

Q 27.58 43.84 30.70 34.05 80
WE, θENC, W 1

K , W 1
Q, W 1

V , W 1
F , W 2

K , W 2
Q, W 2

V , W 2
F 28.14 44.12 30.64 33.92 74

WE, θENC, θDEC 28.52 44.28 30.45 33.69 61

(a) The target languages in this one-to-many translation task belong to the same language family. RO and FR are Romance
languages while DE and NL are Germanic languages.

Set of shared parameters (Θ)
EN→DE+TR EN→DE+JA params

→DE →TR →DE →JA ×106

WE 30.35 19.66 30.10 18.62 105
WE, θENC 30.55 19.29 30.21 18.70 86
WE, θENC, WL1 , WL2 30.21 19.17 30.36 18.92 74
WE, θENC, W 1

K , W 1
Q, W 1

V , W 1
F 30.35 19.24 30.05 18.78 80

WE, θENC, W 2
K , W 2

Q, W 2
V , W 2

F 30.49 19.40 30.16 18.73 80
WE, θENC, W 1

K , W 1
V , W 2

K , W 2
V 30.66 19.34 30.36 18.92 80

WE, θENC, W 1
K , W 1

Q, W 2
K , W 2

Q 30.71 19.67 30.48 19.00 80
WE, θENC, W 1

K , W 1
Q, W 1

V , W 1
F , W 2

K , W 2
Q, W 2

V , W 2
F 30.40 19.35 30.35 18.80 74

WE, θENC, θDEC 28.74 18.69 29.68 18.50 61

(b) The target languages in this one-to-many translation task belong to distant language families. DE, TR, and JA are unrelated
as they belong to Germanic, Turkic, and Japonic language families respectively.

Table 2: BLEU scores for various parameter sharing strategies when the target languages either belong
to the same family ({RO, FR}, {DE, NL}) or to distant families (DE, TR, JA). θENC denotes that all the
encoder parameters are shared between the models; θDEC denotes that all the decoder parameters are
shared between the models.

Method EN→DE+TR EN→DE+JA EN→RO+FR EN→DE+NL params

→DE →TR →DE →JA →RO →FR →DE →NL ×106

GNMT NS 27.01 16.07 27.01 16.62 24.38 40.50 27.01 30.64 –
GNMT FS 29.07 18.09 28.24 17.33 26.41 42.46 28.52 31.72 –
Transformer NS 29.31 18.62 29.31 17.92 26.81 42.95 29.31 32.43 122
Transformer FS 28.74 18.69 29.68 18.50 28.52 44.28 30.45 33.69 61
Transformer PS 30.71 19.67 30.48 19.00 27.58 43.84 30.70 34.05 80

Table 3: BLEU scores for different models for one-to-many translation task. NS: No Sharing corresponds
to the bilingual models when the two language pairs are trained independently; FS: Full Sharing means
one model is used for the translation of all the language pairs; PS: Partial Sharing means that the
embedding, encoder, decoder’s key, and value weights are shared between the two models.
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(full sharing) translation tasks. This reflects that
the Transformer model is well-suited for both mul-
tilingual and bilingual translation tasks compared
with the GNMT model. We also surprisingly note
that the GNMT fully shared model is able to consis-
tently obtain higher BLEU scores compared with
its bilingual version irrespective of which families
the target languages belong to.

However, for the one-to-many translation task
when the target languages are from distant fam-
ilies, we observe that fully shared Transformer
model leads to a substantial drop or small gains
in the BLEU score compared with the bilingual
models. Specifically, for the EN→DE+TR setting,
BLEU drops by 0.6 for EN→DE, while staying
even for EN→TR. In contrast, our method of shar-
ing embedding, encoder, decoder’s key, and query
parameters leads to substantial increases in BLEU
scores (1.4↑ for EN→DE and 1.1↑ for EN→TR).
Similarly, for EN→DE+JA, using the fully shared
Transformer model, we observe small gains of 0.3
and 0.5 BLEU points for EN→DE and EN→JA

respectively while our partial parameter sharing
method again leads to significant improvements
(1.5↑ for EN→DE and 1.1↑ for EN→JA). This
demonstrates the utility of our proposed partial pa-
rameter sharing method.

We also note that fully shared Transformer mod-
els can be an effective strategy only when both the
target languages are from the same family. For the
task of EN→RO+FR, the fully shared model per-
forms surprisingly well and yields significant im-
provements of 1.7 and 1.3 BLEU points compared
with bilingual models for EN→RO and EN→FR

respectively. A similar increase in performance
can also be observed for the EN→DE+NL task,
although for this task, our partial parameter sharing
method (encoder, embedding, decoder’s key, and
query weights) obtains even higher BLEU scores.
(1.4↑ for EN→DE and 1.6↑ EN→NL).

4.3 Analysis

Here, we analyze the generated translations of
the partial sharing and full sharing approaches for
EN→DE when one-to-many multilingual model
was trained on unrelated target language pairs
EN→DE+TR. These translations were obtained
using the test set of EN→DE task. Here partial
sharing refers to the specific approach of sharing
the embedding, encoder, and decoder’s key and
query parameters in the model.

We show example translations in Table 4 where
partial sharing method gets a high BLEU score
(shown in parentheses) but the full sharing method
does not. We see that sentences generated by partial
sharing method are both semantically and grammat-
ically correct while the full sharing method gen-
erates shorter sentences compared with reference
translations. As highlighted in table cells, the par-
tial sharing method is able to correctly translate
a mention of relative time “half a year” and a co-
reference expression “mich”. In contrast, the fully
shared model generates incorrect expressions of
time mentions “eineinhalb Jahren” (one and half
years) and different verb forms (“schlägt” is gener-
ated vs “schlagen” in the reference).

We also perform a comparison of the F-measure
of the target words for EN→DE, bucketed by fre-
quency in the training set. As displayed in Figure 4,
this shows that the partial parameter sharing ap-
proach improves the translation accuracy for the
entire vocabulary, but in particular for words that
have low-frequency in the dataset.

0 1 2 3 4 5-9 10-99 100-999 1000+
Frequency bucket in training set

0.0

0.1
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0.7
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Full Sharing

Figure 4: The F-measure for the target language
(DE) words in one-to-many multilingual translation
task (EN→DE+TR). Best viewed in color.

5 Related Work

In this section, we will review the prior work re-
lated to MTL and multilingual translation.

5.1 Multi-task learning

Ando and Zhang (2005) obtained excellent results
by adopting an MTL framework to jointly train lin-
ear models for NER, POS tagging, and language
modeling tasks involving some degree of parame-
ter sharing. Later, Collobert et al. (2011) applied
MTL strategies to neural networks for tasks such
as POS tagging, NER, and chunking by sharing the
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source So half a year ago , I decided to go to Pakistan myself .
reference Vor einem halben Jahr entschied ich mich , selbst nach Pakistan zu gehen .
partial sharing Vor einem halben Jahr entschied ich mich , selbst nach Pakistan zu gehen . (1.0)
full sharing Vor eineinhalb Jahren beschloss ich , nach Pakistan zu gehen . (0.35)

source Your heart starts beating faster .
reference Ihr Herz beginnt schneller zu schlagen .
partial sharing Ihr Herz beginnt schneller zu schlagen . (1.0)
full sharing Ihr Herz schlägt schneller . (0.27)

Table 4: Sample translations from EN→DE when one-to-many multilingual model was trained on
unrelated target language pairs EN→DE+TR. In these examples, the method of partial sharing of decoder
parameters obtains a very high BLEU score (mentioned in parentheses).

sequence encoder and reported moderate improve-
ments in results. Recently, Luong et al. (2016)
investigated MTL for a tasks such as parsing, im-
age captioning, and translation and observed large
gains in the translation task. Similarly, for MT
tasks, Niehues and Cho (2017) also leverage MTL
by using additional linguistic information to im-
prove the translation accuracy of NMT models.
They share the encoder representations to perform
joint training on translation, POS, and NER tasks.
MTL has also been widely applied to multilingual
translation that will be discussed next.

5.2 Multilingual Translation

On the multilingual translation task, Dong et al.
(2015) obtained significant performance gains by
sharing the encoder parameters of the source lan-
guage while having a separate decoder for each
target language. Later, Firat et al. (2016) attempted
the more challenging task of many-to-many trans-
lation by training a model that consisted of one
shared encoder and decoder per language and a
shared attention layer that was common to all
languages. This approach obtained competitive
BLEU scores on ten European language pairs while
substantially reducing the total parameters. Re-
cently, Johnson et al. (2017) proposed a unified
model with full parameter sharing and obtained
comparable or better performance compared with
bilingual translation scores. During model train-
ing and decoding, target language was specified by
an additional token at the beginning of the source
sentence. Coming to low-resource language trans-
lation, Zoph et al. (2016) used a transfer learn-
ing approach of fine-tuning the model parame-
ters learned on a high-resource language pair of
French→English and were able to significantly in-
crease the translation performance on Turkish and
Urdu languages. Recently, Gu et al. (2018) ad-

dresses the many-to-one translation problem for
extremely low-resource languages by using a trans-
fer learning approach such that all language pairs
share the lexical and sentence-level representations.
By performing joint training of the model with
high-resource languages, large gains in the BLEU
scores were reported for low-resource languages.

In this paper, we first experiment with the Trans-
former model for one-to-many multilingual trans-
lation on a variety of language pairs and demon-
strate that the approach of Johnson et al. (2017)
and Dong et al. (2015) is not optimal for all kinds
of target-side languages. Motivated by this, we
introduce various parameter sharing strategies that
strike a happy medium between full sharing and
partial sharing and show that it achieves the best
translation accuracy.

6 Conclusion

In this work, we explore parameter sharing strate-
gies for the task of multilingual machine translation
using self-attentional MT models. Specifically, we
examine the case when the target languages come
from the same or distant language families. We
show that the popular approach of full parameter
sharing may perform well only when the target lan-
guages belong to the same family while a partial pa-
rameter sharing approach consisting of shared em-
bedding, encoder, decoder’s key and query weights
is generally applicable to all kinds of language
pairs and achieves the best BLEU scores when the
languages are from distant families.

For future work, we plan to extend our param-
eter sharing approach in two directions. First, we
aim to increase the number of target languages
to more than two such that they contain a mix of
both similar and distant languages and analyze the
performance of our proposed parameter sharing
strategies on them. Second, we aim to experiment
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with additional parameter sharing strategies such as
sharing the weights of some specific layers (e.g. the
first or last layer) as different layers can encode dif-
ferent morphological information (Belinkov et al.,
2017) which can be helpful in better multilingual
translation.
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Abstract

This paper presents the results of the premier
shared task organized alongside the Confer-
ence on Machine Translation (WMT) 2018.
Participants were asked to build machine
translation systems for any of 7 language pairs
in both directions, to be evaluated on a test set
of news stories. The main metric for this task
is human judgment of translation quality. This
year, we also opened up the task to additional
test sets to probe specific aspects of transla-
tion.

1 Introduction

The Third Conference on Machine Translation
(WMT) held at EMNLP 20181 host a number of
shared tasks on various aspects of machine trans-
lation. This conference builds on twelve previous
editions of WMT as workshops and conferences
(Koehn and Monz, 2006; Callison-Burch et al.,
2007, 2008, 2009, 2010, 2011, 2012; Bojar et al.,
2013, 2014, 2015, 2016a, 2017).

This year we conducted several official tasks.
We report in this paper on the news translation
task. Additional shared tasks are described in sep-
arate papers in these proceedings:
• biomedical translation (Neves et al., 2018),
• multimodal machine translation (Barrault

et al., 2018),
• metrics (Ma et al., 2018),
• quality estimation (Specia et al., 2018),
• automatic post-editing (Chatterjee et al.,

2018), and
• parallel corpus filtering (Koehn et al., 2018b).

In the news translation task (Section 2), partic-
ipants were asked to translate a shared test set,
optionally restricting themselves to the provided
training data (“constrained” condition). We held

1http://www.statmt.org/wmt18/

14 translation tasks this year, between English
and each of Chinese, Czech, Estonian, German,
Finnish, Russian, and Turkish. The Estonian-
English language pair was new this year. Simi-
larly to Latvian, which we had covered in 2017,
Estonian is a lesser resourced data condition on
a challenging language pair. System outputs for
each task were evaluated both automatically and
manually.

This year the news translation task had two ad-
ditional sub-tracks: multilingual MT and unsuper-
vised MT. Both sub-tracks were included into the
general list of news translation submissions and
are described in more detail in corresponding sub-
sections of Section 2.

The human evaluation (Section 3) involves ask-
ing human judges to score sentences output by
anonymized systems. We obtained large numbers
of assessments from researchers who contributed
evaluations proportional to the number of tasks
they entered. In addition, we used Mechanical
Turk to collect further evaluations. This year, the
official manual evaluation metric is again based
on judgments of adequacy on a 100-point scale,
a method we explored in the previous years with
convincing results in terms of the trade-off be-
tween annotation effort and reliable distinctions
between systems.

The primary objectives of WMT are to evalu-
ate the state of the art in machine translation, to
disseminate common test sets and public train-
ing data with published performance numbers, and
to refine evaluation and estimation methodologies
for machine translation. As before, all of the
data, translations, and collected human judgments
are publicly available2. We hope these datasets
serve as a valuable resource for research into data-
driven machine translation, automatic evaluation,
or prediction of translation quality. News transla-

2http://statmt.org/wmt18/results.html
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tions are also available for interactive visualization
and comparison of differences between systems at
http://wmt.ufal.cz/ using MT-ComparEval
(Sudarikov et al., 2016).

In order to gain further insight into the perfor-
mance of individual MT systems, we organized
a call for dedicated “test suites”, each focussing
on some particular aspect of translation quality. A
brief overview of the test suites is provided in Sec-
tion 4.

2 News Translation Task

The recurring WMT task examines translation be-
tween English and other languages in the news do-
main. As in the previous year, we include Chinese,
Czech, German, Finnish, Russian, and Turkish. A
new language this year is Estonian.

We created a test set for each language pair by
translating newspaper articles and provided train-
ing data.

2.1 Test Data

The test data for this year’s task was selected from
online sources, as in previous years. We took
about 1500 English sentences and translated them
into the other languages, and then additional 1500
sentences from each of the other languages and
translated them into English. This gave us test
sets of about 3000 sentences for our English-X
language pairs, which have been either originally
written in English and translated into X, or vice
versa. The composition of the test documents is
shown in Table 1, the size of the test sets in terms
is given in Figure 2.

The stories were translated by professional
translators, funded by the EU Horizon 2020
projects CRACKER and QT21 (German, Czech),
by Yandex3, a Russian search engine company
(Turkish, Russian), by BAULT, a research com-
munity on building and using language technol-
ogy funded by the University of Helsinki (Finnish)
and the University of Tartu4 (Estonian). The
Chinese–English task was sponsored by Nanjing
University, Xiamen University, the Institutes of
Computing Technology and of Automation, Chi-
nese Academy of Science, Northeastern Univer-
sity (China) and Datum Data Co., Ltd. All of the

3http://www.yandex.com/
4Estonian Research Council institutional research grant

IUT20-56: “Computational models of the Estonian Lan-
guage”

translations were done directly, and not via an in-
termediate language.

Since Estonian-English was run for the first
time, both the test and development set had to be
translated: the size of both was 2000 sentences
(4000 in total).

2.2 Training Data
As in past years we provided parallel corpora to
train translation models, monolingual corpora to
train language models, and development sets to
tune system parameters. Some training corpora
were identical from last year (Europarl,5 Common
Crawl, SETIMES2 , Russian-English parallel data
provided by Yandex, Wikipedia Headlines pro-
vided by CMU) and some were updated (United
Nations, CzEng v1.7 (Bojar et al., 2016b), News
Commentary v13, monolingual news data). A new
corpus is the EU Press Release parallel corpus for
German, Finnish, and Latvian.

For Latvian and Chinese, a number of new cor-
pora were released. For Latvian, this data was pre-
pared by the University of Latvia and Tilde, the
Chinese corpora were prepared by the Institutes of
Computing Technology and of Automation, Chi-
nese Academy of Science, Northeastern Univer-
sity (China) and Datum Data Co., Ltd.

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted Systems
We received 103 submissions from 32 institutions.
The participating institutions, organized into 35
teams are listed in Table 2 and detailed in the rest
of this section. Each system did not necessarily
appear in all translation tasks. We also included 39
online MT systems (originating from 5 services),
which we anonymized as ONLINE-A,B,F,G.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

2.3.1 AALTO (Grönroos et al., 2018)
Aalto participated in the constrained condition of
the multi-lingual subtrack, with a single system
trained to translate from English to both Finnish

5As of Fall 2011, the proceedings of the European Parlia-
ment are no longer translated into all official languages.
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Europarl Parallel Corpus
German↔ English Czech↔ English Finnish↔ English Estonian↔ English

Sentences 1,920,209 646,605 1,926,114 652,944
Words 50,486,398 53,008,851 14,946,399 17,376,433 37,814,266 52,723,296 13,033,918 17,453,613

Distinct words 381,583 115,966 172,461 63,039 693,963 115,896 298,021 63,432

News Commentary Parallel Corpus
German↔ English Czech↔ English Russian↔ English Chinese↔ English

Sentences 284,246 218,384 235,159 252,777
Words 7,243,776 7,174,644 4,942,255 5,411,117 6,230,738 6,230,738 – 6,428,459

Distinct words 182,059 75,590 166,173 66,054 71,021 71,021 – 70,092

Common Crawl Parallel Corpus
German↔ English Czech↔ English Russian↔ English

Sentences 2,399,123 161,838 878,386
Words 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 1,640,835 823,480 210,170 128,212 764,203 432,062

ParaCrawl Parallel Corpus
German↔ English Czech↔ English Estonian↔ English

Sentences 36,351,593 10,020,250 1,298,103
Words 595,027,749 623,361,284 116,797,931 122,699,058 37,887,435 39,060,095

Distinct Words 8065519 5,371,211 1,912,633 1,538,696 1,025,961 894,357

Finnish↔ English Russian↔ English
Sentences 624,058 1,2061,155

Words 8,636,936 11,123,014 182,229,052 210,751,004
Distinct Words 379,958 127,006 3,164,200 2,415,633

EU Press Release Parallel Corpus
German↔ English Finnish↔ English Estonian↔ English

Sentences 1,329,041 583,223 226978
Words 25,048,312 25,777,997 8,052,607 11,244,602 3,940,058 177,723

Distinct words 398,477 168,725 315,394 94,979 5,209,544 57,059

Chinese Parallel Corpora
casia2015 casict2011 casict2015 datum2011 datum2017 neu2017

Sentences 1,050,000 1,936,633 2,036,834 1,000,004 999,985 2,000,000
Words (en) 20,571,578 34,866,598 22,802,353 24,632,984 25,182,185 29,696,442

Distinct words (en) 470,452 627,630 435,010 316,277 312,164 624,420

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct 701,809 387,646

CzEng v1.7 Parallel Corpus
Czech↔ English

Sentences 61,243,252
Words 737,434,097 3,650,518

Distinct 835,192,627 2,580,902

Wiki Headlines Parallel Corpus
Russian↔ English Finnish↔ English

Sentences 514,859 153,728
Words 1,191,474 1,230,644 269,429 354,362

Distinct 282,989 251,328 127,576 96,732

SE Times 2 Parallel Corpus
Turkish↔ English

Sentences 207,678
Words 4,626,277 5,147,769

Distinct 155,479 69,927

United Nations Parallel Corpus
Russian↔ English Chinese↔ English

Sentences 23,239,280 15,886,041
Words 482,966,738 524,719,646 – 372,612,596

Distinct 3,857,656 2,737,469 – 1,981,413

Figure 1: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the provided tokenizer.
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Language Sources (Number of Documents)
English ABC News (1), BBC (4), Brisbane Times (1), CBS News (1), Daily Mail (4), Euronews (3), Globe and

Mail (1), Guardian (4), Independent (4), Los Angeles Times (4), MSNBC (3), Novinte (2), New York
Times (2), Reuters (3), Russia Today (2), Scotsman (2), Sydney Morning Herald (2), Telegraph (2), The
Local (2), Time Magazine (2), UPI (1), Washington Post (3)

Czech blesk.cz (16), deník.cz (5), Deník Referendum (1), DNES.cz (7), lidovky.cz (6), Novinky.cz (3), Re-
flex (2), tyden.cz (12), ZDN (2)

German Aachener Nachrichten (1), Abendzeitung Nürnberg (2), Braunschweiger Zeitung (1), Der Standard (1),
Die Presse (1), Euronews (1), Fehmarn24 (1), Handelsblatt (1), Hannoversche Allgemeine (2), Hes-
sische/Niedersächsische Allgemeine (1), In Franken (4), Kreiszeitung (2), Krone (1), Mainpost (1),
Merkur (3), Morgenpost (1), n-tv (1), Neue Westfälische (1), oe24 (2), Peiner Allgemeine (1), Passauer
Neue Presse (2), Rheinzeitung (1), Rundschau (1), Schwarzwälder Bote (16), Segeberger Zeitung (2),
Südkurier (1), Thüringer Allgemeine (1), Thüringer Landeszeitung (1), Volksblatt (2), Volksfreund (3),
Westfälische Nachrichten (1), Westdeutsche Zeitung (8).

Estonian Arileht (7), Maaleht (3), Postimees (17), Sloleht (23).
Finnish Etelä-Saimaa (2), Etelä-Suomen Sanomat (3), Helsingin Sanomat (4), Iltalehti (13), Ilta-Sanomat (29),

Kaleva (12), Kansan Uutiset (1), Karjalainen (13), Kouvolan Sanomat (2).
Russian aif (4), Altapress (1), Argumenti (19), ERR.ee (3), eg-online.ru (2), Euronews (2), Fakty (5), In-

fox (2), Izvestiya (25), Kommersant (16), Lenta (9), lgng (3), MK RU (5), nov-pravda.ru (1), pnp.ru (6),
rg.ru (4), Vedomosti (3), Versia (1), Vesti (3), zr.ru (1)

Turkish Hürriyet.com (48), Sabah (96), Sözcü (19)

Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.

BigEst Estonian Corpus

Sentences 40,404,948
Words 579,221,489

Distinct words 8,134,555

News Language Model Data

English German Czech Russian Finnish Turkish Estonian
Sentences 192,988,741 260,754,881 66,517,569 39,519,008 14,575,981 4,753,928 817,472

Words 4,428,839,473 4,627,780,738 1,094,215,341 724,582,848 184,523,981 79,067,739 12,880,832
Distinct words 6,468,049 20,276,165 4,269,005 3,397,828 4,391,543 1,025,791 653,980

Common Crawl Language Model Data

English German Czech Russian Finnish Estonian Turkish Chinese
Sent. 3,074,921,453 2,872,785,485 333,498,145 1,168,529,851 157,264,161 100,779,314 511,196,951 1,672,324,647

Words 65,128,419,540 65,154,042,103 6,694,811,063 23,313,060,950 2,935,402,545 2,906,100,138 11,882,126,872 –
Dist. 342,760,462 339,983,035 50,162,437 101,436,673 47,083,545 27,618,190 88,463,295 –

Test Set
Czech↔ EN German↔ EN Finnish↔ EN Estonian↔ EN

Sentences. 2983 2998 3000 2000
Words 47,229 55,920 54,933 58,628 38,149 54,790 30,531 40,158

Distinct words 18,325 12,548 15,996 13,431 17,825 12,043 14,185 10,096

Russian↔ EN Turkish↔ EN Chinese↔ EN
Sentences. 3000 3000 3981

Words 51,988 62,925 45,944 60,232 – 98,308
Distinct words 21,116 13,584 19,200 13,444 – 16,955

Figure 2: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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Team Institution
AALTO Aalto University (Grönroos et al., 2018)
AFRL Air Force Research Laboratory (Gwinnup et al., 2018)
ALIBABA Alibaba Group (Deng et al., 2018)
CUNI-KOCMI Charles University (Kocmi et al., 2018)
CUNI-TRANSFORMER Charles University (Popel, 2018)
FACEBOOK-FAIR ? Facebook AI Research (Edunov et al., 2018)
GTCOM Global Tone Communication Technology (Bei et al., 2018)
HY University of Helsinki (Raganato et al., 2018)
JHU Johns Hopkins University (Koehn et al., 2018a)
JUCBNMT Jadavpur University (Mahata et al., 2018)
KIT Karlsruhe Institute of Technology (Pham et al., 2018)
LI-MUZE Li Muze (no associated paper)
LMU-NMT LMU Munich (Huck et al., 2018)
LMU-UNSUP LMU Munich (Stojanovski et al., 2018)
MICROSOFT-MARIAN Microsoft (Junczys-Dowmunt, 2018)
MLLP-UPV MLLP, Technical University of Valencia (Iranzo-Sánchez et al., 2018)
MMT-PRODUCTION ModernMT, MMT s.r.l. (no associated paper)
NEUROTOLGE.EE University of Tartu (Tars and Fishel, 2018)

NICT
National Institute of Information and Communications Technology
(Marie et al., 2018)

NIUTRANS Northeastern University / NiuTrans Co., Ltd. (Wang et al., 2018b)
NJUNMT NLP Group, Nanjing University (no associated paper)
NTT NTT Corporation (Morishita et al., 2018)
PARFDA Boğaziçi University (Biçici, 2018)
PROMT PROMT LLC (Molchanov, 2018)
RWTH RWTH Aachen (Schamper et al., 2018)
RWTH-UNSUPER RWTH Aachen (Graça et al., 2018)
TALP-UPC TALP, Technical University of Catalonia (Casas et al., 2018)
TENCENT Tencent (Wang et al., 2018a)
TILDE Tilde (Pinnis et al., 2018)
UBIQUS Ubiqus (no associated paper)
UCAM University of Cambridge (Stahlberg et al., 2018)
UEDIN University of Edinburgh (Haddow et al., 2018)
UMD University of Maryland (Xu and Carpuat, 2018)
UNISOUND Unisound (no associated paper)
UNSUPTARTU University of Tartu (Del et al., 2018)

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from
the commercial and online systems were not submitted by their respective companies but were obtained by us, and are there-
fore anonymized in a fashion consistent with previous years of the workshop. “?” indicates invited participation with a late
submission, where the team is not considered a regular participant.
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and Estonian. The system is based on the Trans-
former (Vaswani et al., 2017) implementation in
OpenNMT-py (Klein et al., 2017). It is trained on
filtered parallel and filtered back-translated mono-
lingual data. The main contribution is a novel
cross-lingual Morfessor (Virpioja et al., 2013) seg-
mentation using cognates extracted from the par-
allel data. The aim is to improve the consistency
of the morphological segmentation. Aalto decode
using an ensemble of 3 (et) or 8 (fi) models.

2.3.2 AFRL (Gwinnup et al., 2018)

AFRL-SYSCOMB is a system-combination entry
consisting of three inputs. The first is an Open-
NMT system trained on the provided parallel data
except ParaCrawl and the backtranslated corpus
used in the AFRL WMT17 system (Gwinnup
et al., 2017). This system uses a standard RNN
architecture and was fine-tuned with the other
available news task test sets. The second is a
Marian (Junczys-Dowmunt et al., 2018) system
ensembling 5 Univ. Edinburgh “bi-deep” and 6
transformer models all trained on the WMT18 bi-
texts provided, including ParaCrawl. Some mod-
els employed pretrained word embeddings built on
BPE’d corpora (Sennrich et al., 2016). A Marian
transformer model performed right-to-left rescor-
ing for this system. The third system is trained
with Moses (Koehn et al., 2007), using the same
data as the Marian system. Hierarchical reordering
and Operation Sequence Model were employed.
The 5-gram English language model was trained
with KenLM (Heafield, 2011) on the same corpus
as the AFRL WMT15 system with the same BPE
used in the Marian systems. Lastly, RWTH Jane’s
system combination (Freitag et al., 2014) was ap-
plied yielding approximately a +0.5 gain in BLEU.

2.3.3 ALIBABA (Deng et al., 2018)

Alibaba systems are based on the Transformer
model architecture, with the most recent features
from the academic research integrated, such as
weighted Transformer, Transformer with relative
position attention, etc. The system also employs
most techniques that have been proven effective
during the past WMT years, such as BPE-based
subword, back translation, fine-tuning based on
selected data, model ensembling and reranking, at
industrial scale. For some morphologically-rich
languages, linguistic knowledge is also incorpo-
rated into the neural network.

2.3.4 CUNI-KOCMI (Kocmi et al., 2018)
The CUNI-KOCMI submission focuses on the
low-resource language neural machine translation
(NMT). The final submission uses a method of
transfer learning: the model is pretrained on a re-
lated high-resource language (here Finnish) first,
followed by a child low-resource language (Esto-
nian) without any change in hyperparameters. Av-
eraging and backtranslation are also experimented
with.

2.3.5 CUNI-TRANSFORMER (Popel, 2018)
CUNI-TRANSFORMER is the Transformer model
trained according to Popel and Bojar (2018) plus
a novel concat-regime backtranslation with check-
point averaging, tuned separately for CZ-domain
and nonCZ-domain articles, possibly handling
also translation-direction (“translationese") issues.
For cs→en also a coreference preprocessing was
used adding the female-gender pronoun where it
was pro-dropped in Czech, referring to a human
and could not be inferred from a given sentence.

2.3.6 FACEBOOK-FAIR ? (Edunov et al.,
2018)

FACEBOOK-FAIR is an ensemble of six self-
attentional models with back-translation data ac-
cording to Edunov et al. (2018). Synthetic sources
are sampled instead of beam search, oversampling
the real bitext at a rate of 16, i.e., each bitext is
sampled 16 times more often per epoch than the
back-translated data. At inference time, transla-
tions which are copies of the source are filtered
out, replacing them with the output of a very small
news-commentary only trained model.

The system FACEBOOK-FAIR has been sub-
mitted anonymously as ONLINE-Z and approval
for disclosing the authors’ identity has only been
granted after the final results had become avail-
able. Due to the non-standard way of submission,
the system is not considered a regular participant,
but an invited/late submission and marked with
“?” throughout the paper.

2.3.7 GTCOM (Bei et al., 2018)
GTCOM-PRIMARY is based on the Transformer
“base” model architecture using Marian toolkit,
and it also applies some methods that have been
proven effective in NMT system, such as BPE,
back-translation, right-to-left reranking and en-
sembling decoding. In this experiment, right-to-
left reranking does not help. Another focus is
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given to data filtering through rules, translation
model and language model including parallel data
and monolingual data. The language model is
based the Transformer architecture as well. The fi-
nal system is trained with four different seeds and
mixed data.

2.3.8 HY (Raganato et al., 2018; Hurskainen
and Tiedemann, 2017)

The University of Helsinki (HY) submitted four
systems: HY-AH, HY-NMT, HY-NMT-2STEP

and HY-SMT.

HY-AH (Raganato et al., 2018; Hurskainen
and Tiedemann, 2017) is a rule-based machine
translation system, relying on a rule-based depen-
dency parser for English, a hand-crafted transla-
tion lexicon (based on dictionary data extracted
from parallel corpora by word alignment), various
types of transfer rules, and a morphological gener-
ator for Finnish.

HY-NMT (Raganato et al., 2018) submissions
are based on the Transformer “base" model,
trained with all the parallel data provided by the
shared task plus back-translations, with a shared
vocabulary between source and target language
and a domain label for each source sentence.
For the multilingual sub-track synthetic data for
English→Estonian and Estonian→English was
also used. Ultimately, a single model for all lan-
guage pairs was trained and then fine-tuned for
each language pair.

HY-NMT-2STEP (Raganato et al., 2018) is a
Transformer model trained on interleaved lemmas
and morphological tags on the Finnish side. Mor-
phological categories (number, tense etc.) have
separate tags, and a tag is only added if the value of
the category differs from the default value (in the
same way that languages have morphemes only
for marked values of morphological categories).
The final translation is deterministically generated
from the sequence of lemmas and morphological
tags which the model outputs.

HY-SMT (Tiedemann et al., 2016) is the
Helsinki SMT system submitted at WMT 2016
(the constrained-basic+back-translated version).
The system was not retrained and it may thus
suffer from poor lexical coverage on recent test
data. The main motivation for including this base-
line was to have a statistical machine translation

(SMT) submission for the Finnish morphology
test suite (Burlot et al., 2018).

2.3.9 JHU (Koehn et al., 2018a)
The JHU systems are the result of two relatively
independent efforts on German–English language
directions and Russian–English, using the Marian
and Sockeye (Hieber et al., 2017) neural machine
translation toolkits, respectively. The novel contri-
butions are iterative back-translation (for German)
and fine-tuning on test sets from prior years (for
both languages).

2.3.10 JUCBNMT (Mahata et al., 2018)
JUCBNMT is an encoder-decoder sequence-to-
sequence NMT model with character level encod-
ing. The submission uses preprocessing like tok-
enization, truecasing and corpus cleaning. Both
encoder and decoder use a single LSTM layer
each. The batch size was set to 128, number of
epochs was set to 100, activation function was
softmax, optimizer chosen was RMSprop and the
loss function used was categorical cross-entropy.
Learning rate was set to 0.001.

2.3.11 KIT (Pham et al., 2018)
The KIT submission is the NMT Transformer ar-
chitecture, enhanced in model depth. Techniques
for reducing memory consumption (recalculating
intermediate results at layers instead of caching
them), 4 times larger model could fit on one GPU
and improve the performance by 1.2 BLEU points.

Sentences selection from the new ParaCrawl
improved the effectiveness of the corpus by 0.5
BLEU points, with an overall increase of 0.8
BLEU compared to the baseline of not using
ParaCrawl.

2.3.12 LI-MUZE

LI-MUZE is an ensembles of 4 averaged Trans-
former models with one right-to-left and one
target-to-source averaged Transformer model, the
configuration of all the models is the same as
the Transformer big-model, trained on the official
training data with 4.5M back-translated data from
the monolingual news of 2016 and 2017 data. The
English vocabulary size is 36K BPE subwords.
Chinese is tokenized by Chinese characters and
the vocabulary size is 10K.

2.3.13 LMU-NMT (Huck et al., 2018)
For the WMT18 news translation shared task,
LMU Munich (Huck et al., 2018) has trained ba-
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sic shallow attentional encoder-decoder systems
(Bahdanau et al., 2014) with the Nematus toolkit
(Sennrich et al., 2017), like last year (Huck et al.,
2017a). LMU has participated with these NMT
systems for the English–German language pair in
both translation directions. The training data is
a concatenation of Europarl, News Commentary,
Common Crawl, and some synthetic data in the
form of backtranslated monolingual news texts.
The 2017 monolingual News Crawl is not em-
ployed, nor are the parallel Rapid and ParaCrawl
corpora. The German data is preprocessed with
a linguistically informed word segmentation tech-
nique (Huck et al., 2017b). By using a linguisti-
cally more sound word segmentation, advantages
over plain BPE segmentation are expected in three
important aspects: vocabulary reduction, reduc-
tion of data sparsity, and open vocabulary trans-
lation. The NMT system can learn linguistic word
formation processes from the segmented data. In
the English→German translation direction, LMU
furthermore conducted fine-tuning towards the do-
main of news articles (Huck et al., 2017a) and
reranked the n-best list with a right-to-left neural
model (Liu et al., 2016) which is trained for re-
verse word order (Freitag et al., 2013).

2.3.14 LMU-UNSUP (Stojanovski et al., 2018)
For the unsupervised track of the WMT18 news
translation task, LMU Munich submitted the
LMU-UNSUP system (Stojanovski et al., 2018)
which is a neural translation model trained with-
out any access to parallel data. The model is
trained with ∼4M German and English sentences
each, which are sampled from NewsCrawl articles
from 2007 to 2017. Bilingual word embeddings
trained in an unsupervised manner (Conneau et al.,
2017) were used to translate the monolingual data
by doing word-by-word translation and this syn-
thetically created parallel data is used in the train-
ing as well. The same model is used to do both
German→English and English→German transla-
tion. The model is based on (Lample et al., 2018)
and it uses denoising and on-the-fly backtransla-
tion. Additionally the model uses the word-by-
word translated data in the initial training stages to
jump-start the training and disables the denoising
component as the last training step for further im-
provements. The NMT embeddings are initialized
with embeddings obtained from fasttext trained
jointly on German and English monolingual BPE-
level data.

2.3.15 MICROSOFT-MARIAN

(Junczys-Dowmunt, 2018)

MICROSOFT-MARIAN is the Transformer-big
model implemented in Marian with an up-
dated version of Edinburgh’s training scheme for
WMT2017, following current common practices:
truecasing and tokenization using Moses scripts,
BPE subwords, backtranslation (using a shal-
low model), ensembling of four left-to-right deep
models and reranking of 12-best list with an en-
semble of four right-to-left models.

The novelties are primarily in new data filtering
(dual conditional cross-entropy filtering) and sen-
tence weighting methods.

2.3.16 MLLP-UPV (Iranzo-Sánchez et al.,
2018)

MLLP-UPV is an ensemble of Transformer
architecture-based neural machine translation sys-
tems. To train the system under “constrained"
conditions, the provided parallel data was filtered
with a scoring technique using character-based
language models, and was augmented based on
synthetic source sentences generated from the pro-
vided monolingual corpora.

The ensemble consists of 4 independent train-
ing runs of the Transformer “base” model, trained
with 10M filtered sentences (including from
ParaCrawl) and 20M backtranslated sentences
from NewsCrawl2017.

2.3.17 MMT-PRODUCTION

MMT-PRODUCTION is the machine translation
system offered by MMT s.r.l. (www.modernmt.
eu) as of July 2018. It is a Transformer-based
neural MT system trained on public and propri-
etary data, containing about 100M sentence pairs
and about 1.5G English words. It exploits a sin-
gle model of ‘transformer-big’ size, and a single
pass-decoding; texts are processed using internal
tools.

2.3.18 NEUROTOLGE.EE (Tars and Fishel,
2018)

NEUROTOLGE.EE is a multi-domain NMT system
that treats text domain as language and applies the
zero-shot multi-lingual approach to multiple do-
mains in the training corpus. For WMT18, text
domains were replaced with unsupervised cluster-
ing into 16 clusters using FastText’s sentence em-
beddings. During translation the input segment is
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classified using its sentence embedding and trans-
lated as the corresponding cluster/domain.

2.3.19 NICT (Marie et al., 2018)
NICT NMT systems were trained with the Trans-
former architecture using the provided parallel
data enlarged with a large quantity of back-
translated monolingual data generated with a new
incremental training framework. The primary sub-
missions to the task are the result of a simple com-
bination between NICT SMT and NMT systems.

2.3.20 NIUTRANS (Wang et al., 2018b)
NIUTRANS baseline systems are based on the
Transformer architecture with the “base” model,
equipped with checkpoint averaging and back-
translation techniques. NIUTRANS further
improve the translation performance 2.28-3.83
BLEU points from four aspects including model
variances (larger inner-hidden-size in FFN, us-
ing ReLU and attention dropout, Swish activa-
tion function, relative positional representation),
diverse ensemble decoding (ensemble decoding
with up to 15 models, generated by different
strategies), reranking (up to 14 features for rerank-
ing), and post-processing (aim at the inconsistent
translation of proper nouns, especially the English
literals in Chinese sentences).

2.3.21 NJUNMT
The NJUNMT-PRIVATE is most likely the sys-
tem developed by Natural Language Process-
ing Group of Nanjing University based on high-
level API of TensorFlow, https://github.
com/zhaocq-nlp/NJUNMT-tf. Further details
on training are not available.

2.3.22 NTT (Morishita et al., 2018)
NTT combine Transformer “big” model, corpus
cleaning technique for provided and synthetic par-
allel corpora, and right-to-left n-best re-ranking
techniques. Through their experiments, NTT
found filtering of noisy training sentences and
right-to-left re-ranking as the keys to better accu-
racy.

2.3.23 PARFDA (Biçici, 2018)
PARFDA selects a subset of the training and LM
data to build task-specific SMT models. PARFDA

uses phrase-based Moses and all constrained avail-
able resources provided by WMT18. The datasets
are available at https://github.com/bicici/
parfdaWMT2018.

2.3.24 PROMT (Molchanov, 2018)

PROMT submitted three systems: PROMT-
HYB-MARIAN, PROMT-HYB-OPENNMT and
PROMT-RULE-BASED.

PROMT-HYB-MARIAN is an ensemble of 5
transformer models trained on WMT data and in-
house news data.

PROMT-HYB-OPENNMT is a hybrid system
based on PROMT Rule-based engine and a NMT
post-editing (PE) engine. The NMT PE compo-
nent is a sequence-to-sequence model with atten-
tion and deep biRNN encoder trained with Open-
NMT toolkit.

PROMT-RULE-BASED is a rule-based system,
without any specific training or tuning.

2.3.25 RWTH (Schamper et al., 2018)

All systems submitted by RWTH Aachen for Ger-
man to English are based on the Transformer ar-
chitecture implemented in Sockeye. The final
RWTH system has been an ensemble of three
Transformer models, where each individual model
had been already very strong. The strength of the
RWTH systems is probably due to the follow-
ing four key factors: (a) Using the Transformer
architecture. (b) Rather large models and large
batch size which was made possible due to syn-
chronous training on 4 GPUs and roughly 8 days
of training. (Details: num-embed: 1024; num-
layers: 6; attention-heads: 16; transformer-feed-
forward-num-hidden: 4096; transformer-model-
size: 1024, no weight-tying. In sum, this results
in 291M trainable parameters.) (c) Careful ex-
periments on data conditions: E.g. oversampling
of parallel data, LM driven filtering of ParaCrawl
(retained 50%), testing different amounts of BPE
merge operations. (d) Fine-tuning on old testsets
(newstest2008-newstest2014).

RWTH English→Turkish system is based on
6-layer encoder-decoder Transformer architecture.
Since the task has low resources, dropout with the
rate of 0.3 to all applicable layers was used. Even
though the two languages are not much related,
joint BPE and weight tying helped a lot as part of
regularization. For the final submission, RWTH
used augmented training data with 1M-sentence
back-translations and ensembled four models with
different random seeds.
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2.3.26 RWTH-UNSUPER (Graça et al.,
2018)

The RWTH-UNSUPER unsupervised NMT sys-
tem is built based on recent works by Lample
et al. (2018) and Artetxe et al. (2018). RWTH-
UNSUPER best performing systems follow the
batch optimization strategy and are initialized with
cross-lingual embeddings. Furthermore, RWTH-
UNSUPER found that sharing a vocabulary per-
forms better than having separate ones. Freezing
embeddings hurts performance and it was found
best to initialize embeddings with pre-trained ones
and train them as usual.

2.3.27 TALP-UPC (Casas et al., 2018)
TALP-UPC is the Transformer “base” model
trained with the Tensor2Tensor implementation
(Vaswani et al., 2018) and wordpieces vocabulary.
The training corpus is multilingual (concatenat-
ing Finnish–English and Estonian–English) and
includes ParaCrawl with garbage cleaned up via
langdetect.

2.3.28 TENCENT (Wang et al., 2018a)
TENCENT-ENSEMBLE (called TenTrans) is an im-
proved NMT system on Transformer based on
self-attention mechanism. In addition to the ba-
sic settings of Transformer training, TENCENT-
ENSEMBLE uses multi-model fusion techniques,
multiple features reranking, different segmenta-
tion models and joint learning. Additionally, data
selection strategies were adopted to fine-tune the
trained system, achieving a stable performance
improvement.

An additional system paper (Hu et al., 2018) de-
scribes a non-primary submission.

2.3.29 TILDE (Pinnis et al., 2018)
TILDE submitted four systems: TILDE-C-NMT,
TILDE-C-NMT-COMB, TILDE-C-NMT-2BT and
TILDE-NC-NMT.

TILDE-C-NMT are constrained English-Estonian
and Estonian-English NMT systems that were de-
ployed as ensembles of averaged factored data
Transformer models. The models were trained us-
ing filtered parallel data and back-translated data
in a 1-to-1 proportion. The parallel data were sup-
plemented with synthetic data (generated from the
same parallel data) that contain unknown token
identifiers in order to acquire models that are more
robust to unknown phenomena.

TILDE-C-NMT-COMB is a constrained Estonian-
English NMT system that is a system combination
of multiple constrained factored data NMT sys-
tems.

TILDE-C-NMT-2BT systems were trained using
Sockeye and Transformer models. Before train-
ing the initial systems, parallel data were cleaned
using the parallel-corpora-tools. Before
back-translation, monolingual data were also fil-
tered. After back-translation, the resulting syn-
thetic corpora were filtered again. Intermediate
systems were trained with the first batch of par-
allel+synthetic data. The back-translation and fil-
tering process was performed a second time with
additional monolingual data to train the final sys-
tems with parallel and two sets of synthetic data.

TILDE-NC-NMT are unconstrained
English→Estonian and Estonian→English
NMT systems that were deployed as averaged
Transformer models. These models were also
trained using back-translated data similarly to the
constrained systems, however, the data, taking
into account its relatively large size, was not
factored.

2.3.30 UBIQUS

The UBIQUS-NMT system is probably developed
by the Ubiqus company (www.ubiqus.com). No
further information is available.

2.3.31 UCAM (Stahlberg et al., 2018)
UCAM is a generalization of previous work
(de Gispert et al., 2017) to multiple architectures.
It is a system combination of two Transformer-like
models, a recurrent model, a convolutional model,
and a phrase-based SMT system. The output is
probably dominated by the Transformer, and to
some extend by the SMT system.

2.3.32 UEDIN (Haddow et al., 2018)
For Estonian↔English and Finnish↔English, the
UEDIN systems are an ensemble of four left-to-
right systems, reranked with four right-to-left sys-
tems, built using Marian. Each ensemble consists
of two Transformers and two deep RNNs. The
RNNs use the UEDIN multi-head / multi-hop vari-
ant. All available parallel data were used, plus
back-translated data from 2017 (for into-English)
and 2014-2017 (for out-of-English). The natu-
ral parallel data was generally over-sampled to
give an equal mix of parallel and synthetic data.
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For English↔Estonian, UEDIN selected 30% of
ParaCrawl based on translation model perplexity
for a model built on the rest of the data.

The UEDIN systems for other language pairs use
an ensemble of four deep RNN left-to-right sys-
tems, reranked with 4 deep RNN right-to-left sys-
tems. The RNN models use the UEDIN multi-head
/ multi-hop attention variant. All the provided par-
allel data (including ParaCrawl) were used, apply-
ing langid filtering to remove some incorrect sen-
tence pairs. Synthetic data were also used, cre-
ated by back-translating the 2017 English news
crawl, and the 2017 and 2016 Czech news crawls.
For Czech→English, the synthetic data was over-
sampled 2x.

2.3.33 UMD (Xu and Carpuat, 2018)
The UMD best system is an ensemble of three
6-layer left-to-right Transformer models reranked
with target-to-source and left-to-right models.
Each Transformer model is trained with a 2:1 mix-
ture of parallel and backtranslated monolingual
data. For parallel data, duplicates are removed
and “bad” sentence pairs filtered out. Monolingual
data is sub-sampled from news 2017 (English) and
news 2011 (Chinese). Subwords (BPE) are used
for both English and Chinese sentences.

2.3.34 UNISOUND

The UNISOUND systems are probably developed
by the Unisound company (www.unisound.com).
No further information is available.

2.3.35 UNSUPTARTU (Del et al., 2018)
UNSUPTARTU is an unsupervised MT system us-
ing n-gram embedding cross-lingual mapping to
create a phrase table. An RNN LM is used in de-
coding.

2.4 Multilingual Sub-track
This year the news translation track included
an explicit sub-track on multilingual translation.
This covered any submissions that used any data
(monolingual or parallel) from a third language to
help the language pair in question: for example,
using English-Finnish data to improve English-
Estonian translation. All entries to this sub-track
had to use only the WMT-provided data sets, and
thus had to be constrained. Submissions to this
sub-track are joined with the main translation track
and evaluated without separation in the same way.

While there was no restriction in terms of lan-
guage pairs, three language pairs were “verbally

endorsed”: English to/from Turkish, Estonian and
German. The motivation behind the choice of
languages was to test the effect of multilingual
(and unsupervised) methods on low-resource lan-
guage pairs (Turkish-English, Estonian-English)
and to contrast the results with a resource-rich pair
(German-English).

2.5 Unsupervised Sub-track

In the unsupervised MT sub-track the participants
were constrained to using only the monolingual
training data from WMT; this additionally ex-
cluded the monolingual corpora that are largely
parallel (monolingual parts of Europarl and News
Commentary). The aim of this task was to see how
far can one get in terms of translation quality with-
out any parallel data used for training. As an ex-
ception it was allowed to use a parallel dev set for
parameter tuning and/or model selection. The lan-
guage pairs of this sub-track coincided with the
multilingual sub-track: English to/from Turkish,
Estonian and German.

3 Human Evaluation

A human evaluation campaign is run each year to
assess translation quality and to determine the final
ranking of systems taking part in the competition.
This section describes how preparation of evalu-
ation data, collection of human assessments, and
computation of the official results of the shared
task was carried out this year.

Work on evaluation over the past few years has
provided fresh insight into ways to collect direct
assessments (DA) of machine translation qual-
ity (Graham et al., 2013, 2014, 2016), and two
years ago the evaluation campaign included par-
allel assessment of a subset of News task lan-
guage pairs evaluated with relative ranking (RR)
and DA. DA has some clear advantages over RR,
namely the evaluation of absolute translation qual-
ity and the ability to carry out evaluations through
quality controlled crowd-sourcing. As established
in 2016 (Bojar et al., 2016a), DA results (via
crowd-sourcing) and RR results (produced by re-
searchers) correlate strongly, with Pearson corre-
lation ranging from 0.920 to 0.997 across several
source languages into English and at 0.975 for
English-to-Russian (the only pair evaluated out-
of-English). Last year, we thus employed DA
for evaluation of systems taking part in the news
task and do so again this year. Where possible,
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Figure 3: Screen shot of Direct Assessment in the Appraise interface used in the human evaluation campaign. The annotator
is presented with a reference translation and a single system output randomly selected from competing systems (anonymized),
and is asked to rate the translation on a sliding scale.

Figure 4: Screen shot of Direct Assessment as carried out by workers on Mechanical Turk.

we collect DA judgments via the crowd-sourcing
platform, Amazon’s Mechanical Turk, and as in
previous year’s we ask participating teams to pro-
vide manual evaluation of system outputs via Ap-
praise. Researcher involvement was needed par-
ticularly for translations into Czech, German, Es-
tonian, Finnish and Turkish.

Human assessors are asked to rate a given trans-
lation by how adequately it expresses the mean-
ing of the corresponding reference translation (i.e.
no bilingual speakers are needed) on an analogue
scale, which corresponds to an underlying abso-
lute 0–100 rating scale. Since DA involves evalu-
ation of a single translation per screen, this allows
the sentence length restriction usually applied dur-
ing manual evaluation to be removed for both re-
searchers and crowd-sourced workers.6 Figure 3

6The maximum sentence length with RR was 30 in

shows one DA screen as completed by researchers
on Appraise, while Figure 4 provides a screenshot
of DA shown to crowd-sourced workers on Ama-
zon’s Mechanical Turk.

The annotation is organized into “HITs” (fol-
lowing the Mechanical Turk’s term “human intel-
ligence task”), each containing 100 such screens
and requiring about half an hour to finish. Ap-
praise users were allowed to pause their annota-
tion at any time, Amazon interface did not allow
any pauses. More details of composition of HITs
are given in Section 3.3 below.

3.1 Evaluation Campaign Overview

In terms of the News translation task manual eval-
uation, a total of 584 individual researcher ac-

WMT16.
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counts were involved, and 915 turker accounts.7

Researchers in the manual evaluation came from
33 different research groups and contributed judg-
ments of 118,705 translations, while 225,900
translation assessment scores were submitted in
total by the crowd.8

Under ordinary circumstances, each assessed
translation would correspond to a single individ-
ual scored segment. However, since distinct sys-
tems can produce the same output for a particular
input sentence, we are often able to take advan-
tage of this and use a single assessment for mul-
tiple systems. Similar to last year’s evaluation,
we only combine human assessments in this way
if the string of text belonging to multiple systems
is exactly identical. For example, even small dif-
ferences in punctuation disqualify combination of
similar system outputs, and this is due to a general
lack of evidence about what kinds of minor differ-
ences may or may not impact human evaluation.

Table 3 shows the numbers of segments for
which distinct MT systems participating in the
News Translation Task produced identical outputs.
The biggest saving in terms of exact duplicate
translations, being produced by multiple systems,
was for German to English, where a 17.4% saving
of resources by combining identical outputs before
human evaluation.

3.2 Data Collection

System rankings are produced from a large set of
human assessments of translations, each of which
indicates the absolute quality of the output of a
system. Annotations are collected in an evalua-
tion campaign that enlists the help of participants
in the shared task. Each team is asked to contribute
8 hours annotation time, which we estimated at 16
100-translation HITs per primary system submit-
ted. We continue to use the open-source Appraise9

(Federmann, 2012) tool for our data collection, in
addition to Amazon Mechanical Turk.10 Table 4
shows total numbers of human assessments col-

7Numbers do not include the 1,533 workers on Mechani-
cal Turk and 7 Appraise evaluators who did not pass quality
control.

8Numbers include quality control items for workers who
passed quality control but omit the additional 347,700 assess-
ments collected on Mechanical Turk where a worker did not
pass quality control and equivalent 1,466 judgments for the
small number of Appraise workers who did not meet the qual-
ity control threshold. A 40% pass rate for quality control is
typical of DA evaluations on Mechanical Turk.

9https://github.com/cfedermann/Appraise
10https://www.mturk.com

lected in WMT18 contributing to final scores for
systems.11

The effort that goes into the manual evalua-
tion campaign each year is impressive, and we
are grateful to all participating individuals and
teams. We believe that human annotation provides
the best decision basis for evaluation of machine
translation output and it is great to see continued
contributions on this large scale.

3.3 Crowd Quality Control

This year, two distinct HIT structures were run in
the overall evaluation campaign, the standard DA
set-up was employed for Mechanical Turk and a
portion of the Appraise evaluation, while an ad-
ditional HIT structure was used for the remaining
part of the Appraise evaluation. Below we firstly
describe the standard DA HIT structure and qual-
ity control mechanism before describing the addi-
tional version used for part of the Appraise eval-
uation. In both set-ups, translations are arranged
in sets of 100-translation HITs to provide control
over assignment and positioning of quality control
items to human annotators.

In the standard DA HIT structure, three kinds of
quality control translation pairs are employed as
described in Table 5: we repeat pairs (expecting
a similar judgment), damage MT outputs (expect-
ing significantly worse scores) and use references
instead of MT outputs (expecting high scores).

In total, 60 items in a 100-translation HIT serve
in quality control checks but 40 of those are regu-
lar judgments of MT system outputs (we exclude
assessments of bad references and ordinary ref-
erence translations when calculating final scores).
The effort wasted for the sake of quality control is
thus 20%.

Also in the standard DA HIT structure, within
each 100-translation HIT, the same proportion of
translations are included from each participating
system for that language pair. This ensures the
final dataset for a given language pair contains
roughly equivalent numbers of assessments for
each participating system. This serves three pur-
poses for making the evaluation fair. Firstly, for
the point estimates used to rank systems to be re-
liable, a sufficient sample size is needed and the

11Appraise ran evaluation of 150−1 = 149 systems due to
a single tr-en system having been omitted in the initial human
evaluation run. The 95 crowd-sourced systems includes all
into-English language pair (including the tr-en missing sys-
tem), en-ru and en-zh systems.
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Total Distinct Saving (%) Saving (%)
Language Pair Systems Segments Segments Segments WMT18 WMT17

Chinese→English 14 3,981 55,734 49,767 10.7 3.9
Czech→English 5 2,983 14,915 13,987 6.2 4.3

German→English 16 2,998 47,968 39,627 17.4 10.7
Estonian→English 14 2,000 28,000 25,612 8.5 −
Finnish→English 9 3,000 27,000 25,233 6.5 1.4
Russian→English 8 3,000 24,000 21,966 8.5 5.8
Turkish→English 6 3,000 18,000 17,000 5.6 4.6

English→Chinese 14 3,981 55,734 48,022 13.8 1.7
English→Czech 5 2,983 14,915 13,982 6.3 10.2
English→German 16 2,998 47,968 39,963 16.7 12.8
English→Estonian 14 2,000 28,000 25,837 7.7 −
English→Finnish 12 3,000 36,000 32,749 9.0 3.7
English→Russian 9 3,000 27,000 24,594 8.9 4.5
English→Turkish 8 3,000 24,000 21,880 8.8 2.1

Table 3: Total segments prior to sampling for manual evaluation and savings made by combining outputs produced by different
systems that were identical.

most efficient way to reach a sufficient sample
size for all systems is to keep total numbers of
judgments roughly equal as more and more judg-
ments are collected. Secondly, it helps to make
the evaluation fair because each system will suf-
fer or benefit equally from an overly lenient/harsh
human judge. Thirdly, despite DA judgments be-
ing absolute, it is known that judges “calibrate”
the way they use the scale depending on the gen-
eral observed translation quality. With each HIT
including all participating systems, this effect is
averaged out. Furthermore apart from quality con-
trol items, HITs are constructed using translations
sampled from the entire set of outputs for a given
language pair.

The alternate DA HIT structure employed by
Appraise this year for a subset of researcher HITs
is shown in Table 6. This set-up reduces the num-
ber of quality control items in a HIT and is there-
fore more efficient (12% overhead) by omitting re-
peat pairs and good reference pairs. This comes at
the cost of a reduced ability to analyze the quality
of data provided by human annotators. In addition
for this set-up, an additional constraint (not orig-
inally applied in standard DA) was imposed. As
much as possible within a 100-translation HIT the
HIT included the output of all participating sys-
tems for each source input. This constraint has
the advantage of producing assessments from the
same human assessor for translations of the same

source input but is not ideal in terms of the orig-
inal aim of DA – to as much as possible produce
absolute scores for translations (as opposed to rel-
ative ones) – because it positions assessment of
competing translations in close proximity within
a HIT and judges may attempt to remember their
judgment for a different candidate translation of a
given input sentence.

In all set-ups employed in the evaluation cam-
paign, and as in previous years, bad reference pairs
were created automatically by replacing a phrase
within a given translation with a phrase of the
same length randomly selected from n-grams ex-
tracted from the full test set of reference transla-
tions belonging to that language pair. This means
that the replacement phrase will itself comprise a
fluent sequence of words (making it difficult to tell
that the sentence is low quality without reading the
entire sentence) while at the same time making its
presence highly likely to sufficiently change the
meaning of the MT output so that it causes a no-
ticeable degradation. The length of the phrase to
be replaced is determined by the number of words
in the original translation, as follows:
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Language Pair Systems Comps Comps/Sys Assessments Assess/Sys

Chinese→English 14 − − 32,919 2,351.4
Czech→English 5 − − 12,209 2,441.8
German→English 16 − − 48,469 3,029.3
Estonian→English 14 − − 28,868 2,062.0
Finnish→English 9 − − 18,868 2,096.4
Russian→English 8 − − 17,711 2,213.9
Turkish→English 6 − − 29,784 4,964.0

English→Chinese 14 − − 32,411 2,315.1
English→Czech 5 − − 10,080 2,016.0
English→German 16 − − 13,754 859.6
English→Estonian 14 − − 15,800 1,128.6
English→Finnish 12 − − 9,995 832.9
English→Russian 9 − − 27,977 3,108.6
English→Turkish 8 − − 3,644 455.5

Total Researcher 149 − − 101,189 679.1
Total Crowd 95 − − 201,300 2,118.9
Total WMT18 150 − − 302,489 2,016.6

WMT17 153 − − 307,707 2,011.2
WMT16 138 569,287 4,125.2 284,644 2,062.6
WMT15 131 542,732 4,143.0 271,366 2,071.5
WMT14 110 328,830 2,989.3 164,415 1,494.7
WMT13 148 942,840 6,370.5 471,420 3,185.3
WMT12 103 101,969 999.6 50,985 495.0
WMT11 133 63,045 474.0 31,522 237.0

Table 4: Amount of data collected in the WMT18 manual evaluation campaign (assessments after removal of quality control
items and “de-collapsing” multi-system outputs). The final seven rows report summary information from previous years of the
workshop.

Translation # Words Replaced
Length (N) in Translation

1 1
2–5 2
6–8 3
9–15 4
16–20 5
>20 b N/4 c

3.4 Annotator Agreement

When an analogue scale (or 0–100 point scale,
in practice) is employed, agreement cannot be
measured using the conventional Kappa coeffi-
cient, ordinarily applied to human assessment
when judgments are discrete categories or pref-
erences. Instead, to measure consistency we fil-
ter crowd-sourced human assessors by how con-
sistently they rate translations of known distinct

quality using the bad reference pairs described
previously. Quality filtering via bad reference
pairs is especially important for the crowd-sourced
portion of the manual evaluation. Due to the
anonymous nature of crowd-sourcing, when col-
lecting assessments of translations, it is likely to
encounter workers who attempt to game the ser-
vice, as well as submission of inconsistent eval-
uations and even robotic ones. We therefore em-
ploy DA’s quality control mechanism to filter out
low quality data, facilitated by the use of DA’s ana-
logue rating scale.

Assessments belonging to a given crowd-
sourced worker who has not demonstrated that
he/she can reliably score bad reference transla-
tions significantly lower than corresponding gen-
uine system output translations are filtered out.
A paired significance test is applied to test if de-
graded translations are consistently scored lower
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Repeat Pairs: Original System output (10) An exact repeat of it (10);
Bad Reference Pairs: Original System output (10) A degraded version of it (10);
Good Reference Pairs: Original System output (10) Its corresponding reference translation (10).

Table 5: Standard DA HIT structure quality control translation pairs hidden within 100-translation HITs, numbers of items
are provided in parentheses.

Bad Reference Pairs: Original System output (12) A degraded version of it (12).

Table 6: Additional DA HIT structure used for a portion of researchers in Appraise data collection, where quality control
translation pairs hidden within 100-translation HITs, numbers of items are provided in parentheses in adapted version of DA
used for a subset of researchers HITs.

than their original counterparts and the p-value
produced by this test is used as an estimate of
human assessor reliability. Assessments of work-
ers whose p-value does not fall below the conven-
tional 0.05 threshold are omitted from the evalua-
tion of systems, since they do not reliably score
degraded translations lower than corresponding
MT output translations.

This year’s assessment includes the first large-
scale DA evaluation where quality control items
were applied to assessments of a known-reliable
group, comprised of the portion of researchers
who completed HITs on Appraise with the original
DA HIT structure. Although this group should be
considered highly reliable compared to Mechani-
cal Turk for example, we must however keep in
mind that a small part of this group are in fact hired
to complete assessments and their reliability could
vary more than what would be expected of volun-
teer researchers.

Table 7 shows the number of workers in the
crowd-sourced and researcher groups who met our
filtering requirement by showing a significantly
lower score for bad reference items compared to
corresponding MT outputs, and the proportion of
those who simultaneously showed no significant
difference in scores they gave to pairs of identical
translations.

A main observation to be taken from Table 7
is the difference in proportions of human asses-
sors on Mechanical Turk versus researchers who
passed the quality filtering criteria for DA, by
scoring degraded translations significantly lower
than the original MT output counterparts, as 37%
of Mechanical Turk workers were deemed reli-
able compared to 93% of evaluators in the re-
searcher group. This low rate of workers pass-
ing quality filtering is inline with past DA evalua-
tions, and the high proportion of annotators pass-
ing quality control is expected of a mostly known-

reliable group. For crowd-sourced workers, con-
sistent with past DA evaluations, Table 7 shows a
substantially higher number of low quality work-
ers encountered for evaluation of languages other
than English on Mechanical Turk. For example, in
the case of Russian and Chinese only a respective
22% and 10% of workers were considered reliable
enough to include their assessments in the eval-
uation, compared to around 42% on average for
English evaluations.

When we examine repeat assessments of the
same translation, both filtered groups show simi-
lar levels of reliability with 96% of filtered Me-
chanical Turk workers and 95% of researchers
showing no significant difference in scores for re-
peat assessment of the same translation. The idea
is that the repeated input should receive a very
similar score. Assuming that annotators do not
remember their previous assessment for the re-
peated sentence, the “Exact Rep.” corresponds to
intra-annotator agreement and it reaches very high
scores.12

Within the researcher group, although assessors
have high levels of reliability overall, reliability
in this respect varies quite a bit for different lan-
guages. For example, only 75% of assessors in the
researcher group completing assessments for Es-
tonian showed no significant difference for repeat
assessment of the same translation, and 87% for
Turkish, both lower levels of reliability than usu-
ally encountered on Mechanical Turk even though
the research group is expected to be more reliable
than crowd-sourced workers. However, on closer
inspection, the number of human assessors who
took part in the Turkish and Estonian evaluations
is small and the seemingly large difference in per-
centages in fact correspond to as few as three indi-

12Repeat items are separated by a minimum of 40 interven-
ing assessments to reduce the likelihood of annotators simply
remembering previous scores for repeat assessment of trans-
lations.

287



(A) (B)
Sig. Diff. (A) & No Sig. Diff.

All Bad Ref. Exact Rep.

M
ec

ha
ni

ca
lT

ur
k

C
ro

w
d

Czech→English 169 74 ( 44%) 70 ( 95%)
German→English 514 227 ( 44%) 216 ( 95%)

Estonian→English 397 157 ( 40%) 150 ( 96%)
Finnish→English 238 102 ( 43%) 99 ( 97%)
Russian→English 203 96 ( 47%) 93 ( 97%)
Turkish→English 480 172 ( 36%) 166 ( 97%)
Chinese→English 401 153 ( 38%) 148 ( 97%)

English→Russian 209 47 ( 22%) 45 ( 96%)
English→Chinese 406 39 ( 10%) 37 ( 95%)

Crowd 2,477 915 ( 37%) 880 ( 96%)

R
es

ea
rc

he
r

German→English 41 39 ( 95%) 37 ( 95%)
Estonian→English 16 13 ( 81%) 13 (100%)
Finnish→English 3 3 (100%) 3 (100%)
Russian→English 8 8 (100%) 8 (100%)
Turkish→English 7 7 (100%) 7 (100%)
Chinese→English 4 3 ( 75%) 3 (100%)

English→Czech 17 17 (100%) 17 (100%)
English→German 48 47 ( 98%) 44 ( 94%)
English→Estonian 6 4 ( 67%) 3 ( 75%)
English→Finnish 29 27 ( 93%) 25 ( 93%)
English→Russian 26 25 ( 96%) 24 ( 96%)
English→Turkish 17 15 ( 88%) 13 ( 87%)
English→Chinese 34 31 ( 91%) 30 ( 97%)

Researcher 256 239 ( 93%) 227 ( 95%)

R
es

ea
rc

he
r a

lt

Czech→English 32 30 ( 94%) —
German→English 41 39 ( 95%) —

Estonian→English 12 12 (100%) —
Finnish→English 4 3 ( 75%) —
Russian→English 7 5 ( 71%) —
Turkish→English 3 2 ( 66%) —
Chinese→English 4 4 (100%) —

English→Czech 49 49 (100%) —
English→German 31 31 (100%) —
English→Estonian 83 83 (100%) —
English→Finnish 30 30 (100%) —
English→Russian 37 36 ( 97%) —
English→Turkish 6 6 (100%) —
English→Chinese 23 22 ( 96%) —

Researcheralt 362 352 ( 97%) —

Total WMT18 3,095 1,506 ( 49%) 1,107 ( 96%)

Table 7: Number of unique workers, (A) those whose scores for bad reference items were significantly lower than correspond-
ing MT outputs; (B) those of (A) whose scores also showed no significant difference for exact repeats of the same translation.
Researcher denotes the portion of the evaluation carried out with the standard DA HIT structure, while Researcheralt denotes
the remaining part that employed the altered HIT structure in which some quality control items are omitted.
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viduals.

3.5 Producing the Human Ranking
All research and crowd data that passed qual-
ity control were combined to produce the overall
shared task results. In order to iron out differ-
ences in scoring strategies of distinct human as-
sessors, human assessment scores for translations
were first standardized according to each individ-
ual human assessor’s overall mean and standard
deviation score, for both researchers and crowd.
Average standardized scores for individual seg-
ments belonging to a given system are then com-
puted, before the final overall DA score for that
system is computed as the average of its segment
scores (Ave z in Table 8). Results are also reported
for average scores for systems, computed in the
same way but without any score standardization
applied (Ave % in Table 8).

Table 8 includes final DA scores for all sys-
tems participating in WMT18 News Translation
Task. Clusters are identified by grouping systems
together according to which systems significantly
outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test.

Note that for English→German, the system
FACEBOOK-FAIR is not considered a regular par-
ticipant, but an invited/late submission, see Sec-
tion 2.3.6.

Appendix A shows the underlying head-to-head
significance test results for all pairs of systems.

3.6 Source-based Direct Assessment
A secondary bilingual manual evaluation was car-
ried out involving an adaptation of the standard
monolingual DA evaluation in which the source
language input segment was used in place of the
reference. Figure 5 provides a screenshot of this
evaluation as implemented in Appraise, which we
refer to as source-based DA. In this set-up system
outputs are evaluated by bilinguals who have ac-
cess to the source language input segment only and
no reference translation. The main motivation for
doing so was to free up reference translations to
allow them to be used instead as a “human sys-
tem” in the evaluation. By structuring the evalua-
tion as a bilingual task it allows a human system
to be manually evaluated under exactly the same
conditions as all other systems thus providing an
estimate of human performance.13

13An alternate method is to keep DA monolingual but to
employ secondary reference translations. No secondary ref-

The aim of source-based DA is to produce ac-
curate rankings for systems as well as the hu-
man system to allow direct comparison of system
and human performance, motivated by recent in-
dications that Machine Translation quality may in
some cases be approaching human performance
(Wu et al., 2016; Hassan et al., 2018). For source-
based DA, annotators will ideally be bilingual, i.e.
understand the source language sufficiently well,
in addition to being native speakers of the target
language. However, we did not specifically stipu-
late in this year’s evaluation that human annotators
be native speakers of the target language.

We run source-based DA for evaluation of En-
glish to Czech translation. This language pair was
selected because sufficient annotators were avail-
able, helped by the fact that the set of systems par-
ticipating in this language pair is small. This part
of the campaign employs the alternate HIT struc-
ture described in Section 3.3 with reduced quality
control items, i.e. it does not include exact repeats
of translations or reference translations for quality
control purposes.

A total of 17 annotators worked on the source-
based DA pilot. 100% of annotators proved re-
liable, meaning that they scored bad reference
items significantly lower than corresponding MT
outputs (see Table 7 part (A) for corresponding
reference-based DA percentages). For six candi-
date systems we collected 2, 574 assessments, re-
sulting in an average of 429 annotations per indi-
vidual system. Enforcing segment overlap during
HIT creation resulted in 423 segments for which
all six candidate translations have been scored. In
total, annotators worked on 438 distinct segments.

Table 9 provides source-based DA scores for all
primary English→Czech systems participating in
WMT18 News Translation Task as well as the hu-
man system comprised of reference translations.
Clusters are identified by grouping systems to-
gether according to which systems significantly
outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test.

As can be seen from clusters in Table 9, one sys-
tem, CUNI-TRANSFORMER, appears to achieve
quality better than that of the human reference,
NEWSTEST2018-REF, while another, UEDIN, ap-
pears to be on par with human performance, and
although both systems certainly achieve very im-
pressive results, claims of human parity should be

erence translations were available for the test set, however.
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Chinese→English
Ave. % Ave. z System

1 78.8 0.140 NIUTRANS
77.7 0.111 ONLINE-B
77.9 0.109 UCAM
78.0 0.108 UNISOUND-A
77.5 0.099 TENCENT-ENSEMBLE
77.5 0.094 UNISOUND-B
77.9 0.091 LI-MUZE
77.0 0.089 NICT
76.7 0.078 UMD

10 75.0 −0.005 ONLINE-Y
74.5 −0.017 UEDIN

12 73.6 −0.061 ONLINE-A
13 65.9 −0.327 ONLINE-G
14 64.4 −0.377 ONLINE-F

English→Chinese
Ave. % Ave. z System

1 80.7 0.219 TENCENT-ENSEMBLE
80.3 0.206 UNISOUND
80.5 0.199 GTCOM-PRIMARY
79.7 0.185 ALIBABA-ENS-RERANK
79.2 0.173 ALIBABA-GENERAL-A
79.5 0.166 ONLINE-B
79.0 0.165 ALIBABA-GENERAL-B

8 78.1 0.094 UMD
77.5 0.082 NICT
77.1 0.069 ONLINE-Y
75.5 0.037 ONLINE-A

12 70.7 −0.202 UEDIN
13 63.3 −0.419 ONLINE-F

63.4 −0.435 ONLINE-G

Czech→English
Ave. % Ave. z System

1 71.8 0.298 CUNI-TRANSFORMER
2 67.9 0.165 UEDIN
3 66.6 0.115 ONLINE-B
4 62.1 −0.023 ONLINE-A
5 57.5 −0.183 ONLINE-G

English→Czech
Ave. % Ave. z System

1 67.2 0.594 CUNI-TRANSFORMER
2 60.6 0.384 UEDIN
3 52.1 0.101 ONLINE-B
4 46.0 −0.115 ONLINE-A
5 42.0 −0.246 ONLINE-G

German→English
Ave. % Ave. z System

1 79.9 0.413 RWTH
79.4 0.395 UCAM
78.2 0.359 NTT
77.3 0.346 ONLINE-B
77.4 0.321 MLLP-UPV
77.0 0.317 JHU
76.9 0.315 UBIQUS-NMT
76.7 0.310 ONLINE-Y
75.7 0.268 ONLINE-A
75.4 0.261 UEDIN

11 72.5 0.162 LMU-NMT
72.2 0.149 NJUNMT-PRIVATE

13 65.2 −0.074 ONLINE-G
14 58.5 −0.296 ONLINE-F
15 45.4 −0.752 RWTH-UNSUPER
16 42.7 −0.835 LMU-UNSUP

English→German
Ave. % Ave. z System

1 85.5 0.653 FACEBOOK-FAIR ?
2 82.2 0.561 ONLINE-B

81.9 0.551 MICROSOFT-MARIAN
81.6 0.539 MMT-PRODUCTION
82.3 0.537 UCAM
80.2 0.491 NTT
79.3 0.454 KIT

8 77.7 0.396 ONLINE-Y
76.7 0.377 JHU
76.3 0.352 UEDIN

11 71.8 0.213 LMU-NMT
12 67.4 0.060 ONLINE-A
13 53.2 −0.385 ONLINE-F

53.8 −0.416 ONLINE-G
15 36.7 −0.966 RWTH-UNSUPER
16 32.6 −1.122 LMU-UNSUP

Estonian→English
Ave. % Ave. z System

1 73.3 0.326 TILDE-NC-NMT
2 71.1 0.238 NICT

69.9 0.215 TILDE-C-NMT
69.0 0.187 TILDE-C-NMT-2BT
69.2 0.186 UEDIN
68.7 0.171 TILDE-C-NMT-COMB
67.1 0.117 ONLINE-B
66.4 0.106 HY-NMT
66.8 0.106 TALP-UPC

10 65.4 0.063 ONLINE-A
64.0 0.007 CUNI-KOCMI

12 59.4 −0.117 NEUROTOLGE.EE
13 52.7 −0.341 ONLINE-G
14 34.6 −0.950 UNSUPTARTU

English→Estonian
Ave. % Ave. z System

1 64.9 0.549 TILDE-NC-NMT
2 62.1 0.453 NICT

61.6 0.427 TILDE-C-NMT
61.2 0.418 TILDE-C-NMT-2BT

5 58.6 0.340 AALTO
58.6 0.329 HY-NMT
57.5 0.295 UEDIN

8 55.5 0.216 CUNI-KOCMI
54.6 0.181 TALP-UPC

10 52.1 0.097 ONLINE-B
11 45.7 −0.132 NEUROTOLGE.EE
12 43.8 −0.195 ONLINE-A
13 37.6 −0.406 ONLINE-G
14 34.3 −0.520 PARFDA

Finnish→English
Ave. % Ave. z System

1 75.2 0.153 NICT
74.4 0.128 HY-NMT
74.0 0.103 UEDIN
72.7 0.083 CUNI-KOCMI
72.9 0.078 ONLINE-B
71.9 0.047 TALP-UPC
71.5 0.045 ONLINE-A

8 66.1 −0.134 ONLINE-G
9 58.9 −0.404 JUCBNMT

English→Finnish
Ave. % Ave. z System

1 64.7 0.521 NICT
63.1 0.466 HY-NMT

3 59.2 0.324 UEDIN
58.3 0.271 AALTO
57.9 0.258 HY-NMT-2STEP
57.4 0.238 TALP-UPC
55.9 0.184 CUNI-KOCMI
56.6 0.183 ONLINE-B

9 45.9 −0.212 ONLINE-A
45.3 −0.233 ONLINE-G

11 42.7 −0.334 HY-SMT
41.5 −0.369 HY-AH

Russian→English
Ave. % Ave. z System

1 81.0 0.215 ALIBABA
80.3 0.192 ONLINE-B
79.6 0.170 ONLINE-G

4 77.5 0.110 UEDIN
5 76.2 0.034 ONLINE-A
6 74.1 −0.014 AFRL-SYSCOMB

73.7 −0.027 JHU
8 64.2 −0.398 ONLINE-F

English→Russian
Ave. % Ave. z System

1 72.0 0.352 ALIBABA-ENS
71.4 0.324 ONLINE-G

3 66.8 0.159 ONLINE-B
66.0 0.144 UEDIN
64.9 0.115 PROMT-HYB-MARIAN

6 63.9 0.066 PROMT-HYB-OPENNMT
7 62.2 −0.004 ONLINE-A
8 59.1 −0.075 PROMT-RULE-BASED
9 44.5 −0.580 ONLINE-F

Turkish→English
Ave. % Ave. z System

1 70.2 0.101 ONLINE-G
69.3 0.077 ONLINE-A
68.1 0.030 ALIBABA-ENS
68.0 0.027 ONLINE-B
67.0 −0.008 UEDIN
66.0 −0.040 NICT

English→Turkish
Ave. % Ave. z System

1 66.3 0.277 ONLINE-B
63.6 0.222 UEDIN
63.5 0.216 ALIBABA-ENS-A
62.0 0.128 NICT
60.1 0.111 ALIBABA-ENS-B
60.1 0.058 ONLINE-G

7 55.0 −0.060 RWTH
8 49.6 −0.254 ONLINE-A

Table 8: Official results of WMT18 News Translation Task. Systems ordered by standardized mean DA score, though systems
within a cluster are considered tied. Lines between systems indicate clusters according to Wilcoxon rank-sum test at p-level
p < 0.05. Systems with gray background indicate use of resources that fall outside the constraints provided for the shared task.
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Figure 5: Screen shot of source-based Direct Assessment in the Appraise interface used in the English→Czech pilot cam-
paign. The annotator is presented with a source text and a single system output randomly selected from competing systems
(anonymized), and is asked to rate the translation on a sliding scale.

taken with a degree of caution for several reasons
which we outline below.

Firstly, the alternate HIT structure applied in
this version of DA has not been tested thoroughly
enough to be certain of high reliability. For exam-
ple, as described in Section 3.3, forcing all transla-
tions of a given source segment to be assessed by
the same human judge within the same HIT could
cause individual DA ratings to become highly rel-
ative as opposed to the aim of DA ratings to be as
close as possible to absolute judgments of transla-
tion quality. Furthermore, an additional bias that
could cause problems for this HIT structure is one
associated with a past evaluation method, relative
ranking. When evaluating competing translations
of the same source that are situated in close prox-
imity within a HIT, annotators may be primed by
high (or low) quality outputs resulting in overly se-
vere (or lenient) judgments for subsequent trans-
lations of the same source segment (Bojar et al.,
2011).

Secondly, while standard monolingual DA em-
ploys annotators only required to be speakers of a
single language, source-based DA requires fluency
in two languages and it is not known the degree to
which varying levels of native language fluency in
at least one language may negatively impact the
reliability of DA rankings in the case of bilingual
annotators.

Thirdly, it is likely that the quality of reference
translations can vary and this could potentially
impact the reliability of human performance es-
timates in source-based DA. Although reference-

based DA assumes high quality reference transla-
tions, in the unfortunate case of problematic ref-
erences, the overall rankings are unlikely to suffer
to any large degree in terms of the reliability of
system rankings, since all competing systems are
likely to suffer equally from any lack of quality in
reference translations.

However, in the adapted source-based version
of DA, the effect of low quality reference trans-
lations is quite different. Firstly, since assess-
ment involves comparison of MT outputs with the
source, genuine participating systems will not suf-
fer from the fact reference translations are low
quality, since references are not involved in their
evaluation. On the other hand, human perfor-
mance estimates certainly will, as a drop in ref-
erence quality is indeed highly likely to negatively
impact the placement of human performance esti-
mates in system rankings. The reliability of com-
parisons with human performance with source-
based DA is therefore highly dependent on high
quality reference translations, as employment of
a low quality set of references can only lead to
underestimates of human performance. Consider-
ing the manual evaluation included several reports
of ill-formed reference translations, conclusions of
human parity and/or superiority relative to humans
should be avoided.

3.7 Considerations as to Human Parity
As mentioned above, before making any state-
ments about “machine translation outperforming
humans” or “machine-human parity in translation”
it may be important to consider the following ad-
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English→Czech
Ave. % Ave. z System

1 84.4 0.667 CUNI-TRANSFORMER
2 79.8 0.521 UEDIN

78.6 0.483 NEWSTEST2018-REF
4 68.1 0.128 ONLINE-B
5 59.4 −0.178 ONLINE-A
6 54.1 −0.354 ONLINE-G

Table 9: Source-based DA results for English→Czech
newstest2018, where systems are ordered by standardized
mean DA score, though systems within a cluster are consid-
ered tied. Lines between systems indicate clusters accord-
ing to Wilcoxon rank-sum test at p-level p < 0.05. Sys-
tems with gray background indicate use of resources that
fall outside the constraints provided for the shared task.
NEWSTEST2018-REF denotes the human system comprised
of human-produced reference translations.

ditional points:

• Since none of WMT18 systems process
larger units than individual sentences and our
evaluation does not include any context be-
yond individual segments, it is possible that
the human estimate is under-rewarded for
correct cross-sentential phenomena.

• The sample size employed in the source-
based DA evaluation was smaller than the
recommended 1,500 judgments per system.

• The way in which translations in the test sets
were originally created was as follows: one
half of the test data for a given language pair
was translated in one language direction and
the other half in the opposite direction. It is
well known that the translation direction af-
fects translation quality in training and this
could also be the case for evaluation.

• The formal education in linguistics or trans-
latology of human assessors has not been
taken into account: it is likely that whether or
not human assessors have received any for-
mal training in translation might influence
their acceptance of varying levels of well-
formedness in translations. For example, un-
trained assessors might not be as sensitive to
subtle differences in verb conjugation, based
on their own experience: In many real-life
situations, the exact verb tense or conditional
chosen in one sentence may not really im-
pact the overall message because it can be
implied from the context (and thus left free
to the imagination of the annotator in our
sentence-based evaluation) or from general
knowledge.

4 Test Suites

Arguably, both the manual and automatic evalua-
tions carried out at WMT News Translation Task
are rather opaque. We learn (for each language
pair and with a known confidence) which systems
perform better on average over the sentences sam-
pled from the news test set.

This average performance however does not
provide any insight into which particular phenom-
ena are handled better or worse by the systems. It
is quite possible that the overall best-performing
system may be unreliable for long sentences, for
named entities, for pronouns or others. Such tar-
geted evaluations may be important for particular
deployment settings and use cases, and they are
definitely important for us, MT system developers,
in order to focus on them in subsequent research.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Raphael Rubino, Lu-
cia Specia, and Marco Turchi. 2017. Findings
of the 2017 Conference on Machine Translation
(WMT17). In Proceedings of the Second Confer-
ence on Machine Translation, Copenhagen, Den-
mark. Association for Computational Linguistics.
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A Differences in Human Scores

Tables 10–23 show differences in average standardized human scores for all pairs of competing sys-
tems for each language pair. The numbers in each of the tables’ cells indicate the difference in average
standardized human scores for the system in that column and the system in that row.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such
differences could occur simply by chance. In the following tables ? indicates statistical significance
at p < 0.05, † indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at
p < 0.001, according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-
overlapping rank ranges.

Table 24 shows the differences in average standardized human scores for Czech→English systems,
based on source-based DA.
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NIUTRANS - 0.03 0.03 0.03 0.04? 0.05? 0.05? 0.05? 0.06† 0.15‡ 0.16‡ 0.20‡ 0.47‡ 0.52‡
ONLINE-B -0.03 - 0.00 0.00 0.01 0.02 0.02 0.02 0.03 0.12‡ 0.13‡ 0.17‡ 0.44‡ 0.49‡

UCAM -0.03 0.00 - 0.00 0.01 0.02 0.02 0.02 0.03 0.11‡ 0.13‡ 0.17‡ 0.44‡ 0.49‡
UNISOUND-A -0.03 0.00 0.00 - 0.01 0.01 0.02 0.02 0.03 0.11‡ 0.12‡ 0.17‡ 0.43‡ 0.48‡

TENCENT-ENSEMBLE -0.04 -0.01 -0.01 -0.01 - 0.01 0.01 0.01 0.02 0.10‡ 0.12‡ 0.16‡ 0.43‡ 0.48‡
UNISOUND-B -0.05 -0.02 -0.02 -0.01 -0.01 - 0.00 0.01 0.02 0.10‡ 0.11‡ 0.16‡ 0.42‡ 0.47‡

LI-MUZE -0.05 -0.02 -0.02 -0.02 -0.01 0.00 - 0.00 0.01 0.10‡ 0.11‡ 0.15‡ 0.42‡ 0.47‡
NICT -0.05 -0.02 -0.02 -0.02 -0.01 -0.01 0.00 - 0.01 0.09‡ 0.11‡ 0.15‡ 0.42‡ 0.47‡
UMD -0.06 -0.03 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 - 0.08† 0.10‡ 0.14‡ 0.40‡ 0.45‡

ONLINE-Y -0.15 -0.12 -0.11 -0.11 -0.10 -0.10 -0.10 -0.09 -0.08 - 0.01 0.06? 0.32‡ 0.37‡
UEDIN -0.16 -0.13 -0.13 -0.12 -0.12 -0.11 -0.11 -0.11 -0.10 -0.01 - 0.04? 0.31‡ 0.36‡

ONLINE-A -0.20 -0.17 -0.17 -0.17 -0.16 -0.16 -0.15 -0.15 -0.14 -0.06 -0.04 - 0.27‡ 0.32‡
ONLINE-G -0.47 -0.44 -0.44 -0.43 -0.43 -0.42 -0.42 -0.42 -0.40 -0.32 -0.31 -0.27 - 0.05?
ONLINE-F -0.52 -0.49 -0.49 -0.48 -0.48 -0.47 -0.47 -0.47 -0.45 -0.37 -0.36 -0.32 -0.05 -

score 0.14 0.11 0.11 0.11 0.10 0.09 0.09 0.09 0.08 -0.01 -0.02 -0.06 -0.33 -0.38
rank 1–9 1–9 1–9 1–9 1–9 1–9 1–9 1–9 1–9 10–11 10–11 12 13 14

Table 10: Head to head comparison for Chinese→English systems.
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TENCENT-ENSEMBLE - 0.01 0.02 0.03 0.05 0.05? 0.05 0.13‡ 0.14‡ 0.15‡ 0.18‡ 0.42‡ 0.64‡ 0.65‡
UNISOUND -0.01 - 0.01 0.02 0.03 0.04 0.04 0.11‡ 0.12‡ 0.14‡ 0.17‡ 0.41‡ 0.62‡ 0.64‡

GTCOM-PRIMARY -0.02 -0.01 - 0.01 0.03 0.03? 0.03 0.11‡ 0.12‡ 0.13‡ 0.16‡ 0.40‡ 0.62‡ 0.63‡
ALIBABA-ENS-RERANK -0.03 -0.02 -0.01 - 0.01 0.02 0.02 0.09‡ 0.10‡ 0.12‡ 0.15‡ 0.39‡ 0.60‡ 0.62‡

ALIBABA-GENERAL-A -0.05 -0.03 -0.03 -0.01 - 0.01 0.01 0.08‡ 0.09† 0.10‡ 0.14‡ 0.38‡ 0.59‡ 0.61‡
ONLINE-B -0.05 -0.04 -0.03 -0.02 -0.01 - 0.00 0.07† 0.08? 0.10‡ 0.13‡ 0.37‡ 0.58‡ 0.60‡

ALIBABA-GENERAL-B -0.05 -0.04 -0.03 -0.02 -0.01 0.00 - 0.07† 0.08† 0.10‡ 0.13‡ 0.37‡ 0.58‡ 0.60‡
UMD -0.13 -0.11 -0.11 -0.09 -0.08 -0.07 -0.07 - 0.01 0.03 0.06† 0.30‡ 0.51‡ 0.53‡
NICT -0.14 -0.12 -0.12 -0.10 -0.09 -0.08 -0.08 -0.01 - 0.01 0.04† 0.28‡ 0.50‡ 0.52‡

ONLINE-Y -0.15 -0.14 -0.13 -0.12 -0.10 -0.10 -0.10 -0.03 -0.01 - 0.03 0.27‡ 0.49‡ 0.50‡
ONLINE-A -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.13 -0.06 -0.04 -0.03 - 0.24‡ 0.46‡ 0.47‡

UEDIN -0.42 -0.41 -0.40 -0.39 -0.38 -0.37 -0.37 -0.30 -0.28 -0.27 -0.24 - 0.22‡ 0.23‡
ONLINE-F -0.64 -0.62 -0.62 -0.60 -0.59 -0.58 -0.58 -0.51 -0.50 -0.49 -0.46 -0.22 - 0.02
ONLINE-G -0.65 -0.64 -0.63 -0.62 -0.61 -0.60 -0.60 -0.53 -0.52 -0.50 -0.47 -0.23 -0.02 -

score 0.22 0.21 0.20 0.18 0.17 0.17 0.17 0.09 0.08 0.07 0.04 -0.20 -0.42 -0.43
rank 1–7 1–7 1–7 1–7 1–7 1–7 1–7 8–11 8–11 8–11 8–11 12 13–14 13–14

Table 11: Head to head comparison for English→Chinese systems.
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CUNI-TRANSFORMER - 0.13‡ 0.18‡ 0.32‡ 0.48‡
UEDIN -0.13 - 0.05? 0.19‡ 0.35‡

ONLINE-B -0.18 -0.05 - 0.14‡ 0.30‡
ONLINE-A -0.32 -0.19 -0.14 - 0.16‡
ONLINE-G -0.48 -0.35 -0.30 -0.16 -

score 0.30 0.17 0.12 -0.02 -0.18
rank 1 2 3 4 5

Table 12: Head to head comparison for Czech→English systems.
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CUNI-TRANSFORMER - 0.21‡ 0.49‡ 0.71‡ 0.84‡
UEDIN -0.21 - 0.28‡ 0.50‡ 0.63‡

ONLINE-B -0.49 -0.28 - 0.22‡ 0.35‡
ONLINE-A -0.71 -0.50 -0.22 - 0.13‡
ONLINE-G -0.84 -0.63 -0.35 -0.13 -

score 0.59 0.38 0.10 -0.12 -0.25
rank 1 2 3 4 5

Table 13: Head to head comparison for English→Czech systems.
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RWTH - 0.02 0.05? 0.07‡ 0.09‡ 0.10‡ 0.10‡ 0.10‡ 0.15‡ 0.15‡ 0.25‡ 0.26‡ 0.49‡ 0.71‡ 1.17‡ 1.25‡
UCAM -0.02 - 0.04 0.05? 0.07‡ 0.08† 0.08‡ 0.08‡ 0.13‡ 0.13‡ 0.23‡ 0.25‡ 0.47‡ 0.69‡ 1.15‡ 1.23‡

NTT -0.05 -0.04 - 0.01 0.04? 0.04? 0.04† 0.05† 0.09‡ 0.10‡ 0.20‡ 0.21‡ 0.43‡ 0.66‡ 1.11‡ 1.19‡
ONLINE-B -0.07 -0.05 -0.01 - 0.03 0.03 0.03? 0.04 0.08‡ 0.09‡ 0.18‡ 0.20‡ 0.42‡ 0.64‡ 1.10‡ 1.18‡

MLLP-UPV -0.09 -0.07 -0.04 -0.03 - 0.00 0.01 0.01 0.05† 0.06? 0.16‡ 0.17‡ 0.40‡ 0.62‡ 1.07‡ 1.16‡
JHU -0.10 -0.08 -0.04 -0.03 0.00 - 0.00 0.01 0.05† 0.06† 0.15‡ 0.17‡ 0.39‡ 0.61‡ 1.07‡ 1.15‡

UBIQUS-NMT -0.10 -0.08 -0.04 -0.03 -0.01 0.00 - 0.01 0.05? 0.05 0.15‡ 0.17‡ 0.39‡ 0.61‡ 1.07‡ 1.15‡
ONLINE-Y -0.10 -0.08 -0.05 -0.04 -0.01 -0.01 -0.01 - 0.04? 0.05? 0.15‡ 0.16‡ 0.38‡ 0.61‡ 1.06‡ 1.15‡
ONLINE-A -0.15 -0.13 -0.09 -0.08 -0.05 -0.05 -0.05 -0.04 - 0.01 0.11‡ 0.12‡ 0.34‡ 0.56‡ 1.02‡ 1.10‡

UEDIN -0.15 -0.13 -0.10 -0.09 -0.06 -0.06 -0.05 -0.05 -0.01 - 0.10‡ 0.11‡ 0.34‡ 0.56‡ 1.01‡ 1.10‡
LMU-NMT -0.25 -0.23 -0.20 -0.18 -0.16 -0.15 -0.15 -0.15 -0.11 -0.10 - 0.01 0.24‡ 0.46‡ 0.91‡ 1.00‡

NJUNMT-PRIVATE -0.26 -0.25 -0.21 -0.20 -0.17 -0.17 -0.17 -0.16 -0.12 -0.11 -0.01 - 0.22‡ 0.45‡ 0.90‡ 0.98‡
ONLINE-G -0.49 -0.47 -0.43 -0.42 -0.40 -0.39 -0.39 -0.38 -0.34 -0.34 -0.24 -0.22 - 0.22‡ 0.68‡ 0.76‡
ONLINE-F -0.71 -0.69 -0.66 -0.64 -0.62 -0.61 -0.61 -0.61 -0.56 -0.56 -0.46 -0.45 -0.22 - 0.46‡ 0.54‡

RWTH-UNSUPER -1.17 -1.15 -1.11 -1.10 -1.07 -1.07 -1.07 -1.06 -1.02 -1.01 -0.91 -0.90 -0.68 -0.46 - 0.08‡
LMU-UNSUP -1.25 -1.23 -1.19 -1.18 -1.16 -1.15 -1.15 -1.15 -1.10 -1.10 -1.00 -0.98 -0.76 -0.54 -0.08 -

score 0.41 0.40 0.36 0.35 0.32 0.32 0.32 0.31 0.27 0.26 0.16 0.15 -0.07 -0.30 -0.75 -0.83
rank 1–8 1–8 1–8 1–8 1–8 1–8 1–8 1–8 9–10 9–10 11–12 11–12 13 14 15 16

Table 14: Head to head comparison for German→English systems.
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FACEBOOK-FAIR ? - 0.09† 0.10‡ 0.11‡ 0.12‡ 0.16‡ 0.20‡ 0.26‡ 0.28‡ 0.30‡ 0.44‡ 0.59‡ 1.04‡ 1.07‡ 1.62‡ 1.77‡
ONLINE-B -0.09 - 0.01 0.02 0.02 0.07† 0.11‡ 0.16‡ 0.18‡ 0.21‡ 0.35‡ 0.50‡ 0.95‡ 0.98‡ 1.53‡ 1.68‡

MICROSOFT-MARIAN -0.10 -0.01 - 0.01 0.01 0.06? 0.10† 0.16‡ 0.17‡ 0.20‡ 0.34‡ 0.49‡ 0.94‡ 0.97‡ 1.52‡ 1.67‡
MMT-PRODUCTION -0.11 -0.02 -0.01 - 0.00 0.05 0.09? 0.14‡ 0.16‡ 0.19‡ 0.33‡ 0.48‡ 0.92‡ 0.95‡ 1.51‡ 1.66‡

UCAM -0.12 -0.02 -0.01 0.00 - 0.05 0.08? 0.14‡ 0.16‡ 0.19‡ 0.32‡ 0.48‡ 0.92‡ 0.95‡ 1.50‡ 1.66‡
NTT -0.16 -0.07 -0.06 -0.05 -0.05 - 0.04 0.10‡ 0.11† 0.14‡ 0.28‡ 0.43‡ 0.88‡ 0.91‡ 1.46‡ 1.61‡
KIT -0.20 -0.11 -0.10 -0.09 -0.08 -0.04 - 0.06† 0.08? 0.10† 0.24‡ 0.39‡ 0.84‡ 0.87‡ 1.42‡ 1.58‡

ONLINE-Y -0.26 -0.16 -0.16 -0.14 -0.14 -0.10 -0.06 - 0.02 0.04 0.18‡ 0.34‡ 0.78‡ 0.81‡ 1.36‡ 1.52‡
JHU -0.28 -0.18 -0.17 -0.16 -0.16 -0.11 -0.08 -0.02 - 0.03 0.16‡ 0.32‡ 0.76‡ 0.79‡ 1.34‡ 1.50‡

UEDIN -0.30 -0.21 -0.20 -0.19 -0.19 -0.14 -0.10 -0.04 -0.03 - 0.14‡ 0.29‡ 0.74‡ 0.77‡ 1.32‡ 1.47‡
LMU-NMT -0.44 -0.35 -0.34 -0.33 -0.32 -0.28 -0.24 -0.18 -0.16 -0.14 - 0.15‡ 0.60‡ 0.63‡ 1.18‡ 1.33‡
ONLINE-A -0.59 -0.50 -0.49 -0.48 -0.48 -0.43 -0.39 -0.34 -0.32 -0.29 -0.15 - 0.44‡ 0.48‡ 1.03‡ 1.18‡
ONLINE-F -1.04 -0.95 -0.94 -0.92 -0.92 -0.88 -0.84 -0.78 -0.76 -0.74 -0.60 -0.44 - 0.03 0.58‡ 0.74‡
ONLINE-G -1.07 -0.98 -0.97 -0.95 -0.95 -0.91 -0.87 -0.81 -0.79 -0.77 -0.63 -0.48 -0.03 - 0.55‡ 0.71‡

RWTH-UNSUPER -1.62 -1.53 -1.52 -1.51 -1.50 -1.46 -1.42 -1.36 -1.34 -1.32 -1.18 -1.03 -0.58 -0.55 - 0.16‡
LMU-UNSUP -1.77 -1.68 -1.67 -1.66 -1.66 -1.61 -1.58 -1.52 -1.50 -1.47 -1.33 -1.18 -0.74 -0.71 -0.16 -

score 0.65 0.56 0.55 0.54 0.54 0.49 0.45 0.40 0.38 0.35 0.21 0.06 -0.39 -0.42 -0.97 -1.12
rank 1 2–7 2–7 2–7 2–7 2–7 2–7 8–10 8–10 8–10 11 12 13–14 13–14 15 16

Table 15: Head to head comparison for English→German systems.
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TILDE-NC-NMT - 0.09‡ 0.11‡ 0.14‡ 0.14‡ 0.16‡ 0.21‡ 0.22‡ 0.22‡ 0.26‡ 0.32‡ 0.44‡ 0.67‡ 1.28‡
NICT -0.09 - 0.02 0.05? 0.05 0.07† 0.12‡ 0.13‡ 0.13‡ 0.18‡ 0.23‡ 0.36‡ 0.58‡ 1.19‡

TILDE-C-NMT -0.11 -0.02 - 0.03 0.03 0.04 0.10‡ 0.11† 0.11‡ 0.15‡ 0.21‡ 0.33‡ 0.56‡ 1.17‡
TILDE-C-NMT-2BT -0.14 -0.05 -0.03 - 0.00 0.02 0.07† 0.08† 0.08† 0.12‡ 0.18‡ 0.30‡ 0.53‡ 1.14‡

UEDIN -0.14 -0.05 -0.03 0.00 - 0.02 0.07† 0.08† 0.08† 0.12‡ 0.18‡ 0.30‡ 0.53‡ 1.14‡
TILDE-C-NMT-COMB -0.16 -0.07 -0.04 -0.02 -0.02 - 0.05? 0.06 0.06? 0.11‡ 0.16‡ 0.29‡ 0.51‡ 1.12‡

ONLINE-B -0.21 -0.12 -0.10 -0.07 -0.07 -0.05 - 0.01 0.01 0.05? 0.11† 0.23‡ 0.46‡ 1.07‡
HY-NMT -0.22 -0.13 -0.11 -0.08 -0.08 -0.06 -0.01 - 0.00 0.04? 0.10† 0.22‡ 0.45‡ 1.06‡
TALP-UPC -0.22 -0.13 -0.11 -0.08 -0.08 -0.06 -0.01 0.00 - 0.04? 0.10† 0.22‡ 0.45‡ 1.06‡

ONLINE-A -0.26 -0.18 -0.15 -0.12 -0.12 -0.11 -0.05 -0.04 -0.04 - 0.06 0.18‡ 0.40‡ 1.01‡
CUNI-KOCMI -0.32 -0.23 -0.21 -0.18 -0.18 -0.16 -0.11 -0.10 -0.10 -0.06 - 0.12‡ 0.35‡ 0.96‡

NEUROTOLGE.EE -0.44 -0.36 -0.33 -0.30 -0.30 -0.29 -0.23 -0.22 -0.22 -0.18 -0.12 - 0.22‡ 0.83‡
ONLINE-G -0.67 -0.58 -0.56 -0.53 -0.53 -0.51 -0.46 -0.45 -0.45 -0.40 -0.35 -0.22 - 0.61‡

UNSUPTARTU -1.28 -1.19 -1.17 -1.14 -1.14 -1.12 -1.07 -1.06 -1.06 -1.01 -0.96 -0.83 -0.61 -

score 0.33 0.24 0.21 0.19 0.19 0.17 0.12 0.11 0.11 0.06 0.01 -0.12 -0.34 -0.95
rank 1 2–9 2–9 2–9 2–9 2–9 2–9 2–9 2–9 10–11 10–11 12 13 14

Table 16: Head to head comparison for Estonian→English systems.
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TILDE-NC-NMT - 0.10? 0.12† 0.13‡ 0.21‡ 0.22‡ 0.25‡ 0.33‡ 0.37‡ 0.45‡ 0.68‡ 0.74‡ 0.95‡ 1.07‡
NICT -0.10 - 0.03 0.03 0.11† 0.12† 0.16‡ 0.24‡ 0.27‡ 0.36‡ 0.58‡ 0.65‡ 0.86‡ 0.97‡

TILDE-C-NMT -0.12 -0.03 - 0.01 0.09? 0.10? 0.13† 0.21‡ 0.25‡ 0.33‡ 0.56‡ 0.62‡ 0.83‡ 0.95‡
TILDE-C-NMT-2BT -0.13 -0.03 -0.01 - 0.08? 0.09? 0.12† 0.20‡ 0.24‡ 0.32‡ 0.55‡ 0.61‡ 0.82‡ 0.94‡

AALTO -0.21 -0.11 -0.09 -0.08 - 0.01 0.05 0.12† 0.16‡ 0.24‡ 0.47‡ 0.54‡ 0.75‡ 0.86‡
HY-NMT -0.22 -0.12 -0.10 -0.09 -0.01 - 0.03 0.11† 0.15‡ 0.23‡ 0.46‡ 0.52‡ 0.73‡ 0.85‡

UEDIN -0.25 -0.16 -0.13 -0.12 -0.05 -0.03 - 0.08? 0.11† 0.20‡ 0.43‡ 0.49‡ 0.70‡ 0.81‡
CUNI-KOCMI -0.33 -0.24 -0.21 -0.20 -0.12 -0.11 -0.08 - 0.04 0.12† 0.35‡ 0.41‡ 0.62‡ 0.74‡

TALP-UPC -0.37 -0.27 -0.25 -0.24 -0.16 -0.15 -0.11 -0.04 - 0.08? 0.31‡ 0.38‡ 0.59‡ 0.70‡
ONLINE-B -0.45 -0.36 -0.33 -0.32 -0.24 -0.23 -0.20 -0.12 -0.08 - 0.23‡ 0.29‡ 0.50‡ 0.62‡

NEUROTOLGE.EE -0.68 -0.58 -0.56 -0.55 -0.47 -0.46 -0.43 -0.35 -0.31 -0.23 - 0.06? 0.27‡ 0.39‡
ONLINE-A -0.74 -0.65 -0.62 -0.61 -0.54 -0.52 -0.49 -0.41 -0.38 -0.29 -0.06 - 0.21‡ 0.32‡
ONLINE-G -0.95 -0.86 -0.83 -0.82 -0.75 -0.73 -0.70 -0.62 -0.59 -0.50 -0.27 -0.21 - 0.11‡

PARFDA -1.07 -0.97 -0.95 -0.94 -0.86 -0.85 -0.81 -0.74 -0.70 -0.62 -0.39 -0.32 -0.11 -

score 0.55 0.45 0.43 0.42 0.34 0.33 0.29 0.22 0.18 0.10 -0.13 -0.20 -0.41 -0.52
rank 1 2–4 2–4 2–4 5–7 5–7 5–7 8–9 8–9 10 11 12 13 14

Table 17: Head to head comparison for English→Estonian systems.

N
IC

T

H
Y

-N
M

T

U
E

D
IN

C
U

N
I-

K
O

C
M

I

O
N

L
IN

E
-B

TA
L

P
-U

P
C

O
N

L
IN

E
-A

O
N

L
IN

E
-G

JU
C

B
N

M
T

NICT - 0.02 0.05 0.07† 0.07† 0.11‡ 0.11‡ 0.29‡ 0.56‡
HY-NMT -0.02 - 0.03 0.05? 0.05? 0.08† 0.08† 0.26‡ 0.53‡

UEDIN -0.05 -0.03 - 0.02 0.02 0.06† 0.06† 0.24‡ 0.51‡
CUNI-KOCMI -0.07 -0.05 -0.02 - 0.00 0.04 0.04 0.22‡ 0.49‡

ONLINE-B -0.07 -0.05 -0.02 0.00 - 0.03 0.03 0.21‡ 0.48‡
TALP-UPC -0.11 -0.08 -0.06 -0.04 -0.03 - 0.00 0.18‡ 0.45‡

ONLINE-A -0.11 -0.08 -0.06 -0.04 -0.03 0.00 - 0.18‡ 0.45‡
ONLINE-G -0.29 -0.26 -0.24 -0.22 -0.21 -0.18 -0.18 - 0.27‡

JUCBNMT -0.56 -0.53 -0.51 -0.49 -0.48 -0.45 -0.45 -0.27 -

score 0.15 0.13 0.10 0.08 0.08 0.05 0.04 -0.13 -0.40
rank 1–7 1–7 1–7 1–7 1–7 1–7 1–7 8 9

Table 18: Head to head comparison for Finnish→English systems.
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NICT - 0.05 0.20‡ 0.25‡ 0.26‡ 0.28‡ 0.34‡ 0.34‡ 0.73‡ 0.75‡ 0.86‡ 0.89‡
HY-NMT -0.05 - 0.14† 0.19‡ 0.21‡ 0.23‡ 0.28‡ 0.28‡ 0.68‡ 0.70‡ 0.80‡ 0.83‡

UEDIN -0.20 -0.14 - 0.05 0.07 0.09? 0.14† 0.14‡ 0.54‡ 0.56‡ 0.66‡ 0.69‡
AALTO -0.25 -0.19 -0.05 - 0.01 0.03 0.09? 0.09? 0.48‡ 0.50‡ 0.61‡ 0.64‡

HY-NMT-2STEP -0.26 -0.21 -0.07 -0.01 - 0.02 0.07 0.07? 0.47‡ 0.49‡ 0.59‡ 0.63‡
TALP-UPC -0.28 -0.23 -0.09 -0.03 -0.02 - 0.05 0.05 0.45‡ 0.47‡ 0.57‡ 0.61‡

CUNI-KOCMI -0.34 -0.28 -0.14 -0.09 -0.07 -0.05 - 0.00 0.40‡ 0.42‡ 0.52‡ 0.55‡
ONLINE-B -0.34 -0.28 -0.14 -0.09 -0.07 -0.05 0.00 - 0.39‡ 0.42‡ 0.52‡ 0.55‡
ONLINE-A -0.73 -0.68 -0.54 -0.48 -0.47 -0.45 -0.40 -0.39 - 0.02 0.12† 0.16‡
ONLINE-G -0.75 -0.70 -0.56 -0.50 -0.49 -0.47 -0.42 -0.42 -0.02 - 0.10† 0.14‡
HY-SMT -0.86 -0.80 -0.66 -0.61 -0.59 -0.57 -0.52 -0.52 -0.12 -0.10 - 0.03

HY-AH -0.89 -0.83 -0.69 -0.64 -0.63 -0.61 -0.55 -0.55 -0.16 -0.14 -0.03 -

score 0.52 0.47 0.32 0.27 0.26 0.24 0.18 0.18 -0.21 -0.23 -0.33 -0.37
rank 1–2 1–2 3–8 3–8 3–8 3–8 3–8 3–8 9–10 9–10 11–12 11–12

Table 19: Head to head comparison for English→Finnish systems.

A
L

IB
A

B
A

O
N

L
IN

E
-B

O
N

L
IN

E
-G

U
E

D
IN

O
N

L
IN

E
-A

A
F

R
L

-S
Y

S
C

O
M

B

JH
U

O
N

L
IN

E
-F

ALIBABA - 0.02 0.04 0.10‡ 0.18‡ 0.23‡ 0.24‡ 0.61‡
ONLINE-B -0.02 - 0.02 0.08? 0.16‡ 0.21‡ 0.22‡ 0.59‡
ONLINE-G -0.04 -0.02 - 0.06? 0.14‡ 0.18‡ 0.20‡ 0.57‡

UEDIN -0.10 -0.08 -0.06 - 0.08† 0.12‡ 0.14‡ 0.51‡
ONLINE-A -0.18 -0.16 -0.14 -0.08 - 0.05? 0.06? 0.43‡

AFRL-SYSCOMB -0.23 -0.21 -0.18 -0.12 -0.05 - 0.01 0.38‡
JHU -0.24 -0.22 -0.20 -0.14 -0.06 -0.01 - 0.37‡

ONLINE-F -0.61 -0.59 -0.57 -0.51 -0.43 -0.38 -0.37 -

score 0.21 0.19 0.17 0.11 0.03 -0.01 -0.03 -0.40
rank 1–3 1–3 1–3 4 5 6–7 6–7 8

Table 20: Head to head comparison for Russian→English systems.
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ALIBABA-ENS - 0.03 0.19‡ 0.21‡ 0.24‡ 0.29‡ 0.36‡ 0.43‡ 0.93‡
ONLINE-G -0.03 - 0.16‡ 0.18‡ 0.21‡ 0.26‡ 0.33‡ 0.40‡ 0.90‡
ONLINE-B -0.19 -0.16 - 0.01 0.04? 0.09‡ 0.16‡ 0.23‡ 0.74‡

UEDIN -0.21 -0.18 -0.01 - 0.03 0.08† 0.15‡ 0.22‡ 0.72‡
PROMT-HYB-MARIAN -0.24 -0.21 -0.04 -0.03 - 0.05? 0.12‡ 0.19‡ 0.69‡

PROMT-HYB-OPENNMT -0.29 -0.26 -0.09 -0.08 -0.05 - 0.07† 0.14‡ 0.65‡
ONLINE-A -0.36 -0.33 -0.16 -0.15 -0.12 -0.07 - 0.07† 0.58‡

PROMT-RULE-BASED -0.43 -0.40 -0.23 -0.22 -0.19 -0.14 -0.07 - 0.50‡
ONLINE-F -0.93 -0.90 -0.74 -0.72 -0.69 -0.65 -0.58 -0.50 -

score 0.35 0.32 0.16 0.14 0.12 0.07 -0.00 -0.07 -0.58
rank 1–2 1–2 3–5 3–5 3–5 6 7 8 9

Table 21: Head to head comparison for English→Russian systems.
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ONLINE-G - 0.02 0.06? 0.06† 0.11‡ 0.13‡
ONLINE-A -0.02 - 0.04 0.04 0.08? 0.10‡

ALIBABA-ENS -0.06 -0.04 - 0.01 0.05 0.07†
ONLINE-B -0.06 -0.04 -0.01 - 0.04 0.06?

UEDIN -0.11 -0.08 -0.05 -0.04 - 0.02
NICT -0.13 -0.10 -0.07 -0.06 -0.02 -

score 0.09 0.07 0.03 0.02 -0.02 -0.04
rank 1–6 1–6 1–6 1–6 1–6 1–6

Table 22: Head to head comparison for Turkish→English systems.
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ONLINE-B - 0.05 0.06 0.15? 0.17† 0.22‡ 0.34‡ 0.53‡
UEDIN -0.05 - 0.01 0.09? 0.11? 0.16† 0.28‡ 0.48‡

ALIBABA-ENS-A -0.06 -0.01 - 0.09 0.10 0.16† 0.28‡ 0.47‡
NICT -0.15 -0.09 -0.09 - 0.02 0.07 0.19‡ 0.38‡

ALIBABA-ENS-B -0.17 -0.11 -0.10 -0.02 - 0.05 0.17† 0.36‡
ONLINE-G -0.22 -0.16 -0.16 -0.07 -0.05 - 0.12? 0.31‡

RWTH -0.34 -0.28 -0.28 -0.19 -0.17 -0.12 - 0.19‡
ONLINE-A -0.53 -0.48 -0.47 -0.38 -0.36 -0.31 -0.19 -

score 0.28 0.22 0.22 0.13 0.11 0.06 -0.06 -0.25
rank 1–6 1–6 1–6 1–6 1–6 1–6 7 8

Table 23: Head to head comparison for English→Turkish systems.
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CUNI-TRANSFORMER - 0.15‡ 0.18‡ 0.54‡ 0.85‡ 1.02‡
UEDIN -0.15 - 0.04 0.39‡ 0.70‡ 0.88‡

NEWSTEST2018-REF -0.18 -0.04 - 0.36‡ 0.66‡ 0.84‡
ONLINE-B -0.54 -0.39 -0.36 - 0.31‡ 0.48‡
ONLINE-A -0.85 -0.70 -0.66 -0.31 - 0.18‡
ONLINE-G -1.02 -0.88 -0.84 -0.48 -0.18 -

score 0.67 0.52 0.48 0.13 -0.18 -0.35
rank 1 2–3 2–3 4 5 6

Table 24: Head to head comparison for Czech→English systems, based on source-based DA.
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Abstract
We present the results from the third shared
task on multimodal machine translation. In
this task a source sentence in English is supple-
mented by an image and participating systems
are required to generate a translation for such
a sentence into German, French or Czech. The
image can be used in addition to (or instead
of) the source sentence. This year the task was
extended with a third target language (Czech)
and a new test set. In addition, a variant of
this task was introduced with its own test set
where the source sentence is given in multiple
languages: English, French and German, and
participating systems are required to generate
a translation in Czech. Seven teams submitted
45 different systems to the two variants of the
task. Compared to last year, the performance
of the multimodal submissions improved, but
text-only systems remain competitive.

1 Introduction

The Shared Task on Multimodal Machine Transla-
tion tackles the problem of generating a description
of an image in a target language using the image
itself and its English description. This task can
be addressed as either a pure translation task from
the source English descriptions (ignoring the cor-
responding image), or as a multimodal translation
task where the translation process is guided by the
image in addition to the source description.

Initial results in this area showed the potential
for visual context to improve translation quality
(Elliott et al., 2015; Hitschler et al., 2016). This
was followed by a wide range of work in the first
two editions of this shared task at the WMT in 2016
and 2017 (Specia et al., 2016; Elliott et al., 2017).

This year we challenged participants to target the
task of multimodal translation, with two variants:

• Task 1: Multimodal translation takes an im-
age with a source language description that
is then translated into a target language. The
training data consists of source-target parallel
sentences and their corresponding images.

• Task 1b: Multisource multimodal transla-
tion takes an image with a description in three
source languages that is then translated into
a target language. The training data consists
of source-target parallel data and their corre-
sponding images, but where the source sen-
tences are presented in three different lan-
guages, all parallel.

Task 1 is identical to previous editions of the
shared task, however, it now includes an addi-
tional Czech target language. Therefore, partic-
ipants can submit translations to any of the fol-
lowing languages: German, French and Czech.
This extension means the Multi30K dataset (Elliott
et al., 2016) is now 5-way aligned, with images
described in English, which are translated into Ger-
man, French and Czech.1 Task 1b is similar to Task
1; the main difference is that multiple source lan-
guages can be used (simultaneously) and Czech is
the only target language.

We introduce two new evaluation sets that ex-
tend the existing Multi30K dataset: a set of 1071
English sentences and their corresponding images
and translations for Task 1, and 1,000 translations
for the 2017 test set into Czech for Task 1b.

Another new feature of this year’s shared task is
the introduction of a new evaluation metric: Lexi-
cal Translation Accuracy (LTA), which measures

1The current version of the dataset can be found here:
https://github.com/multi30k/dataset
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the accuracy of a system at translating correctly a
subset of ambiguous source language words.

Participants could submit both constrained
(shared task data only) and unconstrained (any data)
systems for both tasks, with a limit of two systems
per task variant and language pair per team.

2 Datasets

The Multi30K dataset (Elliott et al., 2016) is the
primary resource for the shared task. It contains
31K images originally described in English (Young
et al., 2014) with two types of multilingual data:
a collection of professionally translated German
sentences, and a collection of independently crowd-
sourced German descriptions.

Over the two last years, we have extended the
Multi30K dataset with 2,071 new images and
two additional languages for the translation task:
French and Czech. Table 1 presents an overview
of the new evaluation datasets. Figure 1 shows
an example of an image with an aligned English-
German-French-Czech description.

This year we also released a new version of the
evaluation datasets featuring a subset of sentences
that contain ambiguous source language words,
which may have different senses in the target lan-
guage. We expect that these ambiguous words
could benefit from additional visual context.

In addition to releasing the parallel text, we
also distributed two types of visual features ex-
tracted from a pre-trained ResNet-50 object recog-
nition model (He et al., 2016) for all of the im-
ages, namely the ‘res4 relu’ convolutional features
(which preserve the spatial location of a feature in
the original image) and averaged pooled features.

Multi30K Czech Translations

This year the Multi30K dataset was extended with
translations of the image descriptions into Czech.
The translations were produced by 15 workers (uni-
versity and high school students and teachers, all
with a good command of English) at the cost of
EUR 3,500. The translators used the same platform
that was used to collect the French translations for
the Multi30K dataset. The Czech translators had
access to the source segment in English and the
image only (no automatic translation into Czech
was presented). The translated segments were
automatically checked for mismatching punctua-
tion, spelling errors (using aspell), inadequately
short and long sentences, and non-standard charac-

En: A boy dives into a pool near a water slide.
De: Ein Junge taucht in der Nähe einer Wasserrutsche in ein
Schwimmbecken.
Fr: Un garçon plonge dans une piscine près d’un toboggan.
Cs: Chlapec skáče do bazénu poblı́ž skluzavky.

Figure 1: Example of an image with a source de-
scription in English, together with its German,
French and Czech translations.

ters. The segments containing errors were manually
checked and fixed if needed. In total, 5,255 trans-
lated segments (16%) were corrected. After the
manual correction, 1% of the segments were sam-
pled and manually annotated for translation quality.
This annotation task was performed by three anno-
tators (and every segment was annotated by two
different people to measure annotation agreement).
We found that 94% of the segments did not contain
any spelling errors, 96% of the segments fully pre-
served the meaning, and 75% of translations were
annotated as fluent Czech. The remaining 25%
contained some stylistic problems (usually inap-
propriate lexical choice and/or word order adopted
from the English source segment). However, the
annotation agreement for stylistic problems was
substantially lower compared to other categories
due to the subjectivity of deciding on the best style
for a translation.

Test 2018 dataset

As our new evaluation data for Task 1, we col-
lected German, French and Czech translations for
the test set used in the 2017 edition of the Multi-
lingual Image Description Generation task, which
only contained English descriptions. This test set
contains images from five of the six Flickr groups
used to create the original Flickr30K dataset2. We

2Strangers!, Wild Child, Dogs in Action, Action Photogra-
phy, and Outdoor Activities.
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Training set Development set Test set 2018 - Task 1 Test set 2018 - Task 1b

Instances 29,000 1,014 1071 1,000

Table 1: Overview of the Multi30K training, development and 2018 test datasets. The figures correspond
to tuples with an image and parallel sentences in four languages: English, German, French and Czech.

Group Task 1 Task 1b

Strangers! 154 150

Wild Child 83 83

Dogs in Action 92 78

Action Photography 259 238

Flickr Social Club 263 241

Everything Outdoor 214 206

Outdoor Activities 6 4

Table 2: Distribution of images in the Test 2018
dataset by Flickr group.

sampled additional images from two thematically
related groups (Everything Outdoor and Flickr So-
cial Club) because Outdoor Activities only returned
10 new CC-licensed images and Flickr-Social no
longer exists. The translations were collected us-
ing the same procedure as before for each of the
languages: professional translations for German
and internally crowdsourced translations for French
and Czech (see (Elliott et al., 2017)), as described
above. The new evaluation data for Task 1b con-
sists of Czech translations, which we collected fol-
lowing the procedure described above. Table 2
shows the distribution of images across the groups
and tasks. We initially downloaded 2,000 images
per Flickr group, which were then manually filtered
by three of the authors. The filtering was done to re-
move (near) duplicate images, clearly watermarked
images, and images with dubious content. This
process resulted in a total of 2,071 images, 1,000
were used for Task 1 and 1,071 for Task 1b.

Dataset for LTA

In this year’s task we also evaluate systems using
Lexical Translation Accuracy (LTA) (Lala and Spe-
cia, 2018). LTA measures how accurately a system
translates a subset of ambiguous words found in
the Multi30K corpus. To measure this accuracy,
we extract a subset of triplets form the Multi30K
dataset in the form (i, aw, clt) where i is the index

representing an instance in the test set, aw is an
ambiguous word in English found in that instance
i, and clt is the set of correct lexical translations of
aw in the target language that conform to the con-
text i. A word is said to be ambiguous in the source
language if it has multiple translations (as given in
the Multi30K corpus) with different meanings.

We prepared the evaluation dataset following
the procedure described in Lala and Specia (2018),
with some additional steps. First, the parallel text
in the Multi30K training and the validation sets are
decompounded with SECOS (Riedl and Biemann,
2016) (for German only) and lemmatised3. Sec-
ond, we perform automatic word alignment using
fast align (Dyer et al., 2013) to identify the English
words that are aligned to two or more different
words in the target language. This step results in
a dictionary of {key : val} pairs, where key is
a potentially ambiguous English word, and val is
the set of words in the target language that align
to key. This dictionary is then filtered by humans,
students of translation studies who are fluent in
both the source and target languages, to remove
incorrect/noisy alignments and unambiguous in-
stances, resulting in a cleaned dictionary contain-
ing {aw : lt} pairs, where aw is an ambiguous
English word, and lt is the set of lexical transla-
tions of aw in the corpus. For English-Czech, we
were unable to perform this ‘human filtering’ step,
and so we use the unfiltered, noisy dictionary. Ta-
ble 3 shows summary statistics about number of
ambiguous words and the total number of their
instances in the training and validation sets.

Given a dictionary, we identify instances i in the
test sets4 which contain an ambiguous word aw
from the dictionary, resulting in triplets of the form
(i, aw, lt). At this stage we again involve human

3For English, German and French, we use the tool from
http://staffwww.dcs.shef.ac.uk/people/
A.Aker/activityNLPProjects.html. For Czech,
we pre-processed the data using MorphoDiTa (Straková
et al., 2014) from http://ufal.mff.cuni.cz/
morphodita

4The test data and the submissions undergo the same pre-
processing steps as the training and the validation sets.
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Language Pair Ambiguous Words Instances

EN-DE 745 53,868

EN-FR 661 44,779

EN-CS 3217 187,495

Table 3: Statistics of the ambiguous words extracted
from the training and validation sets after human
filtering (dictionary filtering). For EN-CS, the num-
bers are larger because we could not perform the
dictionary filtering step.

annotators (students of translation studies) to select,
from the set of lexical translations lt, only those
translations, denoted as clt, which conform to the
source context i - both image and its English de-
scription. For example, in the test instance shown
in Figure 2, hat is an ambiguous word aw and
{kappe, mütze, hüten, kopf, kopfbedeckung, kopf-
bedeckungen, hut, helm, hüte, helmen, mützen} is
the set of its lexical translations lt. The human
annotator looked at both the image and its descrip-
tion and then selected the following subset {kappe,
mütze, mützen} as the correct lexical translations
clt that conform to the context of the test instance
in Figure 2. We also asked annotators to expand
the clt set with other synonyms outside the lt set
that satisfy the context if they can. The number of
ambiguous words and instances for each language
pair in the resulting dataset for the test instances is
given in Table 4. For English-Czech, while the first
human filtering step (dictionary filtering) was not
performed, the second human filtering step (test
set filtering) was done. We note that this cleaning
done by the Czech-English annotators was very se-
lective, most likely due to the noisier nature of the
initial annotations from the unfiltered dictionary.

Given a human filtered dictionary, the LTA eval-
uation is straight forward: for each MT system
submission, we check if any word in clt is found in
the translation of the submission’s ith instance.The
preprocessing steps may result in mismatches due
to sub-optimal handling of morphological variants,
but we do not expect this to be a rare event because
the dictionaries, gold standard text, and system sub-
missions are pre-processed using the same tools.

3 Participants

This year we attracted submissions from seven
groups. Table 5 presents an overview of the groups

En: a cute boy with his hat looking out of a window.
De: ein süß jung mit mütze blicken aus einem fenster.
aw: hat
lt: {kappe, mütze, hüten, kopf, kopfbedeckung, kopfbedeck-
ungen, hut, helm, hüte, helmen, mützen}
clt: {kappe, mütze, mützen}

Figure 2: A test instance with ambiguous word aw
and lexical translation options lt. Human annotator
corrects/selects those options clt which conform to
the source sentence En and corresponding image.

Language Pair Ambiguous Words Test instances

EN-DE 38 358

EN-FR 70 438

EN-CS 29 140

EN-CS(1B) 28 52

Table 4: Statistics of dataset used for the LTA eval-
uation after human filtering.

and their submission identifiers.

AFRL-OHIO-STATE (Task 1)
The AFRL-OHIO-STATE team builds on their

previous year Visual Machine Translation (VMT)
submission by combining it with text-only trans-
lation models. Two types of models were sub-
mitted: AFRL-OHIO-STATE 1 2IMPROVE U
is a system combination of the VMT system
and an instantiation of a Marian NMT model
(Junczys-Dowmunt et al., 2018), and AFRL-OHIO-
STATE 1 4COMBO U is a systems combination
of the VMT system along with instantiations of
Marian, OpenNMT, and Moses (Koehn et al.,
2007).

CUNI (Task 1)
The CUNI submissions use two architectures

based on the self-attentive Transformer model
(Vaswani et al., 2017). For German and Czech,
a language model is used to extract pseudo-in-
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ID Participating team

AFRL-OHIOSTATE Air Force Research Laboratory & Ohio State University (Gwinnup et al., 2018)

CUNI Univerzita Karlova v Praze (Helcl et al., 2018)

LIUMCVC Laboratoire d’Informatique de l’Université du Maine & Universitat Autonoma
de Barcelona Computer Vision Center (Caglayan et al., 2018)

MeMAD Aalto University, Helsinki University & EURECOM (Grönroos et al., 2018)

OSU-BAIDU Oregon State University & Baidu Research (Zheng et al., 2018)

SHEF University of Sheffield (Lala et al., 2018)

UMONS Université de Mons (Delbrouck and Dupont, 2018)

Table 5: Participants in the WMT18 multimodal machine translation shared task.

domain data from all available parallel corpora and
mix it with the original Multi30k data and the EU
Bookshop corpus. At inference time, both sub-
mitted models use only the text input. The first
model was trained using the parallel data only. The
second model is a reimplementation of the Imag-
ination model (Elliott and Kádár, 2017) adapted
to the Transformer architecture. During training,
the model uses the encoder states to predict the
image representation. This allows using additional
English-only captions from the MSCOCO dataset
(Lin et al., 2014).

LIUMCVC (Task 1)
LIUMCVC proposes a refined version of their

multimodal attention model (Caglayan et al., 2016),
where source-side information from the textual en-
coder (i.e. last hidden state of the bidirectional
gated recurrent units (GRU)) is now used to fil-
ter the convolutional feature maps before the ac-
tual decoder-side multimodal attention is computed.
The authors also experiment with the impact of L2

normalisation and input image size for convolu-
tional feature extraction process and found that
multimodal attention without L2 normalisation per-
forms significantly worse than baseline NMT.

MeMAD (Task 1)
The MeMAD team adapts the Transformer neu-

ral machine translation architecture to a multimodal
setting. They use global image features extracted
from Detectron (Girshick et al., 2018), a pre-trained
object detection and localisation neural network,
and two additional training corpora: MS-COCO
(Lin et al., 2014) (an English multimodal dataset,
which they extend with synthetic multilingual data)
and OpenSubtitles (Lison and Tiedemann, 2016)

(a multilingual, text-only dataset). Their experi-
ments show that the effect of the visual features
in the system is small; the largest differences in
quality amongst the systems tested is attributed to
the quality of the underlying text-only neural MT
system.

OSU-BAIDU (Tasks 1 and 1b)
For Task 1, the OREGONSTATE system ensem-

bles models including some neural machine trans-
lation models which only consider text information
and multimodal machine translation models which
also consider image information. Both types of
models use global attention mechanism to align
source to target words. For the multimodal model,
1024 dimensional vectors are extracted as image
information from a ResNet-101 convolutional neu-
ral network and these are used to initialize the de-
coder. The models are trained using scheduled
sampling (Bengio et al., 2015) and reinforcement
learning (Rennie et al., 2017) to further improve
performance.

For Task 1b, for each language in the multisource
inputs, single-source models are trained using the
same architecture as in Task 1. The resulting mod-
els are ensembled with different combinations. The
final submissions only ensemble models trained
from English-to-Czech pair, which outperforms
other combinations on the development set.

SHEF (Tasks 1 and 1b)
For Task 1, SHEF adopts a two-step pipeline

approach. In the first (base) step – submitted as
a baseline system – they use an ensemble of stan-
dard attentive text-only neural machine translation
models built using the NMTPY toolkit (Caglayan
et al., 2017) to produce 10-best high quality trans-
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lation candidates. In the second (re-ranking) step,
the 10-best candidates are re-ranked using word
sense disambiguation (WSD) approaches: (i) most
frequency sense (MFS), (ii) lexical translation (LT)
and, (iii) multimodal lexical translation (MLT).
Models (i) and (ii) are baselines, whilst MLT is
a novel multimodal cross-lingual WSD model. The
main idea is to have the cross-lingual WSD model
select the translation candidate which correctly dis-
ambiguates ambiguous words in the source sen-
tence and the intuition is that the image could
help in the disambiguation process. The re-ranking
cross-lingual WSD models are based on neural se-
quence learning models for WSD (Raganato et al.,
2017; Yuan et al., 2016) trained on the Multi-
modal Lexical Translation Dataset (Lala and Spe-
cia, 2018). More specifically, they train LSTMs as
taggers to disambiguate/translate every word in the
source sentence.

For Task 1b, the SHEF team explores three ap-
proaches. The first approach takes the concate-
nation of the 10-best translation candidates of
German-Czech, French-Czech and English-Czech
neural MT systems and then re-ranks them using
the same multimodal cross-lingual WSD model as
in Task 1. The second approach explores consen-
sus between the different 10-best lists. The best
hypothesis is selected according to the number of
times it appears in the different n-bests. The high-
est ranked hypothesis with the majority votes is se-
lected. The third approach uses data augmentation:
extra source (Czech) data is generated by building
systems that translate from German into English
and French into English. An English-Czech neural
machine translation system is then built and the
10-best list is generated. For re-ranking, classifiers
are trained to predict binary scores derived from
Meteor for each hypothesis in the 10-best list using
word embeddings and image features.

UMONS (Task 1)
The UMONS submission uses as baseline a con-

ditional GRU decoder. The architecture is en-
hanced with another GRU that receives as input
the global visual features provided by the task (i.e.
2048-dimensional ResNet pool5 features) as well
as the hidden state of the second GRU. Each GRU
disposes of 256 computational units. All non-linear
transformations in the decoder (apart from the tex-
tual attention module) use gated hyperbolic tangent
activations. Both visual and textual representation
are separately projected onto a vocabulary-sized

space. At every timestep, the decoder ends up with
two modality-dependent probability distributions
over the target tokens, eventually merged with an
element-wise addition.

Baseline (Tasks 1 and 1b) The baseline system
for both tasks is a text-only neural machine transla-
tion system built with the NMTPY (Caglayan et al.,
2017) following a standard attentive approach (Bah-
danau et al., 2015) with a conditional GRU decoder.
The baseline was trained using the Adam optimizer,
with a learning rate of 5e−5 and a batch size of 64.
The input embedding dimensionality was set to 128
and the remainder of the hyperparameters were
kept as default. Bite-pair encoding with 10,000
merge operations was used for all language pairs.
For Task 1b, only the English-Czech portion of the
training corpus is used.

4 Automatic Metric Results

The submissions were evaluated against either pro-
fessional or crowd-sourced references. All submis-
sions and references were pre-processed to low-
ercase, normalise punctuation, and tokenise the
sentences using the Moses scripts.5 The eval-
uation was performed using MultEval (Clark
et al., 2011) with the primary metric of Meteor
1.5 (Denkowski and Lavie, 2014). We also report
the results using BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) metrics. The winning
submissions are indicated by •. These are the top-
scoring submissions and those that are not signifi-
cantly different (based on Meteor scores) according
the approximate randomisation test (with p-value
≤ 0.05) provided by MultEval. Submissions
marked with * are not significantly different from
the Baseline according to the same test.

4.1 Task 1: English→ German
Table 6 shows the results on the Test 2018
dataset with a German target language. The first
observation is that the best-performing system,
MeMAD 1 FLICKR DE MeMAD-OpenNMT-
mmod U, is substantially better than other
systems, although it uses unconstrained data. The
MeMAD team did not submit a constrained or
monomodal submission, so we cannot conclude
whether this improvement comes from the use of
multimodal data or from the additional parallel
data. However, as mentioned in Section 3, the

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
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authors themselves state that the gains mainly
come from the additional parallel text data in
the monomodal system. The vast majority of
systems beat the strong text-only Baseline by a
considerable margin. For other teams submitting
monomodal and multimodal versions of their
systems (e.g. CUNI and LIUMCVC), there does
not seem to be a marked difference in automatic
metric scores.

We can also observe that the ambiguous word
evaluations (LTA) does not lead to the same sys-
tem ranking as the automatic metrics. While this
could stem mainly from the fact that the LTA eval-
uation is only performed on a small subset of the
test cases, we consider that these two automatic
evaluations are complementary. General transla-
tion quality is measured with the standard metrics
(BLEU, METEOR and TER), while the LTA evalu-
ations captures the ability of the system to model
complex words which, in many cases, could require
the use of the image input to disambiguate them.

4.2 Task 1: English→ French

Table 7 shows the results for the Test 2018 dataset
with French as target language. Once again,
the MeMAD 1 FLICKR FR MeMAD-OpenNMT-
mmod U system performs significantly better
than the other systems.6 For teams submitting
monomodal and multimodal versions of their sys-
tems (e.g. CUNI and LIUMCVC), there does not
seem to be a marked difference in automatic met-
ric scores. Another interesting observation is that
in this case the clearly superior performance of
the MeMAD 1 FLICKR FR MeMAD-OpenNMT-
mmod U system also shows in the LTA evaluation.

All submissions significantly outperformed the
English→French baseline system. For this lan-
guage pair, the evaluation metrics are in better
agreement about the ranking of the submissions,
however, the LTA metric is once again less corre-
lated.

4.3 Task 1: English→ Czech

The Czech language is a new addition to the
2018 evaluation campaign. Table 8 shows the
results for the Test 2018 dataset with Czech as
target language. A smaller number of teams have
submitted systems for this language pair. This is
a more complex language pair as demonstrated

6We note that their original submission had tokenisation
issues, which were fixed by the task organisers.

by the lower automatic scores obtained by the
systems. The best results are obtained by the
CUNI 1 FLICKR CS NeuralMonkeyImagination U
system, under the unconstrained condi-
tions. The constrained systems all per-
form similarly to each other, and all except
CUNI 1 FLICKR CS NeuralMonkeyTextual U
are significantly better than the baseline system.
Interestingly, for the OSU-BD submissions, LTA
seems to disagree significantly with the other
metrics. More analysis is necessary to understand
why this is the case.

4.4 Task 1b: Multisource English, German,
French→ Czech

Multisource multimodal translation is a new task
this year. This task invites participants to use mul-
tiple source language inputs, as well as the image,
in order to generate Czech translations. Only a
few systems have been submitted compared to the
other tasks. The results for the Test 2018 dataset
are presented in Table 9. We observe that all teams
outperformed the text-only baseline, even though
in some cases the difference is not significant. No
teams used unconstrained data in their submissions.

Again, the LTA results do not follow those of
the automatic metrics, particularly for the two top
submissions: LTA scores differ by a large mar-
gin, while all other metric scores are the same or
very similar. This could however result from the
very small number of samples available for LTA
evaluation for this task: only 52 test instances. Dif-
ferences in the translation of a very few number
of instances can therefore result in considerably
differences in LTA scores.

5 Human Judgment Results

In addition to the automatic metrics evaluation, we
conducted human evaluation to assess the transla-
tion quality of the submissions. This evaluation
was undertaken for the Task 1 German, French and
Czech outputs as well as for the Task 1b Czech
outputs for the Test 2018 dataset. This section de-
scribes how we collected the human assessments
and computed the results. We are grateful to all of
the assessors for their contributions.

5.1 Methodology

The system outputs indicated as the primary sub-
mission were manually evaluated by bilingual Di-
rect Assessment (DA) (Graham et al., 2015) using

310



EN→ DE BLEU ↑ Meteor ↑ TER ↓ LTA ↑
•MeMAD 1 FLICKR DE MeMAD-OpenNMT-mmod U (P) 38.5 56.6 44.5 47.49
CUNI 1 FLICKR DE NeuralMonkeyTextual U 32.5 52.3 50.8 46.37
CUNI 1 FLICKR DE NeuralMonkeyImagination U (P) 32.2 51.7 51.7 47.21
UMONS 1 FLICKR DE DeepGru C (P) 31.1 51.6 53.4 48.04
LIUMCVC 1 FLICKR DE NMTEnsemble C (P) 31.1 51.5 52.6 46.65
LIUMCVC 1 FLICKR DE MNMTEnsemble C (P) 31.4 51.4 52.1 45.81
OSU-BD 1 FLICKR DE RLNMT C (P) 32.3 50.9 49.9 45.25
OSU-BD 1 FLICKR DE RLMIX C 32.0 50.7 49.6 46.09
SHEF 1 DE LT C 30.4 50.7 53.0 48.04
SHEF 1 DE MLT C (P) 30.4 50.7 53.0 48.32
SHEF1 1 DE ENMT C 30.8 50.7 52.4 44.41
SHEF1 1 DE MFS C (P) 30.3 50.7 53.1 48.32
LIUMCVC 1 FLICKR DE MNMTSingle C 28.8 49.9 55.6 45.25
LIUMCVC 1 FLICKR DE NMTSingle C 29.5 49.9 54.3 47.77
Baseline 27.6 47.4 55.2 45.25
AFRL-OHIO-STATE 1 FLICKR DE 4COMBO U (P) 24.3 45.4 58.6 46.09
AFRL-OHIO-STATE 1 FLICKR DE 2IMPROVE U 10.0 25.4 79.0 25.42

Table 6: Official automatic results for the MMT18 Task 1 on the English→ German Test 2018 dataset
(ordered by Meteor). Grey background indicate use of resources that fall outside the constraints provided
for the shared task. (P) indicate a primary system designated for human evaluation.

EN→ FR BLEU ↑ Meteor ↑ TER ↓ LTA ↑
•MeMAD 1 FLICKR FR MeMAD-OpenNMT-mmod U (P) 44.1 64.3 36.9 73.08
CUNI 1 FLICKR FR NeuralMonkeyTextual U 40.6 61.0 40.7 68.44
CUNI 1 FLICKR FR NeuralMonkeyImagination U (P) 40.4 60.7 40.7 69.29
UMONS 1 FLICKR FR DeepGru C (P) 39.2 60.0 41.8 68.82
LIUMCVC 1 FLICKR FR MNMTEnsemble C (P) 39.5 59.9 41.7 68.53
LIUMCVC 1 FLICKR FR NMTEnsemble C (P) 39.1 59.8 41.9 68.44
SHEF 1 FR LT C 38.8 59.8 41.5 69.57
SHEF 1 FR MLT C (P) 38.9 59.8 41.5 69.86
SHEF1 1 FR ENMT C 38.9 59.8 41.2 67.87
SHEF1 1 FR MFS C (P) 38.8 59.7 41.6 67.58
OSU-BD 1 FLICKR FR RLNMT C (P) 39.0 59.5 41.2 68.91
OSU-BD 1 FLICKR FR RLMIX C 38.6 59.3 41.5 67.68
LIUMCVC 1 FLICKR FR MNMTSingle C 37.9 58.5 43.4 67.77
LIUMCVC 1 FLICKR FR NMTSingle C 37.6 58.4 43.2 67.11
Baseline 36.3 56.9 54.3 66.26

Table 7: Official automatic results for the MMT18 Task 1 on the English→ French Test 2018 dataset
(ordered by Meteor). Grey background indicate use of resources that fall outside the constraints provided
for the shared task. (P) indicate a primary system designated for human evaluation.
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EN→ CS BLEU ↑ Meteor ↑ TER ↓ LTA ↑
•CUNI 1 FLICKR CS NeuralMonkeyImagination U (P) 31.8 30.6 48.2 70.00
OSU-BD 1 FLICKR CS RLMIX C 30.1 29.7 51.2 54.29
OSU-BD 1 FLICKR CS RLNMT C (P) 30.2 29.5 50.7 60.71
SHEF1 1 CS ENMT C 29.0 29.4 51.1 71.43
SHEF1 1 CS MFS C (P) 27.8 29.2 52.4 73.57
SHEF 1 CS LT C 28.3 29.1 51.7 72.14
SHEF 1 CS MLT C (P) 28.2 29.1 51.7 71.43
Baseline 26.5 27.7 54.4 62.14
*CUNI 1 FLICKR CS NeuralMonkeyTextual U 26.8 27.1 55.2 52.14

Table 8: Official automatic results for the MMT18 Task 1 on the English→ Czech Test 2018 dataset
(ordered by Meteor). Grey background indicate use of resources that fall outside the constraints provided
for the shared task. (P) indicate a primary system designated for human evaluation. Submissions marked
with * are not significantly different from the Baseline.

EN,DE,FR→ CS BLEU ↑ Meteor ↑ TER ↓ LTA ↑
OSU-BD 1b CS RLMIX C 26.4 28.2 52.7 55.77
OSU-BD 1b CS RLNMT C (P) 26.4 28.0 52.1 61.54
SHEF 1b CS CON C 24.7 27.6 52.1 61.54
*SHEF 1b CS MLTC C (P) 24.5 27.5 52.5 61.54
SHEF1 1b CS ARNN C (P) 25.2 27.5 53.9 51.92
*SHEF1 1b CS ARF C 24.1 27.1 54.6 51.92
Baseline 23.6 26.8 54.1 53.85

Table 9: Official automatic results for the MMT18 Task 1b on the English,German,French→ Czech Test
2018 dataset (ordered by Meteor). Submissions marked with * are not significantly different from the
Baseline.

Figure 3: Example of the human direct assessment evaluation interface.
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the Appraise platform (Federmann, 2012). The
annotators (mostly researchers) were asked to eval-
uate the semantic relatedness between the source
sentence in English and the target sentence in Ger-
man, French or Czech. For the Multisource Task
(1b), only the English source is presented. For the
evaluation task, the image was shown along with
the source sentence and the candidate translation.
Evaluators were ask to rely on the image when
necessary to obtain a better understanding of the
source sentence (e.g. in cases where the text was
ambiguous). Note that the reference sentence is not
displayed during the evaluation to avoid influencing
the assessment. Instead, as a control experiment to
estimate the quality of the reference sentences (and
test the quality of the annotations), we included
the references as hypotheses for human evaluation.
Figure 3 shows an example of the direct assessment
interface used in the evaluation. The score of each
translation candidate ranges from 0 (the meaning
of the source is not preserved in the target language
sentence) to 100 (the meaning of the source is “per-
fectly” preserved). The overall score of a given
system (z) corresponds to the mean standardised
score of its translations.

5.2 Results

For Task 1 English-German translation, we col-
lected 3,422 DAs, resulting in a minimum of 300
and a maximum of 324 direct assessments per sys-
tem submission, respectively. We collected 2,938
DAs for the English-French translations. This re-
sults in a minimum of 280 and a maximum of
307 direct assessments per system submission, re-
spectively. We collected 8,096 DAs for the Task
1 English-Czech translation, representing a min-
imum of 1,330 and a maximum of 1,370 direct
assessments per system submission. For Task 1b
English,German,French→Czech translation, we
collected 6,827 direct assessments. The least eval-
uated system received 1,345 assessments, while
the most evaluated system received 1,386 direct
assessments.

Tables 10, 11, 12 and 13 show the results of the
human evaluation for the English to German, En-
glish to French and English to Czech Multimodal
Translation task (Test 2018 dataset) as well as the
Multisource Translation task. The systems are or-
dered by standardised mean DA scores and clus-
tered according to the Wilcoxon signed-rank test at
p-level p ≤ 0.05. Systems within a cluster are con-
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Figure 4: System performance on the
English→German Test 2018 dataset as mea-
sured by human evaluation against Meteor
scores.

sidered tied. The supplementary Wilcoxon signed-
rank scores can be found in Tables 14, 15 and 16
in Appendix A.

The comparison between automatic and human
evaluation are presented in Figures 4, 5, 6 and 7.
We can observe that METEOR scores are well cor-
related with the human evaluation.

6 Discussion

As mentioned in Section 5, we included the refer-
ence sentences in the DA evaluation as if they were
candidate translations generated by a system. The
first observation is that for all language pairs and
all tasks, the references (see gold * in Tables 10,
11, 12 and 13) are significantly better than all auto-
matic systems with average raw scores above 90%.
This does not only validates the references but also
the DA evaluation process.

For the first time in the MMT evaluation cam-
paign series, using additional (unconstrained) data
resulted in some significant improvement both
in terms of automatic score and human evalua-
tion. The biggest improvements come from the
unconstrained MeMAD system (for the English-
German and English-French), which achieves large
improvements in Meteor score compared to the
second best system. This is also the case in terms
of human evaluation. For English-German, for
example, the average raw DA score (87.2, see sec-
ond column of Table 10) is only 4.5% away from
the result of the reference evaluation (91.7). The
MeMAD team use a transformer NMT architec-
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English→German
# Ave % Ave z System

1 91.7 0.69 gold DE 1

2 87.2 0.479 MeMAD MeMAD-OpenNMT-mmod U

3 73.5 -0.046 SHEF 1 DE MLT C
73.8 -0.066 CUNI NeuralMonkeyImagination U
72.6 -0.078 SHEF1 1 DE MFS C
71.6 -0.08 LIUMCVC MNMTEnsemble C
72.1 -0.11 UMONS DeepGru C
72.5 -0.112 LIUMCVC NMTEnsemble C
71.1 -0.179 OSU-BD RLNMT C
68.6 -0.206 AFRL-OHIO-STATE 4COMBO U
67.4 -0.272 baseline DE

Table 10: Results of the human evaluation of the WMT18 English-German Multimodal Translation task
(Test 2018 dataset). Systems are ordered by standardized mean DA scores (z) and clustered according
to Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered tied, although
systems within a cluster may be statistically significantly different from each other (see Table 14). Systems
using unconstrained data are identified with a gray background.

English→French
# Ave % Ave z System

1 90.3 0.487 gold FR 1

2 86.8 0.349 MeMAD MeMAD-OpenNMT-mmod U

3 78.5 0.047 CUNI NeuralMonkeyImagination U
77.3 -0.005 UMONS DeepGru C
74.9 -0.05 LIUMCVC NMTEnsemble C
74.9 -0.075 SHEF1 1 FR MFS C
74.5 -0.088 SHEF 1 FR MLT C
73.0 -0.11 LIUMCVC MNMTEnsemble C
74.4 -0.12 OSU-BD RLNMT C

66.0 -0.376 baseline FR

Table 11: Results of the human evaluation of the WMT18 English-French Multimodal Translation task
(Test 2018 dataset). Systems are ordered by standardized mean DA score (z) and clustered according to
Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered tied, although
systems within a cluster may be statistically significantly different from each other (see Table 15). Systems
using unconstrained data are identified with a gray background.
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English→Czech
# Ave % Ave z System

1 93.2 0.866 gold CS 1

2 70.2 0.097 CUNI NeuralMonkeyImagination U.txt

62.4 -0.162 SHEF 1 CS MLT C
60.6 -0.225 SHEF1 1 CS MFS C
59.1 -0.248 OSU-BD RLNMT C

3 57.8 -0.337 baseline CS

Table 12: Results of the human evaluation of the WMT18 English-Czech Multimodal Translation task
(Test 2018 dataset). Systems are ordered by standardized mean DA score (z) and clustered according to
Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered tied, although
systems within a cluster may be statistically significantly different from each other (see Table 16). Systems
using unconstrained data are identified with a gray background.

English,French,German→Czech
# Ave % Ave z System

93.6 0.803 gold CS 1b

63.3 -0.149 SHEF 1b CS MLTC C
61.8 -0.178 SHEF1 1b CS ARNN C
62.1 -0.206 OSU-BD 1b CS RLNMT C
59.4 -0.284 baseline CS task1b

Table 13: Results of the human evaluation of the WMT18 English,French,German-Czech Multisource
Multimodal Translation task (Test 2018 dataset). Systems are ordered by standardized mean DA score (z)
and clustered according to Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are
considered tied, although systems within a cluster may be statistically significantly different from each
other (see Table 17).
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sured by human evaluation against Meteor
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Figure 6: System performance on the
English→Czech Test 2018 dataset as mea-
sured by human evaluation against Meteor
scores.
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Figure 7: System performance on the
English,German,French→Czech Test 2018
dataset as measured by human evaluation against
Meteor scores.

ture (as opposed to recurrent neural networks) com-
bined with global image feature that are different
from the ResNet features made available by the
task organisers. However, according to the authors
it seems that most of the improvements come from
the additional parallel data.

Many teams proposed a combination of several
systems. This is the case for AFRL-OHIO-STATE,
LIUMCVC, OSU-BAIDU and SHEF teams. LI-
UMCVC also submitted a non-ensembled version
of each system. Their conclusion is that ensem-
bling multiple systems benefit monomodal and mul-
timodal systems.

Lexical Translation Accuracy LTA was a new
evaluation for this campaign. Unlike other auto-
matic metrics, LTA only evaluates a specific aspect
of translation quality, namely lexical disambigua-
tion. One of the motivations for multimodality
in machine translation is that the visual features
could help to disambiguate ambiguous words (El-
liott et al., 2015; Hitschler et al., 2016). Our aims in
introducing the LTA metric was to directly evaluate
the disambiguation performance of participating
systems.

The LTA columns in Tables 6, 7, 8, and 9 show
some interesting trends. First, for teams submit-
ting text-only and multimodal variants of models,
the multimodal versions seem to perform better at
LTA compared to their text-only counterparts (e.g.
CUNI’s systems). This trend is not visible using
the Meteor, BLEU, or TER metrics. Second, the
SHEF systems that were built precisely to perform
cross-lingual LTA-style WSD perform well on this
metric but they are not always the best-performing
system on this metric.

Multisource multimodal translation Only two
teams participated in this task. The automatic re-
sults are presented in Table 9, the human evaluation
results are presented in Table 13 and the compar-
ison between automatic and human evaluation re-
sults are shown in Figure 6. Although many direct
assessments have been collected for this task, it
was not possible to separate the systems into differ-
ent clusters. We can see that there is still a large
margin between the performance of the systems
and the human gold reference, but this was also the
case for the English-Czech language pair in Task
1.
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7 Conclusions

We presented the results of the third shared task on
multimodal translation. The shared task attracted
submissions from seven groups, who submitted a
total of 45 systems across the two proposed tasks.
The Multimodal Translation task attracted the ma-
jority of the submissions, with fewer groups at-
tempting multisource multimodal translation.

The main findings of the shared task are:

(i) Additional data can greatly improve the re-
sults as demonstrated by the winning uncon-
strained systems.

(ii) Almost all systems achieved better results
compared to the baseline text-only translation
system. Various text and visual integration
schemes have been proposed, leading to only
slight changes in the automatic and human
evaluation results.

(iii) Automatic metrics and human evaluation pro-
vided similar results. However, it is difficult
to evaluate the impact of the multimodality. In
the future, submission of monomodal equiv-
alent of the systems will be encouraged in
order to better emphasize the effect of using
the visual inputs.

We are considering to change the data in favor
of a more ambiguous task where all modalities
should be used in order to generate the output. A
possibility would be to re-use the list of ambiguous
words extracted for LTA computation and select
the image/sentence pairs containing one or more of
those words.
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LIMSI, CNRS,

Uni. Paris Saclay, France

Cristian Grozea
Fraunhofer Institute
FOKUS, Germany

Amy Siu
Beuth University of

Applied Sciences, Germany

Madeleine Kittner
Humboldt-Universität
zu Berlin, Germany

Karin Verspoor
University of Melbourne,

Australia

Abstract

Machine translation enables the automatic
translation of textual documents between lan-
guages and can facilitate access to information
only available in a given language for non-
speakers of this language, e.g. research results
presented in scientific publications. In this pa-
per, we provide an overview of the Biomed-
ical Translation shared task in the Workshop
on Machine Translation (WMT) 2018, which
specifically examined the performance of ma-
chine translation systems for biomedical texts.
This year, we provided test sets of scientific
publications from two sources (EDP and Med-
line) and for six language pairs (English with
each of Chinese, French, German, Portuguese,
Romanian and Spanish). We describe the de-
velopment of the various test sets, the sub-
missions that we received and the evaluations
that we carried out. We obtained a total of 39
runs from six teams and some of this year’s
BLEU scores were somewhat higher that last
year’s, especially for teams that made use of
biomedical resources or state-of-the-art MT
algorithms (e.g. Transformer). Finally, our
manual evaluation scored automatic transla-
tions higher than the reference translations for
German and Spanish.

1 Introduction

Automatic translation of documents from one lan-
guage to another facilitates broader information
access for resources only available in a partic-
ular language. Even in the scientific literature,
in which most important articles are published
only in English, an increasing number of re-
searchers support citing articles published in other

languages for the sake of not missing important
research or to avoid carrying out duplicate exper-
iments (Lazarev and Nazarovets, 2018). Recent
discussions on this topic in the journal Nature have
appealed for translation of the best Chinese papers
(Tao et al., 2018) and the development of auto-
matic tools for the automatic translation of pub-
lications (Prieto, 2018).

Therefore, biomedicine is a domain for which
suitable parallel corpora, official evaluation test
sets and machine translation (MT) systems are in
high demand. There is active development of par-
allel corpora in this domain (see the recent survey
in (Névéol et al., 2018)). In this year alone, three
new corpora have been published in a single con-
ference: a compilation of full texts from the Sci-
elo database for English, Portuguese, and Spanish
(Soares et al., 2018), medical documents and glos-
saries for Spanish/English (Villegas et al., 2018)
and a biomedical corpus for Romanian (Mitrofan
and Tufis, 2018). However, in spite of the grow-
ing number of parallel corpora and the many open
source tools for MT (e.g., Moses (Koehn et al.,
2007), OpenNMT (Klein et al., 2017) and Mar-
ian (Junczys-Dowmunt et al., 2018)), there is still
no ready-to-use tool for automatic translation of
biomedical publications for any language pair.

With the aim of fostering advances in this field,
we organized the third edition of the Biomedical
Translation Task in the Conference for Machine
Translation (WMT).1 It builds on the two previous
editions (Bojar et al., 2016; Jimeno Yepes et al.,
2017) by offering test sets from Medline for six

1http://www.statmt.org/wmt18/
biomedical-translation-task.html
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language pairs and from EDP for one language
pair, as detailed below:

• Chinese-English (zh/en); Eng.-Chinese (en/zh)

• French-English (fr/en); Eng.-French (en/fr)

• German-English (de/en); Eng.-German (en/de)

• Portuguese-English (pt/en); Eng.-Port. (en/pt)

• English-Romanian (en/ro)

• Spanish-English (es/en); Eng.-Span. (en/es)

Most test sets were derived from scientific ab-
stracts from Medline which were available in
both languages. Except for Romanian, we ad-
dressed translation in both directions for all lan-
guage pairs. This was not possible for Romanian
due to the low number (less than 50) of parallel
abstracts which are available in Medline. For the
first time, we have an Asian language, specifically
Chinese.

In this paper, we describe details of the chal-
lenge. Section 2 presents the construction and
quality analysis of the test sets, followed by the
details on the six participating teams in Section 3.
Section 4 presents the results for both automatic
and manual evaluation that we carried out, as well
as some additional evaluations which are new this
year. Finally, we provide a comprehensive discus-
sion of the results and quality of the translations in
Section 5.

2 Test sets

Test sets were obtained from Medline and EDP.
In these sources, text for both languages is readily
available from the authors of the publications.

EDP. This year’s test set was derived from last
year’s processing of publications. We kept one ex-
tra test set for this year’s challenge. It can be noted
that the sentence segmentation offered for the EDP
corpus this year was performed manually. More
details can be found in the description of the chal-
lenge in 2017 (Jimeno Yepes et al., 2017).

MEDLINE. We constructed the various Med-
line test sets following a similar strategy carried
out for the Scielo corpus (Neves et al., 2016). We
started by downloading MEDLINE 2018 and re-
trieving those entries whose abstract was available
for more than one language, usually English was

one of the languages. Such abstracts are iden-
tified by the XML tag OtherAbstract and its at-
tribute Language. We only considered the abstract
of the publications since the titles were frequently
only available in one language. We randomly se-
lected a subset of the abstracts for the six language
pairs under consideration and for which we have
native speakers of the foreign languages.

The text of the abstracts were extracted from the
XML files and 120 abstracts were randomly se-
lected, excepted for Romanian whose total of par-
allel documents in Medline was less than 50. The
number 120 accounts for possible errors in the pre-
processing of the abstract in order to have a final
test set of 100 abstracts to be split into the two
translation directions. The documents were auto-
matically split using the Stanford CoreNLP tool
and the respective available models for each lan-
guages, i.e., Chinese, French, German and Span-
ish (Manning et al., 2014).2 Since for Portuguese
and Romanian no models are available in the Stan-
ford CoreNLP tools, we used models for other
similar Roman languages (Spanish for Portuguese
and French for Romanian). The sentences were
then automatically aligned using the GMA tool for
which we provided a list of stopwords for each
language.3 After a short analysis of the alignment
of the Chinese/English abstracts, and given the bad
alignments that we obtained, we carried out a new
automatic alignment using the Champollion tool
(Ma, 2006).4 The resulting aligned sentences were
then manually checked for assessing their quality.

2.1 Manual evaluation of the automatic
alignment

After compiling the Medline test sets, we manu-
ally checked the totality of the abstracts to assess
the quality of the automatic alignment (cf. results
shown in Table 2). We utilized a modified version
of the Quality Checking task of our installation of
the Appraise tool (Federmann, 2010, 2018) and
one native speaker of each non-English language
carried out the validation (cf. Figure 1). The only
exception were the Chinese abstracts which were
manually checked without the use of the Appraise
tool. For each language pair, we checked the total-
ity of the abstracts for both translation directions,
e.g., en/de and de/en, which was later randomly

2https://stanfordnlp.github.io/
CoreNLP/

3https://nlp.cs.nyu.edu/GMA/
4http://champollion.sourceforge.net/
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Test sets de/en fr/en pt/en es/en en/de en/fr en/pt en/es en/ro en/zh zh/en

EDP # documents 86 83
# sentences 879/880 823/821

Medline # documents 48 49 50 50 48 49 50 50 40 50 49
# sentences 342/337 318/328 283/286 286/300 352/378 279/281 332/318 299/263 301/293 311/307 279/311

Table 1: Overview of the test sets. We present the number of documents and sentences in each test set. The number
of sentences might be different for the two languages in a test set.

split into two test sets. The only exception was
the Romanian test set. Due to its small size, we
only built one test set for one translation direction
(en/ro).

The number of completely unaligned sentences
was rather uniform across the various language
pairs and usually less than 5%, with the excep-
tion of Spanish (more than 8%) and German (more
that 15%). All other partial alignments (Overlap,
Source>Target and Target>Source) had a contri-
bution of less than 10%. For three languages, at
least 80% of the sentences were correctly aligned,
while for Spanish and German only 70% and 65%
of the sentences were correctly aligned. The lower
quality of these two test sets could certainly affect
the calculation of the BLEU score and we will ad-
dress this problem later in Section 4.2.3.

During the manual validation, we detected
problems in the parallel abstracts. For instance,
four abstracts (PMIDs 24616752, 25767637,
26941877 and 24294348) in the German test set
had to be excluded because they were wrongly
tagged in Medline as being in German, while they
were written in Italian. The same occurred in
the French test sets, were two abstracts (PMIDs
23396711 and 24883131) were also in Italian.
This suggests that the use of automatic language
identification tools could be useful to validate the
language metadata retrieved from MEDLINE.

3 Participating teams and systems

We received submissions from six teams, as sum-
marized in Table 3. The teams came from research
and academic institutions of four countries (Brazil,
Germany, Spain and USA) and from three conti-
nents. An overview of the teams and their systems
is provided below.

FOKUS (Fraunhofer Institute FOKUS, Ger-
many). The FOKUS team participated with
a system based on neural machine translation
(NMT) based on the implementation of the Trans-
former architecture (Kaiser et al., 2017; Vaswani
et al., 2017) for MT (Grozea, 2018). The NMT

system made use of biomedical and news corpora
for either training or validation (tuning). In addi-
tion to this, and in order to automatically select the
highest fidelity translation, they developed heuris-
tics based on a dictionary and on stemming. Fur-
ther, they performed diacritics normalization in or-
der to account for recent ortographic changes in
the Romanian language.

Hunter MT (Hunter College, USA). The
Hunter team (Khan et al., 2018) used different
transfer learning methods and trained different in-
domain biomedical data sets one after another.
Their system was set up using parameters of pre-
vious training as the initialization of the following
training. A News based model was used as pre-
training.

LMU (Ludwig Maximilian University of Mu-
nich, Germany). The LMU team implemen-
tated various neural network models and trained
and tuned the models on parallel biomedical
data (Huck et al., 2018). They experimented
with implementations of the Transformer architec-
ture (Sockeye implementation) and the encoder-
decoder models (Nematus toolkit). The authors
highlight that the word segmentation used on the
German language for both translation directions
were responsible for the good performance of the
system in the human evaluation.

TFG TALP UPC (Technical University of
Catalunya, Spain). For their system that pro-
vides translations into English, the TGF TALP
UPC team participated with a Transformer archi-
tecture (Kaiser et al., 2017; Vaswani et al., 2017)
using both single-language and multi-source sys-
tems (Tubay and Costa-Jussà, 2018). The systems
were trained on the Scielo and Medline titles made
available by the shared task in the last years. The
multi-source systems utilized a concatenation of
training data from es/en, fr/en and pt/en.

UFRGS (Universidade Federal do Rio Grande
do Sul, Brazil). The UFRGS team participated
with two runs based either on Moses (Koehn et al.,
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Figure 1: Screen-shot of Appraise during manual validation of the dataset for Portuguese.

Test sets No alignment OK Overlap Source > Target Target > Source Total
en/de, de/en 104 (15.38%) 437 (64.64%) 23 (3.40%) 60 (8.88%) 52 (7.69%) 676
en/es, es/en 46 (8.30%) 388 (70.04%) 38 (6.86%) 44 (7.94%) 38 (6.86%) 554
en/fr, fr/en 20 (3.36%) 528 (88.59%) 6 (1.01%) 20 (3.36%) 22 (3.69%) 596
en/pt, pt/en 11 (1.87%) 490 (83.33%) 9 (1.53%) 41 (6.97%) 37 (6.29%) 588

en/ro 7 (2.39%) 260 (88.74%) 3 (1.02%) 12 (4.10%) 11 (3.75%) 293
en/zh, zh/en 19 (3.26%) 528 (90.72%) 4 (0.69%) 18 (3.09%) 13 (2.23%) 582

Table 2: Manual validation of the automatic alignment sentences for the Medline test sets. Values are shown in
absolute and percentage numbers. The test include the abstracts for both languages directions, with the exception
of the Romanian language. The total column represents the totality of the aligned sentences

Team ID Institution
FOKUS Fraunhofer Institute FOKUS (Germany)

Hunter MT Hunter College (USA)
LMU Ludwig Maximilian University of Munich (Germany)

TFG TALP UPC Technical University of Catalunya (Spain)
UFRGS Universidade Federal do Rio Grande do Sul (Brazil)

UHH-DS University of Hamburg (Germany)

Table 3: List of the participating teams.
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2007) or OpenNMT (Klein et al., 2017) systems
(Soares and Becker, 2018). Training data was pre-
pared by concatenating several in-domain and out-
of-domain resources. The in-domain corpora in-
cluded scientific articles (full texts) from Scielo,
the UFAL medical corpus, the EMEA corpus and
Brazilian theses and dissertations. Due to possi-
ble overlap with the test sets from Medline, the
team applied some procedures to automatically
exclude some publications from the Scielo train-
ing data. Terminological resources such as the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004) were used as well.

UHH-DS (University of Hamburg, Germany).
The UHH-DS team utilized Moses (Koehn et al.,
2007) trained on a variety of in-domain and gen-
eral domain corpora (Duma and Menzel, 2018).
The main feature of their system was the develop-
ment of an unsupervised method to automatically
under-sample sentences from the general domain
collection that were better suited for the biomed-
ical domain. Their under-sampling algorithm can
be applied either on the source or target side of the
corpora, as well as on both sides.

4 Evaluation

In this section we describe the various submissions
that we obtained and present the results that these
achieved based on both automatic and manual val-
uation.

4.1 Submissions

In total, we received 39 submissions from the
six teams, as summarized in Table 4. Unfortu-
nately, we received no submissions for Chinese
(neither zh/en nor en/zh) and no submissions for
the French EDP test set (fr/en).

FOKUS. The FOKUS team submitted two runs
in which one (run1) was trained on a biomedical
corpus and validated on news corpora while the
second one (run2, primary run) is an ensemble of
various NMT systems and uses the heuristics they
defined for selecting the best translation.

Hunter. The Hunter’s team submitted two runs
for en/fr for each of the Medline and EDP test
sets. In these runs, they considered NMT based
ensembles and trained on various in-domain and
out-of-the-domain corpora. However, differences
between the runs are unclear.

LMU. The three en/de submissions from the
LMU team were the following: a right-to-left re-
ranked Transformer (run1, primary run), a Trans-
former ensemble without re-ranking (run2) and
the encoder-decoder built with Nematus (run3).
The only submission for de/en was a Transformer
without ensemble.

TFG TALP UPC. Each two submissions for
language pairs es/en, fr/en and pt/en utilized ei-
ther multi-source (run1, primary run) or the single-
source (run2) training.

UFRGS. The two submissions from the UFRGS
teams seem to have differed only on the MT tool
that they used, i.e., either OpenNMT (run1, pri-
mary run) or Moses (run2).

UHH-DS. The three submissions for each of the
language pairs (en/es, en/pt, en/ro, es/en and pt/en)
differed on whether the under-sampling algorithm
was applied only on the English side (run1), on
the non-English side (run2) or on both sides (run3,
primary run).

4.2 Automatic evaluation

Here we provide the results for the automatic eval-
uation and rank the systems regarding the resulting
scores. We computed BLEU scores at the sentence
level using the script mteval-v14.pl from the
Moses distribution.5 For all test sets and lan-
guage pairs, we compare the submissions (auto-
matic translations) to the respective reference one.

4.2.1 Automatic evaluation: EDP test sets
The BLEU scores for the EDP test set are pre-
sented in Table 5. Given that we received only two
submissions from a single team, we could not per-
form comparison between teams. We ranked the
two submissions as follows:

• en/fr: Hunter (run 1) < Hunter (run 2).

Run2 obtained a slightly higher score than run1,
however, reasons for this improvement are un-
known.

4.2.2 Automatic evaluation: Medline test sets
This year, we calculated BLEU scores based on
the totality of the sentences (including the ones
with incorrect alignments) as well as based only

5http://www.statmt.org/moses/?n=Moses.
SupportTools

328



Teams de/en en/de en/es en/fr en/pt en/ro es/en fr/en pt/en Total
FOKUS M2 2
Hunter E2M2 4
LMU M M3 4

TFG TALP UPC M2 M2 M2 6
UFRGS M2 M2 M2 M2 8

UHH-DS M3 M3 M3 M3 M3 15
Total 1 3 5 4 5 5 7 2 7 39

Table 4: Overview of submissions for each language pair and test set: [M]edline and [E]DP. The number next to
the letter indicates the number of runs that the team submitted for the corresponding test set (if larger than one).

Team Runs en/fr

Hunter run1 22.20
run2 23.24*

Table 5: BLEU scores for the EDP en/fr dataset. * in-
dicates the primary run as informed by the participants.

on the sentences which were perfectly aligned (cf.
Section 2).

BLEU scores for the Medline test set are pre-
sented in Table 6. For some language pairs, i.e.,
de/en, en/de, en/fr and fr/en, we could not compare
results between various teams since we received
submissions only from one team. Moreover, we
only received one submission from one team for
de/en. Therefore, no further comparison was pos-
sible for this language pair. We ranked the var-
ious teams and submissions, for those languages
for which we received more than one submission,
as follows:

• en/de: LMU (run3) < LMU (runs 1,2);

• en/es: UHH-DS (runs 1,2,3) < UFRGS (runs
1,2);

• en/fr: Hunter (runs 1,2);

• en/pt: UHH-DS (runs 1,2,3) < UFRGS (runs
1,2);

• en/ro: UHH-DS (runs 1,2,3) < FOKUS (run
1) < FOKUS (run 2);

• es/en: UHH-DS (run 2) < UHH-DS (runs
1,3) < TGF TALP UPC (runs 1,2) < UFRGS
(runs 1,2);

• fr/en: TGF TALP UPC (run 2) < TGF TALP
UPC (run 1);

• pt/en: TGF TALP UPC (run 2) < TGF TALP
UPC (run 1) < UHH-DS (runs 1,2,3) <
UFRGS (runs 1,2).

In the following we provide a short summary of
the results with regard to the method or resources
that have been used.

de/en. The run based on the Transformer archi-
tecture from the LMU team obtained a reasonable
BLEU score. However, we could not compare this
to any other submission.

en/de. There was little difference in the BLEU
score between the two first submissions, both
based on the Transformer architecture, but both
did seem to be superior to the third run based on
the encoder-decoder model.

en/es. The best results for en/es were obtained
by the UFRGS team when using the Moses sys-
tem (run2) instead of neural MT (run1), as ex-
pected by the team. However, the difference be-
tween both submissions is not significant. We ob-
served no significant difference between the three
submissions from the UHH-DS team. However,
all of them yield much lower BLEU scores than
the submissions by the UFRGS team.

en/fr. The submissions from the Hunter team
obtained very similar scores for the Medline test
sets. Details on each run is unclear but these differ-
ences seem to have brought significant improve-
ment on the scores only on the EDP test set (cf.
Table 5).

en/pt. Both submissions from the UFRGS team
obtained the highest BLEU scores, which again
and similar to the results obtained for en/es, did
not confirm the superiority of neural MT. The
three runs from the UHH-DS team were closer
to the ones from the UFRGS team (in compar-
ison to the ones for en/es), but still rather infe-
rior. This time, run1 (under-sampling based on the
English side) did perform a little better than the
other two runs, specially regarding run2 (under-
sampling based on the non-English side).
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Teams Runs de/en en/de en/es en/fr en/pt en/ro es/en fr/en pt/en

FOKUS run1 16.97
run2 18.10*

Hunter MT run1 23.41
run2 23.24*

LMU
run1 23.93* 18.81*
run2 18.75
run3 17.16

TFG TALP UPC run1 40.49* 25.78* 39.49*
run2 39.06 19.42 38.54

UFRGS run1 39.62* 39.43* 43.31* 42.58*
run2 39.77 39.43 43.41 42.58

UHH-DS
run1 31.32 34.92 14.60 36.16 41.84
run2 31.05 34.19 14.39 35.17 41.80
run3 31.33* 34.49* 14.07* 36.05* 41.79*

Table 6: Results for the Medline dataset. * indicates the primary run as informed by the participants.

en/ro. The run2 of the FOKUS team, which con-
sisted on an ensemble of various NMT systems
and used heuristics for selecting the best trans-
lation, obtained the highest BLEU score. The
two submissions from UHH-DS reached BLEU
scores which were slightly below results from the
FOKUS team. We observed no significant differ-
ence between the three runs. However, similar to
en/pt, under-sampling based on the English side
(run1) seems to perform slightly better than under-
sampling based on both sides (run3).

es/en. Once again the statistical MT system
(Moses) from the UFRGS team obtained a slightly
higher score than their neural MT system (Open-
NMT). Indeed, the BLEU scores obtained by
run2 of the team was the highest one among all
submissions to the shared task for all language
pairs. The following two best scores belonged
to the Transformer-based MT systems from the
TGF TALP UPC team. Even though a more re-
cent and currently state-of-the-art method (Trans-
former) was used by team TGF TALP UPC, the
better results obtained by UFRGS were probably
due to the larger training collection that they used.
The model trained on various sources obtained
a slightly better score. The three runs from the
UHH-DS team were rather inferior than the ones
from the two other teams. A significant difference
was only observed for run2 (under-sampling based
on the non-English side) which achieved lower
BLEU scores for this language pair.

fr/en. The only submissions for fr/en belonged
to the Transformer-based MT systems from the
TGF TALP UPC team. This time, the improve-
ment of the multi-source model over the single
model was very significant. However, the highest

score was rather low in comparison to the other
submissions of the team.

pt/en. There was no difference in the two sub-
missions from the UFRGS team, both obtained
the highest BLEU scores. The three runs from
the UHH-DS team obtained the second best results
but we observed no significant difference between
the three of them. Finally, the two lowest scores
were obtained by the Transformer-based MT sys-
tems from the TGF TALP UPC team. Similar to
results for es/en and fr/en, the system trained on
various sources obtained a little improvement over
the single models. Also similar to the es/en results,
the higher performance from UFRGS was proba-
bly due to the use of more resources for training
the MT systems.

4.2.3 Evaluation for sentences with good
alignment

This year, we also calculated additional BLEU
scores when considering only the sentences whose
alignments we manually classified as being cor-
rect. Correctly aligned means that sentences in
both languages contained exactly the same in-
formation and neither of the sentences contained
more information than the other (cf. Section 2).

Results for this subset of the test set are pre-
sented in Table 7. For most teams, improvements
were significant, ranging from two to four BLEU
points, but was up to one point for en2ro. The
overall order of the results mostly remained the
same.

4.2.4 Evaluation for Romanian after
diacritics normalization

In the particular case of the Romanian language,
there were fairly recent changes in the ortho-
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Teams Runs de/en en/de en/es en/fr en/pt en/ro es/en fr/en pt/en

FOKUS run1 17.84
run2 19.11*

Hunter run1 24.66
run2 24.76*

LMU
run1 28.84* 24.30*
run2 23.88
run3 21.84

TFG TALP UPC run1 42.91* 27.10* 42.55*
run2 41.26 20.20 41.56

UFRGS run1 44.50* 43.14* 46.92* 46.01*
run2 44.50 43.14 46.92 46.01

UHH-DS run1 34.77 37.24 15.85 38.45 44.28
run2 34.70 36.76 15.62 37.17 44.32
run3 35.08* 36.91* 15.28* 38.18* 44.27*

Table 7: Results for the Medline dataset using OK aligned sentences. * indicates the primary run as informed by
the participants.

graphic recommendation with respect to diacritics
notation6: comma-below s, and S, should be used
instead of cedilla-below ş and Ş; in the same way,
the comma-below t, and T, should be used instead
of the cedilla-below ţ and Ţ, according to a 2003
communicate from the “Iorgu Iordan” Institute of
Linguistics of the Romanian Academy.

While the two comma-below and cedilla-below
variants of those letters are hardly distinguishable
to a human reader, they have different unicode
codes and thus replacing one with another in a
word makes it a completely different word, for
an automated method. Having the “wrong” word
affects all n-grams containing that word for the
BLEU scoring.

In order to achieve more quality in the transla-
tion assessment, we normalized all diacritics both
in gold standard and in the submissions for Ro-
manian. Results for the Medline en/ro test set are
shown in Table 8, based on all sentences (en/ro)
and only based on correctly aligned sentences
(en/ro-OK). To this end, we wrote and used a sim-
ple sed-based script which brings the Romanian
diacritics to the latest standard7.

4.3 Manual evaluation

We performed manual evaluation of the primary
runs (as identified by the participants) for each
team and each language pair. The primary runs
are compared to the reference translation and to
each other, if more than one submission (from dis-
tinct teams) is available for the language pair. We

6For reference, the evolving standards for Romanian
are discussed here http://kitblog.com/2008/10/
romanian_diacritic_marks.html.

7The script is freely available at http://www.
brainsignals.de/fixrodia.sh

Teams Runs en/ro en/ro-OK

FOKUS run1 22.17 22.98
run2 23.42* 24.22*

UHH-DS run1 15.40 15.95
run2 15.09 15.69
run3 14.77 15.44

Table 8: Results for the Medline en2ro test set after
normalization of diacritics. * indicates the primary run
as informed by the participants.

computed pairwise combinations of translations
either between two automated systems, or one au-
tomated system and the reference translation. The
human validators were native speakers of the lan-
guages and were either members of the participat-
ing teams or colleagues from the research commu-
nity. These are primary runs from each team:

• FOKUS: Medline en/ro run2;

• Hunter: Medline en/fr run2, EDP en/fr run2;

• LMU: Medline de/en run1, Medline en/de
run1;

• TGF TALP UPC: Medline es/en run1, Med-
line fr/en run1, Medline pt/en run1;

• UFRGS: Medline en/es run1, Medline en/pt
run1, Medline es/en run1, Medline pt/en
run1;

• UHH-DS: Medline en/es run3, Medline en/pt
run3, Medline en/ro run3, Medline es/en
run3, Medline pt/en run3.

The validation task was carried out using the
3-way ranking task in our installation of the Ap-
praise tool (Federmann, 2010).8 For each pairwise

8https://github.com/cfedermann/
Appraise
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comparison, we checked a total of 100 randomly-
chosen sentence pairs. The validation consisted of
reading the two sentences (A and B), i.e., transla-
tions from two systems or from the reference, and
choosing one of the options below:

• A<B: when the quality of translation B was
higher than A.

• A=B: when both translations had similar
quality.

• A>B: when the quality of translation A was
higher than B.

• Flag error: when the translation did not seem
to be derived from the same input sentence.
This is usually related to errors in corpus
alignment.

We present the results for the manual evaluation
of the Medline test sets in Table 9. Based on the
number of times that a translation was validated as
being better than another, we ranked the systems
for each language as listed below:

• de/en: LMU = reference

• en/de: reference < LMU

• en/es: reference, UHH-DS < UFRGS

• en/fr: HunterNMT < reference

• en/pt: UHH-DS < UFRGS < reference;

• en/ro: UHH-DS < FOKUS < reference

• es/en: UHH-DS < UFRGS < TGF TALP
UPC < reference

• fr/en: TGF TALP UPC < reference

• pt/en: UHH-DS < UFRGS < TGF TALP
UPC < reference

Even though the LMU runs obtained one of
the lowest BLEU scores (all of them less than 20
points), the primary run did score equally well or
even better than the reference translation in the
manual evaluation. The reason are misaligned sen-
tences in the German reference. Automatic Ger-
man translations on the other hand are most often
correct in translation and alignment of content. In-
deed, the quality of the German dataset was one of
the lowest (cf. Section 2.1).

We present the results for the manual evaluation
of the EDP test sets in Table 10. Based on the
number of times that the submission was validated
as being better than the reference translation, we
ranked the two translations as follow:

• en/fr: Hunter < reference.

5 Discussion

In this section we present insight from the auto-
matic and manual validations as well as on the
quality of the translations.

5.1 Differences between manual and
automatic evaluations

Similar to previous years, we did not notice any
difference while ranking the teams for most lan-
guage pairs regarding the automatic and manual
evaluation of the translations. This year, the only
significant difference we noticed was for the En-
glish translations, more specifically for es/en and
pt/en pairs.

For es/en, the ranking order changed between
the teams UFRGS and TGF TALP UPC. While
the runs from the UFRGS teams achieved a higher
BLEU score (43.31 vs. 40.49), our evaluators
found the translations from the TGF TALP UPC
team to be considerable better (79 vs. 7).

As for pt/en, the ranking of the teams changed
from TGF TAP UPC < UHH-DS < UFRGS (au-
tomatic evaluation: 42.55 < 44.27 < 46.01) to
UHH-DS < UFRGS < TGF TAP UPC (manual
evaluation: 55 vs. 21 to UFRGS, 58 vs. 24 to
UHH-DS). While no difference in ranking was ob-
served between teams UHH-DS and UFRGS, in
comparison to the automatic evaluation, team TGF
TAP UPC moved from being the last ranked in the
automatic evaluation to the best ranked one on the
manual evaluation.

We can only hypothesize that the better BLEU
scores that the UFRGS team obtained were prob-
ably due to better translation of particular con-
cepts or due to using the same terms as in the
reference translations. However, the TGF TAP
UPC team could obtain higher quality of the man-
ual translations using their Transformer architec-
ture. The better performance of the TGF TAP UPC
team could also have been due to the test set be-
ing included in the their training corpus, i.e. over-
laps between Medline and the Scielo databases.
While both teams trained on the Scielo corpus,
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Languages Runs (A vs. B) Total A>B A=B A<B
de/en LMU vs. reference 75 29 14 32
en/de LMU vs. reference 76 29 32 15

en/es
UFRGS vs. reference 86 37 23 26
UFRGS vs. UHH-DS 88 29 37 22
reference vs. UHH-DS 92 30 33 29

en/fr Hunter vs. reference 92 14 13 65

en/pt
UFRGS vs. reference 86 6 43 42
UFRGS vs. UHH-DS 100 32 53 15
reference vs. UHH-DS 81 46 28 7

en/ro
FOKUS vs. reference 88/81 11/14 19/14 58/53
FOKUS vs. UHH-DS 100/97 57/55 31/27 12/15
reference vs. UHH-DS 88/85 80/78 6/6 2/1

es/en

TGF TALP UPC vs. reference 72 26 12 34
TGF TALP UPC vs. UFRGS 100 51 38 11

TGF TALP UPC vs. UHH-DS 98 79 12 7
reference vs. UFRGS 77 50 15 12

reference vs. UHH-DS 77 54 10 13
UFRGS vs. UHH-DS 100 45 24 31

fr/en TGF TALP UPC vs. reference 85 24 19 42

pt/en

TGF TALP UPC vs. reference 89 25 26 38
TGF TALP UPC vs. UFRGS 100 55 24 21

TGF TALP UPC vs. UHH-DS 100 58 24 18
reference vs. UFRGS 87 42 22 23

reference vs. UHH-DS 87 52 28 7
UFRGS vs. UHH-DS 100 48 27 25

Table 9: Results for the manual validation for the Medline test sets. Values are absolute numbers (not percentages).
They might not sum up to 100 due to the skipped sentences. Two evaluators (both participants) carried out the
validation of the Romanian dataset and results from both of them are shown (separated by a slash).

Languages Runs (A vs. B) Total A>B A=B A<B
en/fr Hunter vs. reference 91 11 26 54

Table 10: Results for the manual validation for the EDP test sets. Values are absolute numbers (not percentages).
They might not sum up to 100 due to the skipped sentences.
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the UFRGS team reported that they tried to re-
move potential overlaps between Medline and Sci-
elo (Soares and Becker, 2018). Overlaps of Med-
line and Scielo do not explain the lower BLEU
scores obtained by the TGF TAP UPC team.

5.2 Differences across languages

Similar to previous years, comparison of results
across languages did not provide any unexpected
insight. The languages pairs which obtained
higher BLEU scores (above 30 points), i.e. en/es,
en/pt, es/en and pt/en, were also the ones for which
more training data specific for the biomedical do-
main is available. Indeed, teams that participated
with the same system for different language pairs
obtained lower scores for those languages with
fewer resources. This is the case of the scores of
the TGF TAP UPC team for fr/en (up to 27 points)
as opposed to the ones obtained for es/en and pt/en
(more than 40 points).

We hope that recently released corpora, e.g. the
BioRo corpus for Romanian (Mitrofan and Tu-
fis, 2018), can boost performance of MT systems
for these languages. However, more parallel cor-
pora are certainly necessary not only for those lan-
guages that scored worst in this challenge, but also
for the many other languages that we did not eval-
uate here. Unfortunately, open-access databases
such as Scielo are not available for most lan-
guages. Nevertheless, the number of parallel ab-
stracts in Medline are increasing and corpora de-
rived from these are starting to being published,
e.g. MeSpEn (Villegas et al., 2018).

5.3 Evolution of the performance in the last
years

Compared to previous years, we found an im-
proved BLEU score and improved manual evalua-
tion for languages already considered in previous
years, i.e. Portuguese, Spanish and French. This
year we have considered Medline abstracts instead
of Scielo ones.

However, the results are difficult to be directly
compared to previous years given that test sets
were from different sources for many of the lan-
guage pairs. For the EDP test set, which can
be considered very similar to last year’s one, the
Hunter team scored much better than their last par-
ticipation both in terms of BLEU scores (17.50 vs.
23.24 for en/fr) and in the manual validation (0 to
93 vs. 11 to 54 in the manual validation).

The Medline test sets for es/en, pt/en, fr/en,
en/es, en/pt and en/fr can be considered rather sim-
ilar to the Scielo ones released for these language
pairs in the two previous challenges (Bojar et al.,
2016; Jimeno Yepes et al., 2017). From values
below the 20 points in 2016, results from en/pt
jumped to almost 40 in 2017 and over the latter
(up to 43.14) this year. A similar increase was ob-
served for en/es that increased more slowly from
up to 33 points in 2016, up to 36 points in 2017 and
up to 44 this year. On the other hand, not much im-
provement can be noticed from en/fr in 2016 (up
to 22.75) to this year’s best score (23.24). These
values are also similar to the scores reported on
another MEDLINE dataset in 2013 (Jimeno-Yepes
and Névéol, 2013).

Regarding translations into English, for es/en,
BLEU scores experienced an improvement from
37 to 43 points in the last year. However, the same
could not be noticed for pt/en that remained rather
constant around 41-43 points.

Finally, during our manual validation, we ob-
served for the first time that the quality of some
automatic translations was either equal or better
than the reference translation. Two teams scored
as good as the reference translation, namely, LMU
for de/en and UHH-DS for en/es. Moreover, two
teams scored higher than the reference transla-
tions, namely, LMU for en/de and UFRGS for
en/es.

5.4 Quality of the automatic translations

Here we provide an overview of the quality of the
translations and the common errors that we identi-
fied during the manual validation.

English: The English translations appeared in
general to have improved qualitatively over prior
year submissions. While in prior years trans-
lations often contained remnants of untranslated
terms from the source language mixed into the
translation, this problem was noted less often in
this year’s evaluations. In addition, systems ap-
peared to make more effective use of capitalisa-
tion, avoiding translation of acronyms or attempt-
ing to translate an acronym semantically via its ex-
pansion.

In light of this overall improvement, a better
translation is often decided by subtle, more pre-
cise choices of English words this year. For in-
stance, an “increasing trend” is more precise as
well as the more customary usage than “accentu-
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ating trend”; the “dissemination” of knowledge is
likewise a better word choice than “diffusion” of
knowledge. Similarly, a study objective “to as-
sess” the level of something would be preferred
to “to know” the level.

The automated systems maintained higher fi-
delity with the original texts than reference trans-
lations, with the latter often leaving out portions
of the original sentence or restructuring informa-
tion between contiguous sentences. Since the au-
tomated systems strive to translate the complete
content of a sentence, they were in many cases per-
ceived to be more accurate due to completeness,
even where minor usage errors occurred.

An error that was observed regularly for Span-
ish to English translations in particular was the
lack of a subject pronoun or insertion of a gen-
dered pronoun (“He”/“She”) at the start of a
sentence where a demonstrative pronoun (“It”,
“This”) would be more appropriate. As a pro-drop
language, the source Spanish texts often lacked an
overt subject; this subject needs to be introduced
for the English translation to be fully grammatical
but some systems appeared to struggle with this
requirement.

Another error observed across different lan-
guages was the partial translation of multi-word
biomedical terms. As an example, “upper diges-
tive endoscopy” was translated as “high diges-
tive endoscopy,” where presumably “digestive en-
doscopy” was referenced from a biomedical dic-
tionary but the word “high” was decoupled from
the multi-word term. Although this error was less
prevalent, its occurrences critically reduced the
quality and crippled the scientific meaning of the
translation.

French: The quality of translations for French
seemed quite equivalent to last year, and varied
from poor to good. A number of automatically
translated sentences carried out the meaning of the
original sentence properly, but were assessed as
inferior to the reference for stylistic reasons, be-
cause they provided a more literal translation that
mimicked the structure of the original sentence.
Arguably, those sentences could be considered as
useful to grasp the meaning of the original sen-
tence. However, translation omissions were noted
in long or complex sentences. For example, the
phrase ”potential drug-drug and food-drug inter-
actions” was translated by ”interactions poten-
tielles entre médicaments et médicaments”, which

does not account for food-drug interactions. A
couple of recurring errors also observed in previ-
ous years are the lack of translation for acronyms
and the erroneous choice of pronoun in translation.
For example, ”they” was systematically translated
as ”ils”, even when ”elles” was the correct trans-
lation based on context.

The use of manual segmentation on the EDP
corpus resulted in a number of single word ”sen-
tences” corresponding to the titles of the sections
in structured abstracts, such as ”Introduction:”
or ”Conclusion:”. Unsurprisingly, the systems
performed well on these isolated segments (ex-
cept for one occurrence of ”Materials and Meth-
ods” translated by ”Matériaux et Procédés” in-
stead of the usual ”Matériel et Méthodes”), which
may contribute to explain the number of instances
where the automatic translation and manual refer-
ence were considered equivalent. It can be noted
that dealing with section titles as isolated segments
successfully ensured there were no translation er-
rors linked to failure to identify the section words
as isolated titles.

German: Interestingly, for 80% of the sentences
automatic translation was evaluated equally good
or even better than the German reference. This
observed result has different reasons. Often the
German reference translation is correct but ei-
ther contains additional information or misses in-
formation present in the English source sentence
while the automatic translation does not have this
error. As previously mentioned this is strongly
related to the frequent alignment errors present
in the German dataset. In some cases valida-
tion was very difficult as both translations were
very good but we still tried to differentiate be-
tween them. For instance, “thromboembolic com-
plications” was translated to “thromboembolis-
che Ereignisse” (events) in the reference and
to “thromboembolische Komplikationen” (com-
plications) in the automatic translation. In this
case the evaluator scored LMU>Reference while
also LMU=Reference would be possible.

In general, we only observe minor mistakes in
automatic translation. Rarely, we find wrongly
translated technical terms such as cerebrum
wrongly translated to Gebärmutter (uterus). Often
mistakes originate from a slight misuse of terms
with the same overall meaning but different appli-
cation in the medical domain. For instance, soft
tissue repair was translated to Weichteilsanierung
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instead of Weichteilrekonstruktion, while the lat-
ter is the correct medical term. Similarly, effi-
ciency of medication should be Wirksamkeit von
Medikamenten instead of Effizienz von Medika-
menten. Compared to submissions in 2017, we did
not observe problems in syntax or grammar which
could have caused misunderstanding the meaning
of the sentence. This year, only the LMU team
submitted reaults and already in 2017 their system
did not have syntax problems.

Portuguese: We observed both minor and ma-
jor mistakes in the automatic translations to Por-
tuguese. We classified as minor those errors that
did not compromise the overall understanding of
the sentence and that were limited to orthography
or minor grammatical errors. For instance, we
found many wrong spaces separating compound
words (e.g., “amarelo- palha”) and before com-
mas or the final period (e.g., “desafio médico ,
éticas”). Further, translations from one particu-
lar system seemed to consistently start sentences
with a lower case (e.g., “manifestações clı́nicas
de neurofibromatose tipo 1 são variáveis”). Fi-
nally, other frequent minor mistakes were miss-
ing definite articles, such as in “existem três vari-
antes do osteocondroma extraesquelético : con-
dromatose sinovial , condroma para-articular” in-
stead of “a condromatose sinovial, o condroma
para-articular”.

We classified as major those mistakes that con-
siderably compromised the understanding of the
sentence. These were cases of discordance with
number and gender for the adjectives, e.g., “é
um desafio médico , éticas e psicossociais” in-
stead of “é um desafio médico, ético e psicosso-
cial”. There were also verbal discordances, such
as in “houve um caso que foram tratados” in-
stead of “houve um caso que foi tratado”. Further,
we found many words that were not translated
into Portuguese and remained in English, such as
in the passages “sem tratamento tumor-directed”,
“Forty-seven casos”. Also some acronyms were
not correctly into Portuguese (e.g., PET/CT in-
stead of PET/TC), but translations from one of
the teams seem to have gotten most acronyms,
biomedical terms and numbers right. Finally,
given the differences in word ordering between
English and Portuguese, this error occurred in
passages such as “pacientes queixa instead of
“queixa dos pacientes”.

Some translation were exactly like the reference

translations, which makes us suspect that those ab-
stracts could be included in the Scielo corpus used
for training data by the systems. However, there
were just a couple of such cases and these should
not compromise overall evaluation. In spite of the
above, we also found very good translations even
for complex and long sentences and for biomedi-
cal terms with multiple modifiers, such as in “es-
clerose múltipla secundária progressiva”.

Spanish: Considering previous years of the
challenge, the translations seem to improve and
there are fewer issues compared to previous years.
On the other hand, the issues we identified are
similar to the ones identified in the Portuguese
sets. As with the translations from Spanish into
English, there were some cases of source words
not being translated into Spanish, as in “el es-
tado fsico motor 20 Meter Shuttle Run Test”
and “Substance-induced fueron”.

Both types of methods seem to suffer from
gender and number agreement for determiners as
in “La pulsos mejor en las” and sometimes for
verbs in terms of number as in “Legendre de-
scriben el primer modelo”, which might be mis-
leading. We also found that some systems dis-
played a preference for starting sentences with
lower case letters; however, different from the case
in Portuguese, for the manually evaluated cases
there no issues with acronyms or spaces between
hyphenated words.

Romanian: This year there fewer participants
than in the previous year. Especially regrettable
is the absence of the top performers from the Uni-
versity of Edinburgh. The only team which par-
ticipated last year as well is that of the University
of Hamburg, which improved this year by using
a training dataset subsampling heuristic in their
SMT translator, but trailed again the NMT system
in this task.

When manually comparing the translations, we
have prefered the ones having the better gram-
mar – for example “Diagnosticul precoce s, i trata-
mentul infect,iei sunt asociate (...)” was prefered
to “Diagnosticul precoce şi tratamentul infecţiei
este asociat(...)” for correct subject to verb agree-
ment. Disturbing in translations is the occurence
of words that have no correspondent in the origi-
nal, for example “upon patients’ arrival in the post
anaesthesia care unit” translated as “asupra sosirii
pacient,ilor ı̂n unitatea de ı̂ngrijire a tuberculozei”.
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Totally incorrect translations were observed as
well, such as “In this observational study, clini-
cal data, vital signs and comfort parameters were
collected from surgical patients who arrived in
the PACU.” being translated into “În acest studiu
observat,ional, date contractuale, semne vitale s, i
parametri portuari au fost colectate de la pacient,i
morali care au sosit ı̂n PACU.”. In such a short
sentence there are already three incorrectly trans-
lated words. A dictionary-based method would
have done better, as there is also no ambiguity in-
volved.

An interesting aspect was observed where
the typical preprocessing leads to ambiguities.
“MAP” (mean arterial pressure) changes to “map”
(like in geographical map) and then is translated
as such: “MAP and HR” was translated as “Harta
şi hr”.

Another interesting and potentially dangerous
error is the mistranslation of the time units. In
one case “Haemofiltration was continued postop-
eratively in the ICU for another 48 h” was trans-
lated as “Haemofiltrarea a continuat postoperativ
ı̂n ICU pentru ı̂ncă 48 de ani” thus replacing hours
with years.

In some cases the translations were marked
equal because they were equally bad. In general,
the intelligibility and fidelity of the translation was
preferred to the form (grammar, smoothness, natu-
ralness), and only for equal content the better form
prevailed.

6 Conclusions

This was the third year we have organized the
WMT biomedical shared task and we found that
the performance has been increasing constantly.
Improvements in results seem to be due to a vari-
ety of reasons, including more in-domain training
data and the use of additional methods that con-
sider transfer approaches and ensemble combina-
tion of methods.

From an evaluation perspective, we find that the
results improve when we consider only sentences
that were perfectly aligned instead of consider-
ing all the automatically aligned sentences. This
shows some limitations on the quality of the auto-
matically generated test sets. On the other hand,
the comparative performance of the different par-
ticipating systems remains the same.

For some of the languages considered, there
were limitations in the quantity of available par-

allel abstracts. Recent publications include paral-
lel corpora from the database that were previously
used for obtaining our test sets. These new corpora
include Medline parallel abstracts (Villegas et al.,
2018) and full texts from Scielo (Soares et al.,
2018). Therefore, manual translation for building
the future test could be considered in the following
editions of the challenge.

Finally, future improvements should also ad-
dress problems reported by the participants regard-
ing the current format of the test sets. In the three
years of the challenge, we have used BioC as the
format for data exchange, which seemed to cause
some difficulties for sentence alignment. We will
evaluate available formats for data exchange with
the participants or inspired in other shared task in
WMT.
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Abstract

This paper describes the Global Tone Commu-
nication Co., Ltd.’s submission of the WMT18
shared news translation task. We participated
in the English-to-Chinese direction and get the
best BLEU (43.8) scores among all the partic-
ipants. The submitted system focus on data
clearing and techniques to build a competitive
model for this task. Unlike other participants,
the submitted system are mainly relied on the
data filtering to obtain the best BLEU score.
We do data filtering not only for provided sen-
tences but also for the back translated sen-
tences. The techniques we apply for data filter-
ing include filtering by rules, language mod-
els and translation models. We also conduct
several experiments to validate the effective-
ness of training techniques. According to our
experiments, the Annealing Adam optimizing
function and ensemble decoding are the most
effective techniques for the model training.

1 Introduction

We participated in the WMT shared news trans-
lation task and focus on the English-to-Chinese
direction. Our neural machine translation sys-
tem is developed as transformer (Vaswani et al.,
2017a) architecture and the toolkit we used is Mar-
ian (Junczys-Dowmunt et al., 2018). Since BLEU
(Papineni et al., 2002) is the main ranking index
for all submitted systems, we apply BLEU as the
evaluation matrix for our translation system. We
aim to verify whether the techniques we applied
in the Encoder Decoder architecture of recurrent
neural network(RNN) and attention mechanism
(Bahdanau et al., 2014) are also positive for trans-
former architecture (Vaswani et al., 2017b) and the
effectiveness of the data filtering.

For data preprocessing, the basic methods in-
clude Chinese word segmentation, tokenization,
byte pair encoding(BPE) (Sennrich et al., 2015b).

Besides, human rules and translation model are
also involved for cleaning parallel data, as well
as using language model for cleaning monolin-
gual data. As to the techniques on model training,
Annealing Adam (Denkowski and Neubig, 2017),
back-translation (Sennrich et al., 2015a) and right-
to-left reranking (Sennrich et al., 2016) which
have proven to be effective in the Encoder Decoder
model with RNN layer and attention mechanism
are applied to verify whether these techniques in
transformer architecture are also effective.

When comparing our baseline model, we show
the increase in 5.57 BLEU scores of English
to Chinese direction for news. And comparing
the best score in last year, transformer architec-
ture is more powerful than RNN with attention
mechanism with 3.65 BLEU score improvement.
However, not all the techniques we applied to
RNN with attention mechanism are equally ef-
fective against transformer architecture, especially
reranking by right-to-left model.

This paper is arranged as follows. We firstly de-
scribe the task and provided data information, then
introduce the method of data filtering, including
rules, language model and translation model. Af-
ter that, we describe the techniques on transformer
architecture and show the conducted experiments
in detail, including data preprocessing, postpro-
cessing and model architecture. At last, we anal-
yse the results of experiments and draw the con-
clusion.

2 Task Description

The task focuses on bilingual text translation in
news domain and the provided data is show in
Table 1, including parallel data and monolingual
data. The parallel data is mainly from News Com-
mentary v13 (Tiedemann, 2012), UN Parallel Cor-
pus V1.0 (Ziemski et al., 2016) and CWMT Cor-
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Direction parallel data monolingual data
en-zh 22,587,593 9,061,023

Table 1: The number of provided data including par-
allel data and monolingual data.

pus, and monolingual we used is XMU corpus
from CWMT Corpus. To compare with others in
last year, WMT17 test set in English to Chinese di-
rection is used as the development set to compare
with the best score in last year.

3 Data Filtering

This section introduces the methods we used for
data filtering in the news task. For this task, be-
cause we found that it is very difficult to make a
significant improvement for training technique in
a short time. Therefore, we pay more attention on
the data filtering than exploring different training
techniques. In this task we do the data filtering
for both of the provided parallel sentences and the
generated sentence from back translation.

3.1 Data Filtering through Rules

According to our observations the provided data
has two types of noise: misalignment and trans-
lation error. One of the misalignment noise we
found in the parallel corpus is that the transla-
tion only translates half or even a very small part
of the source text. The translation error behaves
like one punctuation repeated many times. Ob-
viously language model cannot solve the problem
of alignment or translation error from parallel sen-
tences. It only evaluates the quality of the mono-
lingual sentences. Thus, we clean up sentences
with these problems with calculating the number
of punctuation in both source sentence and target
sentence. The parallel sentences where the differ-
ence between the number of punctuation of source
and target sentences that exceeds the threshold A
are removed. Besides, the sentences which con-
tain punctuation more than threshold B will be
removed because these sentences may appear as
the table of contents or other sentences with some
punctuation error. Here threshold A is named rela-
tive punctuation frequency threshold and threshold
B is named absolute punctuation frequency thresh-
old.

3.2 Data Filtering through Language Model
It has been proved that back translation (Sennrich
et al., 2015a) is an effective way to improve the
translation quality, especially in low-resource con-
dition. In this task we firstly train an initial transla-
tion model(from Chinese to English) using trans-
former architecture, then we use this model to
translate the provided monolingual Chinese data
onto English and then get the generated synthetic
data. To filter the generated synthetic data, we or-
ganize the filtering procedure as follows:

• Train two language models with Chinese and
English monolingual data extracted from pro-
vided parallel corpus. To train the models we
utilized the Marian toolkit, the model type of
Marian is lm-transformer whose architecture
is based on transformer.

• Calculate the cross entropy of each sentence
with the trained language model in Chinese.

• Analyse the cross entropy, according to our
observation, we removed the sentences with
cross entropy higher than -30.971481 or
lower than -299.529816. After this operation
the number of remaining parallel sentences is
6,280,000 out of 9,061,023.

• Remove the duplicated sentences in the re-
maining 6,280,000. This operation further re-
duced the remaining sentences to 5,891,328.

• Remove the sentences that contain HTML
tag such as “〈p〉〈/p〉”,”〈strong〉〈/strong〉”,
the remaining sentences then reduced to
4,981,288.

• Calculate the cross entropy of each trans-
lated English sentence with the trained En-
glish language model.

• Remove the sentences with cross entropy
lower than -396.643829, the remaining paral-
lel sentences further reduced from 4,981,288
to 4,975,094.

The reason why our filtering procedure is more
complicated is that we believe the quality of
the data can heavily affect the translation perfor-
mance. We trained two language models to filter
the synthetic data from both source text and tar-
get text. Through the above filtering procedure
the synthetic data is reduced from 9,061,023 to
4,975,094.
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3.3 Data Filtering Through Translation
Model

Beside the generated synthetic data, we also sup-
pose the provided parallel corpus is not clean
enough to directly put into the training proce-
dure. Since the language model cannot evalu-
ate the quality of translation for parallel sentences
which means that tow irrelevant or bad-translated
sentences can’t be distinguished through language
model. Therefore, we use the rescorer tool of Mar-
ian to evaluate the parallel sentences in loss. In this
case, we trained a translation model with the pro-
vided paralleled data, then we assume the transla-
tion model is generally correct and fix all the pa-
rameters in the model to calculate the cross en-
tropy loss of each pair of provided parallel sen-
tences. We remove the provided parallel sentences
with cross entropy loss lower than -165.529449.
This operation accompanies by the filter rules
make the number of parallel sentences reduces
from 22,587,593 to 17,969,826.

4 Optimizing transformer

The intuition for optimizing transformer is to try
those optimizing methods which have proven to
be effective in RNN architecture. According to
our previous experiments right-to-left reranking,
back translation synthetic data, Annealing Adam
and ensemble decoding are the most effective ap-
proaches to improve the translation performance.

Right-to-left reranking means training a right-
to-left model in target side. It can rerank the n-best
translations and the expected averaged probabili-
ties will be more robust for general evaluation. In
this task, we reverse the target sentences and train
the rights-to-left model.

Back translation is trying to improve the trans-
lation quality through data aspect. It is a simple
but effective approach especially in low-resource
condition. In this task, we have nearly 20 million
parallel sentences from English to Chinese, but we
are still trying to translate the Chinese monolin-
gual data to construct the back translation data.

Annealing Adam is an optimizing function
which is significantly faster than stochastic gradi-
ent descent with Annealing. Besides, it can also
obtain a better performance in most cases. In this
task we set the baseline with Annealing Adam op-
timizing function.

Ensemble decoding is trying to combine differ-
ent models together to explore a better translation

balance between different translation preference.
The most common solution is to average the pa-
rameters of the latest server saved models during
the training procedure. We can also combine mod-
els with different parameter initialization or even
models with different hyper parameters. Normally
to do ensemble decoding requires many different
trained models. Therefore, it needs a lot of time
and hardware resources which is the main reason
that we only participate in one direction of the
whole evaluation task. Unlike some other partici-
pants, we take a greedy ensemble strategy to com-
bine our trained models instead of directly ensem-
ble decoding them all. The greedy ensemble strat-
egy firstly choose one model with the best single
model BLEU score as the base model, and choose
one model from the rest models again as the en-
semble result to get a better BLEU score, then re-
peatedly choose one of the rest model to obtain a
better BLEU until the BLEU doesn’t increase.

5 Experiment

This section describes the all experiments we con-
ducted and illustrate how we get the evaluation
step by step.

5.1 Data pre-processing

In the news translation task we only focus on En-
glish to Chinese direction. Both of the paral-
lel data and monolingual data are fully filtered at
first. After that, we normalized the punctuation
of English texts by normalize-punctuation.perl in
Moses toolkit(Koehn et al., 2007) and normalized
the punctuation of Chinese texts by converting the
double byte character(DBC) to single byte charac-
ter(SBC). We applied Jieba(Sun, 2012) as our Chi-
nese word segmentation tool for segment Chinese
text in both parallel data and monolingual data.
For English text, tokenizer and truecase in Moses
toolkit are applied. Finally, we applied BPE on
both tokenized Chinese and English text.

5.2 Experiments setup

We describe all the experiment setups for this task
in detail. The transformer baseline is trained with
only parallel data, including CWMT corpus, UN
Parallel Corpus V1.0 and News Commentary v13,
after data preprocessing. We trained the baseline
system not only in English to Chinese direction,
but also in Chinese to English direction in order
to translate the filtered monolingual data and do
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configuration value
architecture transformer
English vocabulary size 40500
Chinese vocabulary size 50000
word embedding 512
Encoder depth 6
Decoder depth 6
transformer heads 8
size of FFN 2048

Table 2: The main model configuration. FFN means
feed forward network.

parameter value
maximum sentence length 100
batch fit true
learning rate 0.0003
label-smoothing 0.1
optimizer Adam
learning rate warmup 16000
clip gradient 5

Table 3: The training and decoding parameter.

data number
original data 22,587,593
cleaning by rules and TM 17,969,826
original synthetic data 9,061,023
synthetic sentences cleaning by LM 4,981,288

Table 4: Cleaning parallel data and synthetic data.
TM means translation model and LM means language
model.

the parallel data filtering. During the training pro-
cedure the number of BPE merge operation is set
to 40,000 for both English and Chinese. The hy-
perparameter of our baseline model configuration
is shown in Table2 and the training parameter is
in Table 3. After the baseline, we filter parallel
data through rules and translation model. The rela-
tive punctuation frequency threshold and absolute
punctuation frequency threshold we mentioned in
section 3 is 5 and 15 respectively. We construct
the synthetic data with back translation baseline
model from Chinese to English. The synthetic
data is firstly filtered by Chinese language model
and then filtered by English language model. Ta-
ble 4 shows the detail information about the data
filtering.

In general, we trained 3 models to explore
the effect of data filtering, which are: 1. base-

line model with provided parallel sentences; 2.
baseline model with parallel sentences filtered by
rules and translation model; 3. baseline model
with sentences mixed parallel sentences filtered
by rules and translation model and synthetic sen-
tences filtered by language model. Beside the
baseline models, we trained four groups of trans-
lation model with fully filtered parallel data and
synthetic data. Each model in the four groups is
trained with different random seed and also apply
Annealing Adam which get better performance
compared with Adam. Therefore, we got 8 differ-
ent translation models with the filtered data. We
applied the greedy ensemble strategy to combine
the 8 models and finally obtain the best translation
performance on the development set with 3 mod-
els. Another, the right-to-left model in target side
is also trained to rerank n-best translation of three
best translation performance models.

6 Result and analysis

Table 5 shows the BLEU score we evaluated on
development set. For data filtering, we observed
that the methods improve the quality of sentences
and get a better BLEU score. The methods can
solve some problems of corpus quality. For model
training techniques, back-translation is still the
most effective method of improvement on 3.83-
3.93 BLEU score. Annealing Adam has an im-
provement of BLEU score ranging from 0.04 to
0.36. The evaluation table shows that the higher
BLEU score we get from the neural machine trans-
lation model, the smaller improvement can we get
from Annealing Adam. When ensemble decoding,
the greedy ensemble decoding strategy get the im-
provement on 0.56 BLEU score. However, when
trying to decode our models ensemble with right-
to-left reranking it did not improve the BLEU
score as we expected.

Regard to the official evaluation we add one
more post-processing step which is to convert all
the SBC punctuation to DBC punctuation and it
consequently further improved the BLEU score
form 43.2 to 43.8.

7 Summary

We explored how to optimize the quality of ma-
chine translation in two different ways:1. through
the data; 2 through the training and decoding ap-
proaches. In data aspect, we illustrated how we fil-
ter the provided parallel corpus through the trained
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model BLEU
baseline with PS 34.38
+ Annealing Adam 34.74
clean PS by rules and TM 35.42
+ Annealing Adam 35.56
mix cleaned PS and SS cleaned by LM 39.35
+ Annealing Adam 39.39
greedy ensemble decoding 39.95
r2l reranking 39.91

Table 5: The BLEU score in character level for devel-
opment set of English-to-Chinese direction. SS means
synthetic sentences, TM means translation model, LM
means language model and PS means parallel sen-
tences. The greedy ensemble decoding means decod-
ing the 8 models and finally obtain the best translation
performance on development set with 3 models.

language model and trained translation model and
showed the improvement of the data filtering, as
well as constructing the synthetic through the back
translation approach. In the training and decoding
aspect, we applied transformer architecture as our
main machine translation framework. To optimize
it we utilized Annealing Adam optimize function
and ensemble decoding. We also found that right
to left reranking is not working according to our
experiments.
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Abstract

We build parallel feature decay algorithms
(parfda) Moses statistical machine transla-
tion (SMT) models for language pairs in the
translation task. parfda obtains results close
to the top constrained phrase-based SMT with
an average of 2.252 BLEU points difference
on WMT 2017 datasets using significantly less
computation for building SMT systems than
that would be spent using all available cor-
pora. We obtain BLEU upper bounds based
on target coverage to identify which systems
used additional data. We use PRO for tuning
to decrease fluctuations in the results and post-
process translation outputs to decrease trans-
lation errors due to the casing of words. F1

scores on the key phrases of the English to
Turkish testsuite that we prepared reveal that
parfda achieves 2nd best results. Truecas-
ing translations before scoring obtained the
best results overall.

1 Introduction

Statistical machine translation is widely prone
to errors in text including encoding, tokeniza-
tion, morphological variations and the mass they
take, the size of the training and language model
datasets used, and model errors. parfda is
an instance selection tool based on feature de-
cay algorithms (Biçici and Yuret, 2015) we use
to select training and language model instances to
build Moses phrase-based SMT systems to trans-
late the test sets in the news translation task at
WMT18 (WMT, 2018). As we work towards tools
that can be used for multiple languages at the same
time, we aim to obtain robust results for compar-
ison and record the statistics of the data and the
resources used. Our contributions are:

• a test suite for machine translation that is out
of the domain of news task to take the chance
of taking a closer look at the current status of

SMT technology used by the task participants
when translating 10 sentences taken from lit-
erary context in Turkish, which shows that
parfda phrase-based SMT can obtain 2nd
best results on this test set,

• parfda results for language pairs in the
translation task and data statistics,

• comparison of processing alternatives for
translation outputs to obtain better results,

• upperbounds on the translation performance
using lowercased coverage to identify which
models used data in addition to the parallel
corpus,

• a set of rules that fix tokenization errors in
Turkish using Moses’ (Koehn et al., 2007) to-
kenization scripts.

We obtain parfda Moses phrase-based
SMT (Koehn et al., 2007) results for the language
pairs in both directions in the WMT18 news trans-
lation task, which include English-Czech (en-cs),
English-Estonian (en-et), English-German (en-
de), English-Finnish (en-fi), English-Russian
(en-ru), and English-Turkish (en-tr). Building a
language independent system that can perform
well in translation tasks is a challenging task
and SMT systems participating at WMT18 have
been largely built dependent on the translation
direction.

2 parfda

Parallel feature decay algorithms (parfda) (Bi-
cici, 2016) parallelize feature decay algorithms
(FDA), a class of instance selection algorithms
that use feature decay, for fast deployment of ac-
curate SMT systems. We use parfda to select
parallel training data and language model (LM)
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Figure 1: parfda Moses SMT workflow.

data for building SMT systems. parfda runs
separate FDA5 (Biçici and Yuret, 2015) models on
randomized subsets of the available data and com-
bines the selections afterwards. Figure 1 depicts
parfda Moses SMT workflow. The approach
also obtained improvements using NMT (Ponce-
las et al., 2018).

We obtain transductive learning results since
we use source sentences of the test set to select
data. However, decaying only on the source test
set features does not necessarily increase diversity
on the target side thus we also decay on the tar-
get features that we already select. With the new
parfda model, we select about 1.7 million in-
stances for training data and about 15 million sen-
tences for each LM data not including the selected
training set, which is added later. Table 1 shows
size differences with the constrained dataset (C).
We use 3-grams to select training data and 2-grams
for LM data. TCOV lists the target coverage in
terms of the 2-grams of the test set. We also use
CzEng17 (Bojar et al., 2016) for en-cs and SE-
TIMES2 (Tiedemann, 2009) for en-tr.

We set the maximum sentence length to 126 and
train 6-gram LM using kenlm (Heafield et al.,
2013). For increasing the robustness of the op-
timization results, we use PRO (Section 2.1) and
we use varying n-best list size. For word align-
ment, we use mgiza (Gao and Vogel, 2008) where
GIZA++ (Och and Ney, 2003) parameters set

max-fertility to 10, the number of iterations to
7,3,5,5,7 for IBM models 1,2,3,4, and the HMM
model, and learn 50 word classes in three itera-
tions with the mkcls tool during training. The de-
velopment set contains up to 4000 sentences ran-
domly sampled from previous years’ development
sets (2011-2017) and remaining come from the de-
velopment set for WMT18. Table 2 lists the cov-
erage of the test set.

2.1 Robust Optimization Results with PRO

Pairwise ranking optimization (PRO) (Hopkins
and May, 2011) is found to obtain scores that
monotonically increase, with results that are at
least as good as MERT (Och, 2003), and with a
standard deviation that is three times lower than
MERT. We use PRO for tuning to obtain ro-
bust results due to fluctuating scores with MERT.
PRO tuning performance graph is compared with
MERT performance plot in Figure 2. We used
monotonically increasing n-best list size at the
start to increase robustness by using multiples of
50 until the 8th iteration, 350 every 10th, and 150
in the remaining. We only need 4 iterations to find
parameters whose tuning score reach 1% close to
the best tuning parameter set score (Figure 3).

2.2 Testsuite for en-tr and tr-en

We prepared an SMT test suite that is out of the
domain of news translation task to take a closer
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Figure 2: Comparison of MERT and PRO tuning on en-tr using results from 2017 and 2018 respectively.
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Figure 3: The number of iterations PRO would need to reach ∆% close to the best tuning score.

look at the current status of SMT technology used
by the task participants to translate 10 sentences
taken from literary context in Turkish. The sen-
tences and their translations are provided in Ap-
pendix A.

Table 3 details the testsuite results on en-tr and
tr-en where the best translations of parfda are
selected based on their BLEU (Papineni et al.,
2002) and F1 (Biçici, 2011) scores:

en-tr lctc 1 align
en-tr ts lctc 1 align
tr-en tc 2 align
tr-en ts tc 1 align

where tc and lctc are defined in Section 2.3.
We count tokens of translation as non-

translation when they are found in the test source,
are not a number or punctuation, and are consid-
ered by the SMT model’s phrase table or the lex-
ical translation table as a token whose translation
differs from the source token. We have access to
the lexical tables of parfda SMT models and

among the tr-en lctc entries (Table 4), 2.7% con-
tain a translation the same as the source. Accord-
ing to the testsuite results using translations from
task participants, only RWTH and parfda con-
tained non-translations and RWTH had only a to-
ken non-translated. The scores for up to n-grams
in Table 12 show that alibaba.5744 achieves the
best results in en-tr and online-B achieves the best
results in tr-en in all scores. When we look at some
of the OOV tokens in en-tr, we observe that low-
ercasing and then truecasing might help.

We identified 5 key phrases for both en-tr and
tr-en that we would like to see translated cor-
rectly (Table 5). Some are trimmed to make them
closer to their root form so that suffixes can be
added without decreasing identification rates. Ap-
pendix A presents F1 scores based on the identi-
fication of them in the translations. We see that
even though parfda achieves the lowest scores
in BLEU, on the key phrases, it provides the 2rd
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S → T
Training Data LM Data

Data #word S (M) #word T (M) #sent (K) TCOV #word (M) TCOV
en-cs C 618.2 548.9 43274 0.749 1357.0 0.857
en-cs parfda 83.6 73.9 1777 0.663 416.2 0.809
cs-en C 548.9 618.2 43274 0.855 11100.4 0.948
cs-en parfda 78.1 88.1 1773 0.8 502.2 0.896
en-de C 580.2 548.0 24914 0.791 3078.9 0.892
en-de parfda 96.6 91.4 1776 0.74 467.3 0.839
de-en C 548.0 580.2 24914 0.859 11100.4 0.941
de-en parfda 90.4 94.9 1776 0.82 509.1 0.893
en-et C 20.4 27.0 1073 0.422 1197.1 0.772
en-et parfda 27.0 20.4 1072 0.422 375.8 0.654
et-en C 27.0 20.4 1073 0.673 11100.4 0.943
et-en parfda 20.4 27.0 1072 0.673 416.4 0.883
en-fi C 52.3 72.3 2846 0.45 1536.4 0.743
en-fi parfda 53.4 38.6 1598 0.438 468.0 0.676
fi-en C 72.3 52.3 2846 0.725 11100.4 0.943
fi-en parfda 37.2 50.8 1550 0.715 473.2 0.888
en-ru C 172.6 202.3 8766 0.739 9643.5 0.916
en-ru parfda 69.3 53.0 1712 0.684 561.3 0.83
ru-en C 202.3 172.6 8766 0.844 11100.4 0.95
ru-en parfda 61.7 71.6 1764 0.816 489.6 0.903
en-tr C 4.6 5.1 208 0.352 4026.5 0.824
en-tr parfda 5.1 4.6 207 0.352 474.5 0.72
tr-en C 5.1 4.6 208 0.569 11100.4 0.936
tr-en parfda 4.6 5.1 207 0.569 442.1 0.877

Table 1: Statistics for the training and LM corpora in the constrained (C) setting compared with the parfda
selected data. #words is in millions (M) and #sents in thousands (K). TCOV is target 2-gram coverage.

SCOV TCOV
1 2 3 4 5 1 2 3 4 5

en-cs 0.9635 0.8612 0.6212 0.3305 0.1334 0.9718 0.7587 0.4042 0.165 0.0553
en-de 0.9657 0.8646 0.627 0.3261 0.1253 0.9362 0.7939 0.5254 0.2534 0.0904
en-et 0.8912 0.6821 0.3717 0.1345 0.0376 0.8095 0.4308 0.1664 0.0528 0.0136
en-fi 0.9135 0.7339 0.4477 0.1889 0.0619 0.834 0.4595 0.1895 0.0612 0.0165
en-ru 0.9682 0.8683 0.6444 0.3581 0.1567 0.9703 0.78 0.4572 0.2076 0.0812
en-tr 0.8286 0.5817 0.2807 0.0905 0.0226 0.7944 0.3613 0.12 0.0282 0.006

Table 2: Test set SCOV and TCOV for n-grams.

best in en-tr among 9 models and 4th best among
6 in tr-en. Key phrase identification is important
since when scores are averaged, important phrases
that are missing only decrease the score by 1

|p|N|p|
for BLEU calculation for a phrase of length |p|
over N|p| phrases with length |p|.

2.3 Comparing Text Processing Settings for
SMT

Experiment management system (EMS) (Koehn,
2010) of Moses prepares translations as follows:

truecase input
→ translate input

→ clean output (XML tags)
→ detruecase output

Truecasing updates the casing of words accord-
ing to the most common form observed in the
whole training corpus. EMS does not truecase the
translations of an SMT model when training data
are already truecased. However, each casing of

words are a different entry in the phrase table and
the casing we are interested in might be missing in
the translations. Therefore, truecasing (tc) before
detruecasing makes sense.

The casing of the text affects the number of to-
kens in the data sets. A casing of a token might
appear in the phrase table but not its lowercased
(lc) version. In EMS, truecasing is applied on
the input. We experiment with truecasing lower-
cased text (lctc) to decrease the number of out-
of-vocabulary words in the translations and to re-
duce the number of unique n-grams, dataset sizes,
and the binary LM size by about 2%.

We process tokenized Turkish text using a set
of rules since Moses’ (Koehn et al., 2007) tok-
enization scripts can encounter tokenization errors
in Turkish. A simpler approach was also tried
for fixing tokenization of Turkish by removing
space for unbalanced single quotes (Ding et al.,
2016). Additionally, we retain the casing of the
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Figure 4: SMT text processing comparison of truecasing after lowercasing (lctc) and truecasing (tc).

testset setting % sent. OK non-trans. non-trans. % not in PT/lex oov % oov BLEU F1

en-tr tc 1 align 60.9 1941 18.81 22 1324 12.8 0.0746 0.1302
lctc 1 align 61.1 1933 18.74 0 1290 12.5 0.0883 0.1406

en-tr ts lctc 1 align 60.0 5 3.4 0 4 2.7 0.051 0.105

tr-en tc 2 align 38.9 3549 20.7 23 2643 15.4 0.1192 0.1708
lctc 2 align 44.8 3028 17.6 12 2132 12.4 0.1055 0.1567

tr-en ts tc 1 align 20.0 32 17.7 0 24 13.3 0.0 0.1011

Table 3: Best performing en-tr and tr-en translation results detailed with their types of errors.

setting N (lexical) % (wS == wT )

en-tr
tc 928K 2.91
lctc 890K 2.68

tr-en
tc 891K 3.02
lctc 860K 2.74

Table 4: Lexical translation table comparison.

phrase count

en
-t

r

Türk Dil Kurumu 6
Türkçe Sözlü 4
Yazım Kılavuzu Çalışma Grubu 3
Yazım Kılavuzu 7
yazım kural 4

tr-
en

Turkish Language Institution 6
Turkish Language 6
Turkish Dictionary 4
Working Group 3
Writing Manual 4

Table 5: Key phrases we look for in the translations.

test source sentences using the word alignment in-
formation (Ding et al., 2016). Using alignment in-
formation is more complicated since not all align-
ments are 1-to-1. We also experiment with finding
the casing of the input words in the development
and test sets according to the form found in the
translation tables to replace them before decoding.
Figure 4 compares tc and lctc approaches to
text processing for SMT. Both can use the align-
ment information for casing words.

Table 6 compares the results using transla-
tions that contain the alignment information and
the unknown words where tc 0 is the base-
line. The additional Moses decoder parameter is
--print-alignment-info. We obtain the
highest en-tr score using the alignments for cas-
ing but scores decrease for en-de and de-en. For
which translation directions it helps can be seen
in the lctc 0 row. The difference between the
base and the lowercased results are the gain we
can achieve if we fix casing accordingly. Using tc
translation as a start, the gain on average is about
1.1 BLEU points (0.011 BLEU). The best setting
overall is tc 2. The largest room for improvement
with lctc lc BLEU results are for cs-en and tr-
en.
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BLEU cs-en de-en et-en fi-en ru-en tr-en en-cs en-de en-et en-fi en-ru en-tr sum

tc 0 base 0.2296 0.3332 0.1766 0.1536 0.247 0.1286 0.1567 0.2669 0.1182 0.1016 0.1934 0.0823 2.1877
align 0.2134 0.1851 0.1684 0.1427 0.233 0.1269 0.1455 0.1637 0.1138 0.095 0.1821 0.083 1.8526

tc 1 0.2239 0.318 0.1718 0.1493 0.2464 0.1269 0.1506 0.2543 0.1117 0.0961 0.1918 0.0824 2.1232
align 0.2127 0.1845 0.1682 0.1416 0.2329 0.1261 0.1455 0.1625 0.1137 0.0948 0.182 0.083 1.8475

tc 2 0.2295 0.3331 0.1765 0.1535 0.2526 0.1284 0.1566 0.2669 0.1182 0.1013 0.1989 0.0823 2.1978
align 0.2136 0.1945 0.1681 0.1458 0.2347 0.1273 0.1469 0.1645 0.1151 0.0965 0.1827 0.0816 1.8713
lc 0.2394 0.3447 0.184 0.1614 0.2632 0.1373 0.1622 0.2727 0.1216 0.1053 0.2048 0.089 2.2856

lctc 0 0.1869 0.2736 0.1523 0.129 0.1901 0.1066 0.1339 0.1251 0.0975 0.0875 0.1671 0.0616 1.7112
align 0.2113 0.2443 0.1661 0.1266 0.211 0.1043 0.1448 0.1603 0.1114 0.0941 0.1644 0.0882 1.8268

lctc 1 0.1817 0.2602 0.1484 0.1252 0.1901 0.1064 0.1294 0.1149 0.0934 0.0828 0.1656 0.0639 1.662
align 0.2105 0.2437 0.1658 0.1247 0.211 0.1032 0.1447 0.1585 0.1113 0.094 0.1642 0.0887 1.8203

lctc 2 0.1896 0.275 0.1552 0.1303 0.1974 0.1083 0.1369 0.127 0.1005 0.0887 0.1712 0.0632 1.7433
align 0.2121 0.2583 0.1663 0.1304 0.2125 0.1055 0.1468 0.1611 0.1125 0.0954 0.1648 0.0871 1.8528
lc 0.2445 0.3452 0.1871 0.1634 0.2506 0.1402 0.1651 0.2781 0.1212 0.1056 0.1803 0.0978 2.2791

Table 6: parfda tokenized and cased results with different text processing settings. Baseline is tc 0 (in italic).
bold lists the best for a translation direction.

BLEU cs-en de-en et-en fi-en ru-en tr-en en-cs en-de en-et en-fi en-ru en-tr
parfda 2018 0.2322 0.3343 0.1741 0.1547 0.2485 0.1267 0.1529 0.2674 0.1203 0.0968 0.1970 0.0821
parfda 2018 F1 0.2551 0.344 0.2123 0.1936 0.2685 0.1768 0.1921 0.2891 0.1613 0.1494 0.2214 0.1314
TopC NMT 2018 lc 0.348 0.499 0.315 0.258 0.358 0.291 0.266 0.489 0.258 0.192 0.348 0.207
TopC NMT 2018 0.339 0.484 0.307 0.249 0.349 0.28 0.26 0.483 0.252 0.182 0.348 0.20

- parfda 0.1068 0.1497 0.1329 0.0943 0.1005 0.1533 0.1071 0.2156 0.1317 0.0852 0.1510 0.1179
avg diff lc 0.1288

Table 7: parfda results compared with the top results in WMT18 and their difference.1

parfda results at WMT18 are in Table 7 us-
ing BLEU over tokenized text. We compare with
the top constrained submissions at WMT18 in
Table 7 and at WMT17 in Table 8. 2 Perfor-
mance compared with the top constrained (TopC)
phrase-based SMT improved to 2.252 in 2017
from 3 BLEU points difference on average com-
pared with WMT16 results, which is likely due to
the new parfda model and phrase-based SMT
being less common in 2017. parfdaMoses SMT
system can obtain 0.6 BLEU points close to the
top result in Finnish to English translation in 2017.
All top models use NMT in 2018 and most use
backtranslations, which means that their TCOV is
upper bounded by LM TCOV.

3 Translation Upper Bounds with TCOV

We obtain upper bounds on the translation perfor-
mance based on the target coverage (TCOV) of n-
grams of the test set found in the selected parfda
training data (Bicici, 2016) but using lowercased
text this time. For a given sentence T ′, the number
of OOV tokens are identified:

OOV r = round((1− TCOV) ∗ |T ′|) (1)

2Due to different tokenization rules used by
mteval-v14.pl in matrix.statmt.org, parfda
BLEU scores are higher than the scores in Table 6.

where |T ′| is the number of tokens in the sentence.
We obtain each bound using 500 such instances
and repeat for 10 times. TCOV BLEU bound
is optimistic since it does not consider reorder-
ings in the translation or differences in sentence
length. Each plot in Table 9 locates TCOV BLEU
bound obtained from each n-gram and from n-
gram TCOVS combined up to and including n
and � locates the parfda result and F locates
the top constrained result. In en-de and en-tr, the
top model achieves a higher score than the TCOV
BLEU bound, which indicates that data additional
to the constrained training data was used. In both,
backtranslations were used.

4 Conclusion

We use parfda for selecting instances for build-
ing SMT systems using less computation overall
and results at WMT18 provides new data about
using the current phrase-based SMT technology
towards rapid SMT system development. Our
data processing experiments show that lowercas-
ing and then truecasing data can improve SMT
models and translation results provided that we
can find the casing correctly and truecasing trans-
lations before scoring can improve the results. Our

2We use the results from matrix.statmt.org.
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BLEU cs-en de-en fi-en lv-en ru-en tr-en en-cs en-de en-fi en-lv en-ru en-tr
parfda 2017 0.2276 0.2613 0.1987 0.1549 0.2812 0.1172 0.1381 0.1851 0.1282 0.1303 0.218 0.097
TopC NMT 2017 0.309 0.351 0.19 0.308 0.179 0.228 0.283 0.207 0.183 0.298 0.165

- parfda 0.0814 0.0897 0.0351 0.0268 0.0618 0.0899 0.0979 0.0788 0.0527 0.0800 0.0680
avg diff 0.0693
TopC phrase 2017 0.265 0.205 0.168 0.315 0.126 0.191 0.216 0.145 0.142 0.253 0.098

- parfda 0.0374 0.0063 0.0131 0.0338 0.0088 0.0529 0.0309 0.0168 0.0127 0.035 0.001
avg diff 0.02252

Table 8: parfda results compared with the top results in WMT17 and their difference.

Table 9: parfda results (�) and OOV r TCOV BLEU upper bounds for de and tr.

method of tuning with PRO provides robust re-
sults and the BLEU bounds we obtain show which
systems used additional training data. We are of-
ten interested to conserve the semantic content in
the translations and parfda Moses phrase-based
SMT achieves 2nd best results on the tr-en test-
suite in our evaluations with key phrases.
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out contribution to the content nor responsibility
thereof. We also thank the reviewers’ comments.

References
2018. Proc. of the Third Conference on Machine

Translation. Association for Computational Lin-
guistics, Brussels, Belgium.
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gö
z

ön
ün

de
bu

lu
nd

ur
m

uş
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eş
tiğ
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sö
yl

ey
eb

ili
ri

z.
7

B
un

da
hi

ç
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Ç
al

ış
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Table 10: Testsuite English and Turkish for en-tr / tr-en.

353



en-tr

alibaba.5732

Türk Dil Kurumu 1.0 6 6
Türkçe Sözlü 0.86 3 4
Yazım Kılavuzu Çalışma Grubu 1.0 3 3
Yazım Kılavuzu 0.6 3 7
yazım kural 1.0 4 4
F1 0.88 19 24

alibaba.5744

Türk Dil Kurumu 1.0 6 6
Türkçe Sözlü 0.86 3 4
Yazım Kılavuzu Çalışma Grubu 1.0 3 3
Yazım Kılavuzu 0.6 3 7
yazım kural 1.0 4 4
F1 0.88 19 24

parfda
Türk Dil Kurumu 1.0 6 6
Türkçe Sözlü 1.0 4 4
F1 0.59 10 24

uedin.5644
Türk Dil Kurumu 1.0 6 6
yazım kural 0.86 3 4
F1 0.54 9 24

online-B

Türk Dil Kurumu 0.91 5 6
Türkçe Sözlü 0.86 3 4
yazım kural 0.4 1 4
F1 0.54 9 24

NICT.5695
Türk Dil Kurumu 1.0 6 6
yazım kural 0.67 2 4
F1 0.5 8 24

RWTH.5632 Türk Dil Kurumu 1.0 6 6
F1 0.4 6 24

online-A Türk Dil Kurumu 0.8 4 6
F1 0.29 4 24

online-G Türkçe Sözlü 0.86 3 4
F1 0.22 3 24

tr-en

online-B

Turkish Language Institution 0.5 2 6
Turkish Language 0.86 8 6
Turkish Dictionary 0.67 2 4
Working Group 1.0 3 3
Writing Manual 0.4 1 4
F1 0.82 16 23

NICT.5708

Turkish Language Institution 0.67 3 6
Turkish Language 1.0 6 6
Working Group 1.0 3 3
Writing Manual 0.67 2 4
F1 0.76 14 23

uedin.5709

Turkish Language Institution 0.67 3 6
Turkish Language 1.0 6 6
Working Group 1.0 3 3
F1 0.69 12 23

parfda

Turkish Language Institution 0.29 1 6
Turkish Language 0.8 4 6
Working Group 1.0 3 3
F1 0.52 8 23

online-G Turkish Dictionary 0.86 3 4
F1 0.23 3 23

online-A Turkish Language 0.29 1 6
F1 0.08 1 23

Table 11: Testsuite F1 scores with key phrases.
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Table 12: Testsuite BLEU and F1 results.

354



Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 355–360
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64033

The TALP-UPC Machine Translation Systems
for WMT18 News Shared Translation Task

Noe Casas, Carlos Escolano, Marta R. Costa-jussà, José A. R. Fonollosa
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Abstract

In this article we describe the TALP-UPC
research group participation in the WMT18
news shared translation task for Finnish-
English and Estonian-English within the
multi-lingual subtrack. All of our primary sub-
missions implement an attention-based Neural
Machine Translation architecture. Given that
Finnish and Estonian belong to the same lan-
guage family and are similar, we use as train-
ing data the combination of the datasets of
both language pairs to paliate the data scarce-
ness of each individual pair. We also report the
translation quality of systems trained on indi-
vidual language pair data to serve as baseline
and comparison reference.

1 Introduction

Neural Machine Translation (NMT) has consis-
tently maintained state of the art results in the last
years. However, due to its need for large amounts
of training data, low resource language pairs need
to resort to extra techniques to achieve acceptable
translation quality.

In the WMT18 news shared translation task,
two of the languages to translate are Finnish and
Estonian (that are to be translated to and from En-
glish). Both can be considered low-resource lan-
guages in general, and also in particular for this
shared task, based on the volume of data made
available for training, especially Estonian.

In this report we describe the participation
of the TALP research group from Universitat
Politècnica de Catalunya (UPC) at the afore-
mentioned WMT18 news shared translation task,
specifically in the multi-lingual subtrack, as our
systems make use of the data from both Finnish
and Estonian language to improve the translation
quality.

2 Linguistic Background

Finnish and Estonian are respectively the official
languages of Finland and Estonia, having 5.4 and
1.1 million native speakers (Lewis, 2009). They
are Finnic Languages, a branch within the Uralic
Language family.

Estonian and Finnish make use of the Latin al-
phabet with some additional letters, each one in-
corporating extra letters (e.g. ä, ö, ü, õ, š, ž).

Finnish and Estonian are morphologically-rich
agglutinative languages. Estonian presents four-
teen grammatical cases while Finnish presents fif-
teen. Verb conjungations are very regular in both
languages. Neither of them has grammatical gen-
der nor definite or indefinite articles. Both have
flexible word order, but the basic order is subject-
verb-object.

Like other Finnic languages, both Finnish and
Estonian present consonant gradation (consonants
are classified in grades according to phonologic
criteria, and such grades condition the combined
appearance of the consonants in a derived word),
but the gradation patterns each one follows are dif-
ferent.

While Finnish has kept most of its late Proto-
Finnic linguistic traits, Estonian has lost some
of its former characteristics, like vowel harmony
(vowels in a word cannot appear freely but their al-
lowance is constrained by rules), which in Finnish
affects case and derivational endings. Also, Esto-
nian mostly lost the word-final sound, making its
inflectional morphology more fusional for nouns
and adjectives (Fortescue et al., 2017). German
language influence also led Estonian to use more
postpositions where Finnish uses cases. Geo-
graphical location has also led to differences in the
loanwords borrowed by each language.
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3 Attention-based NMT

The first competitive NMT systems were based on
the sequence-to-sequence architecture (Cho et al.,
2014; Sutskever et al., 2014), especially with the
addition of attention mechanisms (Bahdanau et al.,
2014; Luong et al., 2015), either using Gated Re-
current Units (GRU) (Cho et al., 2014) or Long-
Short Term Memory (LSTM) units (Hochreiter
and Schmidhuber, 1997).

Sequence-to-sequence with attention was the
state of the art NMT model until the Transformer
architecture (Vaswani et al., 2017) was proposed.
This model does not rely on recurrent units or con-
volutional networks, but only on attention layers,
combining them with several other architectural
elements: positional embeddings (Gehring et al.,
2017), layer normalization (Ba et al., 2016), resid-
ual connections (He et al., 2016) and dropout (Sri-
vastava et al., 2014).

The type of attention mechanism used by the
Transformer model is a multi-headed version of
the dot-product attention, applied both as self-
attention to source and target (prefix) sentences
and as encoder-decoder attention mechanism.

4 Low resource NMT

The application of NMT to low resource language
pairs needs extra techniques to achieve good trans-
lation quality. These are some of the frequently
used approaches:

Back-translation (Sennrich et al., 2015a) con-
sists in training an auxiliary translation system
from target language to source language and use
it to translate a large target language monolingual
corpus into the source language, and then use such
synthetic source-target sentence pairs to augment
the originally available parallel corpus and train on
it a new source language to target language trans-
lation system.

Pivoting approaches use a third resource-rich
language as pivot and train translation systems
from source language to pivot and from pivot to
target language. These auxiliary systems can ei-
ther be used in cascade to obtain source-to-target
translations, or be used to build syntethic paral-
lel source-target corpora (i.e. pseudocorpus ap-
proach). A recent application of pivoting tech-
niques to NMT can be found in (Costa-jussà et al.,
2018).

Adversarial learning (Lample et al., 2018;
Artetxe et al., 2018) in a multi-task learning setup,

with an auxiliary text (denoising) auto-encoding
loss, whose internal sentence representation is
aligned with the ones from the translation task by
means of a discriminator in feature space.

Pre-trained cross-lingual embeddings
(Artetxe et al., 2016, 2017) can be used comple-
mentarily to further reduce the need for parallel
data.

Finding parallel data from a similar source
language and the same target language (or vice
versa) and adding it to the original parallel cor-
pus. With such a composite training data set, a
wordpiece-level vocabulary can leverage the com-
mon word stems between the similar languages
and profit from the combined amount of data. This
approach is used in the present work, as described
in sections 5 and 6.1.

Multilingual zero-shot translation (Johnson
et al., 2017) also uses parallel corpora from differ-
ent source and target language pairs, but mixes to-
gether every available language pair, regardless of
how linguistically close they are. This way, there
is a single shared word-piece vocabulary for all
languages, and the system is trained on a corpus
that combines data from several different language
pairs. In order to convey the association between
a source sentence and its translation to a specific
target language, the source sentence is prefixed
with a token that specifies which language the tar-
get sentence belongs to. This approach aims at
implicitly learning language-independent internal
representations, enabling the translation of low re-
source language pairs (and even language pairs
where there is zero parallel data available) to profit
from the combined language pair training data.

5 Corpora and Data preparation

All proposed systems in this work are constrained
using exclusively parallel data provided by the or-
ganization. For the English - Finnish language pair
the data employed is the Europarl corpus version
7 and 8, Paracrawl corpus, Rapid corpus of EU
press releases and Wiki Headlines corpus. For
the English - Estonian data the Europarl v8 cor-
pus, Paracrawl and Rapid corpus of EU press re-
leases corpus were employed.

All language pairs have been preprocessed fol-
lowing the proposed scripts by the organization
of the conference. The pipeline consisted in nor-
malizing punctuation, tokenization and truecas-
ing using the standard Moses (Koehn et al., 2007)
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scripts. With the addition that, for tokenization, no
escaping of special characters was performed.

For the language pair of English - Estonian we
found that from Paracrawl corpus a considerable
number of sentences were not suitable sentences
in the intended languages, but apparently random
sequences of upper case characters. In order to re-
move them, an additional step of language detec-
tion was performed using library langdetect
(Danilák, 2017), which is a port to Python of li-
brary language-detection (Shuyo, 2010).
The criteria for removing noisy sentences from the
dataset was that either one of the languages of the
pair could not be identified as a language.

The sizes of the different data sets compiled for
each language pair and once cleaned as described
earlier in this section are presented in Table 1.

Table 1: Corpus statistics in number of sentences and
words for both parallel corpora, English - Estonian and
English - Finnish.

corpus lang set sentences words

En-Et
En

train 998547 23056922
test 2000 44305

Et
train 998547 17376004
test 2000 34733

En-Fi

En
train 3064124 62208347
dev 3000 64611
test 3002 63417

Fi
train 3064124 45692989
dev 3000 48839
test 3002 46572

As described in sections 2 and 4, as Finnish and
Estonian belong to the Finnic language family and
are similar to each other, we aimed at combining
the individual parallel corpora (En - Fi and En -
Es) into a single larger corpus. For the translation
directions where English is the target language
(i.e. Fi → En and Et → En) we prepared a com-
bined Fi + Et→ En corpus by simply concatenat-
ing the original ones. This approach was not appli-
cable to the reverse directions, as we needed some
way to convey the information about whether to
generate either Finnish or Estonian as part of the
input to the neural network. Following the ap-
proach in (Johnson et al., 2017), we modify the
individual parallel corpora to add a prefix to the
English sentences to mark whether the associated
target sentence was Finnish or Estonian, and then
proceed to concatenate both corpora into the final

combined one En → Fi + Et. The prefixes used
were respectively <fi> and <et>. This prefix
needs to be added likewise to the test English sen-
tences when decoding them into Finnish or Esto-
nian.

As the combined corpora are concatenations of
the individual ones, their sizes can be computed
from the figures in Table 1 by mere addition of the
individual sizes of each language pair.

6 System Description

In this section we present the translation systems
used for our submissions, both in terms of vocab-
ulary extraction strategies followed (section 6.1),
of neural architecture used (section 6.2) and of
needed post-processing (section 6.3).

6.1 Vocabulary Extraction

The NMT models used for all of our submissions,
which are described in section 6.2 make use of pre-
defined sets of discrete tokens that comprise the
vocabulary.

The vocabulary of each of our translation sys-
tems (both the final submissions and the systems
trained for reference described in section 7) was
based on wordpiece extraction (Wu et al., 2016).
For each system, the source and target vocabular-
ies were extracted separately, aiming at a vocab-
ulary size of 32K tokens. Vocabularies are not
shared between source and target languages in any
case.

Word-piece vocabularies (or the very similar
Byte-Pair Encoding (BPE) vocabularies (Sennrich
et al., 2015b)) are usually applied to extract vocab-
ularies from corpora that contain data from simi-
lar languages in order to try to find common stems
and derivational suffixes so that the language com-
monalities can be leveraged by the neural network
training.

6.2 NMT Models

All the submissions presented to the task make use
of the Transformer NMT architecture, which is de-
scribed in section 3. We used the implementation
released by the authors of (Vaswani et al., 2017) 1

The complete hyperparameter configuration
used for all the attention-based neural machine

1The authors of (Vaswani et al., 2017) made the
source code available at https://github.com/
tensorflow/tensor2tensor. For this work, version
1.2.9 was used.

357



translation models in our submissions (which con-
sisted in the transformer base parameter set
in tensor2tensor) is shown in Table 2.

Table 2: Hyperparameters of the neural model.

hyperparameter value
attention layers 6
attention heads per layer 8
hidden size (embedding) 512
batch size (in tokens) 4096 (4 GPU)
training steps 800000
tokenization strategy wordpiece
vocabulary size 32K
optimization algorithm Adam
learning rate warmup + decay

After the training, the weights of the last
5 checkpoints (having checkpoints stored every
2000 optimization steps) are averaged to obtain
the final model.

6.3 Post-processing
Following the inverse steps of the processing de-
scribed in section 5, the decoded outputs of NMT
model need to be de-truecased and de-tokenized
by means of the appropriate Moses scripts.

7 Experiments

The hypothesis on which we base this work is that,
given the similarity between Estonian and Finnish,
a system trained with the combination of the data
from both languages would outperform systems
trained on the individual language datasets.

In order to validate this hypothesis, we con-
ducted direct experiments, training systems on
the individual language datasets and also on
the combined datasets (as described in sec-
tion 5), and comparing their translation quality.
The datasets used for testing the performance
were newsdev2018 for Estonian - English and
newstest2017 for Finnish - English. The re-
sults of the experiments are shown in Table 3, were
all figures represent case-insensitive BLEU score
over the aforementioned reference test corpora.

While the results for Finnish are not very dif-
ferent between the individual and combined data
trainings 2, the results for Estonian show an im-
portant improvement of the training on the com-
bined data over the individual data. This cor-

2Improvements of less than 1 BLEU point are normally
considered neglectable.

Table 3: Comparison between translation quality
(case-insensitive BLEU) of systems trained on the
individual language data vs. systems trained on the
combined data .

direction individual combined ∆BLEU
En→ Fi 24.36 25.21 +0.85
Fi→ En 29.39 30.00 +0.61
En→ Et 15.97 18.92 +2.95
Et→ En 21.66 25.66 +4.00

relates with the fact that the Estonian - English
training set is less than one third the size
of the Finnish - English, therefore the size in-
crease in the Finnish - English combined train-
ing corpus is much smaller than the increase for
Estonian - English, as shown in Table 1.

8 Conclusions

In this article we described the TALP-UPC sub-
missions to the the multi-lingual subtrack of
the WMT18 news shared translation task for
Finnish - English and Estonian - English language
pairs.

Our experiments suggest that for low resource
languages, enlarging the training data with trans-
lations from a similar language can lead to impor-
tant improvements in the translation quality when
using subword-level vocabulary extraction strate-
gies. In this line, further research should be con-
ducted to understand how subwords have captured
the differences between Estonian and Finnish cog-
nates and to leverage such an insight to devise
more effective vocabulary extraction strategies.
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Abstract

This paper describes the University of Tartu’s
submission to the unsupervised machine trans-
lation track of WMT18 news translation
shared task. We build several baseline trans-
lation systems for both directions of the
English-Estonian language pair using mono-
lingual data only; the systems belong to the
phrase-based unsupervised machine transla-
tion paradigm where we experimented with
phrase lengths of up to 3. As a main contri-
bution, we performed a set of standalone ex-
periments with compositional phrase embed-
dings as a substitute for phrases as individ-
ual vocabulary entries. Results show that rea-
sonable n-gram vectors can be obtained by
simply summing up individual word vectors
which retains or improves the performance of
phrase-based unsupervised machine tranlation
systems while avoiding limitations of atomic
phrase vectors.

1 Introduction

Most successful approaches to machine translation
(Wu et al., 2016; Bahdanau et al., 2014; Vaswani
et al., 2018; Gehring et al., 2017) rely on the
availability of parallel corpora. Supervised neural
machine translation (NMT) employs the encoder-
decoder architecture, where the encoder reads the
source sentence and produces its representation
which is then fed to the decoder that tries to gen-
erate the target sentence word by word. Cross-
entropy loss is usually used as a training objective
and beam search algorithm is used for inference.
These neural models show state-of-the art perfor-
mance but rely on vast amounts of parallel data.

On the other hand, there is a Statistical Machine
Translation paradigm that is based on phrase ta-
bles that are learned from parallel corpus. These
methods are currently replaced by neural coun-
terparts for high-resource languages, but perform

better in low-resource settings (Bentivogli et al.,
2016).

For some language pairs the size of paral-
lel corpus ranges from extremely low to almost
zero. These extremely low-resource language
pairs were a motivation for the Unsupervised Ma-
chine Translation (Lample et al., 2017; Artetxe
et al., 2017b) that aims to translate language with-
out usage of the parallel corpora for training.

The first step of the unsupervised approach to
translation is the same for all methods: learn-
ing word level embedding spaces for source and
target languages and then aligning these spaces.
Next, one of the unsupervised vector space map-
ping methods (Artetxe et al., 2017a; Conneau
et al., 2017) is applied to align spaces together
and perform word by word translation. This map-
ping is only possible because of the linear prop-
erties of the word embedding method that is used
to get word vector representations. Lastly, to im-
prove system’s performance, iterative refining us-
ing either neural network models or parts of SMT
pipeline is done (Mikolov et al., 2013b; Lample
et al., 2018). In this work we implement a system
that is similar to the latter approach.

Statistical Machine Translation systems that
are based on the phrase representations require
smaller amounts of data to achieve reasonable per-
formance. Phrase-based Unsupervised Machine
Translation is motivated by the assumption that
methods working without parallel data can benefit
from the usage of phrases as the basic units. In or-
der for phrases to be used for Unsupervised Trans-
lation they have to be represented in a suitable
way. Current approach is to learn phrase embed-
dings as atomic vocabulary units (Lample et al.,
2018).

In this work, we implement systems for the
English-Estonian language pair following the
guidlines presented in (Lample et al., 2018) and
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show that simply using sum of individual word
embeddings can produce reasonable phrase em-
beddings. This eliminates the need of having huge
n-gram vocabulary that might be hard to learn and
use in unsupervised bilingual mapping. It also al-
lows to obtain embeddings for arbitrary phrases as
opposite to using predefined limited set of phrases.

This paper is organized as follows: In Sec-
tion 2 we describe our unsupervised translation
system baseline. Section 3 describes our ap-
proach to computing phrase embeddings for arbi-
trary phrases for UMT. In Section 4 we describe
our experiments for compositional phrase embed-
dings standalone and in context of UMT. Section
5 concludes the work.

2 Baseline UMT System

Our baseline systems relies on the recently pro-
posed Phrase-based UMT framework (Lample
et al., 2018). Firstly, we learn monolingual embed-
dings for words and then use unsupervised map-
ping for bilingual lexicon extraction. The lex-
icon is used to compute semantic distances be-
tween phrases which results in the phrase table as
used in Statistical Machine Translation. Lastly, we
use standard SMT pipeline 1 with ngram language
models in order to generate translations. We do
not perform iterative back translation for simplic-
ity and due to time and compute limits.

In the simplest case the phrase table consists
solely of the unigram entries, but following Lam-
ple et al. we also consider bigram and trigram ex-
permients. However, we use a different procedure
for making decisions on which ngrams to consider
for adding to the phrase table.

Extraction of n-grams is done by probabilis-
tically joining words into phrases. We use fre-
quency filtering with sampling, so n-grams are
sometimes joined and sometimes not. We down-
sample the most frequent words, with probability
function p = 1

fβ , where p is the sampling proba-
bility, f is the n-gram frequency and B is a small
weight (we used β = 1

8 ). Frequency filtering is
used for very rare words, so they must appear more
than the set threshold. For example a n-gram that
appears 25 times is joined with probability 0.668,
but n-gram that appears 1000 times is joined with
probability 0.422.

The point of using phrases is that they should
be less ambiguous than words, and the fact that

1http://www.statmt.org/moses/

one word in one language can be a phrase in an-
other language, like Estonian word ”laualt”, which
means ”from the table”. The extraction of n-grams
is done as in Blue2vec algorithm (Tättar and
Fishel, 2017). To compute embeddings (S. Har-
ris, 1954; Mikolov et al., 2013b) we use FastText2

(Bojanowski et al., 2017) embeddings instead of
word2vec (Mikolov et al., 2013a). We prefer Fast-
Text because it produces embeddings that incorpo-
rate subword level information which is proven to
be helpful.

After finding vectors for words and phrases,
we need to project the source and target language
embeddings into the same space (Artetxe et al.,
2017a; Conneau et al., 2017; Artetxe et al., 2018).
Projecting is done using the MUSE 3 library. We
use cross lingual similarity scores to score N-
grams.

3 Approach to Phrase Embeddings

State of the art Phrase Based UMT systems ( Lam-
ple et al.) learn phrase embeddings as individ-
ual vocabulary entries (to form the entry, we just
concatenate words together with underscore). Al-
though this approach provides good embeddings
for phrases, it has serious limitations. Firstly, it is
very memory intensive because it is infeasible to
learn and store vocabulary of all phrases that can
occur in the corpus. The size of the vocabulary
grows almost exponentially over the length of the
phrase, and thus vocabularies of that order of mag-
nitude do not fit into the computer memory in most
cases. Secondly, there is a data sparsity problem
since some (even two-word) phrases occur rarely
even in the very large corpus (it makes learning
embedding vectors hard for some phrases).

The idea to combine embeddings to get a phrase
embedding (Mikolov et al., 2013b) was success-
fully used in context of tasks such phrase similar-
ity (Muraoka et al., 2014) and non-compositional
phrase detection (Yazdani et al., 2015). We fol-
low similar idea and show why it is highly suitable
specifically for unsupervised translation.

In summary, we first learn vectors for reason-
able amount of phrases as single-token vocabulary
entries (e.g. ”research paper”). At the same time
(as a part of the same training procedure), we learn
embeddings for individual words (”research” and
”paper” separately). Finally, we train a regression

2https://github.com/facebookresearch/fastText
3https://github.com/facebookresearch/MUSE
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model to predict phrase vectors from their word
vectors. We assume that the model will learn the
function that captures the pattern of combining
word vectors in order to generate phrase vectors.
Since we can obtain vectors for arbitrary words,
we thus can estimate vectors for arbitrary phrases
by combining word vectors with the learned func-
tion. Remaining text of the subsection defines the
pipeline in step by step fashion.

Step 1: obtain training data for non-
compositional modeling. In order to compute
vectors for words and subset of phrases (we treat
phrases as single-unit vocabulary entries at this
point) we first need to get a monolingual corpus
and do some preprocessing like lowercasing / true-
casing and tokenization.

Step 2: extract phrase candidates. Since we
can not learn vectors for all phrases in the corpus,
we have to decide which phrases to use to learn
vectors for. One option is to randomly glue desired
number of phrases together while other options in-
clude only gluing phrases that belong to some spe-
cific set of desired phrases. The set can be formed
by scoring all phrases from the corpus by some
criterion and then taking top N phrases based on
their scores. Here we provide non-comprehensive
list of criterion that can serve to the purpose of
gluing two-word phrases: Likelihood ratio, Raw
frequency, Poisson Stirling criterion, Chi square
score, Dice score, Jaccard measure etc. We refer
author to external literature for additional informa-
tion on this topic (e.g. (Manning et al., 2008)).
Concrete metric should be task specific or empiri-
cally chosen.

Step 3: glue phrases. At this step we simply
go through the corpus from Step 1 and glue some
words together based on the phrases set from the
Step 2.

Step 4: train word embedding model. At this
step we train (say) the Skip-gram model on words
and phrases corpus from Step 3. This way we get
semantic vectors for words and some phrases.

Step 4: obtain training data for composi-
tional modeling. At this step we extract phrase
vectors for phrases that we glued at the Step 3.
Then we extract word vectors for words that are
used to compose these phrases. The dataset then
consists of following pairs of entities: sequence of
the word vectors as an input, and phrase vector as
the target.

Step 5: train compositional model on the

data from the Step 4. At this point we use the
dataset from previous step to teach the model to
compose word vectors in a way that phrase vector
is produced

One critical property of this framework is that
it produces vectors for phrases as if they were
learned as the single-token units as a part of the
vocabulary. That is, result phrase embeddings
will not differ (in terms of their properties) from
word embeddings. Word embeddings are learned
as individual vocabulary units and satisfy to all as-
sumptions of bilingual mapping methods (Artetxe
et al., 2018); therefore, phrase embeddings learned
this way would also do. Since billingual embed-
ding mapping is the key necessury step of all cur-
rent approaches to UMT, our phrase embeddings
might become strong alternative for any existing
UMT system.

We make our implementation of the pipeline
available as an open source project 4.

4 Experiments

4.1 Compositional Phrase Embeddings

In this subsection we describe our experiments on
compositional phrase embeddings standalone.

4.1.1 Setup
We explored on the predictive ability of the differ-
ent variants of the compositional models that we
train as a part of the Step 5 of the framework. Fol-
lowing steps describe concrete decisions we made
as a part of our implementation of the general
pipeline we defined in previous subsection.

Step 1: obtain training data for non-
compositional modeling. We used first 1 billion
bytes of English Wikipedia as our training data.
The data contains 124,301,826 lowercased tokens.

Step 2: extract phrase candidates. We only
glued phrases that belong to some specific set of
desired phrases. The set was formed by scoring
all phrases from the corpus by likelihood ratio cri-
terion and then taking top 600,000 phrases based
on their scores.

Step 3: glue phrases. At this step we simply
went through the corpus from Step 1 and glued
some words together based on the phrases set from
the Step 2.

Step 4: apply skip-gram model. At this step
we trained Skip-gram model on words and phrases

4https://github.com/maxdel/bigram_
embedder
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corpus from Step 3. This way we got semantic real
valued vectors for words and some phrases. We
trained the system using fasttext framework ( (Bo-
janowski et al., 2017)) for 6 epochs with default
parameters expect for the embedding size which
we set to 100.

Step 4: obtain training data for composi-
tional modeling. The result dataset size was about
600,000 training examples.

Step 5: train compositional model on the
data from the Step 4. At this point we used the
dataset from previous step to teach different mod-
els to compose word vectors in a way that phrase
vector is produced.

We also left some examples apart for validation
and testing. The test set size was 2400 examples,
development test size was 2000 examples. Devel-
opment set was used to tune models hyperparame-
ters, and test set was used to perform final models
comparison.

4.1.2 Candidate Models
Let w1 be the vector of the first word and w2 the
vector of the second. Let also p be the result vec-
tor of the phrase and D be the dimension of the
w1, w2, and p. The types of the models that we
implemented and trained5 are following.

• Simple addition (AddSimple):

p = w1 + w2

• Addition with attention weights (AddAtt):

p = a1 ∗ w1 + a2 ∗ w2

where a1 and a2 are scalars that are learned
by first concatenating the word vectors, and
then projecting result into two dimensions.

• Dimwise addition with attention weights (Ad-
dAttDimwise):

p = a1 ∗ w1 + a2 ∗ w2

where a1 and a2 are vectors of the size D that
are learned by first concatenating the word
vectors, and then projecting result into the D
dimensions. Therefore, we add two vectors
with weight assigned to each dimension.

5AddSimple model does not require training while atten-
tion weights for AddAtt and AddAttDimwise are learned from
data

• Neural Network with one linear layer (Lin-
ear):

W1 ∗ ([w1, w2])
where W1 is parameters matrix and [w1, w2]
means concatenation

• Neural Network with dense ReLU layer and
linear layer (NonLinear):

W2 ∗ReLU(W1 ∗ [w1, w2])

• Multilayer Neural Network (MultilNonLin-
ear): the same as the previous one, but with
two more nonlinear layers. The sizes of hid-
den layers are 170, 130, and 100.

• Long Short Term Memory network (LSTM):
last timestep is used as phrase representation
( (Hochreiter and Schmidhuber, 1997)).

Smooth l1 loss was used in order to train all the
models:

loss(x, y) =
1

n

∑

i

zi,

where

zi =

{
0.5(xi − yi)2, if|xi − yi| < 1
|xi − yi| − 0.5, otherwise

}

We choose this loss because it is more tol-
erant to outliers, which may occur due to non-
compositionality of some phrases.

4.1.3 Experiments Results and Analysis
In order to get interpretable accuracy scores for
models comparison we first run our trained re-
gression models in the inference mode to predict
phrase vectors for the test set. Then we retrieve
the top N (N is one of {1,3,5,10}) closest points
in the embedding space, and check if the ground
truth phrase belongs to this set. If the phrase is
not in the topN, we count it as an error. Lastly we
divide number of non-error examples by the size
of the training set to obtain accuracy score. Ta-
ble 1 shows accuracy scores across various models
across various topN values.

As we can see from the Table 1, simple summa-
tion baseline shows decent performance in com-
positional phrase vector modeling. This interest-
ing result was explained by the authors of the
Skip-gram model ( (Mikolov et al., 2013b)). They

364



Table 1: Accuracy results of explicit evaluation of com-
positional models. Top 3 results among columns are in
bold.

Model top1 top3 top5 top10
AddSimple 0.35 0.81 0.88 0.94
AddAtt 0.37 0.65 0.74 0.84
AddAttDimwise 0.38 0.66 0.75 0.84
Linear 0.71 0.85 0.88 0.92
NonLinear 0.62 0.75 0.80 0.85
MultiNonLinear 0.69 0.83 0.87 0.91
LSTM 0.73 0.88 0.92 0.95

show that addition of two token vectors approxi-
mately equivalent to the AND operation between
their distributions over context words (we predict
context / surrounding words with the Skip-gram
model). This means that the result token vector
will be equivalent to the token (phrase or word)
that shares the same context with the input token
vectors. Despite the good performance of the sim-
ple addition function, we observe drop in perfor-
mance for attentional analogues. This might be
due to the fact that it is sometimes hard to pre-
dict these attention weights from the words them-
selves, since the Skip-gram embeddings does not
really contain much of Part of Speech (POS) in-
formation (e.g. words like ”go”, ”goes”, ”going”,
”went” are grouped together despite having differ-
ent POS tags) while this information is what was
needed to achieve good results in (Muraoka et al.,
2014). Among neural architectures, the LSTM
network was able to outperform simple sum oper-
ation. It might be due to the separate gates it uses
for memorizing the important (in context of the fu-
ture phrase) semantic part of the word, forgetting
redundant dimensions, and updating the first word
with some information from the second word. We
conducted experiments on phrases with length up
to two words for simplicity.

This experiments show that LSTM network is a
powerful tool for predicting compositional phrases
while linear layer remains a strong option. How-
ever, we also strongly consider summation as a
valid option due to its simplicity, comparable per-
formance, and theoretical motivation. In fact, we
use summation powered phrase embeddings in our
ongoing experiments with phrase-based UMT sys-
tem described here.

Note that sum shows low performance at top1
sampling (Table 1). It is explainable since there is

no information about the order in which individ-
ual words were summed so model just outputs the
vector for a phrase with reverse word order. How-
ever, it is still acceptable vector as it is shown by
a huge jump at top3, where usually both word or-
dering options are included.

4.2 Unsupervised Machine Translation

In this subsection we describe our experiments
with compositional phrase embeddings as a part
of the phrase based UMT system.

4.2.1 Setup
In this subsection, we describe the the setuppa-
rameters we used in our system. The Unsuper-
visedMT framework 6 was used to train baselines.

Data. In our experiments we use datasets from
the WMT’18 unsupervised translation task (Bo-
jar et al., 2018) for Engish-Estonian language pair.
15M monolingual sentences for Estonian and the
same amount for English is considered.

Preprocessing. We use tokenization and true-
casing to preprocess our data for both embeddings
learning and language models training.

Unigram system. This system contains uni-
gram cross-lingual word embeddings and does not
include the n-grams.

Bigram-atomic/trigram-atomic system. This
systems use phrase table that consist of bi-
gram/trigram entries. Embedding vectors for bi-
grams/trigrams were obtained as a result of treat-
ing ngrams as atomic vocabulary units.

Bigram/trigram-sum. This system uses phrase
table that consist also of bigram/trigram entries,
embedding vectors for which were obtained as a
result of summing individual word vectors that
form the bigram. The proportion of unigram / bi-
gram / trigram types is about 0.5 / 0.25 / 0.25 for
English and 0.89 / 0.9 / 0.2 for Estonian.

N-gram extraction. Frequency filter settings
are the following: 20, 120 and 90 (frequency
counts for filtering out infrequent n-grams, uni-
grams, bigrams and trigrams respectively). The
beta parameter is set to 0.125. This procedure is
used to extract ngrams for both the atomic and sum
systems. As a result, for bigram experiments, 38%
of English vocabulary and 9% of estonian vocab-
ularty consisted of bigrams.

FastText Embeddings. We use CBOW with
character n-grams of size 3 to 6 as a core algo-

6https://github.com/facebookresearch/UnsupervisedMT
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rithm for embeddings learning. The number of di-
mensions is set to 300. Other parameters are kept
as default.

Bilingual MUSE embeddings. Default param-
eters are kept and MUSE is used on CUDA GPUs.
Embeddings dimensions are set to 300.

Language model. We train Moses style ngram
langage models with the order of 5.

Moses and beam search. We keep all Moses
and beam search hyperparameters default.

4.2.2 Experiments Results and Analysis
Final BLEU scores for the experiments
with Unigram, Bigram/Trigram-atomic, and
Bigram/Trigram-sum systems are presented in
Table 2.

Table 2: BLEU scores for our baselines and systems
powered with compositional phrase embeddings for
Estonian-English and English-Estonian language di-
rections.

System et-en en-et
Unigram 4.42 4.14
Bigram-atomic 7.92 4.73
Trigram-atomic 7.63 4.96
Bigram-sum 6.25 3.88
Trigram-sum 6.28 4.05

Regarding Ngram-atomic series of experiments,
Table 2 shows that there is an advantage of using
bigrams for both language directions. However,
for Estonian-English the advantage is much bigger
(+3.5 against +0.59 BLEU). That might be due to
the fact the the number of ngrams in English vo-
cabulary is more then 3 times as big as the cor-
responding number for Estonian vocabulary. Tri-
gram experiment provides no significant increase
or decrease over the bigram experiment.

The benefit of using bigrams and the trigram
trend are consistent with the findings of Lample
et al.. However, while Lample et al. reports the
increase of about 1 BLEU point when using bi-
grams, we observe the increase of 3.5 for et-en.
Note that we also use custom ngram extraction
procedure as opposite to taking top N most fre-
quent bigrams (Lample et al., 2018).

In case of Ngram-sum experiment for et-en, the
system outperforms unigram experiment suggest-
ing that the compositional embeddings do have se-
mantic power. However, it is below the Bigram-
atomic and Trigram-atomic baselines which is ex-
pected since the predictivness of the compositional

model is not perfect. For en-et however, neither
Bigram-sum nor Trigram-sum system outperforms
atomic baseline suggesting that the topic needs ad-
ditional dedicated research efforts.

5 Conclusions and Future Work

In this work, we present our results for the
WMT18 shared task on unsupervised translation.
Our baseline systems follow principles of the
Phrase-based Unsupervised MT where we study
unigram, bigram, and trigram systems. The vec-
tors for ngrams are learned as individual vocab-
ulary entries which has its limitations. Thus we
study compositional phrase embeddings as a sub-
stitute, and show that simply summing up individ-
ual phrase words results in phrase embeddings that
allow UMT systems to improve over baselines.

We showed that atomic phrase embeddings can
be accurately estimated with compostional pre-
dictive models. Still, the effect of compositional
phrase embeddings on PBUMT is still to be stud-
ied. More language pairs should be considered
and more exhausive targeted experiments with
stronger baselines should be done. We leave this
research direction for future work.
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Abstract

This paper describes the submission systems
of Alibaba for WMT18 shared news transla-
tion task. We participated in 5 translation di-
rections including English↔ Russian, English
↔ Turkish in both directions and English →
Chinese. Our systems are based on Google’s
Transformer model architecture, into which
we integrated the most recent features from the
academic research. We also employed most
techniques that have been proven effective dur-
ing the past WMT years, such as BPE, back
translation, data selection, model ensembling
and reranking, at industrial scale. For some
morphologically-rich languages, we also in-
corporated linguistic knowledge into our neu-
ral network. For the translation tasks in which
we have participated, our resulting systems
achieved the best case sensitive BLEU score in
all 5 directions. Notably, our English→ Rus-
sian system outperformed the second reranked
system by 5 BLEU score.

1 Introduction

We participated in the WMT18 shared news trans-
lation task in 3 different language pairs: English
↔ Russian, English ↔ Turkish and English →
Chinese. English↔ Russian is a traditional WMT
language pair possessing a large amount of bilin-
gual training and development data. And espe-
cially this year, 16 million new translation units
are available for the training. However for some
more recent language pairs, the situation of bilin-
gual resources is less promising: English↔ Turk-
ish language pair only has 200 K bitexts and for
English → Chinese, the amount of bilingual re-
sources remains the same as last year. In the fol-
lowing sections of this article, We will see that
the availability of bilingual resources can differ-
entiate the performance of the final system. More

∗ Equal contribution

precisely, more bilingual data means greater abil-
ity to interact and absorb target side monolingual
knowledge through the process of back transla-
tion, as well as its ability to retrieve the pertinent
in-domain data during the data selection process.

We share a very similar model architecture and
training flow for different languages directions.
Our models are based on the Google’s Trans-
former architecture (Vaswani et al., 2017). In or-
der to improve our single system’s performance,
we experiment with some latest research findings
such as transformer with relative position attention
(Shaw et al., 2018), weighted transformer (Ahmed
et al., 2017) and neural suffix prediction for Rus-
sian (Song et al., 2018) which will be developed
in the next section. We will also see that different
well-known multi-system based techniques such
as model ensembling and model reranking can still
improve the performance of a very strong single
system, even though we have to push further the
limit in term of the number of models to employ
as well as the methods to combine them together.

The paper is structured as follows: Section 2
will describe the novelties of our model archi-
tecture compared to the Google’s standard Trans-
former framework, then we present a detailed
overview of our system in Section 3, before giving
the experimental settings and main results across
languages in Section 4. Finally, Section 5 will
draw a brief conclusion of our work for WMT18.

2 Model Features

We describe in this section three different archi-
tecture enhancements that we do to the standard
Transformer architecture, two of them come from
the latest research work on Transformer, the third
one is from our internal research group. They
all, to a certain extent, help improve the base-
line model, but the improvement is not consistent
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across all languages and it becomes progressively
weaker, diluted in the combination of other tech-
niques.

2.1 Transformer with Relative Position
Attention

We use relative position representation in self-
attention mechanism (Shaw et al., 2018) of both
the encoder and decoder side for all systems. Orig-
inally, the Transformer only uses the absolute po-
sition information in the word embedding layer,
lacking of position information in higher layers.
Incorporating explicit relative position informa-
tion in self-attention enables its propagation to the
higher layers. And in contrast to the absolute po-
sition, it’s invariant to the sentence length. We
compared the translation results between whether
using this feature or not, and found that with the
relative position features, the model performs bet-
ter in reordering. We also implement the relative
position representation with fast decoding. Exper-
iments showed that it lead to faster convergence
and better performance.

2.2 Weighted Transformer

Motivation: The Transformer Model proposed
by Vaswani et al. (2017), uses a self-attention
mechanism to avoid recurrence and convolution
in previously proposed models. The heads in
the multi-head attention are independent of each
other, Ahmed et al. (2017) improved this with a
new mechanism, namely multi-branch attention.
The latter adds a group of dynamic learned param-
eters to distinguish the importance of the heads.

Our Implementation: We implement the
weighted transformer, with extra small improve-
ments compared to the original implementation.
We introduce the weighting mechanism to both
encoder and the bottom layer of multi-head at-
tention in decoder which does not accept encoder
output states. The reason we do not add in the
upper layer of multi-head attention is that it causes
about 3 times slower of training speed.

2.3 Neural Suffix Prediction for Russian

For English to Russian task, we implement Song
et al. (2018) ’s work, namely neural suffix predic-
tion, in our baseline system. Song et al. (2018) ’s
work takes a two-step approach for the decoder.
Russian word sequence is split into stem sequence
and suffix sequence. During the decoding time,

stem is first generated at each decoding step, be-
fore suffix is predicted. Due to limited resource,
we didn’t strictly evaluate the actual improvement
of this method, compared with the baseline Trans-
former architecture. We directly use it as our base-
line system. For the following part of this paper,
our English to Russian model is with neural suffix
prediction by default. We use Byte Pair Encoding
(BPE) (Sennrich et al., 2015) to get subword se-
quence of English side. For Russian side, BPE is
applied on the stem sequence.

3 System Overview

3.1 Large-scale Back Translation

Adding synthetic data through the process of back
translation (Sennrich et al., 2016) has become the
paradigm when building state-of-the-art NMT sys-
tems. especially when a large amount of target-
side in-domain data is available. For low-resource
languages, the use of back-translated monolingual
data is crucial as the target side lexicon cover-
age is often insufficient, it is the case for English
↔ Turkish, with only 0.2M bilingual sentence
pairs and Turkish being a very morphologically-
rich language.

Considering the abundant volume of the mono-
lingual data provided by the organizers and the
costful process of back translation, we need to se-
lect among the entire monolingual data those of
quality and being close to our domain of interest.
We use the methods described in the data selection
section (Subsection 3.2) to select this in-domain
data from the large monolingual data.

Then comes the question of how many back
translated data should be used. Our experiments
showed that it’s difficult to have an universal
recipe for all languages across all tasks, we had to
experimentally tune the amount of synthetic data
to use according to the specific task, even for the
two directions within the same language pair (See
Table 1 for more details).

For different translation tasks, we use synthetic
data ranging from 5 million to 70 million in com-
bination with the provided parallel corpus to train
the NMT system, resulting in an increase of +3 to
+7 BLEU point over our baseline systems.

In order to understand the effectiveness of the
large-scale back translation, we give a simple anal-
ysis using the example of English → Russian.
A big Russian language model using 96 million
monolingual data (All-96M-LM) is trained for this
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authentic synthetic (critical) synthetic (upper bound tested)
EN→ RU 8M 8M 24M
RU→ EN 30M 70M 85M
EN→ TR 0.2M 6M 14M
TR→ EN 0.2M 10M 15M
EN→ ZH 7.2M 3.98M 10M

Table 1: Synthetic data usage. Authentic: the amount
of authentic parallel data after cleaning; Synthetic
(critical): the maximal amount of synthetic data added
to the parallel data with improvement; Synthetic (up-
per bound tested): the maximal amount of synthetic
data tested

baseline translation translation with BT reference translation
(BLEU 36.66) (BLEU 38.94)

All-96M-LM 206.35 203.07 197.95
NoUN-80M-LM 204.72 199.83 194.83

Table 2: Perplexity analysis of the effect of back trans-
lation with English→ Russian examples

purpose, then 3 different translations of the new-
stest2017 test set are evaluated in term of perplex-
ity over this language model, the results are shown
in the Table 2. We can see that the translation
produced by a model using back translation has
a lower perplexity than the one without using it,
and an increase of +2.3 BLEU is observed accord-
ingly. This means that with the extra target side in-
domain data, the model can learn to produce more
fluent translation.

Similar observations can be obtained using a
different language model (NoUN-80M-LM), we
can notice that without the UN data, the same
translations have lower perplexity, as the UN do-
main is a different domain than the news one,
that’s also in line with the BLEU score increase
when training without the UN corpora in the En-
glish → Russian experiment results (See Subsec-
tion 4.2 ).

3.2 Fine-tuning with In-domain Data

Fine-tuning is a common method for domain adap-
tion in NMT, which has proven effective for boost-
ing the translation quality in a specific domain.
Following Luong and Manning (2015), we first
train a model on a large out-of-domain corpus and
then continue a few epochs only on a small in-
domain corpus. In our work, we try two different
approaches to select the small in-domain corpus,
namely, n-grams and binary classification.

N-grams: In order to acquire high-quality in-
domain data, we exploit the algorithm detailed in
Duh et al. (2013); Axelrod et al. (2011), which

aims at selecting sentence pairs from large out-
domain corpus that are similar to the target do-
main. In our experiment, the parallel bi-texts and
monolingual back-translation corpus are used as
out-domain corpus O. While all available newstest
sets are regarded as in-domain corpus I . We first
train tri-gram language models over the source
and target side of the in-domain corpus, respec-
tively (HI−src and HI−tgt). Then, build tri-gram
language models of similar size over the random
sample from the out-domain corpus (HO−src and
HO−tgt). Based on this, each sentence pair s from
O is scored by the bilingual cross-entropy dif-
ference [HI−src(s) − HO−src(s)] + [HI−tgt(s) −
HO−tgt(s)]. Finally, we sort all sentence pairs and
select top n (n = 100K) sentences pair with the
lowest scores to fine-tune the parameters of neu-
ral network.

Binary Classification: Finding the sentence
pairs that are similar to the in-domain corpora can
also be viewed as a text categorization problem,
albeit there are only two categories here, that is,
in-domain (1) and out-domain (0).

With the development of word embedding
(Mikolov et al., 2013), we are now able to con-
vert textual content into numerical representation
that bears much more information than the tra-
ditional ngram-based models can, such as posi-
tional, semantic and syntactical information. In
most sentences, there are parts that carry strong
domain information and are very useful in deter-
mining whether a particular sentence is in-domain
or out-domain, while other parts are much more
general and thus less useful. To extract such key
domain information from a sentence, we can use
convolutional neural network (CNN) with a soft-
max classifier sitting in the top layer.

We follow the footstep of Chen and Huang
(2016) where the Semi-Supervised CNN (SS-
CNN) domain adaption method was proposed. We
use our own cloud-based word2vec to train word
embeddings of 300 dimensions, using all avail-
able WMT18 bilingual and monolingual corpora
for the constrained translation tasks and all the cor-
pora that we have access to for the unconstrained
tasks. Similar to Chen and Huang (2016), we
also make full use of conText (Johnson and Zhang,
2015) as the CNN-based text classifier, which fea-
tures a stack of two independent CNNs. The in-
puts to the first network, which is a simple con-
volution layer, are bag-of-words one-hot vectors,
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concatenated one-hot vectors, bag-of-words word
embedding vectors and concatenated word embed-
ding vectors, respectively, which results in four
output regions correspondingly. The regions are
then fed to the actual CNN classifier altogether
that consists of one convolution layer, one non-
linear layer, one max pooling layer as well as a
softmax. Without the loss of generality, we refer
the full stack as one CNN classifier. For bilingual
corpora, we train two classifiers, one for each lan-
guage. Each classifier is trained with pre-trained
word embeddings of each sentence and the cor-
responding label (1 for in-domain or 0 for out-
domain). During inference, the classifiers will
score each new sentence pair, resulting in four
scores. That is, for each language, we will have
one score for the in-domain possibility and the
other for out-domain. Then, we replace the en-
tropy scores of the scoring equation used in the
ngram-based approach with these four possibility
scores, to work out the final score for the sentence
pair.

While training the CNN classifiers, we first
sample a general domain corpora with the same
number of sentence pairs in the in-domain set to
be used as the out-domain set. For SSCNN, an
in-domain set of a few thousand sentence pairs
is sufficient to find high quality in-domain sub-
corpora from the general corpora. Then, we label
all in-domain pairs with 1 and all sampled pairs as
0. Next, for each language, we pass all labelled
sentences to a CNN classifier, where the first net-
work scans the input with the window size of 5 and
the stride size at 1 with a zero padding of 4. For
the second network, we employ 500 neurons with
ReLU as the activation for the nonlinear layer. The
loss function we use is mean square error and the
training progresses using SGD with momentum.

Hyper-specialisation: While the two methods
described previously in this section allow us to
acquire data that are close to our development
set, however, only suboptimal performance is ex-
pected on the final test set, as we don’t have the
reference translation to perform the bilingual data
selection for the final test set. Inspired by the
idea of hyper-specialisation (Deng et al., 2017),
we produced multiple hypotheses of the test set us-
ing our best single and ensemble models, and used
them as the target side translations. By integrating
the real source text and target side translation pairs
of the test set as in-domain seed into the data se-

lection process, we makes the latter aware of the
test set information, thereby enables it to retrieve
better in-domain bi-texts for this specific test set.
Subsequently, these synthetic bi-texts can serve as
train data as they are in-domain parallel data of
good quality, the idea is to imitate the effect of
model ensemble, but at the data level.

Finally, we replace Adam (Kingma and Ba,
2014) optimizer with SGD and use the learning
rate decay, then we continue training the current
best model for a few more iterations on the mix-
ture of synthetic bi-texts and top n (n=100K) se-
lected bilingual texts.

3.3 Greedy Model Selection based
Ensembling

Model ensembling is a widely used technique to
boost the performance of a MT system, which
consists in combining the prediction of multiple
models at each decode step. However, we have
observed that if the single models were strong
enough, very tiny improvement could be drawn
from a simple combination of the top N mod-
els. Also combining brutally an increasing number
of models could easily go over the resource limit
even with very powerful multi-gpu machines.

In order to overcome this limit, we adopted an
approach named Greedy Model Selection based
Ensembling (GMSE) that we will describe in this
section.

GMSE Algorithm: The algorithm takes as in-
put a sorted list of N strong single models L cand =
{M 0 ≤ i ≤ N} with N could possibly up to sev-
eral hundreds, the order is typically defined by the
performance on the development set. The algo-
rithm starts with a “keep” list C current which ini-
tially only contains the model M 0. At each iter-
ation, a model candidate M i, is shifted from the
input L cand and concatenated temporarily to the
current “keep” list, all these models are then put
through a standard model ensemble process. If the
current iteration ends up with a better BLEU score,
the candidate model M i is added to the “keep” list
C current. Otherwise, it is add to a “redemption” list
R. and still has a weak chance to be “redeemed”
for the future iterations. One model from the “re-
demption” list can only be redeemed once, after
which it is withdrawn definitely from the candi-
dates. At the beginning of each iteration, a can-
didate model M i could be either drawn from the
beginning of the L cand with a probability P, the
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end of the L cand with a probability Preverse, or the
“redemption” list R with a probability Predeem, we
used [P, Preverse, Predeem] = [0.8, 0.1,0.1] for our ex-
periments. The algorithm ends when the input list
L cand is empty or a certain number of stalls (10)
is reached. See algorithm 1 for the pseudo-code.

Algorithm 1 GMSE algorithm
Input:

The sorted list of N single models ordered
by performance on dev set: L cand =
{M 0 ≤ i ≤ N};
Number of stalls before stopping the algo-
rithm: K;

Output:
The best combination when stopping criterion
is reached: C best;

1: Initialization:
2: C current = {M 0}
3: C best = {M 0}
4: R = {}
5: Sbest = SM0

6: k = 0
7: while k < K and L cand is not empty: do
8: if CONDITION(R, Predeem) = True: then
9: M cand = shift R

10: else if CONDITION(Preverse) = True: then
11: M cand = pop L cand
12: else
13: M cand = shift L cand
14: end if
15: C current = C current ∪{Mcand}
16: Scurrent = ensemble(Ccurrent)
17: if Scurrent > Sbest then
18: C best = C current
19: Sbest = Scurrent
20: else
21: C current = C best
22: R = {M cand} ∪R
23: end if
24: end while

As mentioned at the beginning of the section,
the effect of model ensemble is diminished with
strong single models, especially with fine-tuned
models. In order to boost the performance, we
trained independently a large number of mod-
els using different model features for transformer
models as described in the Section 2 , different hy-
perparameters, different versions of training data
and different model types, resulting in a search
space which is sufficiently large and with high di-

versity. The greedy nature of the GMSE algorithm
makes the search feasible in a relatively accept-
able time limit. On the development set, this al-
gorithm can consistently improve more +1 BLEU
point over the best single model across all the lan-
guage directions in which we have participated.
This increase drops to only around +0.3 - +0.5 on
test set.

3.4 Greedy Feature Selection based
Reranking

We describe the greedy feature selection based
reranking (GFSR) we used in WMT 2018 in this
section. N-best reranking in machine translation
is a common-used technology, which can improve
translation quality by picking better translations
from n-best list to replace the one with the high-
est MT model score.

GFSR Framework: We adopted the widely
used an open-source implementation in moses
(Koehn et al., 2007) of K-batched MIRA algo-
rithm (Cherry and Foster, 2012) to rerank the nbest
list. Unlike most common reranking architectures,
we select the features greedily from a large fea-
ture pool, in which there are about 50+ different
feature types.

1 

Y 

N 

Start 

#	features	>	threshold End 

Greedy	Removing	each	feature,	then	
tuning	weights	on	dev 

Removing	the	one	with	the	lowest	dev	
score,	saving	weights	configura?on 

Figure 1: Framework of GFSR

As described in Figure 1, firstly, reranking the
nbest list with all n features in the feature pool.
Secondly, for all features, ignoring each one of
them from the feature pool in a loop, and using
the other n− 1 features to rerank on the dev data.
Then, the feature that can get largest BLEU score
improvement by ignoring it is removed from the
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Category Features

NMT Model Features
Main model score
Left2Right sodel score (Liu et al., 2016)
Target2source model score (Sennrich et al., 2016)

Language Model Features Multiple ngram language models

Count Features

Word count
Char count
Word count ratio
Char count ratio

Word-alignment-based Features
Word posterior probability (Ueffing and Ney, 2007)
Sentence-level translation probability

Expected Scores
Consensus score (Expected BLEU) (DeNero et al., 2009)
Expected ChrF (Popović, 2015)
Expected Qmean (Chen et al., 2012)

Table 3: Features (feature templates) for reranking.

feature pools. The loop stops when the number of
features is smaller than a threshold.

Features: We used about 50+ features in our
reranking module, including NMT model features,
count-based features, word-alignment-based fea-
tures, expected scores features, etc. The feature
types are described in Table 3. Some feature types
such as NMT model features and Language Model
features may have multiple instances.

Reinforced Nbest Generation: In order to have
large beam size K = 100+ without introducing
too many noises, we use multiple strong ensem-
ble systems to generate a joint Nbest list. The idea
is to have a higher upper-bound for the beam with-
out the side-effect of having a lower lower-bound,
Thereby, the reranker can focus on only good can-
didates.

3.5 Postprocessing

To recase (or recapitalize) the MT output, SMT-
based recasers are trained on the Target side cor-
pus with Moses toolkit1. In these models, lan-
guage model plays an important role. As a re-
sult, large & domain related LMs are built. We
also use a few simple uppercase rules, for example
province & city names and the words beginning of
a sentence are capitalized.

4 Experiments and Results

Preliminary experiments showed that the model
features described in the section 2 yielded simi-
lar improvements reported in the original papers,
or on par with the standard Transformer. For all of
our baseline systems, we integrated these features
into our model architecture, except the neural suf-
fix prediction which is only used for the English
→ Russian system.

1http://www.statmt.org/moses/

All of our experiments employ 6 encoder and
decoder self-attention layers, both embedding and
hidden size have a dimension of 512, 8 heads for
the self-attention. We use FFN layer with 2048
cells and Swish (Ramachandran et al., 2017) as
activation function. Warmup step is set to 16000
with a learning rate equals to 0.0003. We use la-
bel smoothing with a confidence score 0.9 and all
the dropout probabilities are set to 0.1. All base-
line systems are trained with 4 to 8 GPUs using
synchronous-SGD with moving average mecha-
nism where the average is taken in time and in
space (Zhang et al., 2015).

We use BLEU as evaluation metric (Papineni
et al., 2002). For English ↔ Russian and En-
glish↔ Turkish, all reported scores are calculated
over tokenized texts except for the 2018 submis-
sion which is end2end BLEU. For English→ Chi-
nese, all reported scores are end2end BLEU score
using the SACREBLEU toolkit2 (Post, 2018).

4.1 English→ Chinese

For the English→ Chinese system, we use all the
available parallel data to train our English→ Chi-
nese system. The parallel corpus is firstly filtered
using the same pipeline as for the other language
pairs. As we find many sub-fragments belonging
to the same translation units in the parallel data,
we do an additional ngram-check based fuzzy fil-
tering to get rid of these noisy pairs. We use an
in-house tokenizer for both English and Chinese
tokenization. After the preprocessing, we train
BPE models with 60000 merge operations for both
sides respectively.

To employ the monolingual Chinese corpus, we
first build a ZH → EN Transformer system with
all the available parallel data. We select the good
quality in-domain corpus from the XMU mono-
lingual corpus3 to produce our synthetic data. The
corpus contains a total number of 5, 959, 849 sen-
tences after the selection and a rule-based filtering.
We set beam size as 12 and alpha as 0.6 during
batch-decoding. The generated synthetic data is
augmented into our parallel training data to build
our EN→ ZH Transformer system. We extended
the use of monolingual data to other sources, but
it didn’t result in better performance.

We follow the methods described in Subsec-
tion 3.2 for data selection. A series of models

2https://github.com/awslabs/sockeye/
tree/master/contrib/sacrebleu

3http://nlp.nju.edu.cn/cwmt-wmt/
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System newsdev2017 newstest2017
baseline 35.47 35.29

+ corpus cleaning 36.02 36.64
+ back translation 39.15 40.04

+ finetuning 40.06 40.68
+ ensemble 40.57 41.18
+ reranking 40.89 41.60

WMT18 submission 43.37

Table 4: EN→ ZH BLEU results on newsdev2017 and
newstest2017

can be obtained according to the methods and the
amount of data used for fine-tuning. We adopt
the GMSE approach for ensemble, the final best
combination contains 7 models. Our reranker con-
tains more than 70 features, including 14 Chinese
language models, 8 Target-to-Source models, 4
Right-to-Left models. We use newsdev2017 as the
development set and newstest2017 as the valida-
tion set during model training. The results of our
system are reported in Table 4.1.

4.2 English↔ Russian

For English ↔ Russian, we use the following
resources from the WMT parallel data: News
Commentary v13, CommonCrawl, ParaCrawl cor-
pus, Yandex Corpus, UN Parallel CorpusV1.0 and
Wiki Headlines. We perform data quality assess-
ment, language identification, and excessive BPE
segmentation filtering, resulting in a 28 million
high-quality bilingual data. We train bidirectional
systems using this high-quality bilingual data. We
use 50000 BPE operations and the vocabulary size
is set to 50000. For the English → Russian sys-
tem, we found that it’s beneficial to not make use
of the UN corpora.

We selected in-domain monolingual data using
the development sets 2012-2017 as seed data from
the News Crawl corpora. We back-translated 24
million Russian and 70 million English sentences
into the respective source side language using the
the best single model trained on the high-quality
bilingual data.

4.3 English↔ Turkish

All parallel training data released are used in our
TR↔ EN systems, and it is about 207K sentences.
We use an in-house tokenizer for both English and
Turkish tokenization. A joint BPE model is ap-
plied in both directions, which is learned from
mixed corpus of EN and TR with 16000 merge op-

System newstest2016 newstest2017
baseline 31.62

+ corpus cleaning 34.71
+ w/o UN 31.99 36.15

+ back translation 34.24 38.94
+ finetuning 34.96 40.37
+ ensemble 35.98 41.06
+ reranking 36.41 41.77

WMT18 submission 34.8

Table 5: EN→ RU BLEU results on newstest2016 and
newstest2017

System newstest2016 newstest2017
baseline 29.98 33.56

+ corpus cleaning 30.82 36.33
+ back translation 33.90 39.84

+ finetuning 34.72 40.76
+ ensemble 35.76 41.34
+ reranking 36.23 41.97

WMT18 submission 34.9

Table 6: RU→ EN BLEU results on newstest2016 and
newstest2017

erations. As the parallel data amount is small, we
use a shared vocabulary for both EN and TR, and
we tie all embeddings of source, target and output
layer following Press and Wolf (2017).

The back translation is particularly effective for
EN ↔ TR as the amount of parallel data is very
limited. For EN→ TR, about 6 million sentences
are selected from the newscrawl2016, 2017 and
common crawl data, which is scored and sorted
by domain similarity with newstest2016 test-set
and authentic parallel data. Then, the 6 million
sentences are translated into English by a TR ↔
EN model trained by the authentic parallel corpus.
The domain relevance and the amount of data are
important when using back-translation. The TR
→ EN follows the same procedure to get synthetic
data, except the used monolingual data sources in-
clude news2014-2017 and news comment, and the
final amount of effective monolingual sentences is
10 million.

Unlike the back translation process, the fine-
tuning is less effective as the amount of authentic
parallel data is very limited. However, our data se-
lection methods can still yield about +0.5 BLEU
over strong underneath models.

374



System newstest2016 newstest2017
baseline 14.28 14.97

+ joint-bpe 15.83 16.13
+ corpus-cleaning 16.31 16.80
+ back translation 22.92 23.87

+ finetuning 23.57 24.20
+ ensemble 24.63 24.96
+ reranking 25.23 25.76

WMT18 submission 20.0

Table 7: EN→ TR BLEU results on newstest2016 and
newstest2017

System newstest2016 newstest2017
baseline 17.90 18.41

+ joint-bpe 18.33 18.72
+ corpus-cleaning 19.10 19.61
+ back translation 26.41 26.98

+ finetuning 27.21 27.52
+ ensemble 28.12 28.04
+ reranking 28.51 28.20

WMT18 submission 28.0

Table 8: TR→ EN BLEU results on newstest2016 and
newstest2017

5 Conclusion

This paper describes Alibaba’s neural machine
translation systems for the WMT18 shared news
translation task. For all translation directions,
we adopted the same strategies, which con-
sist of building numerous strong single systems
over which we employed reinforced multi-system
based mechanisms to get the best out of all these
single systems. We investigated the two main-
stream methods to build a strong single system,
one is based on incremental improvements of neu-
ral machine translation model architecture and the
other is to have more data and make a better use
of these data, and we found that the latter is more
effective, at least in the cases where the former is
not ”revolutionary” enough. Finally, for all trans-
lation directions in which we have participated, we
achieved the best results in term of case sensitive
BLEU score, setting the new state-of-the-art per-
formance.
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Abstract
This paper describes the unsupervised neu-
ral machine translation (NMT) systems of the
RWTH Aachen University developed for the
English ↔ German news translation task of
the EMNLP 2018 Third Conference on Ma-
chine Translation (WMT 2018). Our work
is based on iterative back-translation using a
shared encoder-decoder NMT model. We ex-
tensively compare different vocabulary types,
word embedding initialization schemes and
optimization methods for our model. We also
investigate gating and weight normalization
for the word embedding layer.

1 Introduction

Unsupervised NMT was recently investigated in
(Artetxe et al., 2017; Lample et al., 2017, 2018)
and has shown promising results in language pairs
like German to English. For the WMT 2018 unsu-
pervised learning track, we combine the concepts
proposed in previous research and perform a thor-
ough comparison of the main components of each
method. Additionally, we augment the word em-
bedding initialization with weight normalization
to improve its integration in the model and with
a gating technique to allow the model to learn task
specific information.

The main findings of this paper are: (i) the it-
erative method (Lample et al., 2017) outperforms
the online training method (Artetxe et al., 2017),
(ii) cross-lingual embedding initialization is re-
quired in the online method and (iii) byte-pair en-
coding (BPE)-based vocabularies (Sennrich et al.,
2016) outperform word-based vocabularies in on-
line training.

This paper is organized as follows: Section 2
describes pre- and postprocessing pipelines, cor-
pora selection and vocabularies used in our exper-
iments. Section 3 details the models used in this
work together with the embedding augmentation

techniques. The experimental evaluation is pre-
sented in Sections 4 and 5 and finally we conclude
with Section 6.

2 Pre- and Postprocessing

Our preprocessing pipeline consists of a tokeniza-
tion with a script from the Moses toolkit (Koehn
et al., 2007), lower-casing, and the introduction of
a number category token which replaces all occur-
rences of numbers. We use joint BPE in our exper-
iments and apply it at this stage of preprocessing.

After the search procedure, we first monoton-
ically replace number tokens with their original
content, and unknown words to the target hypoth-
esis by their order of occurrence in the source sen-
tence. This method is very restrictive, as it fails
when, e.g., more unknown tokens are hypothe-
sized than there are in the source sentence due to
an unknown token being attended twice. Since, to
our knowledge, there are no well-founded meth-
ods of pin-pointing which source words are at-
tended during the generation of a target word in
the Transformer (Vaswani et al., 2017), we de-
cided for the forementioned method.

As postprocessing, we first convert subwords
to words. Lower-cased words are then frequent-
cased using the tools provided in the Jane toolkit
(Vilar et al., 2010). As a final step, the text is
detokenized using the detokenizer from Moses and
punctuation is normalized.

2.1 Corpora Selection
We use monolingual News Crawl articles from
2014 to 20171 as our training corpora for both
German and English languages. 100M sentences
are sub-sampled for pre-training word embeddings
and 5M sentences are used for translation model
training.

1http://www.statmt.org/wmt18/
translation-task.html
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German English
# sentences 5M 5M
Vocabulary 1.3M 577K
OOV rate 6.9% / 8.9% 1.73% / 3.3%
Effective voc. 50K / 46.3K 50K / 31.2K

Table 1: Corpus statistics for the German and English
monolingual corpora. OOV word rates and effective
vocabulary sizes are given for unshared and shared, re-
spectively displayed, vocabularies limited to the most
frequent 50k words.

Table 1 shows the corpus statistics for the
model training. The reported out-of-vocabulary
(OOV) word rates and effective vocabulary sizes
are shown for our word-level experiments, which
use either top frequent 50k words for each lan-
guage or a shared vocabulary with a total of 50k
words.

Even though the News Crawl corpora contain
mostly clean data, we noticed that common En-
glish words are found in the German corpus and
vice-versa, which causes an overlap in the effec-
tive vocabulary.

2.2 Vocabulary

In this work we consider different kinds of vocab-
ularies for the unsupervised translation systems.
Lample et al. (2017) use word-level vocabular-
ies due to the initialization with a word-by-word
model. Artetxe et al. (2017) perform experiments
on both word- and BPE-level and report that the
model has difficulties translating rare sub-word
codes. We perform experiments with both BPE
and word vocabularies to find the best setting for
unsupervised NMT.

For the BPE vocabularies, we consider only the
joint variant, performing 20k and 50k merge op-
erations. The word-level vocabulary is restricted
to a 50k-word shared vocabulary or two seperate
50k-word German and English vocabularies.

3 Unsupervised Neural Machine
Translation

The models proposed in Lample et al. (2017);
Artetxe et al. (2017) follow a recurrent attention-
based encoder-decoder architecture (Bahdanau
et al., 2015). As a follow-up work Lample et al.
(2018) make use of the Transformer (Vaswani
et al., 2017) architecture, which we also utilize for
our systems.

3.1 Model Description
We closely follow the model architecture in (Lam-
ple et al., 2017), but with a Transformer encoder-
decoder. It is able to translate in both source to
target and target to source translation directions
via joint training and parameter sharing of com-
ponents, therefore we denote it further as a shared
architecture. In this section, we describe how
the model functions for an input source sentence
fJ1 = f1, ..., fj , ..., fJ and output target sentence
eI1 = e1, ..., ei, ..., eI .

The model consists of an self-attentive encoder
and decoder, word embeddings and output layers,
where the encoder and decoder share parameters
in both translation directions. The output layer
may additionally be shared when the output vo-
cabularies are also shared between both directions.

Word embeddings: Each word is encoded in a
continuous space of dimension D via a lookup ta-
ble functionE : V → RD, where V represents the
source or target vocabulary, scaled up by

√
D as

in the original formulation (Vaswani et al., 2017).
Fixed positional embeddings pos : N0 → RD

(Vaswani et al., 2017), which encode the absolute
position j of a word fj in the source sentence, are
added to the word vectors to represent a word em-
bedding:

f̄j = Ef (fj) ·
√
D + pos(j) (1)

Source word embeddings are applied whenever
the model reads a source sentence or outputs a
source sentence. All of the above hold analo-
gously for the target word embeddings.

Encoder: The input source embeddings are
read by a self-attentive encoder module and out-
puts a sequence of hidden states hJ1 with hj ∈ RD

having the same dimensionality as the input em-
beddings.

hJ1 = H(f̄ J
1 ; θenc) (2)

A noise model as described in (Lample et al.,
2017) is applied to the encoder inputs.

Decoder: Target word predictions are condi-
tioned on the sequence of previously seen embed-
ded target words ē i−1

0 and the encoder outputs
hJ1 . The decoder outputs a single hidden state
si ∈ RD, which is then propagated to an output
layer. Note that in our setup encoder and decoder
outputs have the same dimensionality.

si = S(hJ1 , ē
i−1
0 ; θdec) (3)
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The target sentence is augmented with a sen-
tence start symbol e0, which is an identifier for
the output language. In our setup the decoder is
shared between languages.

Output layer: The hidden state si is projected
to the size of the output vocabulary and normal-
ized with a softmax operation resulting in a prob-
ability distribution over target words.

p(ei|ei−1
1 , fJ1 ) = softmax(W · si + b)ei (4)

As mentioned in Section 2.2, the output layer
may or may not be shared depending on the type
of vocabularies.

Optimization: The model is trained via cross-
entropy on both translation directions. Addition-
ally, we include auto-encoding losses for both lan-
guages for a total of four optimization criteria as
in both approaches (Artetxe et al., 2017; Lample
et al., 2017).

Finally, we include an adversarial loss term
(Lample et al., 2017) in a feature study experi-
ment, where the model is trained to fool a separate
model that attempts to discriminate the language
of the input sentence after the encoder module.
Each component of the loss function is equally
weighted.

Note that, in contrast to (Artetxe et al., 2017),
we do not alternate between loss functions during
optimization and instead optimize the summation
of them. We noticed the same translation quality
when comparing both sum and alternating variants
in preliminary experiments.

3.2 Batch Optimization
Proposed by Lample et al. (2017), the batch opti-
mization method trains the model iteratively: the
model trained on iteration n − 1 is used to gen-
erate back-translations to train the model at itera-
tion n. The initial model is an unsupervised word-
by-word translation model based on cross-lingual
word vectors (Conneau et al., 2017).

The workflow of this method for the n-th itera-
tion is as follows:

1. Translate monolingual corpora with the
model at iteration n− 1

2. Train for one epoch on the back-translated
and monolingual corpora

Throughout this work, we denote an iteration
as the forementioned steps. We restrict ourselves
to only one epoch for model training per iteration,

but it is also possible to train for a different amount
of updates.

3.3 Online Optimization
Leveraging the model’s ability to translate in both
translation directions, Artetxe et al. (2017); Lam-
ple et al. (2018) generate back-translations for
each mini-batch using the currently trained param-
eters. This method is not initialized with a word-
by-word translation.

We noticed that with the original implementa-
tion training was slow due to the generation of
back-translations with a smaller batch size than
what fit in our device’s memory. Therefore, we
implement online optimization by generating 10
mini-batches of back-translations at once. We no-
ticed no loss of translation quality when doing this.

3.4 Gated Word Embeddings
The initialization of the word embeddings with
pre-trained word vectors allows the model to start
from a much more informative state and exploit
information from a larger corpus. Indeed it is a
crucial component of the shared architecture, as
shown empirically in Section 5.2. As an alterna-
tive to just training the initialized vector, we con-
sider a gating mechanism, shown in Equation 5
and introduced in (Yang et al., 2016):

f̄j =
(

g(fj)� Ef,pre−train(fj)

+ (1− g(fj))� Ef,random(fj)
)

·
√
D + pos(j)

(5)

with the interpolation weights g(fj) ∈ RD

being defined as a feed-forward projection to
the word embeddings’ dimensionality with a sig-
moidal output:

g(fj) = σ(b+W ·
[
Ef,pre−train(fj),

Ef,random(fj)
]
)

(6)

� denotes element-wise multiplication. This al-
lows the model to learn task-specific information
and interpolate it with the pre-trained parameters.
When using this approach, the pre-trained vectors
are not updated during training.

Ding and Duh (2018) perform a simpler ap-
proach to combine both kinds of embeddings, in
which they concatenate the word vectors and, as in
this work, keep the pre-trained embeddings fixed
during training.
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Our idea is most similar to the concept in (Yang
et al., 2018), where the authors also employ a gat-
ing mechanism on the embeddings, but combine it
with the output of the encoder in order to reinforce
a language-independent encoder representation.

3.5 Embedding Weight Normalization
The training criteria for word embeddings does not
enforce normalization constraints on the continu-
ous output values and therefore might cause very
high or low gradient values in the encoder and de-
coder parameters, especially at the beginning of
training.

Weight normalization (Salimans and Kingma,
2016), as shown in Equation 7, normalizes each
word embedding by its L2-norm and introduces
an additional tunable parameter vfj for each word,
that rescales the vector. It is initialized with the
value of 1.

f̄j =
vfj · Ef (fj) ·

√
D

||Ef (fj)||2
+ pos(j) (7)

4 Experimental Setup

All processing steps and experiments were orga-
nized with Sisyphus (Peter et al., 2018) 2 as work-
flow manager.

4.1 Model Hyperparameters
Our models use the Transformer architecture
(Vaswani et al., 2017) implemented in Sockeye
(Hieber et al., 2017), based on MXNet (Chen
et al., 2015). The encoder and decoder both have
4 layers of size 300 with the internal feed-forward
operation having 2048 nodes. The multi-head at-
tention mechanism uses 6 heads. For each encoder
and decoder layer, 10% dropout (Srivastava et al.,
2014) and layer normalization (Ba et al., 2016)
are used as preprocessing3 operations and a resid-
ual connection (He et al., 2016) is additionally in-
cluded in the postprocessing operations.

Monolingual word embeddings have a dimen-
sionality of 300 and are trained as a skip-gram
model using FastText (Bojanowski et al., 2017),
only for words that have occured at least 10 times.
Cross-lingual word embeddings are trained with
MUSE (Conneau et al., 2017) for 10 epochs with
the adversarial setting and 10 steps of the re-
finement procedure using the learned monolingual
embeddings.

2https://github.com/rwth-i6/sisyphus
3Pre- and postprocessing terminology is described in

(Hieber et al., 2017).

Model optimization is performed with the
AdaM (Kingma and Ba, 2014) algorithm using
a learning rate of 10−4 and a momentum param-
eter β1 = 0.5. Training sequences are limited
to 50 words or subwords. Parameters are initial-
ized with Glorot initialization (Glorot and Bengio,
2010). The batch method is trained for 5 iterations,
800K updates, for a total of 6 days and the online
method is trained for roughly the same amount of
time for 500K updates.

Translation is performed using beam search
with beam size 5 and the best hypothesis is the
one with the lowest length normalized negative
log-probability. Length normalization divides the
sentence score by the number of words.

4.2 Evaluation

We constrain our results to the newstest2017 and
newstest2018 data sets in the German → English
translation direction. BLEU (Papineni et al.,
2002), computed with mteval from the Moses
toolkit (Koehn et al., 2007), and TER (Snover
et al., 2006), computed with TERCom, are used
as evaluation metrics. BLEU scores are case-
sensitive and TER is scored lower-cased. All pre-
sented scores are percentages. For the experiments
in Sections 5.3 and 5.4 we additionally test for
statistical significance with MultEval (Clark et al.,
2011).

Lample et al. (2017) propose a model selec-
tion criterion based on round-trip BLEU scores,
however we do not notice a correlation of this
measure and BLEU between experiments. The
more expressive the model is, the better round-trip
BLEU scores it will get, whereas BLEU itself does
not change. Therefore we choose to validate on
newstest2015 on the German → English transla-
tion direction for the feature study.

For our final submission, we select optimization
method, embedding initialization and vocabulary
types based on BLEU on the German → English
direction of newstest2017 and select the best hy-
perparameter settings using the metric from Lam-
ple et al. (2017). In this case, we only consider
models that have trained exactly 6 iterations.

5 Experimental Results

5.1 Translation Units

We experiment with both words and BPE sub-
words as initial work (Artetxe et al., 2017; Lample
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newstest2017 newstest2018
method BLEU TER BLEU TER

words batch 14.9 72.7 18.1 67.1
unshared 14.5 73.3 17.2 67.8

words online 11.9 75.7 14.2 71.0
unshared 10.6 77.7 13.2 73.1

BPE 20k 11.8 77.9 13.6 73.9
BPE 50k 13.1 75.5 15.4 70.8

Table 2: Vocabulary comparison between different op-
timization methods for German → English. All sys-
tems are initialized with cross-lingual word embed-
dings.

et al., 2017) focuses primarily on words and only
briefly discuss the effects of sub-word units.

Table 2 shows the effect of different vocabu-
lary sizes and units on both online and batch op-
timization methods. The best performing exper-
iments are trained with batch optimization and a
word-based vocabulary, even though they face an
OOV word problem during both training and test-
ing. Furthermore restricting the vocabulary to the
top-50k most common words in both vocabularies
and sharing an output layer performs up to 0.9%
BLEU and 0.7% TER better than using sepa-
rate top-50k vocabularies (different output layers).
The same effect is noticeable with the online opti-
mization method.

The online optimization method is additionally
run with joint BPE codes trained with 20k and 50k
merge operations, which improves over the word-
based vocabulary by up to 1.2% BLEU and 0.2%
TER when using 50k operations.

We do not present results with the batch method
and BPE-based vocabularies, because the initial
word-by-word translation is designed to work on
the word-level.

5.2 Embedding Initialization

Initializing word embeddings with pre-trained
vectors was a component in both original works
(Artetxe et al., 2017; Lample et al., 2017). Two
kinds of embeddings are considered, monolingual
and cross-lingual, both serving the role of initial-
izing the model with prior knowledge to aid the
training of the model. Cross-lingual embeddings
further add the property of language abstraction to
pre-trained monolingual vectors.

Results on the embedding initialization are re-
ported in Table 3 for both batch and online opti-
mization methods.

newstest2017 newstest2018
method BLEU TER BLEU TER

random online 4.9 92.7 4.9 91.7
monolingual 7.5 88.2 8.2 85.7
cross-lingual 13.1 75.5 15.4 70.8

+ frozen 12.7 76.3 15.1 71.6
random batch 14.5 73.6 17.6 68.2
monolingual 14.3 73.3 17.2 68.0
cross-lingual 14.9 72.7 18.1 67.1

+ frozen 14.0 75.8 16.9 71.5

Table 3: Embedding initialization comparison between
different optimization methods for German→ English.
Online systems use joint BPE with 50k merge opera-
tions, whereas batch systems use seperate word-based
vocabularies. Word-by-word initialization is only used
for the batch optimized system.

First considering the online optimization sce-
nario, both random and monolingual initializa-
tions fail to produce proper results. This is due
to the differing word distributions for source and
target embeddings that are given as an input to
the encoder and decoder modules. Once the em-
beddings are language-independent, the model is
able to achieve much better values. This follows
the same motivation as the adversarial feature pro-
posed by Lample et al. (2017), where the authors
argue that the decoder must be fed with language-
independant inputs in order to function effectively.
Freezing the embeddings during training is also
detrimental to translation quality.

Examining the initialization with the batch opti-
mization method results in similar behaviours for
a cross-lingual initialization. Here the initializa-
tion has a slight, albeit significant, influence on the
translation quality. This is due to the cross-lingual
signal already being strongly present in the word-
by-word initialization, replacing the prior infor-
mation that one gets from the word embedding
initialization. Random and monolingual initial-
izations perform roughly the same, which shows
again the problem with the differing representation
distributions. Overall, the cross-lingual initializa-
tion performs best for both methods.

Recently, Lample et al. (2018) have noted that it
is possible to share embeddings across languages
and initialize them with monolingual word vec-
tors. We leave this for future work.

5.3 Embedding Features
Considering the empirical results of the previous
section, we focus on improving upon the integra-
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newstest2017 newstest2018
BLEU TER BLEU TER

baseline 14.9 72.7 18.1 67.1
+ frozen emb. 14.0∗ 75.8∗ 16.9∗ 71.5∗

+ gating 14.4∗ 72.5 17.6∗ 67.3
+ emb. WN 14.5∗ 73.4∗ 17.5∗ 68.4∗

+ emb. WN 14.7 72.8 18.2 67.1

Table 4: Results for different embedding initialization
on systems optimized with the online strategy for Ger-
man→ English. The baseline system uses batch opti-
mization, cross-lingual embeddings and shared vocab-
ularies. WN stands for weight normalization. ∗ denotes
a p-value of < 0.01 w.r.t. the baseline.
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Figure 1: BLEU and TER values on newstest2017
German → English for checkpoint models of online
and batch optimization methods. The initial step of
the batch method uses the word-by-word translation
scores.

tion of pre-trained embeddings on top of the best
system, namely a word-based batch optimized sys-
tem with cross-lingual embeddings and a shared
output layer. Experiments are presented in Table
4.

As seen in Table 3, freezing embeddings dur-
ing training worsens translation quality. One can
conclude that the model learns task-specific infor-
mation via the embedding component.

As a first step, we apply the gating mechanism
as presented in Section 3.4 and observe an in-
crease in performance of up to 0.7% BLEU . How-
ever, results show that the model performs up to
0.5% BLEU worse than the baseline and achieves
roughly the same TER performance.

Afterwards, we apply weight normalization as
presented in Section 3.5 on top of both trainable
and frozen embeddings. When applied on top of
frozen embeddings, the normalization helps, but
still lags behind the baseline. Adding it on top of
the baseline does not worsen, but also does not im-
prove translation quality.

These experiments allow one to conclude that
fine-tuning embeddings to the task at hand per-
forms better than the implemented techniques. Al-
ternative embedding features could be considered,
as for example the works mentioned in Section
3.4.

5.4 Training Variations

In this Section, we consider additional experi-
ments that do not fit in a specific category and
present them in Table 5.

Firstly, we add an adversarial loss term as in
(Lample et al., 2017) on top of a batch optimized
model with cross-lingual embeddings and a shared
output layer. We report that performance drops by
up to 1.2% BLEU and we hypothesize that the
feature does not integrate well in the Transformer
architecture. Specifically, the encoder outputs of
an LSTM (Hochreiter and Schmidhuber, 1997) are
bounded between -1 and 1, whereas the Trans-
former encoder outputs can take on any real value.
The effect of the feature was not reproducible in
separate experiments with the setup described in
the original publication.

Secondly, we separate both output layer and de-
coder components from the model to obtain a set-
ting similar to the one in (Artetxe et al., 2017).
Translation quality drops by up to 0.8% BLEU and
0.9% TER . Note that in Section 5.1, we already
saw a drop of roughly the same amount when not
sharing the output layer.

We investigate whether noisy input sentences
and auto-encoding are necessary at later stages of
the training. Hence, these features are disabled af-
ter the 3rd iteration. The improvements are not sta-
tistical significant, but at the very least the compar-
ison shows that the model does not worsen from
focusing solely on the translation task after its ini-
tial learning period. This is due to it already being
able to generate decent translations after the first
few iterations.

Finally, we train the batch and online meth-
ods for a larger number of iterations, see Table 6,
reaching 19.2% BLEU with the batch method af-
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newstest2017 newstest2018
BLEU TER BLEU TER

baseline 14.9 72.7 18.1 67.1
+ adversarial 13.9∗ 74.2∗ 16.9∗ 69.0∗

+ unshared decoder 14.3∗ 73.3∗ 17.3∗ 68.0∗

+ drop AE & noise 15.2 72.6 18.3 66.9

Table 5: Results for training variations on German →
English. The baseline system uses batch optimization,
cross-lingual embeddings and shared vocabularies. ∗

denotes a p-value of < 0.01 w.r.t. the baseline.

newstest2018
De→ En En→ De

BLEU TER BLEU TER

online method 15.4 70.8 12.0 79.5
1M updates 16.8 69.3 13.2 77.7

batch method 18.1 67.1 14.0 77.0
10th iteration 19.2 64.6 15.4 74.3

Table 6: Results for longer training iterations for Ger-
man↔ English. The baseline system uses batch opti-
mization, cross-lingual embeddings and shared vocab-
ularies.

ter 10 iterations and 16.8% BLEU with the online
method after 1M updates on newstest2017. The
extended training for the online and batch method
trained for 14 and 12 days respectively. Figure 1
shows the training of the models on newstest2017
German→ English. The initial TER spike occurs
because hypotheses are 13% longer than the ones
of the word-by-word system. Considering the re-
sults of these experiments, one should look into
better optimization algorithm tuning for the online
method.

5.5 Final Submission

The model in the final submission, shown in Ta-
ble 7, consists of a word-based model with sepa-
rate vocabularies, trained with the batch optimiza-
tion method, initialized with cross-lingual embed-
dings, applies embedding weight normalization
and is trained with a learning rate of 3 · 10−4.
The ensemble system consists of 4 variations of
the single-best model, varying in learning rate val-
ues (3 · 10−4 → 10−4), feed-forward projection
hidden sizes (2048→ 1024) and monolingual, in-
stead of cross-lingual, embedding initialization.

For reference, we include our supervised sub-
mission system for the German → English con-
strained task. As expected, there is a large perfor-
mance gap between both our systems. The most

crucial point of improvement in our submission
is the amount of data used. We used a small
amount of the available data, even smaller than
for our supervised submission, since we noted that
the models took a long time to converge as por-
trayed in Figure 1. We suggest to invest efforts
into tuning of optimization algorithm hyperparam-
eters and using more data.

6 Conclusion

The RWTH Aachen University has participated in
the WMT 2018 German→ English and English→
German unsupervised news translation tasks. We
focus on reproducing related work and infer em-
pirically that the batch optimization method from
(Lample et al., 2017) performs best on our con-
strained setting, i.e. 5M sentences for each lan-
guage. An initialization with cross-lingual word
embeddings performs best for both optimization
strategies. Sharing vocabularies is important for
a shared model architecture. BPE-based vocab-
ularies outperform word-based ones with the on-
line optimization method. The noise model and
auto-encoding losses are not needed in later stages
of training in batch optimization. Freezing the
word embedding layer during training hurts. Sim-
ply initializing and training the embeddings per-
forms better than performing weight normaliza-
tion or applying a gating mechanism on top of a
frozen embedding layer.
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German→ English English→ German
newstest2016 newstest2017 newstest2018 newstest2016 newstest2017 newstest2018
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

Single-best 17.2 68.7 14.5 72.9 18.1 66.9 13.7 77.0 11.2 82.0 14.5 75.8
Ensemble of 4 17.6 68.3 14.9 72.1 18.5 67.0 14.1 76.4 11.5 81.6 15.0 74.7
WMT 2018 Supervised submission 46.0 41.0 39.9 47.6 48.4 38.1 - - - - - -

Table 7: Submission systems for the WMT 2018 German↔ English news translation task.
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Abstract
This article describes the Aalto University
entry to the WMT18 News Translation
Shared Task. We participate in the mul-
tilingual subtrack with a system trained
under the constrained condition to trans-
late from English to both Finnish and Es-
tonian. The system is based on the Trans-
former model. We focus on improving
the consistency of morphological segmenta-
tion for words that are similar orthograph-
ically, semantically, and distributionally;
such words include etymological cognates,
loan words, and proper names. For this,
we introduce Cognate Morfessor, a multi-
lingual variant of the Morfessor method.
We show that our approach improves the
translation quality particularly for Esto-
nian, which has less resources for training
the translation model.

1 Introduction
Cognates are words in different languages,
which due to a shared etymological origin are
represented as identical or nearly identical
strings, and also refer to the same or similar
concepts. Ideally the cognate pair is similar or-
thographically, semantically, and distribution-
ally. Care must be taken with “false friends”,
i.e. words with similar string representation
but different semantics. Following usage in
Natural Language Processing, e.g. (Kondrak,
2001), we use this broader definition of the
term cognate, without placing the same weight
on etymological origin as in historical linguis-
tics. Therefore we accept loan words as cog-
nates.

In any language pair written in the same al-
phabet, cognates can be found among names
of persons, locations and other proper names.
Cognates are more frequent in related lan-
guages, such as Finnish and Estonian. These

additional cognates are words of any part-of-
speech, which happen to have a shared origin.

In this work we set out to improve morpho-
logical segmentation for multilingual transla-
tion systems with one source language and two
related target languages. One of the target
languages is assumed to be a low-resource lan-
guage. The motivation for using such a system
is to exploit the large resources of a related
language in order to improve the quality of
translation into the low-resource language.

Consistency of the segmentations is impor-
tant when using subword units in machine
translation. We identify three types of con-
sistency in the multilingual translation setting
(see examples in Table 1):

(i) The benefit of consistency is most evi-
dent when the translated word is an identical
cognate between the source and a target lan-
guage. If the source and target segmentations
are consistent, such words can be translated
by sequentially copying subwords from source
to target.

(ii) Language-internal consistency means
that when a subword boundary is added, its lo-
cation corresponds to a true morpheme bound-
ary, and that if some morpheme boundaries
are left unsegmented, the choices are consis-
tent between words. This improves the produc-
tivity of the subwords and reduces the risk of
introducing short, word-internal errors at the
subword boundaries. In the example *saami
+ miseksi, choosing the wrong second morph
causes the letters mi to be accidentally re-
peated.

(iii) When training a multilingual model, a
third form of consistency arises between the
different target languages. An optimal seg-
mentation would maximize the use of mor-
phemes with cross-lingually similar string rep-
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type consistent en fi et
(i) yes On + y + sz + kie + wicz On + y + sz + kie + wicz On + y + sz + kie + wicz
(ii) yes gett + ing saa + mise + ksi saa + mise + ks

work + ing toimi + mise + ksi toimi + mise + ks
(iii) yes work time työ + aja + sta töö + aja + st
(i) no On + y + sz + kie + wicz Onys + zk + ie + wi + cz O + nysz + ki + ewicz
(ii) no get + ting saami + seksi saami + seks

work + ing toimi + mise + ksi toimi + miseks
(iii) no work time työ + aja + sta tööajast

Table 1: Example consistent and inconsistent segmentations.

resentations and meanings, whether they oc-
cur in cognate words or elsewhere. We hypoth-
esize that segmentation consistency between
target languages enables learning of better gen-
eralizing subword representations. This consis-
tency allows contexts seen in the high-resource
corpus to fill in for those missing from the low-
resource corpus. This should lead to improved
translation results, especially for the lower re-
sourced target language.

Naïve joint training of a segmentation
model, e.g. by training Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015) on the con-
catenation of the training corpora in differ-
ent languages, can only address consistency
when the cognates are identical (type i), or
with some luck if the differences occur in the
ends of the words. If a single letter changes in
the middle of a cognate, consistent subwords
that span over the location of the change are
found only by chance. In order to encourage
stronger consistency, we propose a segmenta-
tion model that uses automatically extracted
cognates and fuzzy matching between cognate
morphs.

In this work we also contribute two new
features to the OpenNMT translation system:
Ensemble decoding, and fine-tuning a pre-
trained model using a compatible data set.1

1.1 Related work
Improving segmentation through multilingual
learning has been studied before. Snyder
and Barzilay (2008) propose an unsupervised,
Bayesian method, which only uses parallel
phrases as training data. Wicentowski (2004)
present a supervised method, which requires
lemmatization. The method of Naradowsky

1Our changes are awaiting inclusion in OpenNMT.
In the mean time, they are available from https://
github.com/Waino/OpenNMT-py/tree/ensemble

and Toutanova (2011) is also unsupervised,
utilizing a hidden semi-Markov model, but it
requires rich features on the input data.

The subtask of cognate extraction has seen
much research effort (Mitkov et al., 2007;
Bloodgood and Strauss, 2017; Ciobanu and
Dinu, 2014). Most methods are supervised,
and/or require rich features.

There is also work on cognate identification
from historical linguistics perspective (Rama,
2016; Kondrak, 2009), where the aim is to clas-
sify which cognate candidates truly share an
etymological origin.

We propose a language-agnostic, unsuper-
vised method, which doesn’t require annota-
tions, lemmatizers, analyzers or parsers. Our
method can exploit both monolingual and par-
allel data, and can use cognates of any part-of-
speech.

2 Cognate Morfessor

We introduce a new variant of Morfessor for
cross-lingual segmentation.2 It is trained us-
ing a bilingual corpus, so that both target lan-
guages are trained simultaneously.

We allow each language to have its own sub-
word lexicon. In essence, as a Morfessor model
consists of a lexicon and the corpus encoded
with that lexicon, we now have two separate
complete Morfessor sub-models. The two mod-
els are linked through the training algorithm.
We want the segmentation of non-cognates to
tend towards the normal Morfessor Baseline
segmentation, but place some additional con-
straints on how the cognates are segmented.

In our first experiments, we only restricted
the number of subwords on both sides of the
cognate pair to be equal. This criterion was

2Available from https://github.com/Waino/
morfessor-cognates

387



too loose, and we saw many of the longer cog-
nates segmented with both 1-to-N and N-to-1
morpheme correspondences. For example

ty + ö + aja + sta
töö + aja + s + t

To further encourage consistency, we in-
cluded a third component to the model, which
encodes the letter edits transforming the sub-
words of one cognate into the other.

Cognate Morfessor is inspired by Allomor-
fessor (Kohonen et al., 2009; Virpioja et al.,
2010), which is a variant of Morfessor that in-
cludes modeling of allomorphic variation. Si-
multaneously to learning the segmentations,
Allomorfessor learns a lexicon of transforma-
tions to convert a morph into one of its allo-
morphs. Allomorfessor is trained on monolin-
gual data.

We implement the new version as an exten-
sion of Morfessor Baseline 2.0 (Virpioja et al.,
2013).

2.1 Model
The Morfessor Baseline cost function (Creutz
and Lagus, 2002)

L(θ, D) = − log p(θ) − log p(D |θ) (1)

is extended to

L(θ, D) = − log p(θ1) − log p(θ2) − log p(θE)

− log p(D1 | θ1) − log p(D2 | θ2)

− log p(DE | θE) (2)

dividing both lexicon and corpus coding costs
into three parts: one for each language (θ1, D1

and θ2, D2) and one for the edits transforming
the cognates from one language to the other
(θE ,DE).

The coding is redundant, as one language
and the edits would be enough to reconstruct
the second language. In the interest of symme-
try between target languages, we ignore this
redundancy.

The intuition is that the changes in spelling
between the cognates in a particular language
pair is regular. Coding the differences in a
way that reduces the cost of making a simi-
lar change in another word guides the model
towards learning these patterns from the data.

The coding of the edits is based on the Lev-
enshtein (1966) algorithm. Let (wa, wb) be

a cognate pair and its current segmentation(
(ma

1, . . . , m
a
n), (mb

1, . . .m
b
n)

)
. The morphs are

paired up sequentially. Note that the restric-
tions on the search algorithm guarantee that
both segmentations contain the same number
of morphs, n. For a morph pair (ma

i ,m
b
i), the

Levenshtein-minimal set of edits is calculated.
Edits that are immediately adjacent to each
other are merged. In order to improve the
modeling of sound length change, we extend
the edit in both languages to include the neigh-
boring unchanged character, if one half of the
edit is the empty string ϵ, and the other con-
tains another instance of character represent-
ing the sound being lengthened or shortened.
This extension encodes a sound lengthening as
e.g. ’a→aa’ instead of ’ϵ →a’. As the edits are
cheaper to reuse once added to the edit lexicon,
avoiding edits with ϵ on either side is beneficial
to reduce spurious use. Finally, position in-
formation is discarded from the edits, leaving
only the substrings, separated by a boundary
symbol.

As an example, the edits found between
yhteenkuuluvuuspolitiikkaa and ühtekuuluvus-
poliitika are ’y→ü’, ’een→e’, ’uu→u’, ’ti→it’,
and ’kka→k’.

The semi-supervised weighting scheme of
Kohonen et al. (2010) can be applied to Cog-
nate Morfessor. A new weighting parame-
ter edit_cost_weight is added, and multiplica-
tively applied to both the lexicon and corpus
costs of the edits.

The training algorithm is an iterative greedy
local search very similar to the Morfessor Base-
line algorithm. The algorithm finds an ap-
proximately minimizing solution to Eq 2. The
recursive splitting algorithm from Morfessor
Baseline is slightly modified. If a non-cognate
is being reanalyzed, the normal algorithm is
followed. Cognates are reanalyzed together.
Recursive splitting is applied, with the restric-
tion that if a morph in one language is split,
then the corresponding cognate morph in the
other language must be split as well. The
Cartesian product of all combinations of valid
split points for both languages is tried, and
the pair of splits minimizing the cost function
is selected, unless not splitting results in even
lower cost.
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3 Extracting cognates from parallel
data

Finnish–Estonian cognates were automatically
extracted from the shared task training data.
As we needed a Finnish–Estonian parallel
data set, we generated one by triangula-
tion from the English–Finnish and English–
Estonian parallel data. This resulted in a set
of 679 252 sentence pairs (ca 12 million tokens
per language).

FastAlign (Dyer et al., 2013) was used for
word alignment in both directions, after which
the alignments were symmetrized using the
grow-diag-final-and heuristic. All aligned word
pairs were extracted based on the symmetrized
alignment. Words containing punctuation,
and pairs aligned to each other fewer than 2
times were removed. The list of word pairs
was filtered based on Levenshtein distance. If
either of the words consisted of 4 or fewer char-
acters, an exact match was required. Oth-
erwise, a Levenshtein distance up to a third
of the mean of the lengths, rounding up, was
allowed. This procedure resulted in a list of
40 472 cognate pairs. The list contains words
participating in multiple cognate pairs. Cog-
nate Morfessor is only able to link a word to
a single cognate. We filtered the list, keeping
only the pairing to the most frequent cognate,
which reduces the list to 22 226 pairs.

The word alignment provides a check for se-
mantic similarity in the form of translational
equivalence. Even though the word alignment
may produce some errors, accidentally seg-
menting false friends consistently should not
be problematic.

4 Data
After filtering, we have 9 million multilin-
gual sentence pairs in total. 6.3M of this
is English–Finnish, of which 2.2M is paral-
lel data, and 4.1M is synthetic backtranslated
data. Of the 2.8M total English–Estonian, 1M
is parallel and 1.8M backtranslated. The sen-
tences backtranslated from Finnish were from
the news.2016.fi corpus, translated with a PB-
SMT model, trained with WMT16 constrained
settings. The backtranslation from Estonian
was freshly made with a BPE-based system
similar to our baseline system, trained on the
WMT18 data. The sentences were selected

from the news.20{14-17}.et corpora, using a
language model filtering technique.

4.1 Preprocessing
The preprocessing pipeline consisted of filter-
ing by length3 and ratio of lengths4, fixing
encoding problems, normalizing punctuation,
removing of rare characters5, deduplication,
tokenizing, truecasing, rule-based filtering of
noise, normalization of contractions, and fil-
tering of noise using a language model.

The language model based noise filtering
was performed by training a character-based
deep LSTM language model on the in-domain
monolingual data, using it to score each target
sentence in the parallel data, and removal of
sentences with perplexity per character above
a manually picked threshold. A lenient thresh-
old6 was selected in order to filter noise, rather
than for aiming for domain adaptation. The
same process was applied to filter the Estonian
news data for backtranslation.

Our cognate segmentation resulted in a tar-
get vocabulary of 42 386 subwords for Esto-
nian and 46 930 subwords for Finnish, result-
ing in 64 396 subwords when combined.

For segmentation of the English source, a
separate Morfessor Baseline model was trained.
To ensure consistency between source and tar-
get segmentations, we used the segmentation
of the Cognate Morfessor model for any En-
glish words that were also present in the target
side corpora. The source vocabulary consisted
of 61 644 subwords.

As a baseline segmentation, we train a
shared 100k subword vocabulary using BPE.
To produce a balanced multilingual segmenta-
tion, the following procedure was used: First,
word counts were calculated individually for
English and each of the target languages
Finnish and Estonian. The counts were nor-
malized to equalize the sum of the counts for
each language. This avoided imbalance in the
amount of data skewing the segmentation in
favor of some language. BPE was trained
on the balanced counts. Segmentation bound-
aries around hyphens were forced, overriding
the BPE.

31–100 tokens, 3–600 chars, ≤ 50 chars/token.
4Requiring ratio 0.5–2.0, if either side > 10 chars.
5< 10 occurrences
696% of the data was retained.
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ϵ → n 27919 g → k 3000 il → ϵ 2077
ϵ → a 17082 ü → y 2979 m → mm 2016
ϵ → i 15725 oo → o 2790 s → n 2005
d → t 12599 t → a 2674 ee → e 1950
l → ll 5236 ϵ → k 2583 i → ϵ 1889
ϵ → ä 4437 aa → a 2536 ϵ → e 1803
s → ssa 3907 õ → o 2493 u → o 1724
t → tt 3863 a → ä 2479 ϵ → d 1496
o → u 3768 s → ϵ 2173 il → t 1486
e → i 3182 t → ϵ 2158 d → ϵ 1433

Table 2: 30 most frequent edits learned by the
model. The direction is Estonian→Finnish. The
numbers indicate how many times the edit was ap-
plied in the morph lexicon. ϵ indicates the empty
string.

Multilingual translation with target-
language tag was done following (Johnson
et al., 2016). A pseudo-word, e.g. <to_et>
to mark Estonian as the target language,
was prefixed to each paired English source
sentence.

5 NMT system
We use the OpenNMT-py (Klein et al., 2017)
implementation of the Transformer.

5.1 Transformer
The Transformer architecture (Vaswani et al.,
2017) relies fully on attention mechanisms,
without need for recurrence or convolution. A
Transformer is a deep stack of layers, consist-
ing of two types of sub-layer: multi-head (MH)
attention (Att) sub-layers and feed-forward
(FF) sub-layers:

Att(Q, K, V ) = softmax(
QKT

√
dk

)V

ai = Att(QWQ
i ,KWK

i , V W V
i )

MH(Q, K, V ) = [a1; . . . ; ah]WO

FF(x) = max(0, xW1 + b1)W2 + b2

(3)

where Q is the input query, K is the key, and
V the attended values. Each sub-layer is indi-
vidually wrapped in a residual connection and
layer normalization.

When used in translation, Transformer lay-
ers are stacked into an encoder-decoder struc-
ture. In the encoder, the layer consists of a
self-attention sub-layer followed by a FF sub-
layer. In self-attention, the output of the pre-
vious layer is used as queries, keys and values

chrF-1.0 BLEU%
en-et dev dev
BPE 56.52 17.93
monolingual 53.44 15.82
Cognate Morfessor 57.05 18.40

+finetuned 57.23 18.45
+ensemble-of-5 57.75 19.09
+ensemble-of-3 57.64 18.96

+linked embeddings 56.20 17.48
−LM filtering 52.94 14.65
6+6 layers 57.35 18.84

Table 3: Development set results for English–
Estonian. character-F and BLEU scores in per-
centages. +/− stands for adding/removing a com-
ponent. Multiple modifications are indicated by
increasing the indentation.

Q = K = V . In the decoder, a third context
attention sub-layer is inserted between the self-
attention and the FF. In context attention, Q
is again the output of the previous layer, but
K = V is the output of the encoder stack. The
decoder self-attention is also masked to pre-
vent access to future information. Sinusoidal
position encoding makes word order informa-
tion available.

5.2 Training
Based on some preliminary results, we de-
cided to reduce the number of layers to 4
in both encoder and decoder; later we found
that the decision was based on too short
training time. Other parameters were chosen
following the OpenNMT FAQ (Rush, 2018):
512-dimensional word embeddings and hidden
states, dropout 0.1, batch size 4096 tokens, la-
bel smoothing 0.1, Adam with initial learning
rate 2 and β2 0.998.

Fine-tuning for each target language was
performed by continuing training of a multi-
lingual model. Only the appropriate monolin-
gual subset of the training data was used in
this phase. The data was still prefixed for tar-
get language as during multilingual training.
No vocabulary pruning was performed.

In our ensemble decoding procedure, the
predictions of 3–8 models are combined by av-
eraging after the softmax layer. Best results
are achieved when the models have been inde-
pendently trained. However, we also try com-
binations where a second copy of a model is
further trained with a different configuration
(monolingual finetuning).
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chrF-1.0 BLEU%
en-fi nt2015 nt2016 nt2017 nt2017AB nt2015 nt2016 nt2017 nt2017AB
BPE 58.59 59.76 62.00 63.06 21.09 21.04 23.49 26.55
monolingual 57.94 59.11 61.33 62.41 20.87 20.70 23.11 26.12
Cognate Morfessor 58.18 59.81 62.15 63.24 20.73 21.18 23.37 26.26

+finetuned 58.48 59.89 62.17 63.28 21.08 21.41 23.45 26.52
+ensemble-of-8 59.07 60.69 62.94 64.07 21.50 22.34 24.59 27.55

−LM filtering 58.19 59.39 61.78 62.82 20.62 20.77 23.38 26.36
+linked embeddings 57.79 59.45 61.52 62.58 19.95 20.84 22.70 25.69
6+6 layers 58.68 60.26 62.37 63.52 21.05 21.81 23.93 27.08

Table 4: Results for English–Finnish. character-F and BLEU scores in percentages. +/− stands for
adding/removing a component. Newstest is abbreviated nt. Both references are used in nt2017AB.

We experimented with partially linking the
embeddings of cognate morphs. In this ex-
periment, we used morph embeddings concate-
nated from two parts: a part consisting of nor-
mal embedding of the morph, and a part that
was shared between both halves of the cognate
morph pair. Non-cognate morphs used an un-
linked embedding also for the second part. Af-
ter concatenation, the linked embeddings have
the same size as the baseline embeddings.

We evaluate the systems with cased BLEU
using the mteval-v13a.pl script, and charac-
terF (Popovic, 2015) with β set to 1.0. The
latter was used for tuning.

6 Results

Based on preliminary experiments, the Morfes-
sor corpus cost weight α was set to 0.01, and
the edit cost weight was set to 10. The most
frequent edits are shown in Table 2.

Table 3 shows the development set results
for Estonian. Table 4 shows results for previ-
ous year’s test sets for Finnish.

The tables show our main system and the
two baselines: a multilingual model using joint
BPE segmentation, and a monolingual model
using Morfessor Baseline.

Cognate Morfessor outperforms the compa-
rable BPE system according to both measures
for Estonian, and according to chrF-1.0 for
Finnish. For Finnish, results measured with
BLEU vary between test sets. The cross-
lingual segmentation is particularly beneficial
for Estonian.

In the monolingual experiment, the cross-
lingual segmentations are replaced with mono-
lingual Morfessor Baseline segmentation, and
only the data sets of one language pair at a

time is used. These results show that even
the higher resourced language, Finnish, bene-
fits from multilingual training.

The indented rows show variant configura-
tions of our main system. Monolingual fine-
tuning consistently improves results for both
languages. For Estonian, we have two ensem-
ble configurations: one combining 3 monolin-
gually finetuned independent runs, and one
combining 5 monolingually finetuned save-
points from 4 independent runs. Selection
of savepoints for the ensemble was based on
development set chrF-1. In the ensemble-of-
5, one training run contributed two models:
starting finetuning from epochs 14 and 21 of
the multi-lingual training. The submitted sys-
tem is the ensemble-of-3, as the ensemble-of-
5 finished training after the deadline. For
Finnish, we use an ensemble of 4 finetuned and
4 non-finetuned savepoints from 4 independent
runs.

To see if further cross-lingual learning could
be achieved, we performed an unsuccessful
experiment with linked embeddings. It ap-
pears that explicit linking does not improve
the morph representations over what the trans-
lation model is already capable of learning.

After the deadline, we trained a single model
with 6 layers in both the encoder and decoder.
This configuration consistently improves re-
sults compared to the submitted system.

All the variant configurations (ensemble,
finetuning, LM filtering, linked embeddings,
number of layers) used with Cognate Morfes-
sor are compatible with each other. We did
not not explore the combinations in this work,
except for combining finetuning with ensem-
bleing: all of the models in the Estonian en-
sembles, and 4 of the models in the Finnish
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ensemble are finetuned. All the variant config-
urations except for linked embeddings could
also be used with BPE.

7 Conclusions and future work
The translation system trained using the Cog-
nate Morfessor segmentation outperforms the
baselines for both languages. The benefit is
larger for Estonian, the language with less
data in this experiment.

One downside is that, due to the model
structure, Cognate Morfessor is currently not
applicable to more than two target languages.

Cognate Morfessor itself learns to model the
frequent edits between cognate pairs. How-
ever, in the preprocessing cognate extraction
step of this work, we used unweighted Leven-
shtein distance, which does not distinguish ed-
its by frequency. In future work, weighted or
graphonological Levenshtein distance could be
applied (Babych, 2016).
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Abstract

This paper describes the Air Force Research
Laboratory (AFRL) machine translation sys-
tems and the improvements that were devel-
oped during theWMT18 evaluation campaign.
This year, we examined the developments and
additions to popular neural machine translation
toolkits and measure improvements in perfor-
mance on the Russian–English language pair.

1 Introduction

As part of the 2018 Conference on Machine
Translation (Bojar et al., 2018) news-translation
shared task, the AFRL human language technol-
ogy team participated in the Russian–English por-
tion of the competition. We largely employed
our strategies from last year (Gwinnup et al.,
2017), but adapted them to the past year’s devel-
opments, including the University of Edinburgh’s
“bi-deep” (Miceli Barone et al., 2017; Sennrich
et al., 2017) and Google’s transformer (Vaswani
et al., 2017) architectures. For Russian–English
we again submitted an entry comprising our best
systems trained with Marian (Junczys-Dowmunt
et al., 2018), OpenNMT (Klein et al., 2017), and
Moses (Koehn et al., 2007) combined using the
Jane system combination method (Freitag et al.,
2014).

2 Data and Preprocessing

We used and preprocess data as outlined in Gwin-
nup et al. (2017). For some systems, we included
the Russian–English portion of the Paracrawl1 cor-
pus despite the noisy nature of the data. For all sys-
tems trained, we applied byte-pair encoding (BPE)
(Sennrich et al., 2016) to address the vocabulary-
size problem.

1http://www.paracrawl.eu

3 MT Systems

This year, we focused system-building efforts on
the Marian, OpenNMT, and Moses toolkits, hav-
ing explored a variety of parameters, data, and con-
ditions.

3.1 Marian
We spent most of our effort investigating varia-
tions in our experimental setup with the Marian
toolkit, varying training corpora, network architec-
ture and validation metrics.
In order to facilitate ease of ensembling of mod-

els and to reduce variables while comparing the ef-
fects of settings with our Marian systems we held
constant the following settings:

• We trained a joint BPE model with 49500
splits.

• We held the vocabulary size constant during
training to 90k entries each for source and tar-
get.

• We held the word embedding dimensionality
to 512 for all models.

• We used 1024 units in the hidden layer (where
appropriate).

• We exclusively used newstest2014 as the
validation set.

We experimented with building both bi-deep
and transformer models - we used the same net-
work settings with each to again provide a basis
for comparison between other conditions.
For the bi-deep systems we used the following

parameters:

• Alternating encoder

• Encoder cell depth of 2
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• Encoder layer depth of 4

• Decoder cell base depth of 4

• Decoder cell ’high depth’ of 2

• Decoder layer depth of 4

• Layer normalization

• Tied embeddings for source, target and output
layers

• Skip-connections

For the transformer models we used the follow-
ing parameters:

• 6 layer encoder

• 6 layer decoder

• 8 transformer heads

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warm-up and cool-down

3.1.1 Validation Metric Choice
We experimented with varying the metric used
during training to determine if using an alternate
metric yielded improvements. Based on comments
from previous years’ efforts, we employed BEER
2.0 (Stanojević and Sima’an, 2014) as an alter-
nate validation metric. BEER is a trained machine
translation evaluation metric with high correlation
with human judgment both on sentence and corpus
level. Use of this metric is motivated by the human
evaluation portion of the WMT news translation
task.
To compare this effect, we trained three bi-deep

systems on the parallel corpus used in ourWMT17
submission. These systems are trained with our
common parameters outlined above, only vary-
ing the choice of validation metric: cross-entropy,
BLEU, and BEER. The results of this comparison
are shown in Table 1. We noted that cross-entropy
and BLEU as validation metrics produce similar
BLEU scores for the available test sets, but the use
of BEER as a validation metric yielded an increase
of between +0.7 and +1.5 BLEU when decoding
the test sets.

3.1.2 Pretrained Word Embeddings
Settling on the choice of BEER as a validationmet-
ric, we then investigated the use of pretrained word
embeddings (Neishi et al., 2017) in order to boost
translation performance. We took the Russian
and English monolingual CommonCrawl (Smith
et al., 2013) data provided by the organizers and
applied tokenization and BPE with our common,
joint model. We then used word2vec (Mikolov
et al., 2013) to train word embeddings with 512 di-
mensions on each of the prepared corpora. These
embeddings were then used during model training.
We did not fix these word embeddings while train-
ing.
For comparison purposes, we trained a bi-deep

model on the WMT18 provided training data, us-
ing our common criteria with BEER as a validation
metric (as outlined in Section 3.1.1). The results of
this comparison are shown in Table 2. We noted
an over +1.0 BLEU improvement across all avail-
able test sets solely from the use of these pretrained
word embeddings.

3.1.3 Training Corpus Choice
The last major comparison for our Marian systems
involved the choice of training corpora. For var-
ious training runs, we used the corpus from our
WMT17 system, which included backtranslated
data generated by a Marian ‘Amun’ system as de-
scribed in Gwinnup et al. (2017). For others, we
used the entirety of the WMT18 preprocessed data
provided by the organizers. We trained bi-deep
systems with pretrained word embeddings, with
BEER as a validation metric, for both the WMT18
provided data and the concatenation of both the
WMT17 and WMT18 corpora described earlier.
The results of this comparison are shown in Ta-

ble 3. We noted there is between a +0.7 and +1.5
BLEU increase for test sets not used for valida-
tion purposes (newstest2014 showed an increase
of +2.1 BLEU, but this may be due to the models
overfitting on the validation set.)

3.1.4 Fine Tuning
We briefly examined fine-tuning (or continued
training) (Luong and Manning, 2015; Freitag and
Al-Onaizan, 2016) late into the evaluation period.
A fine-tuning corpus was constructed from the
concatenation of all of the news task testsets from
2013 to 2017. A bi-deep model trained on both the
WMT18 preprocessed data and the data used from
our WMT17 system, pretrained word embeddings
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System newstest2013 newstest2014 newstest2015 newstest 2016 newstest2017

cross-entropy-valid 24.60 30.32 26.98 26.78 27.71
bleu-valid 24.74 30.23 26.63 26.94 27.42
beer-valid 25.43 31.51 28.09 28.10 28.74

Table 1: Comparison between using cross-entropy, BLEU and BEER as validation metrics with Marian systems.
Scores for various WMT test sets measured in cased BLEU.

System newstest2013 newstest2014 newstest2015 newstest 2016 newstest2017

during training 25.63 31.20 – 26.68 29.60
pretrained 26.72 32.59 28.69 28.41 31.56

Table 2: Comparison on using pretrained word embeddings with Marian systems. Scores for various WMT test
sets measured in cased BLEU.

Corpus newstest2013 newstest2014 newstest2015 newstest 2016 newstest2017

wmt17backtrans 27.75 33.83 31.07 30.24 21.39
wmt18preproc 26.72 32.59 28.69 28.41 31.56
wmt17/18 concat 28.03 34.70 30.21 29.67 32.21

Table 3: Comparison of different training corpora conditions. Scores for various WMT test sets measured in cased
BLEU.

and validated with BEER was chosen as a starting
point. We use the fine-tuning corpus to continue
training for only two epochs. The results of this
comparison are shown in Table 4. A gain of al-
most +3 BLEU is observed, showing promise with
this technique, however concerns arise over possi-
ble overfitting to the fine-tuning corpus.

System BLEU BEER

general 27.05 0.575
fine-tuned 30.02 0.597

Table 4: Standard and Fine-tune results for
newstest2018 measured in cased BLEU and
BEER.

3.1.5 Marian Submission System

We ultimately employed an ensemble system of 5
bi-deep models and 6 transformer models trained
in varying conditions (with the exception of the
finetuned system in Section 3.1.4) outlined above
as the Marian contribution to our submission sys-
tem. This system also employed a R2L trans-
former model performing rescoring on the n-best
lists generated during the decoding step.

3.2 OpenNMT

Our OpenNMT system trained on the provided
parallel data excepting paracrawl and the back-
translated corpus we employed for our WMT17
system. This system uses a standard RNN archi-
tecture and was fine-tuned with the other available
news task test sets.
All systems used 1000 hidden units and 600 unit

word embeddings.

3.3 Moses

In order to provide diversity for system combi-
nation, we trained a phrase-based Moses (Koehn
et al., 2007) system with the same data as the Mar-
ian system outlined in Section 3.1. This system
employed a hierarchical reordering model (Gal-
ley and Manning, 2008) and 5-gram operation se-
quence model (Durrani et al., 2011). The 5-gram
English language model was trained with KenLM
on the constrained monolingual corpus from our
WMT15 (Gwinnup et al., 2015) efforts. The BPE
model used was applied to both the parallel train-
ing data and the language modeling corpus. Sys-
tem weights were tuned with the Drem (Erdmann
and Gwinnup, 2015) optimizer using the “Ex-
pected Corpus BLEU” (ECB) metric.
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4 System Combination

Jane System combination (Freitag et al., 2014) was
employed to combine outputs from the best sys-
tems from each approach outlined above. Indi-
vidual component system and final combination
scores are shown in Table 5. The final system
combination output comprised our entry to the
Russian–English portion of theWMT18 news task
evaluation.

System BLEU BEER

Marian 29.42 0.592
OpenNMT 28.88 0.580
Moses 24.25 0.565

Syscomb 30.01 0.597

Table 5: System combination and input system scores
measured in BLEU and BEER on the newstest2018
test set.

5 Conclusion

We presented a series of improvements to our
Russian–English systems focusing on improve-
ments to neural machine translation toolkits. We
again combined the best of several approaches
via system combination creating a composite sub-
mission exhibiting the best of all contributing ap-
proaches.
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Abstract

The University of Edinburgh made submis-
sions to all 14 language pairs in the news
translation task, with strong performances in
most pairs. We introduce new RNN-variant,
mixed RNN/Transformer ensembles, data se-
lection and weighting, and extensions to back-
translation.

1 Introduction

For the WMT18 news translation task, we were
the only team to make submissions to all 14 lan-
guage pairs. Our submissions built on our strong
results of the WMT16 and WMT17 tasks (Sen-
nrich et al., 2016a, 2017), in that we used neural
machine translation (NMT) with byte-pair encod-
ing (BPE) (Sennrich et al., 2016c), back-translation
(Sennrich et al., 2016b) and deep RNNs (Miceli
Barone et al., 2017). For this year’s submissions
we experimented with new architectures, and new
ways of data handling. In brief, the innovations
that we introduced this year are:

Architecture This year we experimented with
the Transformer architecture (Vaswani et al., 2017),
as implemented by Marian (Junczys-Dowmunt
et al., 2018), as well as introducing a new variant
on the deep RNN architectire (Section 2.3).

Data selection and weighting For some lan-
guage pairs, we experimented with different data
selection schemes, motivated by the introduction
of the noisy ParaCrawl corpora to the task (Section
2.1). We also applied weighting of different cor-
pora to most language pairs, particularly DE↔EN
(Section 3.5).

Extensions to Back-translation For TR↔EN
(Section 3.7) we used copied monolingual data
(Currey et al., 2017a) and iterative back-translation.

In-domain Fine-tuning For RU↔EN (Section
3.6) we fine-tuned using a specially constructed
“in-domain” data set.

2 System Details

In this section we describe the general properties
of our systems, as well as some novel approaches
that we tried this year such as data selection and a
variant on the GRU-based RNN architecture. The
specifics of our submissions for each language pair
are described in Section 3.

2.1 Data and Selection
All our systems were constrained in the sense that
they only used the supplied parallel data (including
ParaCrawl) for training the systems. We also used
the monolingual news crawls to create extra syn-
thetic parallel data by back-translation, for all lan-
guage pairs, and by copying monolingual data for
TR↔EN. During training we generally used news-
dev2016 or newstest2016 for validation, and newst-
est2017 for development testing (i.e. model selec-
tion), except for ZH↔EN, and ET↔EN, where we
used the recent newsdev sets instead.

All parallel data contains a certain amount of
noise, and the problem was exacerbated this year
since the organisers provided a ParaCrawl corpus1

for most language pairs2 as additional training data.
On inspection, we could see that these crawled cor-
pora were quite noisy, including mis-aligned sen-
tence pairs, incorrect language, and garbled encod-
ings. In early experiments, we showed increases
in BLEU from including ParaCrawl in the training
data, for ET→EN and FI→EN, but we decided
to see if we could improve performance further
by applying data filtering. We experimented with
different filtering methods, described below.
1https://paracrawl.eu
2 ParaCrawl corpora was not available for EN↔TR and

EN↔ZH.
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Language Identifier Filtering This was applied
to the CS↔EN and DE↔EN corpora, based on
observations that CzEng, and ParaCrawl both con-
tain sentence pairs in the “wrong” language. For
CS↔EN we applied langid (Lui and Baldwin,
2012) to both sids of the data, removing any sen-
tences whose English side is not labelled as English,
or whose Czech is not labelled as Czech, Slovak or
Slovenian3. For DE↔EN, we just applied langid
to ParaCrawl and retained only those pairs where
each side was identified as the ‘correct’ language
by langid. This reduced the size of the ParaCrawl
corpus from about 36 million sentence pairs to ca.
18 million sentence pairs.

Data Selection with Translation Perplexity
We applied this to ET↔EN and FI↔EN. To per-
form the filtering, we first trained shallow RNN
models in both directions, using all the permit-
ted parallel data except ParaCrawl. We then used
these models to score the ParaCrawl sentence pairs,
normalising by target sentence length, and adding
the scores for forward and reverse models. We
then ranked sentence pairs in ParaCrawl using this
score, and performed a grid search across different
thresholds (from 0 – 100% in 10 point intervals) of
the ParaCrawl data, in addition to the other parallel
data. We trained a shallow RNN system using the
data selected across each of these thresholds, and
tested it on newstest2017 (for FI→EN), or half of
newsdev2018 (for ET→EN).

The results of the filtering are shown in Figure
1. Based on these results, we chose a threshold of
0.3 for ET↔EN (which gives us +0.8 BLEU), but
used the whole of ParaCrawl for FI→EN.

Alignment-based Filtering We applied this to
the DE→EN parallel data, after langid filtering.
We word-aligned all pre-cleaned parallel data with
fastalign (Dyer et al., 2013) and computed the geo-
metric mean of forward and backward alignment
probabilities as a coarse estimate of how good a
translation pair the respective sentence pair is.

All parallel data was sorted in descending order
of this “plausible translation” score, and a neural
system was trained on this data, in this order. In
order to determine a threshold for data filtering,

3 langid identified a significant proportion of the data as these
other two Slavic languages, but on inspecting a sample, they
were found nearly always to be Czech. The issue with langid
is that we just give it the text, without providing any prior
knowledge, when in actual fact there is a strong prior that Cz-
Eng sentences are really Czech and English, by construction
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Figure 1: Result of translation perplexity filtering of
ParaCrawl on 2 language pairs

we monitored the performance on a validation set
(newstest2016) and observed the point where trans-
lation quality started to deteriorate. We used the
translation plausibility score at this point as the
threshold for selecting data for training the final
systems.

2.2 Preprocessing

For most language pairs, our preprocessing setup
consisted of the Moses pipeline (Koehn et al., 2007)
of normalisation, tokenisation and truecasing, fol-
lowed by byte-pair encoding (BPE) (Sennrich et al.,
2016c). We generally applied joint BPE, with the
number of merge operations set on a per-pair basis,
detailed in Section 3. Different pipelines were
used for processing the two languages written in
non-Latin scripts (i.e. Chinese and Russian), also
explained in Section 3. For some language pairs
(those including Czech, Estonian, Finnish and Ger-
man) we used the preprocessed data provided by
the organisers (which is preprocessed up to truecas-
ing), whilst for the others we started with the raw
data.

2.3 Model Architecture

For this submission we considered two types of
sequence-to-sequence architectures: a transformer
(Vaswani et al., 2017) and a deep RNN, specific-
ally the BiDeep GRU encoder-decoder (Miceli Bar-
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one et al., 2017). Both architectures4 are imple-
mented in the Marian open source neural machine
translation framework (Junczys-Dowmunt et al.,
2018). For the transformer architecture we used
the “wmt2017-transformer” setup from the Marian
example collection5.

We extended the RNN with with multi-head and
multi-hop attention. Multi-head attention is similar
to Chen et al. (2018), with an MLP attention mech-
anism using a single tanh hidden layer followed
by one soft-max layer for each attention heads. We
further include an optional projection layer on the
attended context with layer normalisation in order
to avoid increasing the total size of the attended
context.

Let C ∈ RNs×de be the input sentence repres-
entation produced by the encoder, where Ns is the
source sentence length and de is the top-level bid-
irectional encoder state dimension. Let s ∈ Rdd

be an internal decoder state at some step. Then for
source sentence position i we compute a vector of
M attention weights, where M is the number of
attention heads:

W,A ∈ RNs×M

Wi = MLP(Ci, s)

Ai =
exp(Wi)∑
i′ exp(Wi′)

where we assume that exponentiation is applied
element-wise. Then we compute the attended con-
text vector as:

ATT(C, h) = CATM
r=1

(∑

i

PROJr(Ci) · ai,r
)

where CATM
r=1 is vector concatenation over the

attention heads and each PROJr is either the iden-
tity function or a trainable linear layer followed by
layer normalization.

Multi-hop attention is similar to Gehring et al.
(2017), except that we do not use convolutional
layers, but instead we introduce additional attention
hops between the layers of the deep transition GRU
in the decoder. In our implementation multi-head
and multi-hop attention can be combined, in which
case each attention hop is a separate multi-head
attention mechanism.
4 The BiDeep GRU is obtainable using the -best-deep

option.
5https://github.com/marian-nmt/
marian-examples

Let Lt ≥ 2 be the decoder base recurrence depth
andH < Lt be the number of attention hops. Then
the base level of the decoder is defined as:

sj,1 =GRU1 (yj−1, sj−1,Lt)

sj,k =GRUk (ATTk(C, sj,k−1), sj,k−1)

for 1 < k ≤ H + 1

sj,k =GRUk (0, sj,k−1)

for H + 1 < k ≤ Lt

where each ATTk(C, s) is and independent multi-
head attention mechanism with M heads. For a
BiDeep decoder, the higher levels are the same as
in the default Marian implementation of the BiDeep
architecture 6.

2.4 Training
All our systems are trained with Marian7 (Junczys-
Dowmunt et al., 2018), using Adam (Kingma and
Ba, 2015). To improve training stability and gen-
eralisation, we employed label smoothing (0.1)
(Szegedy et al., 2016), exponential smoothing
(i.e. Polyak averaging) with 0.0001 weight, gradi-
ent clipping and layer normalisation (Ba et al.,
2016). For all pairs except CS↔EN (where it
harmed BLEU) we used dropout (Srivastava et al.,
2014; Gal and Ghahramani, 2016) on the Trans-
former/RNN connections.

3 Submitted Systems

3.1 Chinese↔ English
For ZH↔EN we preprocessed the parallel data,
which consists of NewsCommentary v13, UN data
and CWMT, as follows. We first desegmented all
the Chinese data and resegmented it using Jieba8.
We then removed any sentences that did not con-
tain Chinese characters on the Chinese side, or
contained only Chinese characters on the English
side. We also cleaned up all sentences containing
links, sentences longer than 50 words, as well as
sentences where the amount of tokens on either side
was > 1.3 times the tokens on the other side, fol-
lowing Hassan et al. (2018). After preprocessing
the corpus size was 23.6M sentences. We then
applied BPE using 18,000 merge operations and
we used the top 18,000 BPE segments as vocabu-
lary. We augmented our data with backtranslated
6 The implementation of the multi-head and multi-hop at-
tention architectures is available at: https://github.
com/EdinburghNLP/marian-dev

7https://marian-nmt.github.io
8https://github.com/fxsjy/jieba
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ZH↔EN from Sennrich et al. (2017), which con-
sists of 8.6M sentences for EN→ZH and 19.7M
for ZH→EN.

We trained using the BiDeep architecture with
multi-head attention with 1 hop and 3 heads. We
decoded using an ensemble of 5 L2R systems and
a beam of 12 for EN→ZH and 6 L2R systems and
a beam of 12 for ZH→EN. Due to time constraints,
we were not able to train any of the systems to
convergence.

3.2 Czech↔ English

After preprocessing, language filtering (see Sec-
tions 2.1 and 2.2), and removing any parallel sen-
tences where neither side contains an ASCII letter,
we were left with around 50M sentence pairs. We
then learned a joint BPE model over the source and
target corpora, with 89,500 merge operations, and
applied it using a vocabulary threshold of 50.

For back-translation, we trained shallow RNN
models in both directions without ParaCrawl or the
langid-based corpus cleaning, and used to decode
with a beam size of 5. We back-translated the Eng-
lish 2017 news-crawl, and the Czech news-crawls
from 2016 and 2017, removing lines with more
than 50 tokens, to create additional corpora of ap-
proximately 26.5M sentence for CS→EN and 13M
for EN→CS. Initially we tried simply concatenat-
ing each of these corpora with the natural parallel
data, but this gave poor results for CS→EN, so we
over-sampled the synthetic data 2 times for that pair
to give approximately equal amounts for synthetic
and natural data. For EN→CS, we did not see any
benefit from equalising the synthetic/natural ratio,
so we stuck to using simple concatenation.

For the submitted systems, we trained the
BiDeep RNN models using Marian. In addition
to the default Marian settings, we used layer norm-
alisation, tied embeddings, label smoothing (0.1),
exponential smoothing, no dropout, but we used
multiheaded/multihop attention with 2 heads and
3 hops. We trained on 4 GPUs with a working
memory of 4000MB on each, validating every
2,500 updates. We used exponential smoothing
and took the final smoothed model. We trained
4 left-right (L2R) and 4 right-left (R2L) models
for each language pair, and due to time constraints
we did not train to convergence, stopping each run
after about 250k–350k updates. We decoded using
an ensemble of the 4 L2R systems and a beam of
50, then reranked with the 4 R2L systems. For

both language pairs we normalised probabilities
by target length, raising it to a power of 0.8 for
CS→EN.

3.3 Estonian↔ English

As explained in Section 2.1, we used a filtered
ParaCrawl for this pair, and in common with
CS↔EN we removed any sentence pairs where
either side contained no ascii letter. We trained and
applied a BPE model with 89,500 merge operations
and a vocabulary threshold of 50. We split news-
dev2018 randomly and used one half for validation
and another half for development testing.

The models used for back-translation were shal-
low RNNs trained on the parallel data without
ParaCrawl. We translated the 2017 English news-
crawl to Estonian, and translated all the Estonian
news-crawls to English. We also experimented
with the BigEst Estonian corpus, but did not see any
improvement when using it to produce synthetic
data, nor when we selected 50% of it using Moore-
Lewis selection (Moore and Lewis, 2010) with the
news-crawl data as in-domain. Our final natural
parallel corpus contains approximately 1.2M sen-
tences, and the synthetic corpora are about 2.9M
for EN→ET and 26.5M for ET→EN. To create the
final corpora for training, we combined natural and
synthetic, over-sampling the natural 3-times for
EN→ET and 23-times for the ET→EN. Again we
apply BPE, trained on the Europarl, Rapid and se-
lected Paracrawl corpora, with the same parameters
as before.

Our submitted system was an ensemble of 4
left-right systems, reranked with 4 right-left sys-
tems, with each ensemble consisting of 2 deep
BiDeep RNNs and 2 Transformers. The RNN had
a BiDeep architecture, with layer normalisation,
tied embeddings, label smoothing (0.1), exponen-
tial smoothing, RNN dropout (0.2), source and
target word dropout (0.1) and multihead/multihop
attention with 2 heads and 3 hops. We trained on
4 GPUs with a working memory of 4000MB on
each, validating every 2,500 updates. The RNNs
were not trained to convergence (due to time con-
straints) but stopped after between 300k and 500k
steps. The transformer models used the settings
from Marian examples. without layer normalisa-
tion, with a working memory of 9500MB (on each
of 4 GPUs), validating every 2500 updates, and de-
tecting convergence with a patience of 10. We also
applied source and target word dropout to the trans-
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former models. They generally converged in under
200k updates. As for CS↔EN we used exponen-
tially smoothed models. Decoding is the same as
for CS↔EN, with normalisation by target length.

3.4 Finnish↔ English

For FI↔EN, after pre-processing we removed sen-
tence pairs where either side contains no ascii
characters, then trained and applied a BPE model
with 89,500 merge operations and a vocabulary
threshold of 50. As reported in Section 2.1, we
used the whole of ParaCrawl in our system.

For back-translation, we trained shallow RNN
models in each direction, without ParaCrawl. We
back-translated with a beam size of 5, translating
the English 2017 news-crawl to Finnish, and the
Finnish 2014–2017 news-crawls to English. Before
back-translation, we removed any sentences with
length greater than 50 tokens. For EN→FI, we
combined 3.2M naturally parallel sentence pairs,
over-sampling 5-times, with 14.6M sentences of
synthetic data. For FI→EN, we combined the
same natural corpus (over-sampled 8-times) with a
26.5M corpus of synthetic parallel data.

We created the submitted systems in the same
way as the ET↔EN systems (Section 3.3), and
again we were not able to train the deep RNNs
to convergence. The only difference is that for
EN→FI, we normalise by the target length raised
to a power of 0.5, after running a grid search over
different normalisations on the development set.

3.5 German↔ English

Our efforts focussed on extracting the most use-
ful data from ParaCrawl. After preprocessing and
selection (see Section 2.1, we trained and applied
joint BPE models with 35,000 merge operations,
and a threshold of 50.

To balance the data, we blended the data in a mix
as shown in Table 1, by randomly sampling from
each corpus (without raplacement), resetting (i.e.,
replacing all items at once) each corpus when it
became exhausted, for a total of 40 million sentence
pairs.

Our system was based on the transformer in
Marian examples, and initially we trained several
left-right and right-left systems with tied target em-
beddings (but separate source embeddings). We
used these systems to create ensembles.

For the translation direction EN→DE, we also
trained a single model with a set-up more closely

Corpus %

Back translations1 50%
CommonCrawl 5%
Europarl 15%
News-commentary 10%
ParaCrawl 10%
Rapid 10%

Table 1: Blend of data for training the DE↔EN en-
semble models (40M sentence pairs total).

reflecting the setup described in the wmt2017-
transformer Marian example set-up. For this single
decoder, we tied all embeddings and pooled the
top-ranked 7.5 million sentence pairs from parac-
rawl (according to the translation plausibility score)
with the other training data. Below, this system is
referred to as single transformer.

For the single transformer we used a mix of
approximately 4.6 million parallel sentence pairs
from latest versions of Europarl, CommonCrawl
and News-commentary, oversampled twice, the
7.5 million parallel sentence pairs from ParaCrawl,
filtered as described above, and 10 million back-
translated sentences from NewsCrawl 2016. We
trained a Marian transformer model with standard
settings.

We also ran preliminary experiments with multi-
head and multi-hop GRU architectures on the same
training data except ParaCrawl but we found that
these models tended to underperform the trans-
former by 0.6 − 1.0 BLEU points, therefore we
did not use them for our submission.

As the results in Table 2 show, the single trans-
former produces better results than our ensembles.
Even re-ranking of the single transformer output
deteriorates the results, which we attribute to lower
quality of the models used for ensembling and re-
ranking. At this point we do not know whether
the differences in model quality are due to differ-
ences in the tying of parameters, different choices
of other hyperparameters, differences in the train-
ing data used, or a combination of any of these
potential causes.

3.6 Russian↔ English

After preprocessing, we trained a joint BPE model
with 90,000 merge operations, using the same
Latin-Cyrillic transliteration trick as in Sennrich
et al. (2016c). For back-translation we trained
a deep RNN and translated Russian news crawls
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Pair System BLEU

DE→EN Ensemble of 3 L2R, reranked with ensemble of 2 R2L 43.9

EN→DE
Single transformer 44.4
Single transformer, reranked with ensemble of 2 R2L 43.2
Ensemble of 2 L2R, reranked with ensemble of 2 R2L 41.8

Table 2: WMT18 Results for German↔ English

from 2015–2017, and the English news crawl from
2017 to give about 36M sentences in each direction.

In order to maximize the performance of our sub-
mission systems, we created a pseudo “in-domain”
fine-tuning corpus designed to be representative
of the targeted news domain to a greater extent
than the full parallel corpus. For that purpose, we
concatenated pre-processed sentence pairs from
NewsCommentary v13, CommonCrawl, and Yan-
dex Corpus, excluding the noisy ParaCrawl data
as well as data from the UN Parallel Corpus V1.0
which has little overlap with our target domain. To
ensure that the so assembled corpus is as free of
noise as possible, we furthermore filter out sen-
tence pairs in which the Russian side is not pre-
dominantly composed of Cyrillic characters or the
English side is dominated by non-Latin characters.
Lastly, we combined the so obtained “in-domain”
corpus with an equal amount of back-translated
news data, resulting in two datasets of 2.1M sen-
tence pairs each.

Our final submission included both deep RNN
models (using multi-head and multi-hop attention
with 3 heads and 2 hops) and Transformer models
similar to the Transformer-Base of Vaswani et al.
(2017). For the RNNs, we applied layer normal-
isation, label smoothing (0.1), dropout between
recurrent layers (0.1), exponential smoothing and
tieall embeddings. We applied similar options to
our transformer models.

We trained our models in two stages: 1) Training
on the full parallel corpus and 2) Fine-tuning on the
“in-domain” corpus with a reduced learning rate.
Each of the submitted models was optimized using
the Adam algorithm, with β1 set to 0.9, and β2 set
to 0.98. Learning rate was set to 0.0003 during
the training stage and lowered to 0.00003 during
the fine-tuning stage. Throughout the training, the
learning rate was linearly increased over the initial
16,000 update steps up to the specified value and
gradually degraded thereafter.

Model validation was performed every 5,000

steps, and we terminated training if no BLEU im-
provements are observed after five consecutive val-
idations. For fine-tuning, we initialized our mod-
els with parameters corresponding to the highest
validation-BLEU on the full corpus and train until
convergence, as indicated by early stopping, on the
“fine-tuning” training set. Due to time-constaints,
convergence could not be reached for several of the
ensembled models.

Our final submissions consisted of an ensemble
of 4 deep RNNs for EN→RU and a mixed en-
semble of 2 RNNs and 2 transformers for RU→EN.
All these models were trained independently and
fine-tuned on the “in-domain” set. Improvements
obtained following the fine-tuning step are de-
tailed in Table 3. While our original intention
was to use mixed ensembles for both directions,
our transformer models under-performed on the
EN→RU translation task, which we assume is due
to our hyper-parameter choices. We re-ranked the
translations obtained by our left-right ensemble
with a right-left ensemble of identical design. It
should be noted, however, that we were unable to
identify any significant improvements in terms of
validation-BLEU as a result of the re-ranking. We
also fine-tuned the beam-size and length penalty
hyper-parameters of our ensemble systems on the
corresponding validation sets for which we observe
a small increase in validation-BLEU. Accordingly,
we set the beam size to 20 and length normalisation
parameter to 0.4 for our EN→RU ensemble and to
28 and 1.2 respectively for RU→EN.

3.7 Turkish↔ English

After preprocessing we trained and applied a joint
BPE model with 36,000 merge operations, dis-
carding any sentences longer than 120 tokens. To
produce back-translations we built systems in two
steps: first we trained back-translation systems in
both directions using the parallel data only, and
then we re-trained them on data sets containing
additional 800K back-translated sentences. Back-
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Deep RNN Transformer
Direction base fine-tuned significance base fine-tuned significance

EN→RU 30.25 32.69 p < 0.00001 - - -
RU→EN 35.79 36.5 p < 0.005 35.81 36.96 p < 0.005

Table 3: Impact of in-domain fine-tuning on the RU ↔ EN task. Reported are best validation-BLEU scores
averaged over all single models of the denoted type in the submitted ensemble systems. Statistical significance
was established using a paired, two-tailed t-test.

Corpus # Synth. R # Total

A 800K ×1 1M
B 2.5M ×5 3.5M
C 2.5M + 1M ×5 4.5M

Table 4: Training data sets for TR↔EN systems. Data
sets consist of back-translated and original parallel data
oversampled R times.

translation systems are trained as deep RNN mod-
els described below. The final training sets consist
of 2.5M of synthetic parallel sentence pairs created
from English or Turkish NewsCrawl data sets and
the SETIMES2 data oversampled 5 times (Table 4).
We also experimented with copying monolingual
data (Currey et al., 2017b) by adding additional 1M
examples with source sentences identical to target
sentences randomly selected from the monolingual
data.

Our RNN models used the BiDeep architecture,
and we augmented the models with layer norm-
alisation, skip connections, and parameter tying
between all embeddings and output layer. The
RNN hidden state size was set to 1024, embed-
dings size to 512.

The architecture of transformer models was
close to the Transformer-Base proposed by
Vaswani et al. (2017): encoder and decoder were
composed of 6 layers, and employed 8-head self-
attention. We used dropout between transformer
layers (0.2) as well as in attention (0.05) and feed-
forward layers (0.05). The rest of parameters re-
mained the same as in the RNN models.

Optimization used 4 GPUs with synchronous
training and mini-batch size fitted into 9.5GB of
GPU memory. The learning rate was linearly in-
creased to 0.0004 reaching this value after first
18,000 updates, and then decreased by a square
of the passed updates starting at 24,000 update.
As a stopping criterium we used early stopping
with a patience of 10 based on the word-level

cross-entropy on the newsdev2016 data sets, which
served as a development set. The model was valid-
ated every 5,000 updates, and we kept best models
according to the cross-entropy and BLEU score.

We evaluated systems using models with the
highest BLEU score on the development set. De-
coding was performed by beam search with a beam
size of 12 with length normalisation with value
0.2 for EN→TR and 1.2 for TR→EN based on the
greed search on the development set. Additionally,
as the Turkish language is not supported by the
Moses tokenizer falling back to general English
tokenization rules resulting in suboptimal detoken-
ization, we postprocessed translated Turkish texts
by merging words that contains an apostrophe.

We report results on the newstest2017 and news-
test2018 in Table 59. Our first submitted TR↔EN
systems were ensembles of 6 independently trained
models, reranked with 3 right-left systems (En-
semble ×6 +Rerank R2L ×3). Ensembles consist
of four models trained on corpus B and one model
trained on corpora A and C, while each right-left
model is trained on different corpora A-C. Our fi-
nal systems extended the previous ensemble by 6
additional models from the same training runs that
achieve best cross-entropy (instead of best BLEU)
on the development set10, utilizing 12 left-right
models in total (Ensemble×6×2). For comparison,
we report the results for single systems trained on
different corpora, and there is no significant per-
formance difference among them.

3.8 Overall Performance of Submissions

In Table 6 we show the BLEU scores of our systems
as compared to the top-scoring constrained systems,
giving the BLEU scores from the matrix11 and the

9 For our official submissions we also used n-best lists gen-
erated with the beam size of 20 instead of 30, which may
explain the difference between the official and reported BLEU
scores.

10Models achieving best cross-entropy differ from the models
with highest BLEU for each training run.

11http://matrix.statmt.org
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EN-TR TR-EN
System 2017 2018 2017 2018

Deep RNNA 22.0 18.1 23.8 24.4
Deep RNNB 22.1 18.6 23.9 25.1

TransformerA 23.4 19.1 24.6 25.8
TransformerB 23.1 19.2 25.0 26.7
TransformerC 22.8 19.0 25.2 26.7

+Ensemble ×6 24.0 19.9 26.2 27.6
+Rerank R2L×3 24.4 19.9 26.6 28.2

+Ensemble ×6×2 24.3 19.9 26.3 27.7
+Rerank R2L×3 24.7 20.1 26.5 28.1

Submission 19.5 26.9

Table 5: Results for EN↔TR systems on official WMT
test sets.

human evaluation from the findings paper (Bojar
et al., 2018).

In terms of the clustering provided by the or-
ganisers, we were in the top constrained cluster
(i.e. no significant difference was observed
between ours and the best constrained system) for
EN→CS, DE→EN, ET→EN, FI→EN, TR→EN
and EN→TR, i.e. 6/14 language pairs. Neverthe-
less, Table 6 still shows that our systems generally
lag behind the best submitted systems. This is con-
trast to the 2017 shared task, where we achieved
the highest scores in most of the language pairs
where we submitted systems. We hypothesise that
other groups have taken fuller advantage of the
transformer architecture, and also of data weight-
ing and selection. We also suggest that covering all
14 language pairs meant that we had insufficient
time for experimentation on some pairs, and in fact
we were not able to train all models to convergence.

4 Post-Submission Experiments

In this section we present results of some post-
submission experiments, which attempted to
provide more insight into the contribution of dif-
ferent features of our system. We were especially
interested in understanding why our systems tended
to lag behind the performance of the best systems
(in BLEU, at least). Mostly the experiments were
conducted on EN↔{CS,ET,FI}.

The results are given on newstest2017 (devtest)
and newstest2018 (test), except for ET↔EN, where
devtest is half of newsdev2018.

4.1 Effect of Multihead/Multihop Attention

In the deep RNN models in our submissions,
we used the BiDeep architecture, with multi-
head/multihop attention, setting the number of hops
to 3 and heads to 2. In Table 7, we show the effect
of this on 3 different language pairs (both direc-
tions). For these experiments, we use the same
training sets and data preparation as in our system
submissions, but train the deep RNNs with a work-
ing memory of 10GB, validating every 1,000 steps,
and testing for convergence with a patience of 10.
We use exponential smoothing and show the results
on a single smoothed model.

From the results in Table 7 we see that the multi-
head/hop extension has a small positive effect on
BLEU in most language pairs.

4.2 Effect of Vocabulary Size

After looking at the submission results, we ques-
tioned whether smaller vocabularies would have
given better results, especially for transformer mod-
els. Having smaller vocabularies means that the
models have few parameters, and also allow more
words to be fitted into each training mini-batch.

To create a model with a smaller vocabulary, we
follow the preparation steps used for our submis-
sions (in EN↔{CS,ET,FI}), but use 30,000 BPE
merges instead of 89,500. We show the effect both
on the deep RNN model and on the Transformer
model, and additionally we show the effect of tying
all embeddings (i.e. source, target input and target
output) on the Transformer model. The submit-
ted models for these language pairs only have the
target input and output embeddings tied. As in Sec-
tion 4.1 we set the working memory for the deep
RNN to 10GB, and we set the working memory
for transformer training to 9.5GB. We used layer
normalisation for the transformer models (although
this appeared to make little if any difference to the
results). In Table 8 we show the comparison for
RNNs, and in Table 9 we show the same compar-
ison for Transformer models.

Examining the results in Tables 8 and 9, we can
see that the effect of vocabulary size reduction on
RNN models is mixed, whereas the transformer
models have a preference (in BLEU, at least) for
smaller vocabularies. Tying all embeddings does
not seem to help. Further investigation is needed
on the vocabulary size question though, as the rela-
tionship between BPE hyper-parameters and BLEU

is unclear. We note that changes in the vocabulary
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X→ EN EN→X
Ours Top ∆ BLEU ∆ DA Ours Top ∆ BLEU ∆ DA

CS 31.8 33.9 -3.13 -3.9 23.4 26.0 -2.59 -6.6
DE 43.9 48.4 -4.49 -4.5 44.4 48.3 -3.95 -5.6
ET 29.4 30.7 -1.30 -1.9 22.7 23.6 -0.85 -4.6
FI 23.5 24.9 -1.40 -1.2 16.7 18.2 -1.53 -5.5
RU 32.8 34.9 -2.12 -3.5 29.8 34.8 -4.95 -6.0
TR 26.9 28.0 -1.10 -1.1 19.5 20.0 -0.48 0.0
ZH 24.0 29.3 -5.31 -4.3 33.3 43.8 -10.5 -10.0

Table 6: Overall BLEU scores of our systems, compared to the top-scoring constrained systems. We also show the
difference with the direct assessment (DA) score of the best constrained system.

No hop/head 3 hop, 2 head
Pair devtest test devtest test

CS-EN 30.0 30.8 30.6 31.2
EN-CS 23.2 23.0 23.6 23.2
ET-EN 24.8 27.9 25.4 27.2
EN-ET 18.9 21.6 18.8 21.1
FI-EN 31.4 22.6 31.9 23.1
EN-FI 24.4 16.0 25.2 16.2

Table 7: Comparison of performance of deep RNN
models with/without the multihop/multihead exten-
sion.

BPE 89.5k BPE 30k
Pair devtest test devtest test

CS-EN 30.6 31.2 30.8 31.1
EN-CS 23.6 23.2 23.0 22.9
ET-EN 25.4 27.2 26.1 28.2
EN-ET 18.8 21.1 18.7 21.1
FI-EN 31.9 23.1 31.6 22.8
EN-FI 25.2 16.2 25.5 16.5

Table 8: Effect of reducing vocabulary size for deep
RNN models. We used 89,500 BPE merges for our
submissions, but tried reducing it to 30,000 for post-
submission experiments.

size could have a disproportionate effect on the
translation of rare words (including proper nouns)
which would not necessarily be detected by BLEU.

4.3 Mixed Ensembles

For our submitted systems for FI↔EN and
ET↔EN we used mixed ensembles consisting of
two deep RNNs and two Transformer models. In
this section we examine whether the mix of archi-

tectures in the ensemble is beneficial. We compare
this mixed ensemble with an ensemble of four deep
RNNs.

In Table 10, we show the results. We show the
mean BLEU score of the models in the ensemble,
together with the overal ensemble score. For clarity,
we just show scores on our test set (newstest2018).
The gain in BLEU from ensembling (over the mean
BLEU) is slightly higher in all cases than the cor-
responding gain for the uniform ensemble.

5 Conclusions

We have described Edinburgh’s systems for all 14
language pairs, showing that we can gain improve-
ments by augmenting a GRU-based RNN with
multi-head and multi-hop attention, using mixed
ensembles of deep RNNs and transformers, and
selecting data from the noisy ParaCrawl corpora.
Our systems perform strongly in most language
pairs, except for when we did not manage to train
to convergence.
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Abstract

This paper describes the Neural Machine
Translation (NMT) system of TencentFmRD
for Chinese↔English news translation tasks of
WMT 2018. Our systems are neural machine
translation systems trained with our original
system TenTrans. TenTrans is an improved
NMT system based on Transformer self-
attention mechanism. In addition to the ba-
sic settings of Transformer training, TenTrans
uses multi-model fusion techniques, multi-
ple features reranking, different segmentation
models and joint learning. Finally, we adopt
some data selection strategies to fine-tune the
trained system and achieve a stable perfor-
mance improvement. Our Chinese→English
system achieved the second best BLEU scores
and fourth best cased BLEU scores among all
WMT18 submitted systems.

1 Introduction

End-to-end neural machine translation (Cho
et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015) based on self-attention mecha-
nism (Vaswani et al., 2017), the Transformer, has
become promising paradigm in field of machine
translation academia and industry. Experiments
show Transformer, which does not rely on any
convolutional or recurrent networks, to be superior
in translation performance while being more par-
allelizable and requiring significantly less time to
train. The training part of this paper is an improve-
ment on the tensor2tensor1 open source project
based on the Transformer architecture, and the in-
ference part is completely original, and we called
this system TenTrans. We participated in two di-
rections of translation tasks: English→Chinese
and Chinese→English.

We divide TenTrans system into three parts to
introduce in this paper. First, we introduce how

1https://github.com/tensorflow/tensor2tensor

to train better translation model, that is, the train-
ing phase. Second, we describe how good mod-
els can generate better translation candidates, that
is, the inference phase. Finally, we describe N -
best rescoring phase, which ensures that transla-
tion results which are closer to the expression typ-
ically produced by users are chosen. Our exper-
imental setup is based on recent promising tech-
niques in NMT, including using Byte Pair En-
coding (BPE) (Sennrich et al., 2016b) and mixed
word/character segmentation rather than words as
modeling units to achieve open-vocabulary trans-
lation (Luong and Manning, 2016), using back-
translation (Sennrich et al., 2016a) method and
joint training (Zhang et al., 2018) applied to make
use of monolingual data to enhance training data.
And we also improve the performance using an
ensemble based on six variants of the same net-
work, which are trained with different parameter
settings.

In addition, we design multi-dimensional fea-
tures for strategic integration to select the best can-
didate from n-best translation lists. Then we per-
form minimum error rate training (MERT) (Och,
2003) on validation set to give different features
corresponding reasonable weights. And we pro-
cess named entities, such as person name, loca-
tion name and organization name into generaliza-
tion types in order to improve the performance of
unknown named entity translation (Wang et al.,
2017). Finally, we adopt some data selection
strategies (Li et al., 2016) to fine-tune the trained
system and achieve a stable performance improve-
ment.

Our Chinese→English system achieved the sec-
ond best BLEU (Papineni et al., 2002) scores and
fourth best cased BLEU scores among all WMT18
submitted systems. The remainder of this paper
is organized as follows: Section 2 describes the
system architecture of TenTrans. Section 3 states
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all experimental techniques used in WMT18 news
translation tasks. Sections 4 shows designed fea-
tures for reranking n-best lists. Section 5 shows
experimental settings and results. Finally, we con-
clude in section 6.

2 System Architecture of TenTrans

In this work, TenTrans has the same overall archi-
tecture as the Transformer: that is, it uses stacked
self-attention and point-wise, fully connected lay-
ers for both the encoder and decoder. The encoder
and decoder both are composed of a stack of N =
6 identical layers. Each layer has two sub-layers,
multi-head self-attention mechanism and position-
wise connected feed-forward network. We add a
residual connection (He et al., 2016) around each
of the two sub-layers, followed by layer normal-
ization (Ba et al., 2016). The left part of training
phase in Figure 1 describes the structure of the ba-
sic sub-layer in the encoder and decoder. In ad-
dition to the two sub-layers in each encoder layer,
the decoder inserts a third sub-layer, which per-
forms multi-head attention over the output of the
encoder stack. In this work we employ multi-
head = 16 heads, that is, parallel attention layers.

For all our models, we adopt Adam (Kingma
and Ba, 2015) (β1 = 0.9, β2 = 0.98, ε = 10−9)
as optimizer. We use model hidden state dimen-
sion 1024, the same as input embedding dimen-
sion and output embedding dimension. We lin-
early increase the learning rate whose initial value
is 0.1 in the first warmup = 6000 training steps,
and then anneal with the same way as Transformer.
We use synchronous mini-batch SGD (Dean et al.,
2012) training with batch size = 6144 and data
parallelism on 8 NVIDIA Tesla P40 GPUs. We
clip the gradient norm to 1.0 (Pascanu et al., 2013).
We apply residual dropout (Zaremba et al., 2014;
Srivastava et al., 2014) with Prd = 0.3 to avoid
overfitting. In training, we don’t just focus on
the word with highest probability score, but let
the likelihood calculation be smoother, so apply-
ing label smoothing (Szegedy et al., 2016) with
εls = 0.1. All weight parameters are initialized
according to uniform distribution in the interval
[−0.08, 0.08]. We will early stop training (Sen-
nrich et al., 2017) when there is no new maximum
value of the validation BLEU for 10 consecutive
save-points (saving every 10000 updates) and se-
lect the model with the highest BLEU score on the
validation set.

We mainly optimize TenTrans system through
three parts. First, through the first part of Fig-
ure 1, multiple models are trained, and then the
data selection method is used to continue to fine
tune the system. Then, through the second part of
Figure 1, the combination of best multiple models
is used to decode the monolingual corpus to gen-
erate pseudo-bilingual data, and then the pseudo-
bilingual data is proportionally added to the train-
ing set to continue the training of the first stage,
and these two phases are continuously iterated un-
til convergence. Finally, the third stage, N -best
rescoring phase, finds the best translation result
among the translation candidates by designed mul-
tiple sets of features. In order to learn the corre-
sponding weights of multiple sets of features, the
optimization is carried out through minimum error
rate training (MERT).

3 Experimental Techniques

This section mainly introduces the techniques
used in training and inference phase.

3.1 Multi-model Fusion Technology

For multi-model fusion, we try three strategies:
Checkpoint ensembles (CE), refers to the last

N checkpoints saved during a single model train-
ing, where N is set to 10. In addition, we add
the best 10 models saved during the early stopping
training.

Independent parameter ensembles (IPE),
refers to firstly training N models with different
initialization parameters, and then weighting the
average probability distribution of multiple mod-
els when softmax layer is calculated. Here we set
N to 6, and we make better models have relatively
higher weights, and poorer models have relatively
lower weights.

Independent model ensembles (IME). An in-
dependent model ensemble is a set of models, each
of which has been assigned a weight. It is not nec-
essary to perform calculating the probability dis-
tribution in the inference process. Our experimen-
tal results show that this method performs slightly
lower than IPE method, but the advantage is that
the decoding speed is the same as the single model
decoding.

In this work, we use the checkpoint ensemble
method to initially integrate each single model,
and then use the independent parameter ensemble
method to perform multi-model integration in the
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Figure 1: An illustration of system architecture of TenTrans. θ indicates model parameters being trained, and
s indicates a training sample containing a source language x and a target language y. ω are the feature weight
parameters being tuned by MERT. Ridiculous results mainly refer to translation results that are extremely long or
short and clearly inconsistent with the source language.

stage of generating the final result of the system.
The independent model ensemble method is used
to decode monolingual corpus to generate pseudo-
bilingual data during joint training.

3.2 Fine-tune System with Data Selection
Method

In mainstream machine translation systems, net-
work parameters are fixed after the training is fin-
ished. The same model will be applied to various
test sentences. A very important problem with this
approach is that it is difficult for a model to self-
adapt to different sentences, especially when there
is a big difference between the test set field and
training set field. To alleviate this problem, (Li
et al., 2016) proposed to search similar sentences
in the training data using the test sentence as a
query, and then fine tune the NMT model us-
ing the retrieved training sentences for translating
the test sentence. We follow the strategy of (Li
et al., 2016). This method firstly learns the gen-
eral model from the entire training corpus. Then,
for each test sentence, we extract a small subset
from the training data, consisting of sentence pairs
whose source sides are similar to the testing sen-

tence. The subset is used to fine tune the general
model and get a specific model for every sentence.
To calculate similarity between two sentences, we
adopt Levenshtein distance, which calculates the
minimum steps for converting a string to another
string using insertion, deletion and substitution
these operations. We firstly filter the training cor-
pus by only considering those which have com-
mon words with the testing sentence, and then
compute similarity with the filtered set. In order
to speed up the calculation, we use the inverted in-
dex method.

3.3 Joint Training

This work uses the monolingual corpus to en-
hance the training set by joint training. Joint
training refers to the use of the corresponding ad-
ditional target side and source side monolingual
data at the source-to-target (S2T) and the target-
to-source (T2S) translation model, and jointly op-
timizing the two translation models through an it-
erative process. In each iteration, T2S model is
used to generate pseudo bilingual data for S2T
with target-side monolingual data, and S2T model
is used to generate pseudo bilingual data for T2S
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Algorithm 1 Joint Training Algorithm in TenTrans System
Input: original bilingual data B, source monolingual data Xm, target monolingual data Ym
Output: trained S2T models M i

s2t(i = 1 · · · 6) and T2S models M i
t2s(i = 1 · · · 6)

1: Train 6M i
s2t(i = 1 · · · 6) and 6M i

t2s(i = 1 · · · 6) with different parameters
2: n⇐ 1
3: while Not Converged do
4: Integrate 6 M i

s2t(i = 1 · · · 6) to generate M ens
s2t with IME method

5: Integrate 6 M i
t2s(i = 1 · · · 6) to generate M ens

t2s with IME method
6: Use M ens

t2s to generate pseudo-training data Ft2s by translating Ym
7: Use M ens

s2t to generate pseudo-training data Fs2t by translating Xm

8: New corpus to train M i
s2t(i = 1 · · · 6), Cs2t ⇐ n×B + Ft2s

9: New corpus to train M i
t2s(i = 1 · · · 6), Ct2s ⇐ n×B + Fs2t

10: n⇐ n+ 1

11: Train M i
s2t with L(θs2t) =

S∑
s=1

logP (y(s)|x(s)) +
T∑
t=1

logP (y(t)|x(t))P ′
(x(t)|y(t)) using Cs2t

2

12: Train M i
t2s with L(θt2s) =

S∑
s=1

logP (x(s)|y(s)) +
T∑
t=1

logP (x(t)|y(t))P ′
(y(t)|x(t)) using Ct2s

2

13: end while

with source-side monolingual data. This joint op-
timization approach enables the translation model
in both directions to be improved, and generat-
ing better pseudo-training data to be added to the
training set. Therefore, in the next iteration, it
can train better T2S model and S2T model, so
on and so forth. The right part of the decoding
phase of Figure 1 outlines the iterative process
of joint training. In addition, in order to solve
the problem that back-translation often generates
pseudo data with poor translation quality and thus
affects model training, the generated training sen-
tence pairs are weighted so that the negative im-
pact of noisy translations can be minimized in
joint training. Original bilingual sentence pairs
are all weighted as 1, while the synthetic sen-
tence pairs are weighted as the normalized corre-
sponding model output probability. For the spe-
cific practice of joint training in this paper, see Al-
gorithm 1.2

3.4 Different Modeling Units
We use BPE3 with 50K operations in both source
side and target side of Chinese→English trans-
lation. In English→Chinese translation task, we

2Here P
′
(x(t)|y(t)) refers to translation probability of

Mens
t2s translating monolingual sentence y(t) to generate

x(t), P
′
(y(t)|x(t)) refers to translation probability of Mens

s2t

translating monolingual sentence x(t) to generate y(t),
P (y(s)|x(s)) denotes translation probability of x(s) → y(s)

during training S2T model, and P (x(s)|y(s)) denotes trans-
lation probability of y(s) → x(s) during training T2S model.

3https://github.com/rsennrich/subword-nmt

use BPE with 50K operations in English source
side, and use mixed word/character segmentation
in Chinese target side. We keep the most fre-
quent 60K Chinese words and split other words
into characters. In post-processing step, we sim-
ply remove all the spaces.

3.5 NER Generalization Method
To alleviate poor translation performance of
named entities, we first use the pre-defined tags
to replace named entities in training set to train a
tagged NMT system, for example, use $number
for numbers, $time for time, $date for date, $psn
for person name, $loc for location name, $org for
organization name. Then the key to the problem
is how to identity these entities and classify them
into corresponding types accurately. In order to
solve this problem, we classify these entities into
two types, one type that can be identified by rules,
and the other type that can be identified by classi-
fication models. To decide whether an entity is a
time, a number, or a date, we use finite automata
(FA) (Thatcher and Wright, 1968). Aiming at the
names of people, location names, and organization
names, we first use biLSTM-CRF4 (Lample et al.,
2016; Huang et al., 2015) to train a Chinese se-
quence tagging model on ”People’s Daily 1998”
data set and an English sequence tagging model
on CoNLL2003 data set, and then identify named
entities at the source and target language side of
the training set.

4https://github.com/guillaumegenthial/sequence tagging
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In the test phase, we first convert these enti-
ties in the test sentences into corresponding pre-
defined tags, and then directly using the tagged
NMT system to translate the sentences. When a
tag is generated at target side, we select the cor-
responding translation of the word in the source
language side that has the highest alignment prob-
ability based attention probability with the same
as tag type in target side. If the source side does
not have the same type of tag, delete the current
tag directly. In order to obtain the correspond-
ing translation of each entity vocabulary, we ob-
tain it in the phrase extraction stage in statistical
machine translation (SMT) (Koehn, 2009). We
extract a phrase pair with one source word num-
ber from phrase table, and then use target side of
the phrase pair with highest frequency of occur-
rence as the translation of the word to construct
a bilingual translation dictionary. Although this
method has not greatly improved the BLEU evalu-
ation metric, it is of great benefit to the readability
of the translation result for human. We use UNK
to represent out-of-vocabulary (OOV) words, and
translate it in the same way as above.

4 Experimental Features

This section focuses on the features designed to
help choose translation results which are closer to
the way normal user expressions - that is, it fo-
cuses on the N -best rescoring phase. Several fea-
tures designed in this work can be seen in the left
part of third phase in Figure 1.

4.1 Right to Left (R2L) Model

Since the current translation models all carry out
modeling from left to right, there is a tendency
for the prefix part of translation candidates to be
of higher quality than the suffix part (Liu et al.,
2016). In order to alleviate this problem of transla-
tion imbalance, we adopt a right-to-left translation
modeling method. Two R2L modeling method
are used in this work: the first is that only the
target data is inversed, and the second is that
both the target data and the source data are in-
versed. Then, two models, R2L model and R2L-
both model were trained. Finally, we also re-
verse the n-best lists and calculate the likelihood
probability of each translation candidate given the
source sentence using these two models. Each
model mentioned above is integrated by training
6 models with different parameters.

4.2 Target to Source Model

Neural machine translation models often have the
phenomena of missing translation, repeated trans-
lation, and obvious translation deviation (Tu et al.,
2017). In order to alleviate this problem, we use
the target-to-source translation system to recon-
struct the source-to-target translation results to the
source sentence. This approach can make it very
difficult to reproduce poor translation results to the
source sentence, and the corresponding probabil-
ity score will be low. Similarly, these models are
all integrated by multiple models.

4.3 Alignment Probability

In order to express the degree of mutual transla-
tion between the translation candidate and source
sentence at the lexical level, the lexical alignment
probability feature is adopted. This paper uses two
kinds of alignment probabilities, forward align-
ment probability and backward alignment proba-
bility. The forward alignment probability indicates
the degree of alignment of source language vocab-
ulary to the target language vocabulary, while the
backward alignment probability indicates the de-
gree of alignment of target language vocabulary
to the source language vocabulary. We obtain the
alignment score by fast-align toolkit5 (Dyer et al.,
2013).

4.4 Length Ratio and Length Difference

In order to reflect the length ratio between
source sentence and translation candidates, we
designed the length ratio feature Rlen =
Len(source)/Len(candidate) and the length
difference feature Dlen = Len(source) −
Len(candidate).

4.5 Translation Coverage

To reflect whether words in the source language
sentences have been translated, we introduce
translation coverage feature. This feature is cal-
culated by adding one to the feature value if the
source language words has been translated. We
use the fast-align toolkit to count the top 50 tar-
get words with highest probability of aligning each
source language word as the translation set of this
source word.

5https://github.com/clab/fast align
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System C2E E2C
baseline 23.32 33.06
+CE (checkpoint ensemble) 24.06 33.84
+IPE 25.98 35.58
+back-translation 26.49 36.0
+joint training 26.96 36.51
+fine-tune 27.63 37.29
+NER gereralization 27.74 37.43
+reranking (beam size 12) 29.72 39.03
+reranking (beam size 100) 30.13 39.49
submitted system 30.21 39.61

Table 1: Chinese↔English BLEU results on WMT18
validation set. The ”C” and ”E” denotes Chinese and
English respectively.

4.6 N -gram Language Model

For English, the word-level 5-gram language
model is trained on the mixing corpus of ”News
Crawl: articles from 2016” selected by news-
dev2018 and English side of the training data.
For Chinese, the character-level 5-gram language
model is trained on the XMU. This work uses
KenLM6 toolkit (Heafield, 2011) to train n-gram
language model.

4.7 Minimum Error Rate Training (MERT)

Obviously, some of the above features may be very
powerful, while some of the effects are not partic-
ularly obvious. Therefore, we need to give each
feature a corresponding weight. Our optimization
goal is to find a set of feature weights that make
the model score of translation candidates higher
and the corresponding BLEU score higher. There-
fore, we use minimum error rate training method
to learn the feature weights

ω∗ = argmin
ω

Error(E∗, R)

= argmin
ω

(1−BLEU(E∗, R))

= argmax
ω

BLEU(E∗, R)

(1)

where ω∗ indicates tuned weights, E∗ indicates
the best translation candidate for the source lan-
guage and R represents the corresponding refer-
ence translation.

6https://github.com/kpu/kenlm

5 Experimental Settings and Results

In all experiments, we report case-sensitive and
detokenized BLEU using the NIST BLEU scorer.
For Chinese output, we split to characters us-
ing the script supplied for WMT18 before run-
ning BLEU. In training and decoding phase,
the Chinese sentences are segmented using Niu-
Trans (Xiao et al., 2012) Segmenter. For English
sentences, we use the Moses (Koehn et al., 2007)
tokenizer7.

We used all the training data of WMT2018
Chinese↔English Translation tasks, firstly filter-
ing out bilingual sentences with unrecognizable
code, large length ratio difference, duplications
and wrong language coding, then filtering out
bilingual sentences with poor mutual translation
rate by using fast-align toolkit. After data clean-
ing, 18.5 million sentence pairs remained. We
used beam search with a beam size of 12, length
penalty α = 0.8 for Chinese→English system
and length penalty α = 1.0 for English→Chinese
system. In order to recover the case informa-
tion, we use Moses toolkit to train SMT-based
recaser on English corpus. In addition, we also
use some simple rules to restore the case informa-
tion of the results. The size of the Chinese vo-
cabulary and English vocabulary is 64k and 50k
respectively after BPE operation. Table 1 shows
the Chinese↔English translation results on de-
velopment set of WMT2018. Wherein reranking
refers to multi-feature based rescore method men-
tioned above. The submitted system in Table 1 has
slightly better performance than is seen in the pre-
vious experiment because we have manually writ-
ten some rules. As can be seen from the Table 1,
when we increase the size of n-best from 12 to
100, the performance is improved by 0.41 BLEU
after reranking based on multiple features.

6 Conclusion

In training phase of TenTrans, we report five ex-
perimental techniques. In the rescoring phase, we
designed multiple features to ensure that candi-
dates which are more likely to be produced by
users are as close as possible to the top of n-
best lists. Finally, our Chinese→English system
achieved the second best BLEU scores among all
WMT18 submitted systems.

7https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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Abstract

This paper describes the statistical machine
translation system built by the MLLP re-
search group of Universitat Politècnica de
València for the German→English news trans-
lation shared task of the EMNLP 2018
Third Conference on Machine Translation
(WMT18). We used an ensemble of Trans-
former architecture–based neural machine
translation systems. To train our system under
“constrained” conditions, we filtered the pro-
vided parallel data with a scoring technique us-
ing character-based language models, and we
added parallel data based on synthetic source
sentences generated from the provided mono-
lingual corpora.

1 Introduction

In this paper we describe the statistical ma-
chine translation (SMT) system built by the
MLLP research group of Universitat Politècnica
de València for the German→English news trans-
lation shared task of the EMNLP 2018 Third Con-
ference on Machine Translation (WMT18).

Neural Machine Translation (NMT) has made
great advances over the last few years, and in par-
ticular it has come to outperform Phrase-Based
Machine Translation (PBMT) and PBMT-NMT
combinations in the most recent WMT shared
news translation tasks (Bojar et al., 2016, 2017).
Taking this into account, we decided to build an
NMT system taking as a basis the Transformer ar-
chitecture, which has been shown to provide state-
of-the-art SMT results while requiring relatively
short times to train (Vaswani et al., 2017).

Apart from the SMT system itself, we also de-
scribe our work on parallel-corpus preprocessing
and filtering, an aspect which has gained impor-
tance in WMT18 with the addition of the much
larger and noisier parallel corpus ParaCrawl. Re-
garding data augmentation, we report as well how

we extended the provided parallel dataset with
data based on synthetic source sentences gener-
ated from the provided target-language monolin-
gual corpora (in compliance with this shared task’s
“constrained” conditions).

This paper is organized as follows: in Section 2,
we outline the data preparation techniques that
were used (corpus preprocessing, corpus filtering,
and data augmentation with synthetic source sen-
tences); Section 3 shows the architecture and pa-
rameters of our NMT system and our system com-
bination; in Section 4, we report our experiments
and results (including on data preparation and on
final system evaluation); and we draw our final
conclusions in Section 5.

2 Data preparation

In this section, we describe the techniques
that we used to prepare the provided WMT18
German↔English data (parallel and monolingual)
to improve our SMT system results: corpus pre-
processing (Section 2.1), corpus filtering (Sec-
tion 2.2) and parallel data augmentation with syn-
thetic source sentences (Section 2.3).

Corpus preprocessing and filtering has acquired
a new relevance in WMT18, due to the addition of
the new ParaCrawl parallel corpus, which sextu-
plicates the amount of German↔English parallel
data that was available in WMT17 and previous
editions: there are approx. 36 million sentence
pairs in ParaCrawl, versus approx. 6 million in the
rest of the parallel corpora (for a total sum of ap-
prox. 42 million sentence pairs in the full WMT18
training data). This is illustrated in Table 1, which
summarizes the number of sentences of each cor-
pus in the provided parallel dataset.

While the large size of the ParaCrawl paral-
lel corpus makes it a valuable resource for sys-
tem training in WMT18, it is much noisier than

418

https://doi.org/10.18653/v1/W18-64041


Table 1: Size by corpus of the WMT18 parallel dataset

Corpus Sentences (M)
News Commentary v13 0.3
Rapid (press releases) 1.3
Common Crawl 1.9
Europarl v7 2.4
ParaCrawl 36.4
WMT18 total 42.3

the rest of the WMT corpora. By noise here
we mean misaligned sentences, wrong languages,
meaningless sentences. . . ; that is, sentence pairs
which hinder system training for the purpose of
German→English translation. In our experiments,
we have observed that preprocessing and filtering
the ParaCrawl corpus is necessary in order to make
it useful as training data with the goal of increasing
translation quality. In fact, using the ParaCrawl
corpus “as is”, we not only did not find any im-
provement in translation quality, but we even ob-
served a degradation in all metrics of quality (as
we will detail in Section 4.2).

Regarding data augmentation, the usage of rele-
vant in-domain monolingual data has been shown
to be important in order to improve NMT sys-
tem results (Sennrich et al., 2016a). The provided
WMT18 dataset contains large amounts of mono-
lingual data which we can take advantage of to in-
crease system accuracy. This fact led us to use
these monolingual resources to generate additional
synthetic data from target-language sentences.

2.1 Corpus preprocessing
Our preprocessing was done as suggested by the
WMT18 organization (WMT18 organizers, 2018)
using the provided scripts, with punctuation nor-
malization, tokenization, cleaning and truecasing
using standard Moses scripts.

Additionally, we removed from the training cor-
pus any sentence that contained strange characters,
defined as those lying outside the Latin UTF inter-
val (u0000-u20AC) plus the euro sign (e). This
allowed us to reduce the vocabulary size by elim-
inating unnecesary characters belonging to lan-
guages other than German or English that are not
required for the translation of online news.

2.2 Corpus filtering
In regard to data filtering, we aimed to filter
out noisy sentence pairs from the parallel cor-
pora. To this end, we trained two separate 9-

gram character-based language models (one for
German, one for English) on the newstest2014 de-
velopment set, based on which we computed the
perplexity for each sentence in the full WMT18
dataset (including ParaCrawl), in a manner sim-
ilar to the techniques described by Yasuda et al.
(2008), Foster et al. (2010) and Axelrod et al.
(2011). The software used was the SRI Language
Modelling Toolkit (Stolcke et al., 2011).

The idea was that the lower the perplexity
for a given sentence with respect to a reference
news test corpus, the lower the odds of this sen-
tence being noise (for the purpose of training a
German→English SMT system). At the same
time, this method could be considered to provide
some degree of domain adaptation, since we score
the sentences with respect to an in-domain refer-
ence corpus.

To produce the final score for each sentence
pair, we combined the perplexity scores (s, t) with
the geometric mean (

√
s · t). The geometric mean

of two character-based perplexities can be inter-
preted as the character-based perplexity of the
concatenation, assuming both sentences have the
same number of characters. This is usually not the
case exactly, but it is a good enough approxima-
tion. As the square root is a monotonic function, it
does not alter the order of the scores.

We then ranked all the sentence pairs in the
full WMT18 dataset according to their combined
perplexity score, and selected subsets of different
sizes, taking in each case the n lowest-scored (less
noisy) sentence pairs.

2.3 Synthetic source sentences

We augmented the WMT18 German↔English
parallel training dataset (while keeping it under
“constrained” conditions) with synthetic source
sentences generated from the provided target-
language monolingual corpora. To this end, we
followed the approach outlined by Sennrich et al.
(2016a).

In particular, we trained an English→German
NMT system based on our best system configu-
ration for German→English. Then, we used this
system to generate our synthetic source sentences
(German) from a subset of the WMT18 target-
language monolingual corpora (English), which
provided us with a significant amount of new sen-
tence pairs to use as in-domain synthetic train-
ing data.
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3 System description

We decided to build an NMT system based on the
Transformer architecture (Vaswani et al., 2017).
We opted for a pure NMT system due to the great
advances this technology has made in the field
of SMT over the last few years, which has led it
to outperform systematically the more traditional
PBMT systems and PBMT-NMT combinations, as
introduced in Section 1. In particular, the Trans-
former architecture, based on self-attention mech-
anisms, can provide state-of-the-art SMT results
while keeping training times relatively short. Re-
garding the software used, we used the Sockeye
NMT framework (Hieber et al., 2017).

We based our systems on the less complex
Transformer “base” configuration, which has sig-
nificantly fewer parameters than the “big” config-
uration (65M parameters in the former case, 213M
in the latter), and is thus much quicker to train (in
exchange for a relatively small decrease in trans-
lation quality, in the case of the experiments de-
scribed by Vaswani et al. (2017)). This was im-
portant in order to complete our experiments and
the final training of our primary system in time for
participation in this shared task. Thus, our models
use 6 self-attentive layers both on the encoder and
the decoder, with a model dimension of 512 units
and a feed-forward dimension of 2048 units.

During training, we applied 0.1 dropout and 0.1
label smoothing, the Adam optimization scheme
(Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.999, and learning rate annealing: we set an ini-
tial learning rate of 0.0001, and scaled this by
a factor of 0.7 whenever the validation perplex-
ity did not improve in 8 consecutive checkpoints
(each checkpoint being equivalent to 2000 param-
eter updates). The system was trained with a
word-based batch size of 3000, and a maximum
sentence length of 75 tokens (subword units).

For our internal experiments, all systems were
trained after applying 20K BPE operations (Sen-
nrich et al., 2016b); but when building our fi-
nal submissions, we increased this amount to 40K
BPE operations (this will be detailed for each sys-
tem in Section 4.4).

The final system consists of an ensemble of 4 in-
dependent training runs of our best model, based
on a linear combination of the individual probabil-
ities.

4 Experimental evaluation

In this section, we outline our experimental setup
(Section 4.1); we report our experiments and re-
sults on corpus filtering (Section 4.2); we de-
tail our setup for parallel data augmentation with
synthetic source sentences (Section 4.3); and we
discuss our final German→English NMT system
evaluation and results (Section 4.4).

4.1 Experimental setup

For our experiments, we used newstest2015 as the
development set and newstest2017 as the test set.
We also report the results obtained with this year’s
newstest2018.

We evaluated our systems using the BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006)
measures, using mteval from the Moses SMT
toolkit (Koehn et al., 2007) and tercom (Snover
et al., 2008), respectively. All reported scores are
according to the instructions on system output for-
matting provided by the WMT18 organization.

4.2 Results on corpus filtering

We show here the results obtained with the corpus
filtering techniques explained in Section 2.2.

Table 2 summarizes the results in translation
quality obtained with different subsets of the
WMT18 parallel dataset. We can see that us-
ing the full WMT18 parallel dataset (42M sen-
tence pairs), including the ParaCrawl corpus “as
is”, leads to a significant degradation in all met-
rics of quality compared to using the WMT18
dataset excluding ParaCrawl (6M sentence pairs;
our baseline system for system evaluations in Sec-
tion 4.4). Furthermore, we see that if we restrict
ourselves to an excessively small training dataset
(5M sentence pairs) using our filtering approach,
there is also a degradation in quality with respect
to using the unfiltered WMT18 dataset excluding
ParaCrawl (6M).

We can also see (focusing on the test set re-
sults, newstest2017) that our filtering approach
is effective at selecting useful training data from
ParaCrawl, in the fact that the filtered datasets with
sizes over the baseline’s 6M sentence pairs pro-
vide significant improvements in quality (even if
we limit ourselves to the small increase in size of
the 7.5M subset). At the other extreme, in our ex-
periments, going over 15M filtered sentence pairs
meant setting the threshold for noise too low, as
quality metrics degraded again.
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Table 2: Results of 9-gram character-based language model data filtering, by number of selected sentences

newstest2015 newstest2017 newstest2018
Subset (no. of parallel sentences) BLEU TER BLEU TER BLEU TER
Full WMT18 parallel dataset (42M) 20.6 71.1 21.3 70.2 26.2 64.2
Baseline: WMT18 minus ParaCrawl (6M) 31.1 55.4 32.0 54.8 39.1 46.3
Filtered corpus (5M) 30.3 56.3 31.4 55.5 38.7 46.5
Filtered corpus (7.5M) 32.8 54.0 33.7 56.5 41.5 44.5
Filtered corpus (10M) 33.0 53.7 34.5 52.9 42.2 43.7
Filtered corpus (15M) 33.4 53.2 34.3 52.7 42.2 43.6

As Table 2 shows, we obtained our best test set
results with the 10M and 15M subsets. As re-
sults were very similar in both cases, we consid-
ered that any possible improvements in quality ob-
tained from using the larger 15M subset were too
small to justify using it instead of the 33% smaller
10M subset (which has a significantly faster con-
vergence time for system training). Thus, the 10M
subset is the filtered training corpus we took as a
basis for the subsequent work described in Sec-
tions 4.3 and 4.4.

As a downside, this data filtering method based
on independent language models for each side of
a noisy parallel corpus has the caveat of not be-
ing able to detect sentence pairs where the source
and the target are valid sentences, but not actually
a translation of each other. To avoid this prob-
lem, it could be useful to combine into the filter-
ing method the score provided by a simple, quick
translation model (which should provide better
scores for the sentence pairs which are correctly
aligned translations). While we carried out some
preliminary experiments on filtering with this ap-
proach, we did not obtain conclusive improve-
ments in time for this shared task, so we left this
for future work.

We also left for future work further corpus fil-
tering experiments with other data selection ap-
proaches, such as using the cross-entropy differ-
ence (rather than just perplexity or cross entropy)
to score each sentence pair (Moore and Lewis,
2010), or the dynamic data selection method de-
scribed by van der Wees et al. (2017).

4.3 Synthetic source sentence setup

Here we detail how we augmented the WMT18
German↔English parallel training dataset, based
on the technique introduced in Section 2.3.

We created an English→German NMT system
using our best parameters for German→English

(as described in Section 3), and trained it
with the 10M-sentence filtered WMT18 parallel
dataset that had shown the best performance for
German→English (as described in Section 4.2).
For reference, the resulting English→German
NMT system obtained 27.4 BLEU on new-
stest2017. While improving this “inverse” system
with further experiments could result in better syn-
thetic training data (Sennrich et al., 2016a), we
settled on this configuration (which obtains rea-
sonable results with respect to the best WMT17
systems) in order to be in time for participation in
this shared task.

Then, using this system, we translated into
German a random sample of 20M English sen-
tences from News Crawl 2017 (the most recent
in-domain corpus among the provided WMT18
monolingual corpora). This provided us with 20M
sentence pairs of German→English in-domain
synthetic training data.

This augmented corpus was used for the final
systems the results of which are discussed in the
following Section 4.4.

4.4 Final system evaluation and results

We will now describe the most significant results
obtained with the German→English NMT models
we trained for WMT18 (based on the architecture
and parameters outlined in Section 3). These re-
sults are shown in Table 3.

Our baseline model was trained excluding the
ParaCrawl corpus from the training data, since us-
ing the full WMT18 corpus (with ParaCrawl) actu-
ally led to worse results (as we saw in Section 4.2).
As mentioned in Section 3, this system was trained
with 20K BPE operations (as is the case with the
next system we will describe).

Our first step to improve these baseline results
was filtering the full WMT18 corpus (including
ParaCrawl), as explained in Section 4.2. In Ta-
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Table 3: Results of German→English MT system evaluations

newstest2015 newstest2017 newstest2018
System BLEU TER BLEU TER BLEU TER
Baseline (WMT18 minus ParaCrawl, 6M pairs) 31.1 55.4 32.0 54.8 39.1 46.3
Filtered corpus (including ParaCrawl, 10M pairs) 33.0 53.7 34.5 52.9 42.2 43.7
+ Synthetic data (2*10M+20M pairs), 40K BPE 34.3 52.0 35.9 51.2 44.7 41.1
Ensemble (x4) 34.6 51.9 36.2 51.0 45.1 40.8

ble 3 we show the result obtained with a system
trained on our best filtered corpus. As we saw in
Section 4.2, the 10M filtered corpus provides an
improvement of 2.5 BLEU and 1.7 TER in the test
set over the baseline model. This shows how our
data-filtering approach has allowed us to extract
useful sentences from the noisy ParaCrawl corpus
and improve our system performance.

For our final systems, we added 20M synthetic
sentence pairs as described in Section 4.3, and we
oversampled the previous 10M filtered bilingual
training set by duplicating it, which gave us a final
training set with a total of 40M sentence pairs1.
We also increased the number of BPE operations
from 20K to 40K. A single system trained with
this configuration obtained 35.9 BLEU and 51.2
TER in the test set. This represents a significant
improvement of 1.4 BLEU and 1.7 TER over the
previous model, explained by a combination of the
additional sentence pairs and the increase in vo-
cabulary size.

As reference of the training times required,
training a system with this final configuration
took approx. 120 hours on a single-GPU system
(Nvidia GeForce GTX 1080 Ti)2.

Finally, our primary submission for WMT18
consists of an ensemble of 4 independent train-
ing runs with this final configuration, resulting in
36.2 BLEU and 51.0 TER in our test set, and 45.1
BLEU and 40.8 TER in newstest2018.

1Oversampling the 10M original training set was a mea-
sure intended to keep in check the weight of the compara-
tively large 20M synthetic training data. We left for future
work experimenting with different ratios of synthetic ver-
sus original data, such as 1:1 (Sennrich et al., 2016a; Fadaee
et al., 2017), as additional comparison terms to determine the
best performing configuration.

2While our systems were trained on single-GPU ma-
chines, multi-GPU system training with proportionally larger
batch sizes (larger than the 3000 words per batch we used,
as noted in Section 3) could deliver better translation quality
results (Vaswani et al., 2017). We left this for future work.

5 Conclusions

The MLLP group of the Universitat Politècnica de
València has participated in the German→English
WMT18 news translation shared task with an
ensemble of neural machine translation models
based on the Transformer architecture. Our mod-
els were trained using a filtered subset of the pro-
vided parallel training dataset, plus augmented
parallel data based on synthetic source sentences
generated from the provided monolingual corpora.
Our primary submission was an ensemble of four
independent training runs of our best model pa-
rameters.

Our results point to the usefulness of the Trans-
former NMT architecture to obtain highly com-
petitive SMT results with a relatively low compu-
tational cost (which can contribute to “democra-
tizing” access to state-of-the-art research in NMT
to a higher number of research groups, even those
with more modest computational equipment). We
have also shown the importance of adequate cor-
pus filtering to make the most of larger, noisier
parallel corpora, employing a simple approach to
filtering using character-based language models
that has resulted in significant improvements in
translation quality.
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Microsoft’s Submission to the WMT2018 News Translation Task:
How I Learned to Stop Worrying and Love the Data

Marcin Junczys-Dowmunt
Microsoft

1 Microsoft Way
Redmond, WA 98121, USA

Abstract
This paper describes the Microsoft submission
to the WMT2018 news translation shared task.
We participated in one language direction –
English-German. Our system follows cur-
rent best-practice and combines state-of-the-
art models with new data filtering (dual con-
ditional cross-entropy filtering) and sentence
weighting methods. We trained fairly stan-
dard Transformer-big models with an updated
version of Edinburgh’s training scheme for
WMT2017 and experimented with different fil-
tering schemes for Paracrawl. According to au-
tomatic metrics (BLEU) we reached the high-
est score for this subtask with a nearly 2 BLEU
point margin over the next strongest system.
Based on human evaluation we ranked first
among constrained systems. We believe this is
mostly caused by our data filtering/weighting
regime.

1 Introduction

This paper describes the Microsoft submission to
the WMT2018 (Bojar et al., 2018) news translation
shared task. We only participated in one language
direction – English-German. Our system follows
current best-practice and combines state-of-the-art
models with new data filtering and weighting meth-
ods. According to automatic metrics (BLEU) we
reached the highest score for this subtask with a
nearly 2 BLEU point margin over the next strongest
system. We believe this is mostly caused by our
data filtering/weighting regime. Based on human
evaluation we ranked first among constrained sys-
tems.

Our title references the fact that we built fairly
standard models, updating existing baselines for
WMT2017 to the new Transformer model (Vaswani
et al., 2017), but spent more time on data cleaning
and work with Paracrawl. As a side-effect we came
up with a new parallel data filtering method which
we call dual conditional cross-entropy filtering.

2 The Marian toolkit

For our experiments, we use Marian (Junczys-
Dowmunt et al., 2018) an efficient Neural Machine
Translation framework written in pure C++ with
minimal dependencies. Microsoft Translator em-
ployees are contributing code to Marian. In the
evolving eco-system of open-source NMT toolkits,
Marian occupies its own niche best characterized
by two aspects:

• It is written completely in C++11 and inten-
tionally does not provide Python bindings;
model code and meta-algorithms are meant
to be implemented in efficient C++ code.
• It is self-contained with its own back end,

which provides reverse-mode automatic dif-
ferentiation based on dynamic graphs.

Marian is distributed under the MIT license
and available from https://marian-nmt.
github.io or the GitHub repository https:
//github.com/marian-nmt/marian.

3 NMT architectures

In Junczys-Dowmunt et al. (2018), we prepared
a baseline setup for Marian which reproduces the
highest scoring NMT system (Sennrich et al., 2017)
in terms of BLEU during the WMT 2017 shared
task on English-German news translation (Bojar
et al., 2017). We further replaced the original RNN-
based architecture with Transformer-style models
from Vaswani et al. (2017) corresponding to their
“base” and “big” architectures. In this section, we
reuse the recipe and the proposed models as a set
of strong baselines.

3.1 Deep transition RNN architecture
The model architecture in Sennrich et al. (2017)
is a sequence-to-sequence model with single-layer
RNNs in both, the encoder and decoder. The RNN
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System 2016 2017 2018*

Deep RNN (x1) 34.3 27.7 -
+Ensemble (x4) 35.3 28.2 -
+R2L Reranking (x4) 35.9 28.7 -

Transformer-base (x1) 35.6 28.8 43.2
+Ensemble (x4) 36.4 29.4 44.0
+R2L Reranking (x4) 36.8 29.5 44.4

Transformer-big (x1) 36.6 30.0 44.2
+Ensemble (x4) 37.2 30.5 45.2
+R2L Reranking (x4) 37.6 30.7 45.5

Table 1: BLEU results for our replication of the
UEdin WMT17 system for the en-de news transla-
tion task. We reproduced most steps and replaced
the deep RNN model with Transformer models.
Asterisk * marks post-submission evaluation.

in the encoder is bi-directional. Depth is achieved
by building stacked GRU-blocks resulting in very
tall RNN cells for every recurrent step (deep transi-
tions). The encoder consists of four GRU-blocks
per cell, the decoder of eight GRU-blocks with an
attention mechanism placed between the first and
second block. As in Sennrich et al. (2017), em-
beddings size is 512, RNN state size is 1024. We
use layer-normalization (Ba et al., 2016) and varia-
tional drop-out with p = 0.1 (Gal and Ghahramani,
2016) inside GRU-blocks and attention.

3.2 Transformer architectures
We very closely follow the architecture described
in Vaswani et al. (2017) and their “base” and “big”
models.

3.3 Training recipe
Modeled after the description from Sennrich
et al. (2017), we reuse the example available
at https://github.com/marian-nmt/
marian-examples and perform the following
steps:

• preprocessing of training data, tokenization,
true-casing1, vocabulary reduction to 36,000
joint BPE subword units (Sennrich et al.,
2016) with a separate tool.2

• training of a shallow model for back-
translation on parallel WMT17 data;

1Proprocessing was performed using scripts from Moses
(Koehn et al., 2007).

2https://github.com/rsennrich/
subword-nmt

• translation of 10M German monolingual news
sentences to English; concatenation of artifi-
cial training corpus with original data (times
two) to produce new training data;
• training of four left-to-right (L2R) deep mod-

els (either RNN-based or Transformer-based);
• training of four additional deep models with

right-to-left (R2L) orientation; 3

• ensemble-decoding with four L2R models re-
sulting in an n-best list of 12 hypotheses per
input sentence;
• rescoring of n-best list with four R2L models,

all model scores are weighted equally;
• evaluation on newstest-2016 (validation set)

and newstest-2017 with sacreBLEU.4

At this stage we did not update to WMT2018
parallel or monolingual training data. This might
put us at a slight disadvantage, but we could reuse
models and back-translated data that was produced
earlier.

We train the deep RNN models and Transformer-
base models with synchronous Adam on 8 NVIDIA
Titan X Pascal GPUs with 12GB RAM for 10
epochs each. The back-translation model is
trained with asynchronous Adam on 8 GPUs. The
transformer-big models are trained until conver-
gence on four NVIDIA P40 GPUs with 24GB
RAM. We do not specify a batch size as Marian
adjusts the batch based on available memory to
maximize speed and memory usage. This guar-
antees that a chosen memory budget will not be
exceeded during training and uses maximal batch
sizes.

All models use tied embeddings between source,
target and output embeddings (Press and Wolf,
2017). Contrary to Sennrich et al. (2017) or
Vaswani et al. (2017), we do not average check-
points, but maintain a continuously updated expo-
nentially averaged model over the entire training
run. Following Vaswani et al. (2017), the learning
rate is set to 0.0003 (0.0002 for Transformer-big)
and decayed as the inverse square root of the num-
ber of updates after 16,000 updates. When training
the Transformer model, a linearly growing learning
rate is used during the first 16,000 iterations, start-
ing with 0 until the base learning rate is reached.

Table 1 contains our results for WMT2017 train-
ing data with back-translation. We match re-

3R2L training, scoring or decoding does not require data
processing, right-to-left inversion is built into Marian.

4https://github.com/mjpost/sacreBLEU
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sults from Sennrich et al. (2017) with our re-
implementation of their models (Deep RNN) and
outperform them with base and big Transformer
versions. Differences between the best Deep RNN
model and Transformer-big reach up to 2 BLEU
points for the complete system. Ensembling is
quite effective, right-to-left reranking seems to be
moderately effective for Transformer models.

4 Taking advantage of Paracrawl

This year’s shared task included a new, large but
somewhat noisy parallel resource: Paracrawl. First
experiments with shallow RNN models (chosen
for fast experimentation) indicated that adding
this data without a rigorous data filtering scheme
would lead to catastrophic loss in quality (compare
WMT+back-trans and Paracrawl-32M in Table 2).
We therefore experiment with data selection and
weighting.

4.1 Dual conditional cross-entropy filtering
The scoring method introduced in this section is our
main contribution to the WMT2018 Shared Task
on Parallel Corpus Filtering (Koehn et al., 2018),
details are provided in our corresponding system
submission (Junczys-Dowmunt, 2018).

For a sentence pair (x, y) we calculate a score:

|HA(y|x)−HB(x|y)|

+
1

2
(HA(y|x) +HB(x|y))

(1)

where A and B are translation models trained on
the same data but in inverse directions, and HM (·|·)
is the word-normalized conditional cross-entropy
of the probability distribution PM (·|·) for a model
M :

HM (y|x) =− 1

|y| logPM (y|x)

=− 1

|y|

|y|∑

t=1

logPM (yt|y<t, x).

The score (denoted as dual conditional
cross-entropy) has two components with
different functions: the absolute difference
|HA(y|x)−HB(x|y)| measures the agreement
between the two conditional probability distribu-
tions, assuming that (word-normalized) translation
probabilities of sentence pairs in both directions
should be roughly equal. We want disagreement to
be low, hence this value should be close to 0.

However, a translation pair that is judged to be
equally improbable by both models will also have
a low disagreement score. Therefore we weight the
agreement score by the average word-normalized
cross-entropy from both models. Improbable sen-
tence pairs will have higher average cross-entropy
values.

This score is also quite similar to the dual learn-
ing training criterion from He et al. (2016) and
Hassan et al. (2018). The dual learning criterion
is formulated in terms of joint probabilities, later
decomposed into translation model and language
model probabilities. In practice, the influence of
the language models is strongly scaled down which
results in a form more similar to our score.

While Moore and Lewis filtering requires an in-
domain data set and a non-domain-specific data set
to create helper models, we require a clean, rela-
tive high-quality parallel corpus to train the two
dual translation models. We sample 1M sentences
from WMT parallel data excluding Paracrawl and
train Nematus-style translation models Wde→en

and Wen→de.
Formula (1) produces only positive values with

0 being the best possible score. We turn it into a
partial score with values between 0 and 1 (1 being
best) by negating and exponentiating, setting A =
Wde→en and B = Wen→de:

adq(x, y) = exp(−(|HA(y|x)−HB(x|y)|
+

1

2
(HA(y|x) +HB(x|y))).

We score the entire Paracrawl data with this
score and keep the scores. We further assign a
value of 1 to all original WMT parallel sentences.
That way we have a score for every sentence.

4.2 Cross-entropy difference filtering
We treated cross-entropy filtering proposed by
Moore and Lewis (2010) as another score. Cross-
entropy filtering or Moore-Lewis filtering uses the
quantity

HI(x)−HN (x) (2)

where I is an in-domain model, N is a non-domain-
specific model and HM is the word-normalized
cross-entropy of a probability distribution PM de-
fined by a model M :

HM (x) =− 1

|x| logPM (x)

=− 1

|x|

|x|∑

t=1

logPM (xt|x<t).
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Sentences scored with this method and selected
when their score is below a chosen threshold are
likely to be more in-domain according to model
I and less similar to data used to train N than
sentences above that threshold.

We chose WMT German news data from the
years 2015-2017 as our in-domain, clean language
model data and sampled 1M sentences to train
model I = Wen. We sampled 1M sentences from
Paracrawl without any previously applied filtering
to produce N = Pde.

To create a partial score for which the best sen-
tence pairs produce a 1 and the worst at 0, we apply
a number of transformations. First, we negate and
exponentiate cross-entropy difference arriving at a
quotient of perplexities of the target sentence y (x
is ignored):

dom′(x, y) = exp(−(HI(y)−HN (y)))

=
PPN (y)

PPI(y)
.

This score has the nice intuitive interpretation of
how many times sentence y is less perplexing to the
in-domain model Wde than to the out-of-domain
model Pde.

We further clip the maximum value of the score
to 1 (the minimum value is already 0) as:

dom(x, y) = max(dom′(x, y), 1). (3)

This seems counterintuitive at first, but is done
to avoid that a high monolingual in-domain score
strongly overrides bilingual adequacy; we are fine
with low in-domain scores penalizing sentence
pairs. This is a precision-recall trade-off for ad-
equacy and we prefer precision.

We score the entire parallel data, Paracrawl,
back-translated data and previous WMT data with
this score. Next we multiply the adequacy and
domain-based score to obtain a single score for all
parallel data and all Paracrawl data in particular.

4.3 Data selection
Based on the scores produced in the previous sec-
tion, we sort the new Paracrawl data by decreasing
scores from 1 to 0. Next we select the first N sen-
tences from the sorted corpus, add it to WMT and
back-translated data and train again a shallow RNN
model. In our experiments it seems, that selecting
the first 8M out of 32M sentences according to this
score leads to the largest gains on WMT2016 test
data. A loss of 2.5 BLEU on full WMT+Paracrawl

Data 2016

WMT+back-trans. 32.6

+Paracrawl-32M 30.1

+Paracrawl-2M 33.2
+Paracrawl-4M 33.5
+Paracrawl-8M 34.0
+Paracrawl-16M 31.9
+Paracrawl-24M 30.3

+Paracrawl-8M-weights 34.2
+Paracrawl-24M-weights 33.4

Table 2: Effects of data cleaning, filtering and
weighting on BLEU. Evaluated with default shal-
low Nematus-style RNN model

data is turned into a gain of 1.4 BLEU on WMT
with selected Paracrawl data (see +Paracrawl-8M
in Table 2).

4.4 Data weighting

We further experiment with sentence instance
weighting, a feature available in Marian. Here we
use the computed score for a sentence pair as a
multiplier of the per-sentence cross-entropy cost
during training. Sentences with high scores will
contribute more to the training, sentence with low
cost contribute less. Scores are however clipped at
1, so no score can contribute more than it would
without weighting. As stated above, sentences
from original WMT training data and from back-
translation have an adequacy score of 1, so they
are only weighted by their domain multiplier. Sen-
tences from Paracrawl are weighted by a product
of their adequacy and domain score. We see slight
improvements for +Paracrawl-8M-weights over the
unweighted version. It also seems that weighting
can at least partially eliminate harmful effects from
bad data. The 24M variant is far less damaging
than the unweighted version. This seems worth to
be explored in future work.

5 Final submission

We chose the +Paracrawl-8M-weights setting as
our training setting for the Transformer-big config-
uration. Training and model parameters remain the
same, we only add 8M Paracrawl sentences and
sentence-level scores for all parallel sentences and
retrain all models. In Table 3, we see that com-
pared to Table 1 the Transformer-big model can
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System 2016 2017 2018*

Transformer-big (x1) 38.6 31.3 46.5
+Ensemble (x4) 39.3 31.6 47.9
+R2L Reranking (x4) 39.3 31.7 48.0

+Transformer-LM 39.6 31.9 48.3

Table 3: Best model retrained on WMT and selected
Paracrawl data. Sentences are weighted. Asterisk *
marks post-submission evaluation.

take even more advantage of the filtered, selected
and weighted data than the shallow models we used
for development. We gain 1 to 2.5 BLEU points
on the different test sets. Right-to-left re-ranking
seems to matter less, however these models had not
yet fully converge at time of submission.

5.1 Ensembling with a Transformer-style
language model

We also experiment with shallow-fusion5 or en-
sembling with a language model. We train a
Transformer-style language model with Marian,
following the architecture of the Transformer-big
decoder without target-source attention blocks. We
observed that this type of model has lower perplex-
ity than LSMT models with similar numbers of
parameters. We use 100M German monolingual
sentences from 2016-2018 news data and train for
two full epochs.

The resulting language model is ensembled with
the left-to-right translation models at decoding time.
We determine an optimal weight of 0.4 on a the
newstest2016. The other models in the ensemble
have a weight of 1. Since scores are summed it is a
4 to 0.4 ratio for translation models versus language
model log probabilities. We see that the language
model has a small, but consistently positive effect
on all test sets of 0.2-0.3 BLEU.

6 Results

According to the automatically calculated BLEU
scores on the WMT submission page, we achieve
the highest BLEU score for English-German by a
large margin over the next best system. We include
the results for the 7 best systems in Table 4. The
next best systems are quite tightly packed. We also
rank highest among constrained systems based on
human evaluation (Table 5).

5We do not like this term, in the end this is just ensembling.

System BLEU

Microsoft-Marian 48.3
UCAM 46.6
NTT 46.5
KIT 46.3
MMT-PRODUCTION 46.2
UEDIN 44.4
JHU 43.4

Table 4: Automatic BLEU scores from submission
page for 7 best submissions. There were 21 sub-
missions in total.

Rank Ave. % Ave. z System

2 81.9 0.551 Microsoft-Marian
82.3 0.537 UCAM
80.2 0.491 NTT
79.3 0.454 KIT

8 76.7 0.377 JHU
76.3 0.352 UEDIN

11 71.8 0.213 LMU-NMT

15 36.7 -0.966 RWTH-UNSUP

16 32.6 -1.122 LMU-UNSUP

Table 5: Human evaluation of constrained systems.
Unconstrained systems have been omitted, see Bo-
jar et al. (2018) for full list.

7 Conclusions

It seems strong state-of-the-art models and data
hacking are winning combinations. Our data fil-
tering method – developed first for this system –
also proved very effective during the Parallel Cor-
pora Filtering Task and we believe it had a large
influence on our current result.
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Abstract

We participated in the WMT 2018 shared
news translation task in three language
pairs: English-Estonian, English-Finnish, and
English-Czech. Our main focus was the low-
resource language pair of Estonian and En-
glish for which we utilized Finnish parallel
data in a simple method. We first train a
“parent model” for the high-resource language
pair followed by adaptation on the related low-
resource language pair. This approach brings
a substantial performance boost over the base-
line system trained only on Estonian-English
parallel data. Our systems are based on the
Transformer architecture. For the English
to Czech translation, we have evaluated our
last year models of hybrid phrase-based ap-
proach and neural machine translation mainly
for comparison purposes.

1 Introduction

This paper describes the Charles University’s sub-
mission to WMT 2018 Shared Task: Machine
Translation of News.

We have experimented with three language
pairs: Czech (CS), Estonian (ET) and Finnish (FI)
paired with English (EN). Altogether, we cov-
ered five directions: both direction for English-
Estonian, both directions for English-Finnish and
English to Czech translation.

Our main focus is improving the low-resource
language translation and therefore we concentrate
on the English and Estonian language pair with the
help of Finnish-English parallel data. The Finnish
is a good candidate since it is closely related to the
Estonian language but considerably more training
data are available.

For the Finnish and English language pair, we
use standard Neural Machine translation (NMT)
system Transformer (Vaswani et al., 2017) with
model averaging.

Our last language pair of interest is English to
Czech translation, where we use our last year’s
model Sudarikov et al. (2017) for comparison pur-
poses. The system is based on a hybrid combi-
nation of phrase-based, transfer-based and NMT
approaches.

The structure of the paper is the following. In
Section 2, we describe the setup of our main sys-
tems for Estonian and Finnish. Section 3 presents
the English-Czech model. Section 4 is devoted to
the description of our datasets. Section 5 details
the results achieved by our systems. Section 6
discusses other works in the area of multi-lingual
translation systems. And finally Section 7 con-
cludes the paper.

2 Estonian and Finnish Setup

The main focus of our participation is improving
low-resource language Estonian with the use of
Finnish data. Our method consists of first train-
ing a “parent” high-resource model and continue
the training on the “child” (low-resource) parallel
data as a means of model adaptation.

2.1 Low-Resource Language Adaptation

We present a method that uses related high-
resource language pair as a boost in performance
for a low-resource language pair. The method
needs relies on only one condition and that is a
vocabulary shared across all the languages in the
parent as well as child language pairs.

The shared vocabulary is obtained by combin-
ing all training data when the vocabulary is gen-
erated. To avoid bias in the vocabulary towards
the high-resource language pair, we use only as
many sentence pairs from the high-resource pair
as are available for the low-resource pair, calling
this approach “balanced vocabulary”. We did not
experiment with other proportions of data.
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Our method is based on transfer learning (also
called “adaptation” or “finetuning”). It starts with
training of the parent high-resource language pair
(English-Finnish in our case) until it reaches its
best performance or is trained for sufficiently long.
Then, the training corpus is switched to the low-
resource language pair (English-Estonian) for the
rest of the training, without resetting any of the
training hyperparameters. Note that we are not re-
setting even the state of the adaptive learning rate.
As mentioned in Kocmi and Bojar (2018), if the
learning rate is reset, this approach stops working.

As such, this method is very similar to the trans-
fer learning proposed by Zoph et al. (2016) and
improved by the using the shared vocabulary as in
Nguyen and Chiang (2017). Moreover, in contrast
to those two papers, we show that this simple style
of transfer learning can be used on both sides (i.e.
either the source or the target language), not only
with the target language common to both parent
and child model. More details of our method are
described in Kocmi and Bojar (2018).

This method does not need any modification
of existing NMT frameworks. The only require-
ment is to use the shared vocabulary across both
language pairs (we use vocabulary of wordpieces,
Johnson et al., 2017). This is achieved by learn-
ing the wordpiece segmentation from the concate-
nated source and target sides of both the parent and
child language pair.

All other parameters of the model can stay the
same as for the standard NMT training.

2.2 Model Description

We use the Transformer model (Vaswani et al.,
2017) which translates through an encoder-
decoder framework, with each layer involving an
attention network followed by a feed-forward net-
work. The architecture is much faster than other
NMT due to the absence of recurrent and convolu-
tional layers.

The Transformer model seems superior to other
NMT approaches as documented in e.g. Popel
and Bojar (2018) and also several language pairs
in the manual evaluation of WMT18 (Bojar et al.,
2018).1

We use the Transformer sequence-to-sequence
model as implemented in Tensor2Tensor (Vaswani
et al., 2018) version 1.4.2. Our models are based

1http://www.statmt.org/wmt18/
translation-task.html

on the “big single GPU” configuration as defined
in the paper. We set the batch size to 2300 and
maximum sentence length to 100 wordpieces, in
order to fit the model to our GPUs (NVIDIA
GeForce GTX 1080 Ti with 11 GB RAM).

We use exponential learning rate decay with the
starting learning rate of 0.2 and 32000 warm-up
steps. Decoding uses the beam size of 8 and length
normalization penalty is set to 1.

3 Chimera Description

For English-Czech translation task, we took the
same system combination setup as described in
Sudarikov et al. (2017). We used outputs of
three different individual forward translation sys-
tems, trained on a synthetic backtranslated train-
ing dataset and combined them into the final out-
put. These systems are Chimera2016 (Tamchyna
et al., 2016; Bojar et al., 2016b), NeuralMonkey
(Helcl et al., 2018)2 and Marian (where the trans-
lation part was formerly known as AmuNMT)
(Junczys-Dowmunt et al., 2016) with pretrained
English-to-Czech Nematus models.3 All the used
datasets are described in Section 4.

The outputs of the two neural systems, consist-
ing of translations of WMT15–18 test sets, were
used to extract additional phrase tables for Moses.
These tables were added to the Chimera2016 sys-
tem, which already had one phrase table from gen-
uine parallel data and one synthetic phrase table
from TectoMT (Žabokrtský et al., 2008) output.
After that, we used MERT (Och, 2003) to estimate
the weights for Moses alternative decoding paths
with multiple translation tables. MERT was run
on the WMT16 test set. Further details on experi-
ments with different combinations of phrase tables
are available in Sudarikov et al. (2017).

4 Data Preparation

This section describes the data used for the train-
ing of our models. First, we describe training data
for Estonian and Finnish.

There are many different sources for WMT18
News shared task that are allowed for the con-
strained task. We used most of the allowed data
but decided to drop some sources.

For the Estonian-English, we use Europarl and
Rapid corpora. We did not use Paracrawl because

2http://ufal.mff.cuni.cz/neuralmonkey
3http://data.statmt.org/rsennrich/

wmt16_systems
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Language pair Sentences
Estonian-English 0.8 M
Finnish-English 2.8 M
Czech-English 71.7 M
Estonian mono-news 2.6 M
Finnish mono-news 12.0 M
Czech mono-news 59.2 M

Table 1: Overview of training datasets. The top half
lists sentence pair counts for parallel corpora and the
bottom half the sentence counts of monolingual data.

we find it very noisy. The development set is from
WMT News 2018.

The Finnish-English was prepared as in Östling
et al. (2017), removing Wikipedia headlines. The
dev set is from WMT News 2015.

We dropped sentence pairs shorter than 4 words
or longer than 75 words on either source or target
side to allow for a speedup of Transformer training
by capping the maximal sentence length and in-
creasing the batch size. Our experiments showed
no translation performance change due to the re-
duction of the training data.

For English-Czech models, we used the same
datasets as described in Sudarikov et al. (2017).
First we took Czech monolingual news corpus,
which was translated into English using Nema-
tus (Sennrich et al., 2017) model, with 59 mil-
lion sentences. We also used the genuine paral-
lel data extracted from CzEng 1.6 (Bojar et al.,
2016a) using the XenC toolkit (Rousseau, 2013)
with Czech monolingual news corpus as the refer-
ence in-domain text. That part gave us additinal
12M sentences. The same monolingual news cor-
pus was used for the language models.

The final data sizes are presented in Table 1.

4.1 Backtranslated Data

The organizers of WMT 2018 provide participants
with vast amounts of monolingual data to use in
translation systems, both in-domain and out-of-
domain. We exploit the in-domain monolingual
data for training as described by Sennrich et al.
(2016) and previously suggested for PBMT e.g.
by Bojar and Tamchyna (2011).

The idea is to translate the target side the mono-
lingual data by an already trained machine trans-
lation system for the opposite translation direction
and then use the synthetic data as a parallel corpus
for the training of the main system. In this setup,
the synthetic side is used as the input and the orig-
inal monolingual sentences serve as the target.

Specifically, for the examined language pair
EN→FI, we backtranslate monolingual Finnish
data with the FI→EN model and mix the synthetic
data with the available parallel EN→FI data to cre-
ate the training corpus for EN→FI.

Sennrich et al. (2016) motivates the use of
monolingual data with domain adaptation, due to
the usage of in-domain monolingual data, reduc-
ing overfitting, and better modeling of fluency.
Bojar and Tamchyna (2011) explain how back-
translation (with some fall-back for unknown
words) allows to improve the vocabulary when tar-
getting morphologically rich languages.

We get monolingual News Crawl data from all
years of both Finnish and Estonian. We created the
synthetic data from all monolingual data; we only
drop sentences shorter than 6 words or longer than
75 words.

The monolingual data sizes are presented in Ta-
ble 1.

It is important to stress that all the results in this
paper are without the use of backtranslation. Only
Table 4 presents the results with the use of back-
translated data.

5 Results and Discussion

In this section, we first present the results for
Estonian-English and Finnish-English language
pairs, focusing on transfer learning from the high-
resource language pair to low-resource one. At the
end, we compare the current NMT outputs to our
last year’s system for English to Czech translation.

The scores are evaluated by uncased Sacre-
BLEU (Post, 2018).

We have computed statistical significance with
pairwise bootstrap resampling with 1000 samples
and alpha equal to 0.05 (Koehn, 2004).

Table 2 presents the effect of transfer learning
from the parent model to the child model. The
improvement is noticeable in both sides: the lan-
guage unique to the child model can appear in the
source or in the target.

Whenever the child language pair has more re-
sources than the parent (Finnish-English in our
case), the improvement is small or even (insignifi-
cantly) negative, as in ETEN-FIEN.

One could argue that the languages are too re-
lated and simply using the high-resource language
pair model could work for the low-resource test
sentences. The second column of Table 2 shows
that this is not the case: the parent model without
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Parent - Child Baseline Only Parent Transfer
ENFI - ENET 17.03 2.32 19.74‡
FIEN - ETEN 21.74 2.44 24.18‡
ENET - ENFI 19.50 2.04 20.07‡
ETEN - FIEN 24.40 1.94 23.95
ETEN - ENET 17.03 1.41 17.46
ENET - ETEN 21.74 1.01 22.04‡

Table 2: Uncased BLEU scores for transfer learning
of child models on various combinations of parent and
child. The baseline is obtained by training only on the
child parallel data. “Only Parent” represent result when
no adaptation of parent model is done, i.e. running MT
for the wrong language. The results are only compa-
rable within each row. Results significantly better than
the baseline are marked with ‡.

Child Training Sents Child BLEU Baseline BLEU
800k 19.74 17.03
400k 19.04 14.94
200k 17.95 11.96
100k 17.61 9.39
50k 15.95 5.74
10k 12.46 1.95

Table 3: The maximal score reached by the English-to-
Estonian child models for decreasing sizes of child’s
training data, trained on an English to Finnish parent
(all models build upon the same parent ENFI after 800k
steps trained on the whole ENFI training set). The
baselines use only the reduced English-Estonian data.

any transfer learning does not work for translation
of the child test set.

With this result in mind, we also tested the ef-
fect of using only the low-resource language pair
in both directions: first as a parent trained in the
reverse direction, followed by training of the child
on the same parallel corpus, now in the intended
direction. The results of this can be seen in the bot-
tom part of Table 2. It is an interesting result that
only by using the low-resource data twice (in the
reverse and then the correct direction), we could
get a small boost in performance, significant when
targetting ETEN.

In Table 3, we simulate extremely low-resource
languages by downscaling the data for the child
model. The smaller the child data, the bigger
relative improvement is obtained. A reasonable
performance is obtained even with as few as 10k
sentence pairs in the child. This result suggests
that when dealing with the very low-resource lan-
guage, it is useful to utilize a related language pair
as a pre-training parent step.

Only Transfer With Backtranslated
Language Pair Parallel learning Equal Size All
EN-ET 17.03 19.74 21.43 22.73‡
EN-FI 19.50 - 22.96 23.57‡

Table 4: Results with backtranslated data, either up to
the size of the original parallel corpus (“Equal Size”)
or all available (“All”). The significance is computed
between “Equal Size” and “All”. The bold results are
with additional use of transfer learning.

Language pair Baseline Submitted
FI-EN 21.52 21.52
EN-FI 15.13 15.13
ET-EN 20.68 23.50
EN-ET 16.54 19.49

Table 5: WMT18 newstest BLEU scores for the base-
line runs and the runs submitted as “CUNI-Kocmi-*”
for manual evaluation.

5.1 Effect of Backtranslation

The size of the training set can be extended also
with the backtranslated data. We experiment with
backtranslation only for two language directions:
English to Estonian and English to Finnish.

First, we trained FI→EN and ET→EN models
on parallel data for each of the language pairs.
With those models, we translated all monolingual
data. Finally, we mixed the synthetic and genuine
parallel corpora for FI→EN and (separately) for
ET→EN.

Table 4 presents our experiment with two se-
tups. We either used only a subset of the syn-
thetic corpus of the size equal to the genuine par-
allel data, or we use all available synthetic data.
The former approach results in a training cor-
pus with half of monolingual backtranslated data
and half of original parallel texts. The latter ap-
proach results in parallel training set containing
76.5% monolingual data for Estonian and 81.1%
for Finnish. In both cases, we report the score on
the dev set after 600k steps of training.

The motivation for applying this upper bound
is that the synthetic corpus could introduce more
translation errors and damage translation quality.
The results in Table 4 however document that this
is not the case and more data is better.

5.2 Estonian and Finnish Submitted Models

Our submitted models for Finnish and Estonian
are presented in Table 5, with the baseline of
no transfer. Unfortunately, we submitted models
without backtranslation for manual evaluation.
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Language pair WMT17 WMT18
CUNI-Transformer 23.8 26.0
UEDIN-NMT 22.8 23.4
CUNI-Chimera2017 20.5 19.8

Table 6: Cased-BLEU results from matrix.statmt.org.

For Finnish, the submitted models did not in-
clude the transfer learning step so the FI→EN and
EN→FI Baseline and Submitted scores are identi-
cal.

The Estonian-to-English model was trained
from the Finnish-to-English model at its 800k
training steps. The English-to-Estonian built upon
the English-to-Finnish, trained also for 800k steps.

5.3 English-to-Czech Benchmark
Table 6 shows cased-BLEU scores for WMT17
and WMT18 test sets as presented at http://
matrix.statmt.org.4

The Chimera setup remains the same in both
years, so it can serve as a reference point, docu-
menting the improvement of other systems. The
gap between Chimera and the best neural systems
considerably widened in terms of BLEU score
(from +2.3 on WMT17 to +3.6 on WMT18 when
comparing to UEDIN-NMT and from +3.3 to +6.2
when comparing to CUNI-Transformer).

6 Related Work

Firat et al. (2016) propose zero-resource multi-
way multilingual systems, with the main goal of
reducing the total number of parameters needed
to train multiple source and target languages. To
keep all the language pairs “active” in the model,
a special training schedule is needed. Otherwise,
catastrophic forgetting would remove the ability to
translate between the languages trained earlier.

Johnson et al. (2017) test another multilingual
approach: all translation pairs are simply used at
once and the desired target language is indicated
with a special token at the end of the source side.
The model implicitly learns translation between
many languages and it can even translate among
language pairs never seen together.

The lack of parallel data can be tackled by unsu-
pervised translation (Artetxe et al., 2018; Lample
et al., 2018). The general idea is to mix monolin-
gual training of autoencoders for the source and

4http://matrix.statmt.org/matrix/
systems_list/1867 for 2017 and http://matrix.
statmt.org/matrix/systems_list/1883 for
2018.

target languages with translation trained on data
translated by the previous iteration of the system.

Aside from the common back-translation (Sen-
nrich et al., 2016), simple copying of target mono-
lingual data back to source (Currey et al., 2017)
has been also shown to improve translation qual-
ity in low-data conditions.

Similar to transfer learning is also curriculum
learning (Bengio et al., 2009; Kocmi and Bojar,
2017), where the training data are ordered from
foreign out-of-domain to the in-domain training
examples.

7 Conclusion

In this paper, we presented our systems for WMT
2018 shared news translation task in three lan-
guage pairs: English-Estonian, English-Finnish,
and English-Czech.

English-Estonian was the main focus of our re-
search, with the English-Finnish used to improve
the quality of the translations. Both Finnish and
Estonian systems used the Transformer architec-
ture. Our results show that a simple transfer learn-
ing is beneficial. Further gains (not in of our sub-
mitted systems) were obtained by including back-
translated data.

Our English-Czech submission was prepared
and used mainly for comparison purposes and it
showed the widening gap between hybrid phrase-
based and neural systems.
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Musil, Ondřej Cı́fka, Dusan Varis, and Ondřej Bojar.
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The JHU Machine Translation Systems for WMT 2018

Anonymous EMNLP submission

Abstract
We report on the efforts of the Johns Hopkins
University to develop neural machine transla-
tion systems for the shared task for news trans-
lation organized around the Conference for
Machine Translation (WMT) 2018. We devel-
oped systems for German–English, English–
German, and Russian–English. Our novel
contributions are iterative back-translation and
fine-tuning on test sets from prior years.

1 Introduction

We carried out two relatively independent ef-
forts on German–English language directions and
Russian–English, using the Marian and Sockeye
neural machine translation toolkits, respectively.

The German–English systems outperformed
last year’s best result (37.0 vs. 35.1 (+1.9) for
German–English, 29.1 vs. 28.3 (+0.8) for Eng-
lish–German), but fell short against this year’s best
performing systems (45.3 vs. 48.4 (-3.1) and 43.4
vs. 48.3 (-4.9), respectively)1. The best mod-
els this year used the Transformer model instead
of the recurrent neural networks that our models
are based on. Our novel contributions are iterative
back-translation and fine-tuning on prior test sets.

For Russian–English, we carried out extensive
hyperparameter search, with different numbers of
layers, embedding and hidden state sizes, and
drop-out settings.

2 German–English and English–German

The systems for the German–English language
pairs were developed with the Marian toolkit
(Junczys-Dowmunt et al., 2018). We developed
models with both shallow and deep architectures,
based on recurrent neural networks. We ensem-
bled 4 independent runs and reranked with right-
to-left models (output in reverse order). We saw

1Scores reported at http://matrix.statmt.org/

improvements with iterative back-translations and
fine tuning on test sets from previous years, as well
as use of the Paracrawl corpus (unfiltered).

A big challenge for system development are
long training times (a month on a single GTX
1080ti GPU) which limited our ability to exploit
the Paracrawl corpus. Because of this, we also
started system development almost a year ago, us-
ing the training data from last year for the most
part. All scores reported in this Section are on
newstest2017 with case-sensitive BLEU.

2.1 Shallow System Development

We started with shallow systems similar to Edin-
burgh’s submission two years ago (Sennrich et al.,
2016a). It uses byte pair encoding with a vocab-
ulary of 50,000 (Sennrich et al., 2016c) and back-
translation of the news2016 monolingual corpus
(Sennrich et al., 2016b), about twice the size of
the original training data.

For each training run, we compare different
ways to obtain a single best model.

• Use the single model that performed best on
the dev set (newstest2016).

• Use checkpoint ensembling to obtain the 4 or
8 best models, and decode the test set with an
ensemble of these models.

• Merge the models obtained by checkpoint en-
sembling into a single model.

For German–English, we achieved slightly bet-
ter results with an ensemble of independent mod-
els rather than a merged model (about +0.2
BLEU), while for English–German they perform
similarly. Ensembling of either kind clearly out-
performs the single best model.

We then built ensembles of the resulting sys-
tems for the 4 independent runs. This gives gains
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Shallow German–English
single ensemble merged

4 8 4 8
run 1 31.8 32.3 32.5 32.2 32.3
run 2 32.4 32.6 32.8 32.5 32.7
run 3 32.8 32.8 32.7 32.5 32.5
run 4 32.2 32.9 32.9 32.7 32.7
ensemble 33.2 33.2 33.3
r2l rerank 33.7

Shallow English–German
single ensemble merged

4 8 4 8
run 1 25.9 26.2 26.2 26.1 26.1
run 2 25.5 26.1 26.1 25.9 25.9
run 3 25.6 25.6 25.7 25.6 25.7
run 4 25.3 25.7 25.8 25.8 25.8
ensemble 26.4 26.4 26.5
r2l rerank 27.3

Deep German–English
single ensemble merged

4 8 4 8
run 1 34.5 34.6 34.4 35.1 35.1
run 2 34.2 34.3 34.2 34.3 34.3
run 3 34.5 34.3 34.3 34.5 34.5
run 4 34.0 34.3 34.3 34.9 34.6
ensemble 34.9 35.6 35.6
r2l rerank 35.7

Deep English–German
single ensemble merged

4 8 4 8
run 1 27.7 28.0 28.1 27.8 27.9
run 2 27.7 27.8 27.7 27.8 27.7
run 3 28.0 27.8 27.9 27.8
run 4 26.1 27.5 27.8 27.8 27.9
ensemble 28.3 28.3 28.3
r2l rerank 28.9

Table 1: Shallow and deep systems for German-English with Marian. 4 independent training runs, with
checkpoint ensemble, and merging the checkpoint ensemble into a single model (averaging parameters).
Ensemble of the runs, with right-to-left reranking (4 independent right-to-left runs).

of about +0.5 over the merged checkpoint ensem-
bles. Notable, the ensemble over the single sys-
tems yields essentially the same quality.

The final improvement is right-to-left rerank-
ing (Liu et al., 2016) where we built also 4 inde-
pendent systems on the data sets with the output
word order reversed. This gave improvements of
+0.5 for German–English and +0.9 for English–
German. For detailed results, see Table 1.

2.2 Deep System Development

System development for deep models is essen-
tially the same as for shallow models. We used the
same data sets, also carried out 4 independent runs
for each language direction, carried out checkpoint
ensembling for each run, combined the resulting
models in a ensemble and performed reranking
with right-to-left models.

The models are similar to Edinburgh’s submis-
sion from last year (Sennrich et al., 2017). They
use 4 alternating encoder layers and 4 decoder
layers, LSTM cells, dropout, layer normalization,
tied embeddings, and Adam optimization.

Detailed results are also in Table 1. Merging
the checkpoint models worked better for German–

English, and about the same for English–German,
compared to decoding with the multiple models.
Ensembling the 4 independent runs yielded solid
gains (about +0.5), but reranking helped substan-
tially only for English–German (+0.6).

2.3 Iterative Backtranslation

The back-translated data was generated with a sin-
gle shallow system trained on the parallel data.
Since we obtained much better performance by
using this back-translated data, employed deep
model architecture and ensembled independent
runs, we have now a much better system to back-
translate data.

Note that this second round of backtranslation
uses monolingual data in both languages. Starting
with a German–English system (trained on paral-
lel data), we translate monolingual German news
text. We then use this synthetic parallel corpus to
build a English–German system (in addition to the
provided parallel data). We now use this English–
German system to translate monolingual English
text, yielding again a synthetic parallel corpus to
be used in the final system.

We carried out the same system development
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Iterative Deep German–English
single ensemble merged

4 8 4 8
run 1 35.5 35.6 35.6 35.6 35.6
run 2 35.3 35.6 35.6 35.7 35.6
run 3 35.6 35.6 35.5 35.6 35.7
run 4 35.1 35.5 35.4 35.6 35.7
ensemble 36.1 36.1 36.1
r2l rerank 36.5

Iterative Deep English–German
single ensemble merged

4 8 4 8
run 1 28.5 28.5 28.5 28.5 28.5
run 2 28.1 28.2 28.3 28.3 28.3
run 3 27.8 28.1 28.3 28.3 28.4
run 4 28.6 28.5 28.6 28.7 28.4
ensemble 29.1 29.0 28.9
r2l rerank 29.4

Table 2: System development with deep models us-
ing iterative back-translation.

as for the shallow and deep models. See Table 2
for details. Table 3 shows how the quality of the
back-translation impacts the final system’s perfor-
mance. This table is also reported in our paper on
iterative back-translation (Hoang et al., 2018).

2.4 Use of Paracrawl Corpus
For German–English only, we added the
Paracrawl corpus without any filtering to the
training data used up to this point (parallel data
plus iterative back-translated monolingual data).
We only completed one training run, and obtained
36.3 BLEU (ensembled 4 checkpoints) as opposed
to 35.6–35.7 for models without Paracrawl.

We trained this model for more than 2 months
on a single GTX1080ti GPU. The best dev score
(newstest2016) after 2 weeks was 43.0, after 4
weeks 43.3, after 6 weeks 43.7, and after 10 weeks
43.8. So, it seems to be necessary to train such a
model for at least a month and a half.

Adding this model to the ensemble gives a score
of 36.6. Weighting the Paracrawl model as much
as all the 4 models without gives slightly higher
score than equal weights (36.5 for equal weights).

2.5 Fine Tuning on Prior Test Sets
Finally, we fine tuned the model of one of the four
iterative backtranslation runs towards the test sets

German–English
back final

no back-translation - 29.6
10k iterations 10.6 29.6 (+0.0)
100k iterations 21.0 31.1 (+1.5)
convergence 23.7 32.5 (+2.9)
re-back-translation 27.9 33.6 (+4.0)
+ deep ensemble 36.1 (+6.2)

English–German
back final

no back-translation - 23.7
10k iterations 14.5 23.7 (+0.0)
100k iterations 26.2 25.2 (+1.5)
convergence 29.1 25.9 (+2.2)
re-back-translation 34.8 27.0 (+3.3)
+ deep ensemble 29.0 (+5.3)

Table 3: Impact of the quality of the back-
translation system on the final system performace.
Note that the back-translation systems run in the
opposite direction and are not comparable to the
numbers in the same row. The deep ensemble
scores reported here match results in Table 2.

German–English
Setup BLEU

iterative back runs 1–4 35.6–35.7
run with Paracrawl 36.3
ensemble 36.6
+ fine-tuned 37.0

Table 4: Final refinements: a model trained with
the unfiltered Paracrawl corpus, an ensemble of
the 4 iterative back-translation models, plus the

from previous years. We trained for 3 epochs with
a learning rate of 0.0003. Adding the resulting
model to the ensemble gives an additional gain of
+0.4, resulting in a final score of 37.0.

3 Russian–English

3.1 Data

We use the provided bitext for training neural ma-
chine translation systems (NMT) in a constrained
setting. The bitext is first pre-processed via
Joshua’s2 normalize.pl, followed by tokenize.pl
and lowercase.pl. The training data is additionally
filtered to sentences less than 80 tokens, result-

2http://joshua.incubator.apache.org/
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ing in 37M sentence pairs (777M English tokens,
725M Russian tokens). We use newstest2016
(2998 sentence pairs) as the development set for
early-stopping during NMT training. For contin-
ued training experiments, we further used a con-
catenation of newstests from 2012 to 2016 (14822
sentence pairs). We did not exploit any addi-
tional monolingual data, either by itself or via
back-translation. After tokenization and lower-
casing, the training data consists of 4.6M Rus-
sian and 3.7M English vocabulary types. We ran
BPE3independently for each language, with 50K
merge operations each.

All results in this section are reported on
newstest2017 (3001 sentence pairs), which is
treated as the initial test set. Unless otherwise
specified, we report BLEU scores from multi-
bleu.perl directly computed on lower-cased tok-
enized English reference.

3.2 Setup
In this task, we use Sockeye version 1.18.14

(Hieber et al., 2018) as our NMT engine. We ex-
plored a three-step approach to model building:

1. Hyperparameter search: First, we trained
multiple NMT models using different hyper-
parameter settings (e.g. #layers, embedding
size) on the 37M-sentence training bitext.

2. Continued training: Second, we attempted to
improve the independent models in Step 1 via
continued training on the newstest2012-2016
data, which more closely matches the test set
in terms of domain.

3. Ensembles: Finally, we took the best models
in Step 2 and performed ensemble decoding.

All our NMT systems above are sequence-to-
sequence models using LSTM units. For training,
we use the ADAM optimizer, with training set per-
plexity as the objective. The initial learning rate is
set to 0.0003, and reduces by a factor of 0.5 after
3 checkpoints without improvement of develop-
ment perplexity (”plateau-reduce” scheduler). The
checkpoint is computed at a frequency of every
10k batches; with a batch size of 128 sentences,
this corresponds to 1280k sentences, or 1/29th of
the training data. After 8 checkpoints without im-
provements, the training is deemed to have con-
verged. Most training runs converged between 30

3https://github.com/rsennrich/subword-nmt/
4https://github.com/awslabs/sockeye

to 100 checkpoints, which corresponds to 1 to 3
epochs over the training data. We then use the
checkpoint with the best validation perplexity as
the chosen model for each run. For decoding, we
use beam search with the default beam size of 5.

3.3 Hyperparameter Search
We searched over four types of hyperparameters:

• The number of stacked LSTM layers in the
encoder and decoder: layer={1, 2, 3}
• The dimension of the word embeddings in

source and target: embed={500, 1000}
• The number of hidden units in each LSTM:

embed={500, 1000}
• The dropout rate for the embedding layer:

dropout={0.1, 0.3}
The goal is to quantify how sensitive the results
are to hyperparameter settings, and to find the best
model for submission. We train systems for a sam-
ple of 9 different hyperparameter settings from the
3× 2× 2× 2 = 24 total combinations, and sum-
marize their results in Table 5. For convenience of
exposition, we label these models with id a-i.

Observation 1: We observe there is a large vari-
ance of test-bleu scores among models a-i, ranging
from 31.1 for model a (best) to 27.3 for model i
(worst). This suggests that hyperparameter search
is very important for building strongly performing
systems, even for settings that are not too different.

For example, compare the smallest model (e),
which has 80M trainable weights, to the sec-
ond smallest model (a), which has 85M trainable
weights: the only difference between the two is
one extra layer and 5M extra weights, yet the test-
bleu changes from 29.5 (e) to 31.1 (a). Simi-
larly, compare model c (137M weights) to model
g (141M weights): they differ only in one extra
layer, yet test-bleu varies as much as 30.1 (c) to
27.9 (g). The largest model (f), which has 200M
trainable weights, ranks in the middle in terms of
test-bleu among the 9 models.

While it may be tempting to extract ”suggested
hyperparameter settings” from Table 5, we recom-
mend a more robust strategy is to perform hyper-
parameter search to the extent possible.

Observation 2: We find that perplexity corre-
lates well with bleu when ranking models in hy-
perparameter search. To a large extent, mod-
els a-d, which have the best training perplexities
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Hyperparameter Setting Results
id layer embed hidden dropout test-bleu step train-ppl dev-ppl dev-bleu
a 2 500 500 .1 31.1 91 5.20 9.13 27.7
b 2 1000 500 .3 30.3 61 5.53 9.48 26.8
c 2 1000 500 .1 30.1 58 5.37 9.39 27.3
d 1 1000 1000 .3 29.9 57 5.37 8.98 27.2
e 1 500 500 .1 29.5 72 5.68 10.36 26.2
f 3 1000 1000 .1 28.2 28 6.37 10.35 25.8
g 3 1000 500 .1 27.9 32 5.99 11.15 25.2
h 1 1000 500 .1 27.4 36 6.28 11.92 24.7
i 1 1000 500 .3 27.3 34 6.67 12.25 24.4
a’ 2 500 500 .1 29.1 110 5.26 8.86 27.1
e’ 1 500 500 .1 28.0 109 5.78 10.1 25.3

Table 5: Hyperparameter search results. The model with id=a is a sequence-to-sequence model with 2
layer of LSTMs in both the encoder and decoder, 500-dimensional source and target word embeddings
(embed), 500 hidden units in each of the LSTM, and 0.1 dropout rate at the embedding layer. This
model achieved 31.1 BLEU (test-bleu) on the test set (newstest2017) and comes from 91th step (or
checkpoint) of the training run, which achieved a training set perplexity (train-ppl) of 5.20, a develop-
ment set perplexity (dev-ppl) of 9.13, and a development set BLEU score (dev-bleu) of 27.7. All models
with id a-j are trained on the BPE bitext with 50k merge operations in Russian and 50k merge operations
in English, and are ranked in this table in terms of test-bleu. The last two rows represent additional
experiments with model a’ and e’, which is similar to model a and e but are trained on BPE bitext with
30k merge operations in Russian and 50k merge operations in English.

(train-ppl) and development perplexities (dev-
ppl), also achieve the best BLEU scores (dev-
bleu, test-bleu). This suggests that for hyperpa-
rameter search purposes, optimizing and validat-
ing based on perplexity is a sufficiently good sur-
rogate for BLEU, which is expensive to compute.

Observation 3: The last two rows of Table 5
experiments with a different number of BPE op-
erations for the source side (Russian). Models
a’ and e’ are similar to models a and e, except
that they use 30k merge operations rather than the
50k we used in all other experiments. The goal
is to test the impact of subword units in hyper-
parameter search. The train-ppl and dev-ppl of
these 30k models are better than or on-par with
the 50k counterparts, but the BLEU scores appear
to be worse. It is somewhat difficult to conclude
with only these two datapoints, but we think that
perhaps hyperparameter search with different sub-
word units need to be conducted separately. Even
on the same dataset, hyperparameters that work
well in one version of the BPE data may not nec-
essarily work well in another version of BPE.

Observation 4: It appears that the better models
(a-e) seem to have trained longer; their final check-

points are chosen at a relative high number of
steps. For example, model (a) comes from check-
point 91, which corresponds to 3 epochs over a
37M sentence dataset. In Figure 1, we plot the
development BLEU for each of the training runs
over time. Our models train for a maximum of 5
days; this is when the learning rate becomes mi-
nuscule and the training process determines con-
vergence. We observe that BLEU continuously
improves (while at a slower pace), even towards
the end of the training process. This suggests that
it might be possible to extract further BLEU gains
by adjusting the learning rate and convergence cri-
teria, encouraging the training to continue longer.

3.4 Continued Training

The training bitext comes from multiple domains,
while the focus of the test set is news. One may
treat this problem as domain adaptation. Here, we
experiment with continued training5 (Luong and
Manning, 2015). The idea is:

Phase 1: Train a model until convergence on the
multi-domain training bitext, as done in Sec 3.3.

Phase 2: Use the model weights from Phase 1

5Also called fine-tuning by some works.
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Figure 1: The 9 curves represent the change in
BLEU scores when training each of models in Ta-
ble 5. (y-axis: dev-bleu, x-axis: time in hours)
Note that BLEU improves rapidly in the first 20
hours. The rate of improvement slows down but
the improvement does not stop: BLEU continually
improves even at hour 100 (4 days of training).

id base 3 epochs ∆ 9 epochs ∆

a 31.1 31.7 0.6 28.4 -2.7
b 30.3 31.5 1.2 27.8 -2.5
c 30.1 31.3 1.2 27.3 -2.8
d 29.9 31.3 1.4 27.8 -2.1
e 29.5 30.3 0.8 27.8 -1.7
g 27.9 29.2 1.3 25.9 -2.0
h 27.4 29.2 1.8 25.4 -2.0
i 27.3 29.2 1.9 26.1 -1.2

Table 6: Continued Training test-bleu on
newstest2017. Base is the baseline number for
each model from Table 5. The BLEU scores for
continued training after 3 or 9 epochs are shown,
along with their difference ∆ against base. Con-
tinued training with few epochs improve results.

to initialize a new training process on adaptation
data. This new training process usually only pro-
ceeds for a few steps. This is the Continued Train-
ing model, and can be used to decode the test set.

In Phase 2, we use newstest2012-2016 as the
adaptation training data. Part of it overlaps with
the dev data (newstest2016), so the training pro-
cedure may constantly improve both train-ppl and
dev-ppl, and never decide to converge. We there-
fore impose a hard-stop to prevent overfitting.

First, we experimented with stopping continued
training after 3 epochs over the adaptation data.
This corresponds to 350 batch updates (batch size
is 128 sentences). ADAM is used as the optimizer,
and the learning rate is fixed at a constant 0.0003.

The test-bleu scores are shown in Table 6. We
observe that continued training is very effective,
improving BLEU scores for all models by 0.6 to

ensemble test-bleu ∆

a+b+c+d+e+f (6) 33.63 1.93
a+b+c+d+e (5) 33.57 1.87
a+b+c+d (4) 33.13 1.43
a+b+c (3) 33.13 1.43
a+b (2) 32.89 1.19

Table 7: Ensemble decoding test-bleu on
newstest2017. We use the models from Table 6.
The difference ∆ is gain with respect to the best
single model (a), with BLEU 31.7.

1.9 points. For example, model (a) improves from
31.1 to 31.7, and model (b) improves from 30.3
to 31.5 on the newstest2017 test set. However,
if we train on adaptation data for too long, the re-
sults degrade. When continued training runs for 9
epochs (1150 batch updates), model (a) degrades
to 28.4 The degradation is consistent for all mod-
els. This suggests that learning rate and amount of
batch updates are important hyperparameters.

3.5 Ensembles

Finally, we performed ensemble decoding with the
best continued training models obtained in the pre-
vious step. Table 7 shows a 6-model ensemble im-
proves 1.93 BLEU over the best single model (a).
This reaffirms the effectiveness of ensembles.

3.6 Final Russian–English Results

We submitted the 6-model ensemble in Table 7
as our final system in the official evaluation. As
shown before, this model achieved 33.63 BLEU
via multi-beu.perl on a tokenized and lowercased
version of newstest2017. We also computed
the official NIST-BLEU with the detokenized ver-
sions: it achieves 0.3195 (cased) and 0.3309 (low-
ercased) on newstest2017.

This result is only slightly improves upon our
2017 Moses SMT submission (Ding et al., 2017),
which achieves 0.3129 (cased) and 0.3246 (lower-
cased) NIST-BLEU. We were interested in explor-
ing the effectiveness of NMT under constrained
data conditions (e.g. without backtranslation on
large monolingual data) and standard sequence-
to-sequence setups (e.g. withough reranking with
left-to-right features or SMT/NMT hybrids). We
imagine that these enhancements are needed if fur-
ther gains are to be desired; unfortunately we may
need to pay the cost of forgoing the simplicity of
standard sequence-to-sequence NMT models.
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Abstract

In the current work, we present a description
of the system submitted to WMT 2018 News
Translation Shared task. The system was cre-
ated to translate news text from Finnish to En-
glish. The system used a Character Based
Neural Machine Translation model to accom-
plish the given task. The current paper docu-
ments the preprocessing steps, the description
of the submitted system and the results pro-
duced using the same. Our system garnered a
BLEU score of 12.9.

1 Introduction

Machine Translation (MT) is automated transla-
tion of one natural language to another using com-
puter software. Translation is a tough task, not
only for computers, but humans as well as it in-
corporates a thorough understanding of the syntax
and semantics of both languages. For any MT sys-
tem to return good translations, it needs good qual-
ity and sufficient amount of parallel corpus (Ma-
hata et al., 2016, 2017).

In the modern context, MT systems can be
categorized into Statistical Machine Translation
(SMT) and Neural Machine Translation (NMT).
SMT has had its share in making MT very popu-
lar among the masses. It includes creating statis-
tical models, whose input parameters are derived
from the analysis of bilingual text corpora, created
by professional translators (Weaver, 1955). The
state-of-art for SMT is Moses Toolkit1, created by
Koehn et al. (2007), incorporates subcomponents
like Language Model generation, Word Alignment
and Phrase Table generation. Various works have
been done in SMT (Lopez, 2008; Koehn, 2009)
and it has shown good results for many language
pairs.

1http://www.statmt.org/moses/

On the other hand NMT (Bahdanau et al.,
2014), though relatively new, has shown consider-
able improvements in the translation results when
compared to SMT (Mahata et al., 2018). This
includes better fluency of the output and better
handling of the Out-of-Vocabulary problem. Un-
like SMT, it doesn’t depend on alignment and
phrasal unit translations (Kalchbrenner and Blun-
som, 2013). On the contrary, it uses an Encoder-
Decoder approach incorporating Recurrent Neu-
ral Cells (Cho et al., 2014). As a result, when
given sufficient amount of training data, it gives
much more accurate results when compared to
SMT (Doherty et al., 2010; Vaswani et al., 2013;
Liu et al., 2014).

Further, NMT can be of two types, namely
Word Level NMT and Character Level NMT.
Word Level NMT, though very successful, suf-
fers from a few disadvantages. It are unable to
model rare words (Lee et al., 2016). Also, since
it does not learn the morphological structure of a
language it suffers when accommodating morpho-
logically rich languages (Ling et al., 2015). We
can address this issue, by training the models with
huge parallel corpus, but, this in turn, produces
very complex and resource consuming models that
aren’t feasible enough.

To combat this, we plan to use Character level
NMT, so that it can learn the morphological as-
pects of a language and construct a word, charac-
ter by character, and hence tackle the rare word
occurrence problem to some extent.

In the current work, we participated in the
WMT 2018 News Translation Shared Task2 that
focused on translating news text, for European lan-
guage pairs. The Character Based NMT system
discussed in this paper was designed to accom-
modate Finnish to English translations. The orga-

2http://www.statmt.org/wmt18/translation-task.html
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nizers provided the required parallel corpora, con-
sisting of 3,255,303 sentence pairs, for training
the translation model. The statistics of the paral-
lel corpus is depicted in Table 1 Our model was
trained on a Tesla K40 GPU, and the training took
around 10 days to complete.

# sentences in Fi corpus 3,255,303
# sentences in En corpus 3,255,303
# words in Fi corpus 53,753,718
# words in En corpus 73,694,350
# word vocab size for Fi corpus 1,065,309
# word vocab size for En corpus 280,822
# chars in Fi corpus 427,187,612
# chars in En corpus 405,624,094
# char vocab size for Fi corpus 963
# char vocab size for En corpus 1,360

Table 1: Statistics of the Finnish-English parallel
corpus provided by the organizers. ”#” depicts

No. of. ”Fi” and ”En” depict Finnish and English,
respectively. ”char” means character and ”vocab”

means vocabulary of unique tokens.

The remainder of the paper is organized as fol-
lows. Section 2 will describe the methodology of
creating the character based NMT model and will
include the preprocessing steps, a brief summary
of the encoder-decoder approach and the architec-
ture of our system. This will be followed by the
results and conclusion in Section 3 and 4, respec-
tively.

2 Methodology

For designing the model we followed some stan-
dard preprocessing steps, which are discussed be-
low.

2.1 Preprocessing

The following steps were applied to preprocess
and clean the data before using it for training our
character based neural machine translation model.
We used the NLTK toolkit3 for performing the
steps.

• Tokenization: Given a character sequence
and a defined document unit, tokenization is
the task of chopping it up into pieces, called
tokens. In our case, these tokens were words,
punctuation marks, numbers. NLTK supports

3https://www.nltk.org/

tokenization of Finnish as well as English
texts.

• Truecasing: This refers to the process of
restoring case information to badly-cased or
non-cased text (Lita et al., 2003). Truecasing
helps in reducing data sparsity.

• Cleaning: Long sentences (# of tokens > 80)
were removed.

2.2 Neural Machine Translation
Neural machine translation (NMT) is an approach
to machine translation that uses neural networks
to predict the likelihood of a sequence of words.
The main functionality of NMT is based on the se-
quence to sequence (seq2seq) architecture, which
is described in Section 2.2.1.

2.2.1 Sequence to Sequence Model
Sequence to Sequence learning is a concept in
neural networks, that helps it to learn sequences.
Essentially, it takes as input a sequence of tokens
(characters in our case)

X = {x1, x2, ..., xn}

and tries to generate the target sequence as output

Y = {y1, y2, ..., ym}

where xi and yi are the input and target symbols
respectively.

Sequence to Sequence architecture consists of
two parts, an Encoder and a Decoder.

The encoder takes a variable length sequence
as input and encodes it into a fixed length vec-
tor, which is supposed to summarize its meaning
and taking into account its context as well. A
Long Short Term Memory (LSTM) cell was used
to achieve this. The uni-directional encoder reads
the characters of the Finnish texts, as a sequence
from one end to the other (left to right in our case),

~ht = ~f enc(Ex(xt),~ht-1)

Here, Ex is the input embedding lookup table (dic-
tionary), ~f enc is the transfer function for the Long
Short Term Memory (LSTM) recurrent unit. The
cell state h and context vector C is constructed and
is passed on to the decoder.

The decoder takes as input, the context vector C
and the cell state h from the encoder, and computes
the hidden state at time t as,

st = fdec(Ey(yt-1), st-1, ct)
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Subsequently, a parametric function outk returns
the conditional probability using the next target
symbol k.

(yt = k | y < t,X) =
1

Z
exp(outk(Ey(yt−1), st, ct))

Z is the normalizing constant,
∑

jexp(outj(Ey(yt − 1), st, ct))

The entire model can be trained end-to-end by
minimizing the log likelihood which is defined as

L = − 1

N

N∑

n=1

Tyn∑

t=1

logp(yt = yt
n, y¡t

n, Xn)

where N is the number of sentence pairs, and Xn

and yt
n are the input sentence and the t-th target

symbol in the n-th pair respectively.
The input to the decoder was one hot tensor

(embeddings at character level) of English sen-
tences while the target data was identical, but with
an offset of one time-step ahead.

2.3 Training
For training the model, we preprocessed the
Finnish and English texts to normalize the data.
Thereafter, Finnish and English characters were
encoded as One-Hot vectors. The Finnish char-
acters were considered as the input to the encoder
and subsequent English characters was given as in-
put to the decoder. A single LSTM layer was used
to encode the Finnish characters. The output of
the encoder was discarded and only the cell states
were saved for passing on to the decoder. The cell
states of the encoder and the English characters
were given as input to the decoder. Lastly, a Dense
layer was used to map the output of the decoder to
the English characters, that were mapped with an
offset of 1. The batch size was set to 128, num-
ber of epochs was set to 100, activation function
was softmax, optimizer chosen was rmsprop and
loss function used was categorical cross-entropy.
Learning rate was set to 0.001. The architecture of
the constructed model is shown in Figure 1.

3 Results

Our system was a constrained system, which
means that we only used data given by the orga-
nizers to train our system. The output was con-
verted to an SGML format, the code for which
was provided by the organizers. The results

Figure 1: Architecture of the reported NMT model.

were submitted to http://matrix.statmt.
org/ for evaluation. The organizers calculated
the BLEU score, BLEU-cased score, TER score,
BEER 2.0 score, and Character TER score for our
submission. As for the human ranking scores, the
system fetched a standardized Average Z score of
-0.404 and a non-standardized Average % score of
58.9 (Bojar et al., 2018). The results of the auto-
mated and human evaluation scores are given in
Table 2.

Metrics Score
BLEU 12.9
BLEU Cased 12.2
TER 0.816
BEER 2.0 0.448
Character TER 0.770
Average Z -0.404
Average % 58.9

Table 2: Evaluation Metrics

4 Conclusion

The paper presents the working of the translation
system submitted to WMT 2018 News Translation
shared task. We have used character based en-
coding for our proposed NMT system. We have
used a single LSTM layer as an encoder as well
as a decoder. As a future prospect, we plan to
use more LSTM layers in our model. We plan to
create another NMT model, which takes as input
words, and not characters and subsequently use
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various embedding schemes to improve the trans-
lation quality.
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Abstract

This paper presents the NICT’s participation
to the WMT18 shared news translation task.
We participated in the eight translation di-
rections of four language pairs: Estonian-
English, Finnish-English, Turkish-English and
Chinese-English. For each translation direc-
tion, we prepared state-of-the-art statistical
(SMT) and neural (NMT) machine translation
systems. Our NMT systems were trained with
the transformer architecture using the provided
parallel data enlarged with a large quantity of
back-translated monolingual data that we gen-
erated with a new incremental training frame-
work. Our primary submissions to the task are
the result of a simple combination of our SMT
and NMT systems. Our systems are ranked
first for the Estonian-English and Finnish-
English language pairs (constraint) according
to BLEU-cased.

1 Introduction

This paper describes the neural (NMT) and sta-
tistical machine translation systems (SMT) built
for the participation of the National Institute
of Information and Communications Technology
(NICT) to the WMT18 shared News Transla-
tion Task (Bojar et al., 2018). We participated
in four language pairs (eight translation direc-
tions): Estonian-English (Et-En), Finnish-English
(Fi-En), Turkish-English (Tr-En), and Chinese-
English (Zh-En). We chose these language pairs
since they appear to be among the most chal-
lenging: involving distant languages and with less
training data, for Finnish, Estonian, and Turkish,
provided by the organizers than for Russian, Ger-
man, and Czech. All our systems are constrained,
i.e., we used only the parallel and monolingual
data provided by the organizers to train and tune
them. For all the translation directions, we trained
NMT and SMT systems, and combined them

through n-best list reranking using different infor-
mative features as proposed by Marie and Fujita
(2018). This simple combination method, asso-
ciated to the exploitation of large back-translated
monolingual data, performed among the best MT
systems at WMT18. Especially for the competi-
tive Et-En and Fi-En translation tasks, for which
our submissions are ranked first according to the
BLEU-cased metric (henceforth BLEU). Our sys-
tems for Et-En, Fi-En, and Tr-En were trained
using the exactly same procedures, without any
specific linguistic treatments. On the other hand,
for Zh-En, we used a specific tokenizer and used
slightly different training parameters due to the
much larger quantity of training data.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce the data prepro-
cessing. In Section 3, we describe the details of
our NMT and SMT systems. The back-translation
of monolingual data using our new incremental
training framework for NMT is described in Sec-
tion 4. Then, the combination of NMT and SMT
is described in Section 5. Empirical results pro-
duced with our systems are showed and analyzed
in Section 6, and Section 7 concludes this paper.

2 Data Preprocessing

2.1 Data
As parallel data to train our systems, we used
all the available data for all our targeted transla-
tion directions, except the “Wiki Headlines”1 cor-
pus for Fi-En. As English monolingual data, we
used all the available data except the “Common
Crawl” and “News Discussions” corpora.2 For all
other languages, we used all the available mono-
lingual corpora, except for Turkish for which we

1It contains only very short segments that are not sen-
tences and that we therefore assume to be of no use in NMT.

2The “News Crawl” data are sufficiently large and that
these corpora are not in-domain monolingual data.
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Language pair #sent. pairs #tokens

Et-En 1.9M 29.4M (Et) 36.0M (En)
Fi-En 3.1M 52.9M (Fi) 72.8M (En)
Tr-En 207.4k 4.4M (Tr) 5.1M (En)
Zh-En 24.8M 509.9M (Zh) 576.2M (En)

Table 1: Statistics of our preprocessed parallel data.

Language #lines #tokens

En 338.7M 7.5B
Et 146.1M 3.6B
Fi 177.1M 3.2B
Tr 105.0M 1.8B
Zh 130.5M 2.3B

Table 2: Statistics of our preprocessed monolingual
data.

used only 100 millions sentence pairs randomly
extracted from “Common Crawl.”

To tune/validate and evaluate our systems, we
used Newstest2016 and Newstest2017 for Fi-En
and Tr-En, Newsdev2017 and Newstest2017 for
Zh-En, and Newsdev2018 for Et-En.

2.2 Tokenization, Truecasing and Cleaning

We used Moses tokenizer (Koehn et al., 2007)
and truecaser for English, Estonian, Finnish, and
Turkish. The truecaser was trained on one mil-
lion tokenized lines extracted randomly from the
monolingual data. Truecasing was then performed
on all the tokenized data. For Chinese, we used
Jieba3 for tokenization but did not perform
truecasing. For cleaning, we only applied the
Moses script clean-n-corpus.perl to re-
move lines in the parallel data containing more
than 80 tokens and replaced characters forbidden
by Moses. Note that we did not perform any
punctuation normalization. Tables 1 and 2 present
the statistics of the parallel and monolingual data,
respectively, after preprocessing.

3 MT Systems

3.1 NMT

To build competitive NMT systems, we chose
to rely on the transformer architecture (Vaswani
et al., 2017) since it has been shown to outper-
form, in quality and efficiency, the two other
mainstream architectures for NMT known as
deep recurrent neural network (deep RNN) and
convolutional neural network (CNN). We chose

3https://github.com/fxsjy/jieba

Marian4 (Junczys-Dowmunt et al., 2018) to
train and evaluate our NMT systems since it
supports state-of-the-art features and is one of
the fastest NMT framework publicly available.5

In order to limit the size of the vocabulary
of the NMT models, we segmented tokens in
the parallel data into subword units via byte
pair encoding (BPE) (Sennrich et al., 2016b)
using 50k operations. BPE segmentations were
jointly learned on the training parallel data for
source and target languages, except for Zh-En
for which Chinese and English segmentations
were trained separately. All our NMT systems
for Et-En, Fi-En, and Tr-En were consistently
trained on 4 GPUs,6 with the following param-
eters for Marian: --type transformer
--max-length 80 --mini-batch-fit
--valid-freq 5000 --save-freq
5000 --workspace 8000 --disp-freq
500 --beam-size 12 --normalize 1
--valid-mini-batch 16 --overwrite
--early-stopping 5 --cost-type
ce-mean-words --valid-metrics
ce-mean-words perplexity
translation --keep-best
--enc-depth 6 --dec-depth 6
--transformer-dropout 0.1
--learn-rate 0.0003 --dropout-src
0.1 --dropout-trg 0.1 --lr-warmup
16000 --lr-decay-inv-sqrt 16000
--lr-report --label-smoothing 0.1
--devices 0 1 2 3 --dim-vocabs
50000 50000 --optimizer-params
0.9 0.98 1e-09 --clip-norm 5
--sync-sgd --tied-embeddings
--exponential-smoothing. For Zh-
En, we did not use --dropout-src 0.1
--dropout-trg 0.1 since the training data
is much larger. We performed NMT decoding
with an ensemble of a total of six models accord-
ing to the best BLEU (Papineni et al., 2002) and
the best perplexity scores,7 produced by three
independent training runs.

4https://marian-nmt.github.io/, version
1.4.0

5It is fully implemented in pure C++ and supports multi-
GPU training.

6NVIDIA® Tesla® P100 16Gb.
7Note that the same model may give the best BLEU score

and also the best perplexity score. Nonetheless, for consis-
tency across language pairs, we systematically kept two mod-
els even if they were identical.
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3.2 SMT

We also trained SMT systems using Moses.
Word alignments and phrase tables were
trained on the tokenized parallel data using
mgiza. Source-to-target and target-to-source
word alignments were symmetrized with the
grow-diag-final-and heuristic. We trained
hierarchical SMT models for Et-En and Fi-En
since they provided better results than regular
phrase-based models on our development data for
these language pairs.8 We also expected a similar
observation for Tr-En and Zh-En. However, we
were unable to exploit hierarchical models for the
language pair Tr-En9 while hierarchical models
for the language pairs Zh-En were extremely large
due to the size of our training data. Consequently,
for Tr-En and Zh-En we simply trained regular
phrase-based models using MSLR (monotone,
swap, discontinuous-left, discontinuous-right)
lexicalized reordering models and used the default
distortion limit of 6. We trained two 4-gram
language models: one on the entire monolingual
data concatenated to the target side of the parallel
data, and another one on the in-domain “News
Crawl” corpora only, using LMPLZ (Heafield
et al., 2013). For English, all singletons were
pruned due to the large size of the monolingual
data. To tune the SMT model weights, we used
KB-MIRA (Cherry and Foster, 2012) and selected
the weights giving the best BLEU score on the
development data after 15 decoding runs.

4 Back-translation of Monolingual Data

4.1 Incremental Back-Translation with
Et-En, Fi-En, and Tr-En

We introduced an incremental training framework
for NMT aiming to iteratively increase the qual-
ity and quantity of the synthetic parallel data
used for training. In this framework, we first
simultaneously but independently train a source-
to-target and a target-to-source NMT systems us-
ing the same original parallel data. Then, we
back-translate source and target monolingual data
respectively using the source-to-target and the
target-to-source NMT systems, and obtain two
sets of synthetic parallel data. And then, a new
source-to-target and a new target-to-source NMT

8Between 0.5 and 1 BLEU points of improvement.
9Moses consistently crashed (segmentation fault) during

the decoding of the development data.
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Figure 1: Our incremental training framework.

systems are trained, from scratch, on their respec-
tive new training data comprising the mixture of
the original parallel data and the synthetic parallel
data whose source side is back-translated from the
target side. At this stage, we just do what is usually
done by previous work (Sennrich et al., 2016a).

As illustrated in Figure 1, we continue this
procedure iteratively. Using source-to-target and
target-to-source NMT systems trained on the mix-
ture of the synthetic and original parallel data,
we back-translate a larger number of monolingual
sentences, including the same sentences back-
translated at the first iteration. Since we have bet-
ter NMT systems than those at the first iteration,
we can expect the back-translation to be of a bet-
ter quality. We mix this new synthetic parallel data
to the original one and train again from scratch a
source-to-target and a target-to-source NMT sys-
tems to obtain further improved translation mod-
els. Note that this procedure is partially similar
to the work proposed by Zhang et al. (2018) and
Hoang et al. (2018), but differs in the sense that we
increase incrementally our back-translated data.

Given the number of sentences used in the first
iteration, k1, and an expansion factor, r, we de-
termine ki, the number of monolingual sentences
back-translated at iteration i, as follows:

ki = rki−1 (1)

The parameters used for the given language
pairs are listed in Table 3. The monolingual sen-
tences to be back-translated were randomly ex-
tracted from the NewsCrawl corpora. For Et-En
and Fi-En, we stopped the incremental training
after 2 iterations, back-translating up to 2M sen-
tences. For Tr-En, we observed improvements for
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Language pair k1 r #iter. (total)

Et-En 1M 2 2
Fi-En 1M 2 2
Tr-En 200k 2 4

Table 3: Parameters used for our incremental training.
For each language pair, the same parameters were used
for both translation directions. In our preliminary ex-
periments, we found that setting r = 2 and k1 very
close to, or smaller than, the size of the original paral-
lel data consistently gives good results across language
pairs. Fine-tuning r and k1 would result in a better
translation quality but at a greater cost.

both translation directions until the fourth itera-
tion that back-translated 1.6M sentences (approx-
imately 8 times the size of the original parallel
data). In our preliminary experiments, we found
that incremental training significantly improves
the translation quality over an NMT system that
was trained directly, on the same amount of back-
translated sentences. For instance, we observed a
0.6 BLEU points improvements for Tr→En over a
system trained on 1.6M sentences back-translated
by a system trained on the original parallel data (as
in (Sennrich et al., 2016a)).

4.2 Setting for Zh-En

For the Zh-En language pair, since much larger
parallel data were provided to train the system, we
did not perform the incremental back-translation
described in Section 4.1. For En→Zh, we back-
translated the entire XMU Chinese monolingual
corpus containing 5.4M sentences as the source
to produce synthetic English data. For Zh→En,
we empirically compared the impact of back-
translating different sizes of English monolingual
data, using the first 10M, 20M, and 40M lines of
the concatenation of News Crawl-2016 and News
Crawl-2017 English corpora to produce synthetic
Chinese data. As shown in Table 4, there is not a
significant difference in exploiting back-translated
data as large as 40M lines compared to only 10M
lines. Therefore, we selected the first 10M lines of
the News Crawl-2016 English corpus to produce
synthetic Chinese data.

5 Combination of NMT and SMT

Although we can expect SMT to perform very
poorly for all the language pairs we considered,10

10Especially due to the rich morphology of the languages
involved and the long distance reorderings to perform in order

#lines back-translated #BLEU

10M 21.4
20M 21.4
40M 21.5

Table 4: Results for different sizes of back-translated
data for the Zh→En translation direction on News-
dev2017.

our primary submissions for WMT18 are the re-
sults of a simple combination of NMT and SMT.
Indeed, as demonstrated by Marie and Fujita
(2018), and despite the simplicity of the method
used, combining NMT and SMT makes MT more
robust and can significantly improve translation
quality, even when SMT greatly underperforms
NMT. Following Marie and Fujita (2018), our
combination of NMT and SMT works as follows.

5.1 Generation of n-best Lists

We first produced the 100-best translation hy-
potheses with our NMT and SMT systems, inde-
pendently.11 Unlike Moses, Marian must use a
beam of size k to produce a k-best list during de-
coding. However, using a larger beam size during
decoding for NMT may worsen translation qual-
ity (Koehn and Knowles, 2017).12 Consequently,
we also produced with Marian the 10-best lists,
for Zh-En, and 12-best lists for the other language
pairs, and merged them with Marian’s 100-best
lists to obtain lists containing up to 110 or 112 hy-
potheses.13 In this way, we make sure that we still
have hypotheses of good quality in the lists de-
spite using a larger beam size.14 Then, we merged
the lists produced by Marian and Moses. We
rescored all the hypotheses in the resulting lists
with a reranking framework using features to bet-
ter model the fluency and the adequacy of each hy-

to produce a translation of good quality.
11We used the option distinct in Moses to avoid du-

plicated hypotheses, i.e., with the same content but obtained
from different word alignments, and consequently to increase
diversity in the generated n-best lists.

12For Zh-En, the decoding of the test data with k=100 re-
sulted in a drop of 0.4 BLEU points compared to a decoding
with k=10. However, for the other language pairs we did not
observe such a quality drop but instead a consistent and slight
improvement of BLEU scores.

13Note that we did not remove duplicated hypotheses that
may appear, for instance, in both 10-best and 100-best lists.

14Note that we could have also generated many individual
smaller n-best lists, for instance using all our NMT models
independently, and merge them to increase the diversity of
the hypotheses list to rerank and therefore obtained better re-
sults. However, we decided to leave the exploration of this
possibility for feature work.
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Feature Description

L2R (6) Scores given by each of the 6 left-to-right Marian models
R2L (2) Scores given by each of the 2 (or 4 for Tr-En) right-to-left Marian models
LEX (4) Sentence-level translation probabilities, for both translation directions
LM (2) Scores given by the two language models used by the Moses baseline systems
WPP (2) Averaged word posterior probability
LEN (2) Difference between the length of the source sentence and the length of the translation hypothesis, and

its absolute value
SYS (1) System flag, 1 if the hypothesis comes from Moses n-best list or 0 otherwise
MBR (2) For Tr-En only: MBR decoding using sBLEU and chrF++
PBFD (1) For Tr-En only: The phrase-based forced decoding score

L2R-bwd (6) Scores given by each of the 6 left-to-right Marian models for the backward translation direction
R2L-bwd (2) Scores given by each of the 2 (or 4 for Tr-En) right-to-left Marian models for the backward translation

direction

Table 5: Set of features used by our reranking systems. The column “Feature” refers to the same feature name used
in Marie and Fujita (2018). Note that the two last feature sets, “L2R-bwd” and “R2L-bwd,” were not experimented
in Marie and Fujita (2018). The numbers between parentheses indicate the number of scores in each feature set.

# System Et→En En→Et Fi→En En→Fi Tr→En En→Tr Zh→En En→Zh

1. Moses 18.2 15.1 15.8 10.7 12.1 8.4 16.9 28.0
2. Moses NMT-reranked 20.2 17.6 17.5 12.2 14.2 10.1 19.0 29.9

3. Marian single (w/o backtr) 22.9 18.5 17.6 13.2 20.2 12.2 23.7 33.0
4. Marian single (w/ backtr) 28.6 24.0 23.1 16.8 25.2 18.0 24.7 37.2
5. Marian ensemble (w/ backtr) 29.1 24.3 23.6 17.3 25.8 18.3 25.9 37.9

6 Moses + Marian 30.7 25.2 24.9 18.2 26.9 19.2 26.7 39.7

Table 6: Detokenized BLEU-cased scores for our MT systems on the Newstest2018 test set. “NMT-reranked”
denotes the reranking of the Moses’s 100-best hypotheses using all our NMT models (left-to-right and right-to-
left, for both translation directions, trained with back-translated data) as features. “backtr” denotes the use or not
of back-translated monolingual data. “Moses + Marian” denotes our combination of best NMT (#5) and SMT
(#1) systems described in Section 5.

pothesis. This method can find a better hypothesis
in these merged n-best lists than the one-best hy-
pothesis originated by either Moses or Marian.

5.2 Reranking Framework and Features

We chose KB-MIRA as a rescoring framework and
used a subset of the features proposed in Marie
and Fujita (2018). As listed in Table 5, it in-
cludes the scores given by the 6 left-to-right NMT
models used to perform ensemble decoding (see
Section 3.1). We also used as features the scores
given by right-to-left NMT models that we trained
for each translation direction with the same pa-
rameters as left-to-right NMT models. The two
right-to-left NMT models, each achieving the best
BLEU and the best perplexity scores on the devel-
opment data, were selected, giving us two other
features for each translation direction. Since the
Tr-En training parallel data are much smaller, we
were able to perform one more right-to-left train-

ing run for Tr→En and En→Tr.15 We also experi-
mented with the use of the scores computed from
the NMT models trained for the backward transla-
tion direction. In total, we have then 16 features,
or 20 for Tr-En, computed from NMT models. All
the following features we used are described in de-
tails by Marie and Fujita (2018). We computed
sentence-level translation probabilities using the
lexical translation probabilities learned by mgiza
during the training of our SMT systems. The two
language models trained for SMT for each trans-
lation direction were also used to score the n-best
translation hypotheses. To account for hypotheses
length, we added the difference, and its absolute
value, between the number of tokens in the trans-
lation hypothesis and the source sentence. As a
consensus-based feature, we used the word poste-
rior probabilities.

For only the Tr-En language pair, we were also
able to compute a phrase-based forced decoding

15In practice, adding one more right-to-left model for
reranking did not significantly improve the BLEU score on
the development data.
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score (Zhang et al., 2017) thanks to the small
size of the phrase table learned for this language
pair. Also only for this language pair, we com-
puted the scores for each hypothesis given by the
so-called minimum Bayes risk (MBR) decoding
for n-best list using two metrics: sBLEU and
chrF++ (Popović, 2017).

The reranking framework was trained on n-best
lists produced by the decoding of the same devel-
opment data that we used to validate NMT sys-
tem’s training and to tune SMT’s model weights.

6 Results

The results of our systems computed for the New-
stest2018 test set are presented by Table 6.

As expected, SMT systems greatly underper-
formed our best NMT systems with differences in
BLEU points ranging from 6.6 (En→Fi) to 13.7
(Tr→En). Reranking Moses 100-best hypothe-
ses using NMT models (NMT-reranked) signifi-
cantly improved the translation quality for all the
translation directions. For Fi→En, Moses NMT-
reranked performed only 0.1 BLEU points worse
than Marian single (w/o backtr). This result
demonstrates the ability of SMT in producing bet-
ter translation hypotheses than its one-best hy-
pothesis. Indeed, a better translation can be eas-
ily retrieved with the help of NMT models within
the 100-best lists. Using back-translated data dur-
ing training was very effective for Et-En, Fi-En,
and Tr-En, with improvements ranging from 3.6 to
5.8 BLEU points. Improvements were less signif-
icant for Zh-En, especially for Zh→En with only
1.0 BLEU points of improvements. This may be
explained by the much larger parallel data already
used to train systems for Zh-En. Another inter-
esting finding is the relative inefficiency of using
an ensemble of 3 models for NMT decoding with
the transformer architecture over using a single
model, as opposed to what was reported by most
participants at WMT17 (Bojar et al., 2017) using
RNN. For instance, for En→Et and En→Tr en-
semble decoding improved the translation quality
by only 0.3 BLEU points.

Our combination of SMT and NMT signifi-
cantly outperformed all our NMT systems for all
translation directions. For instance, this combina-
tion brought 1.6 and 1.8 BLEU points of improve-
ments for Et→En and En→Zh, respectively, over
our best NMT systems.

7 Conclusion

We participated in eight translation directions and
for all of them we did experiments to compare
SMT and NMT performances. While SMT sig-
nificantly underperforms NMT, we showed that a
simple combination of both approaches delivers
the best results.
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Abstract 

This paper describes the PROMT 

submissions for the WMT 2018 Shared 

News Translation Task. This year we 

participated only in the English-Russian 

language pair. We built two primary neural 

networks-based systems: 1) a pure Marian-

based neural system and 2) a hybrid 

system which incorporates OpenNMT-

based neural post-editing component into 

our RBMT engine. We also submitted pure 

rule-based translation (RBMT) for 

contrast. We show competitive results with 

both primary submissions which 

significantly outperform the RBMT 

baseline. 

1 Introduction 

This paper provides an overview of the PROMT 

submissions for the WMT 2018 Shared News 

Translation Task. This year we participate with 

neural MT systems for the first time. We 

participate only in the English-Russian language 

pair, but with three different systems. 

The paper is organized as follows: Section 2 is 

a brief overview of the submitted systems. Section 

3 describes the data preparation, preprocessing 

and statistics in detail. Section 4 provides a 

description of the systems. In Section 5 we 

present and discuss the results. Section 6 

concludes the paper. 

2 Systems overview 

We submitted three systems for the WMT 2018 

Shared News Translation Task: 

 A (almost) pure NMT system based on 

the Marian (Junczys-Dowmunt et al., 

2018) toolkit. The system features a rule-

based names processing module and 

backoff to RBMT baseline in a few 

cases. 

 A hybrid NMT system based on the 

PROMT RBMT engine with OpenNMT-

based (Klein et al., 2017) neural post-

editing module. 

 pure RBMT system. 

3 Data 

We use the data provided by the WMT organizers, 

some private in-house news parallel data 

(approximately 600k parallel sentences crawled 

from various news web-sources and dated 

between 2015 and 2017) and the TED Talks 

corpus from the OPUS website (Tiedemann, 

2012). The NewsCommentary, TED and in-house 

corpora are used as is. 

We do not use any data for fine-tuning. We use 

the WMT newstest2017 set as our validation set. 

We also report results for newstest2018. 

3.1 Data filtering 

The CommonCrawl and (especially) ParaCrawl 

corpora were heavily filtered and normalized 

using the PROMT tools and algorithms (including 

language recognition, removal of meaningless 

sentences, in-house tools for parallel sentences 

classification, spellchecker etc.). We discarded 

roughly 50% of the CommonCrawl and 60% of 

the ParaCrawl data. 

The MultiUN corpus was only checked for 

sentence length ratio using a simple rule-based 

algorithm. Less than 1% of the original data was 

discarded. 

After that, we applied the bilingual data 

selection algorithm (Axelrod et al., 2011) to the 

filtered versions of ParaCrawl and MultiUN. We 

use the English and Russian news 2016-2017 
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corpora from statmt.org as the in-domain corpora. 

After this procedure we selected 1.5M sentences 

from the ParaCrawl corpus and 6M sentences 

from the MultiUN corpus. 

The final statistics for the training data are 

shown in Table 1. 

3.2 Data preprocessing 

Pure NMT system 

We adopt a standard preprocessing scheme using 

the scripts provided by the Marian toolkit. The 

data is tokenized using the Moses toolkit (Koehn 

et al., 2007) tokenizer; after that we apply 

truecasing and, finally, byte pair encoding (BPE) 

(Sennrich et al., 2016) with 85K operations for 

source and target. We do not use a shared 

vocabulary due to the Cyrillic nature of Russian 

alphabet. 

Hybrid NMT system 

We adopt a slightly different pipeline for the 

OpenNMT-based system. The data is tokenized 

with the OpenNMT tokenizer. The tokenizer 

provides a nice and handy option of applying the 

case feature, thus there is no need for truecasing. 

Then, we apply BPE with the same size 85K 

operations for source and target using the 

OpenNMT BPE script. The OpenNMT BPE 

learning algorithm is an extended version of the 

original BPE script adopted in Marian and has the 

following additional features: 1) the BPE merge 

operations are learnt to distinguish subword units 

at the beginning, in the middle and at the end of 

the word and 2) the BPE merge operations are 

learnt in case-insensitive mode (as we use the case 

feature to handle that). The OpenNMT system 

architecture does not support shared embeddings 

so despite the fact that both source (RBMT 

translations) and target (human translations) data 

is encoded in Cyrillic we train separate BPE 

models. 

3.3 Synthetic data 

We use three types of additional synthetic data 

described in detail below. The final size of the 

training data for the pure NMT system is roughly 

4 times the total size of the filtered data in Table 1, 

while the final size of the training data for the 

hybrid system is approximately 6 times the size of 

the filtered data. 

Back-translated data 

Using the filtered data presented in Table 1 we 

train two initial auxiliary target-to-source NMT 

systems using the filtered data: 

 A Russian-English NMT system using 

Marian (s2s with default parameters); 

 A Russian-to-RBMT NMT system using 

OpenNMT (dbrnn, 2 layers, RNN size 

1024 units). 

The trained systems are then used to back-

translate the 2017 news corpus from statmt.org (in 

case with the Marian system, we translate from 

Russian into English; the OpenNMT systems 

translates from Russian into the “Rule-based 

Russian”, mimicking the rule-based machine 

translation accent and structure). The size of the 

synthetic corpus is approximately equivalent to 

the size of human training data. 

Replicated data with unknown words 

Similar to (Pinnis et al., 2017), we again roughly 

double our parallel data by creating a synthetic 

parallel corpus using the following steps: first, we 

perform word-alignment of our initial parallel 

training corpus using the MGIZA tool (Gao and 

Vogel, 2008). Then, we randomly replace from 

one to three unambiguously (one-to-one) aligned 

subword units in both source and target parallel 

sentences with the special <UNK> placeholder. 

The same pipeline is applied to both pure NMT 

system (for which we augment the English-

Russian corpus) and the hybrid NMT system (for 

which we augment the RBMT-human Russian 

corpus) and to both the initial and back-translated 

data. 

Corpus  #sent  #tokens 

EN  

#tokens 

RU  

MultiUN 6.0 140.8 129 

ParaCrawl 1.5 28.4 24.3 

Yandex corpus 0.6 16.8 15.4 

Private data 0.6 15.6 15 

CommonCrawl 0.4 10.3 9.5 

NewsCommentary 0.3 6.2 5.9 

TED Talks 0.1 2.4 2.1 

Total 9.5 220.5 201.2 

Table 1: Statistics for the filtered parallel English-

Russian data in millions of sentences (#sent) and 

tokens. 
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Monolingual data 

To benefit from the fact that we have data in 

Cyrillic in both source (RBMT) and target (human 

Russian) when dealing with the hybrid system, we 

add the 2017 Russian news corpus from 

statmt.org to the source side of the training data of 

the hybrid NMT system and replicate it on the 

target side. Currey et al. (2017) claim that this 

technique can yield improvements for translation 

of named entities. The BPE models learnt on the 

initial training data are applied. 

4 Systems architecture 

This section describes the trained systems in 

detail. 

4.1 RBMT system 

The PROMT RBMT System is a mature machine 

translation system with huge linguistic structured 

databases containing morphological, lexical and 

syntactic features for most European and Russian 

languages. We did not do any specific tuning for 

our submission. 

4.2 Pure NMT system 

For the pure NMT system we train a transformer 

(Vaswani et al., 2017) model. We use the recipe 

available at the Marian website
1
. The system 

configuration, hyperparameters and training steps 

follow those in the recipe. There are two minor 

differences: 1) we check the validation translation 

less frequently and set a higher early-stopping 

threshold to allow the model iterate over the 

training data for several epochs; 2) we do not use 

shared vocabulary because of the different 

alphabets in English and Russian. First, we trained 

the baseline system on the initial parallel data and 

back-translated data. After that, we trained 4 other 

models with different seeds using the whole data 

augmented with unknown words (see section 3.3). 

Model configuration 

We use an ensemble of all 5 transformer models 

as our baseline translation system; in addition, we 

use RBMT as our back-off system (this will be 

described in detail in the next section). We use the 

beam of size 12 and the “normalize” parameter is 

set to 1. 

                                                           
1 https://github.com/marian-nmt/marian-

examples/tree/master/wmt2017-transformer 

Back-off to RBMT 

At first we had in mind training a classifier to 

choose when to fall back to the RBMT model. 

However, linguistic analysis of the neural 

translation of the validation set showed us that the 

NMT output is of good quality. We only 

encountered two minor problems: 1) the model 

sometimes outputs English text (less than 1% of 

the validation set sentences) and 2) from time to 

time the decoder outputs multiple recurring words 

or n-grams (this is a well-known problem of NMT 

systems). We deal with both problems using 

simple rules. First, the model output is checked 

using language recognition tool. If the language is 

other than the Russian, we fall back to the RBMT 

translation. Additionally, we check the neural 

translation for recurring words or n-grams: if a 

word recurs more than twice or an n-gram recurs 

more than once, we also fall back to the RBMT 

system. 

Handling proper names 

We noticed that our transformer models have a 

problem translating proper names, especially rare 

ones or the ones not seen in the training data. 

Linguistic analysis led us to the conclusion that 

problems occur most often with the proper names 

which either 1) appear less than 5 times in the 

training corpus or 2) are split by the BPE model. 

To deal with this issue, we developed the 

following pipeline. We use the Stanford NER tool 

(Finkel et al., 2005) to identify proper names in 

the source text (person names, organizations and 

locations). We check the name frequency in the 

training data and whether it is split by the BPE 

model. If the frequency of any part of the name is 

low or it is split, we replace the whole name with 

the <UNK> placeholder in the source sentence. 

Then we translate the sentence by an ensemble of 

4 models trained to reproduce unknown words 

allowing the decoder to reproduce unknown 

words in the output. Finally, we substitute the 

<UNK> placeholders in the output with the 

translations of the names produced by the RBMT 

system. If for some reason we can’t match the 

names to their RBMT translations or the number 

of the <UNK> placeholders in the NMT system 

output is not equal to the number of the 

placeholders in the source sentence, we fall back 

to the baseline NMT system described in 

Subsection 4.2 above. 
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4.3 Hybrid NMT system 

We mentioned earlier that OpenNMT does not 

support the transformer model architecture. Due 

to this fact we train a model with a deep 

bidirectional encoder and a decoder with attention 

(Luong et al., 2015). Both encoder and decoder 

consist of two layers each with 1024 hidden units. 

The word embeddings size is 500 and the case 

feature embeddings size is 4. As with the pure 

NMT system, we first trained a baseline model on 

the initial parallel data and back-translated 

(Russian-to-RBMT) data. After that, we retrained 

the baseline model on the whole data augmented 

with unknown words and monolingual data (see 

Section 3.3 for details). We train the baseline 

model for 8 epochs and then retrain the model on 

all data for two more epochs. We use the beam of 

size 8 for translation. 

Linguistic analysis of the translation of the 

validation set didn’t show any problems regarding 

the NMT post-editing component. Thus, we made 

a decision not to make any special processing of 

names or fall back to RBMT and submit the 

hybrid post-edited translation as is. 

5 Results and discussion 

In this section we present the BLEU (Papineni et 

al., 2002) scores for our systems on two test sets 

and the linguistic analysis of the results. 

The scores are presented in Table 3. Calculation 

is done using the multi-bleu-detok.perl 

script from the Moses toolkit. 

We also studied the impact of the proper names 

processing applied to the NMT translation. Our 

pipeline affected 815 (27%) out of 3000 sentences 

in the test set. As we can see, unfortunately the 

BLEU is a bit lower than for the default 

translation. We see two reasons for that: first, we 

lose precision because frequently a name, even 

translated correctly, appears in the wrong case in 

the output. Russian is a highly inflective language 

and this is a problem. Marian does not support 

factored translation yet, so we couldn’t teach the 

system to output the case feature for our 

placeholders. Secondly, the system was trained to 

reproduce placeholders for subword units and not 

the whole words, as we generated the synthetic 

data from the already BPE-segmented parallel 

bitexts. We chose, however, the translation with 

names processing to be our final submission as we 

decided that a system which is a little less fluent 

but more accurate at translating names would be 

better. Examples of translations with and without 

the names processing can be found in Table 2. 

6 Conclusions and Future work 

In this paper we have described our English-

Russian submissions for the WMT 2018 Shared 

News Translation Task. Overall we have made 

three submissions: 1) a pure NMT system 

developed with the Marian toolkit, 2) a hybrid 

system with a NMT post-editing component 

System newstest2017  newstest2018 

RBMT 22.9 18.1 

NMT 31.0 27.4 

NMT+names 30.9 27.3 

Hybrid 29.5 25.3 

Table 3: Results for the submitted systems. The 

NMT+names stands for the system with proper 

names processing as described in Section 4.2. 

 

Source sentence NMT NMT+names Reference 

The Russians represented 

in qualifying were Anton 

Chupkov, Evgeny 

Koptelov, Alexander 

Sukhorukov, and Grigory 

Tarasevich. 

В квалификации 

россияне представляли 

Антона Чупакова, 

Евгения Коптева, 

Александра Сухокова и 

Григория Тараскевича. 

В квалификации были 

представлены россияне 

Антон Чупков, Евгений 

Коптелов, Александр 

Сухоруков и Григорий 

Тарасевич. 

Россиян в квалификации 

представили Антон 

Чупков, Евгений 

Коптелов, Александр 

Сухоруков и Григорий 

Тарасевич. 

They all lived in the small 

town of Greenfield, 

Massachusetts. 

Все они жили в 

небольшом городе 

Гринсфилл, штат Техас. 

Все они жили в 

небольшом городе 

Гринфилд, Массачусетс. 

Все они жили в 

небольшом городке 

Гринфилд в штате 

Массачусетс. 

 Table 2. Examples of translation with names processing. The NMT+names stands for the system with proper 

names processing as described in Section 4.2. 
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trained with the OpenNMT toolkit, and 3) pure 

RBMT system. 

The pure NMT system with the state-of-the-art 

transformer architecture proved to be the best 

among our submissions in terms of BLEU. 

We also present a names processing and 

translation pipeline which can be improved by 

teaching the system to output the translations in 

the correct case. 
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Abstract
This paper describes NTT’s neural machine
translation systems submitted to the WMT
2018 English-German and German-English
news translation tasks. Our submission has
three main components: the Transformer
model, corpus cleaning, and right-to-left n-
best re-ranking techniques. Through our ex-
periments, we identified two keys for improv-
ing accuracy: filtering noisy training sentences
and right-to-left re-ranking. We also found
that the Transformer model requires more
training data than the RNN-based model, and
the RNN-based model sometimes achieves
better accuracy than the Transformer model
when the corpus is small.

1 Introduction

This paper describes NTT’s submission to the
WMT 2018 news translation task (Bojar et al.,
2018). This year, we participated in English-to-
German (En-De) and German-to-English (De-En)
translation tasks. The starting point of our system
is the Transformer model (Vaswani et al., 2017),
which recently established better performance
than conventional RNN-based models (Sutskever
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015). We incorporated a parallel corpus cleaning
technique (Section 3.1) and a right-to-left n-best
re-ranking technique (Section 3.4) and also used
a synthetic corpus to exploit monolingual data.
To maintain the quality of the synthetic corpus,
we checked its back-translation BLEU scores and
filtered out the noisy data with low scores (Sec-
tion 3.2).

Through experiments, we evaluated how each
feature affects accuracy (Section 4). Compared
with the RNN-based system, we also identified
when the Transformer model works effectively
(Section 4.3.3).

⇤His current affiliation is Tohoku University.

2 Neural Machine Translation

Neural Machine Translation (NMT) has been
making rapid progress in recent years. Sutskever
et al. (2014) proposed the first NMT model that
uses a simple RNN-based encoder-decoder net-
work. Luong et al. (2015); Bahdanau et al.
(2015) augmented this architecture with an at-
tention mechanism, allowing the decoder to refer
back to the encoder-side information at each time
step. These conventional NMT models use RNNs
as encoder and decoder to model sentence-level in-
formation. However, the RNN-based model uses
previous states for predicting subsequent target
words, which can cause a bottleneck in efficiency.
Recently, Vaswani et al. (2017) proposed a model
called Transformer, which completely relies on at-
tention and feed-forward layers instead of RNN
architecture. This model enables evaluation of a
sentence in parallel by removing recurrence in the
encoder/decoder, and we can train the model sig-
nificantly faster than RNN-based models. It also
established a new state-of-the-art performance in
WMT 2014 translation tasks while shortening the
training time by its GPU efficient architecture. In
preliminary experiments, we also confirmed that
the Transformer model tends to achieve better
accuracy than RNN-based models, and thus we
changed our base model for 2018 to the Trans-
former. For further details and formulation on the
Transformer model, see Vaswani et al. (2017).

3 System Features

This year’s submission includes the following fea-
tures:

• Noisy data filtering for Common Crawl and
ParaCrawl corpora (Section 3.1).

• Synthetic parallel data from the mono-
lingual corpus (News Crawl 2017) with
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Provided parallel TRG monolingual

SRC → TRG
Model

TRG → SRC
Model

SRC synthetic

(1) Train

(1) Train

(2) Translate

(3) Back-translate
& evaluate

Figure 1: Overview of back-translation BLEU-based synthetic corpus filtering

back-translation BLEU-based filtering (Sec-
tion 3.2).

• n-best re-ranking by a right-to-left translation
model (Section 3.4).

From here, we discuss these features and exper-
imentally verify each one.

3.1 Noisy Data Filtering
This year, ParaCrawl and Common Crawl corpora,
which were created by crawling parallel websites,
were provided for training. Since these web-based
corpora are large but noisy, it seems essential to fil-
ter out noisy sentence pairs. Since the ParaCrawl
corpus has already been cleaned by Zipporah (Xu
and Koehn, 2017), we chose another method for
further cleaning1.

To clean the corpus, we selected the
qe-clean2 toolkit (Denkowski et al., 2012),
which uses a language model to evaluate a sen-
tences naturalness and a word alignment model
to check whether the sentence pair has the same
meaning. Both models are trained with clean
data for scoring possibly noisy parallel sentence
pairs and removes sentences with scores below a
threshold. For more details, see Denkowski et al.
(2012).

We used Europarl, News Commentary, and
Rapid corpora as clean parallel data for training
the word alignment model. We also used News
Crawl 2017 as an additional monolingual corpus
for language modeling. Since our target is news
translation, using a news-related monolingual cor-
pus is beneficial to train language models. We
used KenLM (Heafield, 2011) and fast align
(Dyer et al., 2013, 2010) for language model-
ing and word alignment. To find the appropriate

1Although the provided ParaCrawl corpus was already fil-
tered by Zipporah (Xu and Koehn, 2017), a cursory glance
suggested that it still contains many noisy sentence pairs.

2https://github.com/cmu-mtlab/qe-clean

weights for each feature, we used newstest 2017
as a development set and fixed the threshold as one
standard deviation.

3.2 Synthetic Corpus

One drawback of NMT is that it can only be
trained with parallel data. Using synthetic cor-
pora, which are pseudo-parallel corpora created
by translating monolingual data with an existing
NMT model, is one of the ways to make use of
monolingual data (Sennrich et al., 2016a). We
created a synthetic corpus by translating monolin-
gual sentences with a target-to-source translation
model and used it as additional parallel data.

In our case, we trained a baseline NMT model
with a provided parallel corpora3 and translated
News Crawl 2017 to make a synthetic corpus.

3.3 Back-translation BLEU-based Filtering
for Synthetic Corpus

A synthetic corpus might contain noise due to
translation errors. Since these noisy sentences
might deleteriously affect the training, we filtered
them out.

In this work, we did back-translation BLEU-
based synthetic corpus filtering (Imankulova et al.,
2017). We hypothesize that synthetic sentence
pairs can be correctly back-translated to the target
language unless they contains translation errors.
Based on this hypothesis, we found better syn-
thetic sentence pairs by evaluating how the back-
translated sentences resembled the original source
sentences.

Figure 1 shows an overview of our synthetic
corpus filtering process. First, we trained the NMT
model with the provided parallel corpora and then
translated the monolingual sentences in the target
language to the source language by a target-to-

3Europarl + News Commentary + Rapid + a filtered ver-
sion of Common Crawl and ParaCrawl corpora
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source translation model. After getting the trans-
lation, we back-translated it with the source-to-
target model. Then we evaluated how well it
restored the original sentences by sentence-level
BLEU scores (Lin and Och, 2004), selected the
high-scoring sentence pairs, and created a syn-
thetic corpus whose size equals the naturally oc-
curring parallel corpus.

3.4 Right-to-Left Re-ranking
Liu et al. (2016) pointed out that RNN-based se-
quence generation models lack reliability when
decoding the end of the sentence. This is due to
its autoregressive architecture that uses previous
predictions as context information. If the model
makes a mistake, this error acts as a context for ad-
ditional predictions, often causing further errors.

To alleviate this problem, Liu et al. (2016) pro-
posed a method that re-ranks an n-best hypothe-
sis generated by the Left-to-Right (L2R) model,
which generates a sentence from its beginning
(left) to its end (right), by the Right-to-Left (R2L)
model that generates a sentence in the opposite or-
der. Their work mainly focuses on the problem of
RNN-based models and the effect is unclear when
applied to the Transformer model, which com-
pletely relies on attention and feed-forward lay-
ers. We assume this method also works with the
Transformer model because it still has autoregres-
sive architecture in its decoding phase.

We re-ranked the n-best hypothesis of the L2R
model by the R2L model with the following for-
mula:

P (ỹ) = arg max
y2Y

P (y|x; ✓L2R)P (yr|x; ✓R2L),

(1)
where Y is a set of n-best translations of source
sentence x obtained by the L2R model, yr is a re-
versed sentence of y, and ✓L2R and ✓R2L are the
model parameters for the L2R and R2L models,
respectively. In our experiments, we set n = 10.

4 Experiments

4.1 Data
As the first step of our data preparation, we ap-
plied the moses-tokenizer4 and the truecaser5 to

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

all the datasets used in our experiments. Then
we split the words into subwords by joint Byte-
Pair-Encoding (BPE) (Sennrich et al., 2016b) with
32,000 merge operations. Finally, we discarded
from the training data the sentence pairs that ex-
ceed 80 subwords either in the source or target
sentences. As a development set, we used new-
stest 2017 (3004 sentences).

4.2 Translation model

Transformer We used the tensor2tensor6

implementation to train the Transformer model.
Our hyper-parameters are based on the previously
introduced Transformer big setting (Vaswani et al.,
2017), and we also referred Popel and Bojar
(2018) for tuning hyper-parameters. We used six
layers for both the encoder and the decoder. All
the sub-layers and the embeddings layers output
1024 dimension vectors, and the inner-layer of
the position-wise feed-forward layers has 4096 di-
mensions. For multi-head attention, we used 16
parallel attention layers. We use the same weights
for the encoder/decoder embedding layers and the
decoder output layer by three-way-weight-tying
(Press and Wolf, 2017). As an optimizer, we used
Adam (Kingma and Ba, 2015) with �1 = 0.9 and
�2 = 0.997 and set dropout (Srivastava et al.,
2014) with a probability of 0.1. We used a learning
rate decaying method proposed by (Vaswani et al.,
2017) with 16,000 warm-up steps and trained the
model for 300,000 steps. Each mini-batch con-
tained roughly 20,000 tokens. We saved a model
every hour and averaged the last 16 model param-
eters for decoding. The training took about three
days for both En-De and De-En with eight GTX
1080Ti GPUs. During decoding, we used a beam
search with a size of ten and a length normaliza-
tion technique (Wu et al., 2016) with ↵ = 1.0 and
� = 0.0.

RNN-based In several experimental settings,
we also trained an RNN-based attentional NMT
model based on a previous work (Luong et al.,
2015) for comparison7. We used a two-layer
LSTM-based model and respectively set the em-
bedding and hidden layer unit sizes to 512 and
1024. As an optimizer, we used SGD and set an
initial learning rate to 1.0. We decayed the learn-

6https://github.com/tensorflow/
tensor2tensor

7Implementation and settings are based on our submission
to WAT shared-task (Morishita et al., 2017).
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ing rate after 13 epochs by multiplying 0.7 per
epoch and trained the model for 20 epochs. We
clipped the gradient (Pascanu et al., 2013) if its
norm exceeded 5.0. We set the dropout probability
to 0.3. Each mini-batch contained about 128 sen-
tences. The training took about 23 days for De-En
and 31 days for En-De on a single GTX 1080Ti
GPU. During decoding, we set the beam size to 20
and normalized the scores by dividing them by the
sentence length.

4.3 Experimental Results and Discussions

Table 1 shows the provided and filtered corpus
sizes for training. The Original Common Crawl
and ParaCrawl corpora contain around 35.56M
sentences. However, since most of the sen-
tence pairs are noisy, we only retained the clean-
est 4.01M sentences that were selected by the
qe-clean toolkit. For the synthetic corpus, we
chose the same size as the filtered parallel corpus
based on the back-translation BLEU+1 scores.

Table 2 shows the evaluation results of our sub-
mission and baseline systems. Here, we report
the case-sensitive BLEU scores (Papineni et al.,
2002) evaluated by the provided automatic eval-
uation system8. In the following, unless specified,
we mainly discuss the Transformer model results.

4.3.1 Effect of Corpus Filtering
We split the provided corpora into two parts: (1)
Europarl, News Commentary and Rapid corpora
as clean, and (2) Common Crawl and ParaCrawl
corpora as noisy.

First, we just trained the model with cleaner cor-
pora (Setting (1)) and added possibly noisy cor-
pora (Setting (2)). The noisy parallel corpus se-
riously damaged the model for En-De, although
there was a small gain for De-En. After filtering
out the noisy part of the corpora (Setting (3), it
showed a large gain of +11.3 points for En-De and
+4.8 points for De-En compared to the unfiltered
setting. This suggests that clean, small training
data tend to outperform large but noisy data. This
large gain might also come from the effect of do-
main adaptation. We used news-related monolin-
gual sentences to train the language model for cor-
pus filtering, and thus our filtered sentences are re-
lated to a news domain, which is the same as our
test set.

Then we added a synthetic corpus with and

8http://matrix.statmt.org/

without filtering (Settings (4) and (5)). Al-
though adding an unfiltered corpus resulted in
certain gain, we identified an additional gain of
+3.5 points for En-De by filtering out low-quality
synthetic sentence pairs based on back-translation
BLEU+1 scores.

Synthetic corpus filtering worked well, espe-
cially for En-De; but we did not see a large dif-
ference for De-En. To determine why, we esti-
mated the quality of the synthetic corpus by check-
ing the back-translation BLEU+1 scores. Ta-
ble 3 shows the average back-translation BLEU+1
scores of the filtered/unfiltered synthetic corpus.
These scores reflect the translation accuracy of the
synthetic sentences. Before filtering, the average
En-De score was lower than the average De-En
score. From this result, we suspect that De-Ens
unfiltered synthetic corpus is clean enough, result-
ing in no improvement from further filtering. After
choosing high-scoring sentence pairs, the average
scores exceed 80 for both language pairs, ensuring
the quality of the synthetic corpus.

From our experiments, we confirmed that noisy
parallel sentence pairs significantly damaged the
model. For the best results, noisy sentences must
be filtered out before training the model.

4.3.2 Effect of Right-to-Left Re-ranking
By re-ranking the n-best hypothesis by the R2L
model, we saw a gain of 1.5 points for En-De and
0.5 points for De-En (Setting (6)). We submitted
these results as our primary submission.

R2L n-best re-ranking works well with the
RNN-based model, but we confirmed that it also
works well with the Transformer model. We sup-
pose both the Transformer and the RNN models
lack the ability to decode the end of the sentence,
but R2L model re-ranking can alleviate this prob-
lem.

4.3.3 Comparison of Transformer and RNN
For settings (1), (3), and (5), we also trained
the RNN-based NMT for comparison. We com-
pared the Transformer and the RNN and found
the latter achieved comparable or sometimes bet-
ter results than the Transformer when trained with
a small parallel corpus (Settings (1) and (3)).
When the corpus size increased after adding a
synthetic corpus, Transformer surpassed the RNN
(Setting (5)). Our results suggest that Trans-
former gets stronger when the parallel corpus is
enough large, but it might be worse than the
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Corpus Sentences
Europarl + News Commentary + Rapid 3.10M
Common Crawl + ParaCrawl 35.56M
Filtered version of Common Crawl + ParaCrawl 4.01M
Synthetic corpus (News Crawl 2017) 37.94M (En-De), 25.86M (De-En)
Filtered version of synthetic corpus (News Crawl 2017) 7.11M

Table 1: Number of sentences in datasets

En-De De-En
Settings Sentences Transformer RNN Sentences Transformer RNN

(1) Europarl + News Commentary + Rapid 3.10M 32.5 30.4 3.10M 31.0 31.0
(2) (1) + Unfiltered Common Crawl + ParaCrawl 38.66M 26.6 — 38.66M 32.7 —
(3) (1) + Filtered Common Crawl + ParaCrawl 7.11M 37.9 39.6 7.11M 37.5 39.6
(4) (3) + Unfiltered synthetic corpus 45.05M 41.5 — 32.97M 46.4 —
(5) (3) + Filtered synthetic corpus 14.22M 45.0 39.8 14.22M 46.3 43.7
(6) (5) + R2L re-ranking (submission) 14.22M 46.5 — 14.22M 46.8 —

Table 2: Cased BLEU scores of our submission and baseline systems

En-De De-En
Unfiltered 44.02 53.96
Filtered 80.12 80.81

Table 3: Average back-translation BLEU+1 scores of
synthetic corpus

RNN-based models when the corpus size is small.
One critical reason is that Transformer has many
trainable parameters, complicating training with
small training data. This result might change
with smaller hyper-parameter settings (e.g., Trans-
former base setting), but we set aside this idea for
future work.

5 Conclusion

In this paper, we described our submission to
the WMT 2018 news translation task. Through
experiments, we found that careful parallel cor-
pus cleaning for the provided and synthetic cor-
pora largely improved accuracy, and we confirmed
that R2L re-ranking works well even with the
Transformer model. Our comparison between the
Transformer and RNN-based models suggests that
the latter models might surpass the former when
the training data are not enough large. This result
sheds light on the importance of large, clean data
for training the Transformer model.
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Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(WMT18). In Proceedings of the 3rd Conference on
Machine Translation (WMT).

Michael Denkowski, Greg Hanneman, and Alon Lavie.
2012. The cmu-avenue french-english translation
system. In Proceedings of the 7th Workshop on
Statistical Machine Translation (WMT), pages 261–
266.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL HLT), pages 644–
648.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Seti-
awan, Vladimir Eidelman, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 7–12.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
6th Workshop on Statistical Machine Translation
(WMT), pages 187–197.

Aizhan Imankulova, Takayuki Sato, and Mamoru Ko-
machi. 2017. Improving low-resource neural ma-
chine translation with filtered pseudo-parallel cor-

465



pus. In Proceedings of the 4th Workshop on Asian
Translation (WAT), pages 70–78.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Chin-Yew Lin and Franz Josef Och. 2004. Orange:
a method for evaluating automatic evaluation met-
rics for machine translation. In Proceedings of
the 20th International Conference on Computational
Linguistics (COLING), pages 501–507.

Lemao Liu, Andrew Finch, Masao Utiyama, and
Eiichiro Sumita. 2016. Agreement on target-
bidirectional lstms for sequence-to-sequence learn-
ing. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI), pages 2630–2637.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1412–1421.

Makoto Morishita, Jun Suzuki, and Masaaki Nagata.
2017. NTT neural machine translation systems at
WAT 2017. In Proceedings of the 4th Workshop on
Asian Translation (WAT), pages 89–94.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML),
volume 28, pages 1310–1318.
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Abstract

We present our experiments in the scope of the
news translation task in WMT 2018, in direc-
tions: English→German. The core of our sys-
tems is the encoder-decoder based neural ma-
chine translation models using the transformer
architecture. We enhanced the model with
a deeper architecture. By using techniques
to limit the memory consumption, we were
able to train models that are 4 times larger
on one GPU and improve the performance
by 1.2 BLEU points. Furthermore, we per-
formed sentence selection for the newly avail-
able ParaCrawl corpus. Thereby, we could im-
prove the effectiveness of the corpus by 0.5
BLEU points.

1 Introduction

This manuscript provides the technical details re-
garding our submission in the WMT18 shared
task on English→German news translation. Our
submission has two major research contributions:
Firstly, the development of a deep, efficient neural
architectures and secondly, the cleaning and data
selection of web crawled data.

We developed a efficient approach to train a
deep transformer model on a single GPU. This
allows use to train a 4 times deeper model than
state-of-the-art models on one GPUs. In the ex-
periments we are able to show that these models
perform 1.2 BLEU points better than the baseline
model using already 8 layers.

Secondly, we performed additional filtering on
the ParaCrawl corpus. We are using the log-
probabilities of a baseline NMT system to filter
the low quality translations. While we are only
able to improve the translation quality slightly by
0.3 BLUE points using all ParaCrawl data, the in-
tegration of the clean cropus improved the transla-
tion quality of 0.8 BLEU points.

2 Data

This section describes the preprocessing steps for
the parallel and monolingual corpora for the lan-
guage pairs involved in the systems as well as the
data selection methods investigated.

2.1 English↔German

As parallel data for our German↔English sys-
tems, we used Europarl v7 (EPPS), News Com-
mentary v12 (NC), Rapid corpus of EU press
releases, Common Crawl corpus, the ParaCrawl
corpus and simulated data. The preprocessing
includes tokenization, removing very long sen-
tences and the sentence pairs which are length-
mismatched, normalizing special symbols and dif-
ferent writing rules and smart-casing the first word
of each sentence. Those tools are provided in the
Moses Toolkit 1.

We integrated the monolingual news data by
generating synthetic data as motivated by Sennrich
et al. (2016a). We used the translated data pro-
vided by University of Edinburgh.

Once the data is preprocessed, we applied byte-
pair encoding (BPE) (Sennrich et al., 2016b) on
the corpus. In this work, we deploy an operation
size of 40K (shared between English and German
languages) and applied vocabulary filtering in a
way that every token occurs at least 50 times.

2.1.1 ParaCrawl data selection
This year, in addition to the data provided in the
last years, also the ParaCrawl corpus was pro-
vided. Since this data is collected by a web-
crawler it differs in several ways from the other
corpus. Firstly, it is significantly larger than all
other available corpora. But the corpus is also
more noisy. Therefore, we did not directly use this
corpus, but filtered it prior to training.

1http://www.statmt.org/moses/
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In this use case, an NMT system trained on the
clean parallel data was evaluated. Therefore, we
investigate the usage of this system to select clean
translations from the training data.

In a first step, we performed the same prepro-
cessing as for the other corpora. In addition, we
removed short sentences. We noticed that these
were often only keywords or numbers and there-
fore would not be helpful to train the system. In
our experiments, we removed all sentences shorter
than n = 10 words.

In the second step, we use the NMT sys-
tem to calculate the translation probability of the
ParaCrawl data. We used the length normalized
log probability to select the sentences used for
training. An inspection on a tiny subset of the
data showed that the sentences with a low length-
normalized probability seem to be bad transla-
tions. Examples are shown in the top of Table 1.
Often the they are even not sentences in the source
and target language. Furthermore, we noticed that
the sentences with a very high probability seem
not to be very useful. As shown in the last exam-
ple in 1, in these cases, we often have a one-to-one
word correspondence between the source and tar-
get sentence. But the input are often no real sen-
tences and therefore, we might learn to generate
no longer fluent output.

Due to computation time, we were not able to
train model on different selected parts of the cor-
pus. In contrast, we select reasonable thresholds
based on the ordering on a small subset. We re-
moved all sentences, where the length-normalized
log-probability is smaller then a = 0.8 and all sen-
tences where this score is higher than b = 3.6.

3 Deep Transformer

The research in Machine Translation has observed
rapid advancement in terms of modeling in the
past three years. While recurrent neural networks
remain the core component in many strong sys-
tems (Wu et al., 2016), various works incremen-
tally discovered that other architectures can also
outperform RNNs in terms of translation quality or
training efficiency, such as Convolutional Neural
Networks (CNNs) (Gehring et al., 2017) or Self-
Attention Networks, or Transformer (Vaswani
et al., 2017). Due to the success of the self-
attention networks, we will concentrate in this
work on this type of architecture.

While other areas of deep learning use very

deep neural networks, the networks used for NMT
are still shallow compared to these areas. Moti-
vated by the success of deep models in other ar-
eas, we analyzed the effectiveness of depth of the
Transformer network. This is only possible trough
the development of a very efficient implementa-
tion. This enables us to training very deep net-
works on a single device in a reasonable amount
of time.

3.1 Sequence-to-Sequence models

Neural machine translation (NMT) consists of an
encoder and a decoder (Sutskever et al., 2014;
Cho et al., 2014) that directly approximate the
conditional probability of a target sequence Y =
y1, y2, · · · , yT given a source sequence X =
x1, x2, · · · , xM . The basic concept of the model is
to encode the source sequence with a neural net-
work to capture the neural representation of the
source sentence, which is then referred multiple
times during a decoding process, in which another
neural network auto-regressively generates tokens
in the target language.

The architectural choice is important in building
neural machine translation systems. While Recur-
rent Neural Networks (RNN) have become the de-
facto model to represent sequences and were ap-
plied very successfully in NMT (Sutskever et al.,
2014; Luong and Manning, 2015), self-attention
networks (or Transformer) arose as a potentially
better alternative (Vaswani et al., 2017).

3.2 Transformer overview

The transformer architecture was previously intro-
duced with the following novel features:

• Long range dependency is modeled using the
self-attention mechanism instead of recurrent
connections used in recurrent networks, like
the Long-Short Term Memories. The mech-
anism allows direct connection between two
different two arbitrary positions in the se-
quences, which in turns alleviates the gra-
dient flow problem existing in recurrent net-
works.

• Residual block design: similar to the infa-
mous residual networks consisting of deep
convolutional neural networks, Transformer
networks are built on residual blocks in
which the lower level states are directly car-
ried to the top level by addiction. In the
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German: offener Teilnahmewettbewerb : Grafikdesign fr Musikprojekt
English: DAS Hotel
German: anderen Gewinnen .
English: Anyway , I will repeat that I sincerely hope you weren ’t referring to me
German: Christijan Albers 2 : 2 ( 3 : 2 im Elfmeterschieen )
English: Christijan Albers 2 : 2 ( 3 : 2 in penalty shootout )

Table 1: Filtered examples

Transformer networks, the input of every
sub-block is added directly to the output (He
et al., 2016), as a result the final layer receives
a large sum of inputs from below, including
the embeddings.

• Multi-head attention being proposed as a
variation of the attention network (Bahdanau
et al., 2014) improves attention power by per-
forming attention in multiple dimensions of
the input, which are projected using linear
transformation.

• Additional neural network training utilities:
layer normalization (Ba et al., 2016) prevents
network state values from exploding; label
smoothing regularizes the cross entropy loss
function to improves the models’ generaliza-
tion;

3.3 Efficient memory usage

NMT models in general are very memory consum-
ing due to the fact that they need to apply transfor-
mation on a sequence of states instead of single
states in feed-forward neural networks. For other
architectures, like feed-forward neural networks,
convolution neural networks and recurrent neu-
ral networks, recently techniques have been pro-
posed to significantly reduce the memory footprint
during training (Chen et al., 2016; Gruslys et al.,
2016). The main idea is to recalculate intermedi-
ate results instead of caching them. In this work,
we adopted this idea to transformer models. We
apply the method for a layer basis, by specifying
the number of layers (Transformer Encoder or De-
coder block) to be checkpointed during training.
Such layer’s forward pass needs to be recomputed
during the backward pass, as a result the interme-
diate buffers created during training can be dis-
carded, resulting in smaller memory requirement
and bigger batch size.

3.4 Training

We followed the original work for the general hy-
per parameters including batch size and learning
rate. We instead focus on several methods to in-
crease training efficiency of the Transformer mod-
els.

Emulated Multi-GPU setup: It is notable
that the Noam learning rate schedule proposed
in (Vaswani et al., 2017) was designed for bigger
batch sizes (≈ 25000 words per mini-batch update
which is not feasible for a single-GPU setup). In
order to apply the same learning schedule without
a multi-GPU system, we simply divide the large
mini-batch into smaller ones, and accumulate (by
summing) the gradients computed by each mini-
batch forward and backward pass.

4 Results

4.1 Baseline System

Our baseline system uses the openNMT-py
Toolkit2 and uses an RNN based translation model
with 4 layers in both decoders and encoders (bidi-
rectional RNN on the encoder side). The model is
equipped with dropout= 0.2 following the work
of (Zaremba et al., 2014) for better regularization
and label smoothing improving the cross-entropy
loss. The training details and hyper-parameters are
replicated from (Pham, 2017). In all of our ex-
periments, we use the concatenation of test sets
from 2013 to 2016 as our development set for
model/checkpoint selection. While we use per-
plexity for model selection, the BLEU score on
newstest2017 calculated by mteval-v13a.pl is used
to report the models’ performance.

4.2 Training hyper parameters

For RNN models, we use 4-layer-models with
Long-Short Term Memory (Hochreiter and
Schmidhuber, 1997). The bi-directional LSTM is
used in the Encoder for all 4 layers. We use batch

2http://opennmt.net
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size of 128 sentences (notably, the measurement
of batch size in Transformer is denoted by the
number of tokens, not sentences) and simply
trained with Stochastic Gradient Descent with
learning rate decay when the validation perplexity
does not improve (Luong et al., 2015).

For Transformer models, we set the base layer
size to 512, while the hidden layer in each Posi-
tion Wise Feed Forward network has 2048 neu-
rons, which matches the Base model in (Vaswani
et al., 2017).

The learning method is Adam (Kingma and Ba,
2014) with the learning rate schedule similar to the
original paper, with a minor difference that we in-
crease the number of warm up steps to 8192 and
double the base learning rate. If Dropout is ap-
plied, we use dropout at each Position Wise Feed
Forward hidden layer and the attention weights.

4.3 Model comparison
In a first series of experiment we compared dif-
ferent architectures (RNNs and Transformers) and
the influence of the deeps of the network. The
transformer-based models are implemented using
PyTorch (Paszke et al., 2017) and the source codes
are open sourced. 3. We provided our starting
point as a reference to our participation to the last
year’s shared task. Thus, we use the corpus con-
sisting of the Europarl, News Commentary, Rapid
Corpus and the cleaned Common Crawl, which is
then boosted with the back translation data pro-
vided by University of Edinburgh. The total data
size is around 9 million sentence pairs.

Model BLEU (newstest2017)
Baseline (RNN) 27.4
Transformer-4 27.8
Transformer-12 29.2
Transformer-24 29.7

Table 2: RNNs vs Transformers (various depths)
trained without paraCrawl.

As the results in Table 2 suggest, the baseline
model despite having larger model size (1024) and
being improved with dropout and label smoothing
is not able to outperform a base Transformer (hid-
den size 512 for every layer) with only 4 layers.
More importantly, the result scales over the Trans-
former’s depth, such subject will be covered in the
subsequent section. We managed to outperform

3https://github.com/isl-mt/NMTGMinor

the RNN baseline by 2.3 BLEU points just by in-
creasing the depth to 24 layers.

Though we do not provide any comparison with
respect to depth in Recurrent Neural Networks,
previous work (Britz et al., 2017) explores differ-
ent depths during training NMT models with sim-
ilar architectures to our baseline discovering that
it is not trivial to improve Recurrent NMT models
just by increasing depth even with residual con-
nections. It is notable that recent work (Chen et al.,
2018) empirically proved that RNN models with
hyper parameter tuning and layer normalization
strategy can perform on par with the Transformer.

4.4 Data Size

As illustrated above, the Transformer models pro-
duced strong results which can outperform the best
system of last year which is an ensemble of RNN
models (Sennrich et al., 2017). We proceed to im-
prove the system further by providing additional
training data. Table 3 shows that a naive addiction
of the paraCrawl data yields only a boost of 0.3
BLEU points, while our filtering method impres-
sively improves the result by 0.8.

Data News2017
Transformer-12 29.2
+paraCrawl 29.5
+ filtered paraCrawl 30.0

Table 3: Experiments using different data sizes

4.5 When do we need regularization

Deeper models are more likely to overfit, which
can be alleviated by using Dropout, specifically
in the Position-wise feed forward network in each
transformer block. We apply dropout at the the
embeddings, residual connections (the output of
the transformations before addiction) and at the at-
tention matrices with the same probability of 0.1)
The results in table 4 shows that Dropout started to
be effective when the model becomes deeper than
12, even though the difference in the 16 config-
uration is rather subtle. At 12 layers and below,
dropout seems to be unnecessary, possibly because
our corpus size has reach 40 million sentences (in-
cluded the filtered paraCrawl corpus).

Since we used the training regime which stops
after 100K steps (each updates the parameter
based on the batch size of about 25000 words), it
is possible that Dropout models requires training
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for more than such threshold, due to the fact that
a side effect of Dropout is to prolong the training
progress.

4.6 Deeper networks

To answer the empirical question if very deep net-
works can improve the translation performance
given abundant training data (as we have three
times more data than the first experiment w.r.t
depth), we managed to train networks as deep
as 32 layers. The results are shown in Table 5.
We observe significance improvement (0.7 BLEU
points) in the first incremental steps from 4 to 12.
The progress becomes stagnant from 16, and not
until reaching 32 layers did we manage to ob-
tain an additional 0.4 increase. The Transformer
network clearly benefits from depth, which was
not observed in Recurrent Network (Britz et al.,
2017), however the effect is diminishing at 12 lay-
ers, while training models as deep as 32 is not sim-
ple. To the best of our knowledge, our model con-
sists of totally 96+48+2 sub-blocks (encoders, de-
coders and input/output layers) which is the first
attempt to explore a network with this depth in
Neural Machine Translation.

Our training time ranges from 1 week with the
12-layer models to maximum of 2 weeks for the
32-layer models using single GTX 1080Ti graph-
ics cards.

4.7 Final submission

The final submission of KIT is the ensemble of 5
models using different layer sizes and switching
on and of dropout. Each of the models is already
an average of different checkpoints. The results
are summarized in Table 6. We found that the an
ensemble of 5 models is only able to increase the
score by 0.3, which shows that the 32-layer model
dominates others.

5 Conclusion

In conclusion, we described our experiments in the
news translation task in WMT 2018. The main fo-
cus of our submission was on data selection and
techniques to efficient train deep transformer mod-
els . While we were only able to improve the trans-
lation performance slightly by using the whole
ParaCrawl corpus, we could improve the transla-
tion performance by 0.8 BLEU points when using
a filtered version of the corpus. We successfully
filtered the data by using the translation probabili-

ties of a baseline NMT system. Secondly, we were
successfully in training a deep transformer model
on a single GPU. By increasing the depth of the
network by a factor of 4, we were able to gain ad-
ditional 1.2 BLEU points. This was only possible
by caching less data during training and recalcu-
lating them if needed.
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Abstract

The paper describes the development process
of the Tilde’s NMT systems that were submit-
ted for the WMT 2018 shared task on news
translation. We describe the data filtering and
pre-processing workflows, the NMT system
training architectures, and automatic evalua-
tion results. For the WMT 2018 shared task,
we submitted seven systems (both constrained
and unconstrained) for English-Estonian and
Estonian-English translation directions. The
submitted systems were trained using Trans-
former models.

1 Introduction

Neural machine translation (NMT) is a rapidly
changing research area. Since 2016 when NMT
systems first showed to achieve significantly bet-
ter results than statistical machine translation
(SMT) systems (Bojar et al., 2016), the domi-
nant neural network (NN) architectures for NMT
have changed on a yearly (and even more fre-
quent) basis. The state-of-the-art in 2016 were
shallow attention-based recurrent neural networks
(RNN) with gated recurrent units (GRU) (Sen-
nrich et al., 2016) in recurrent layers. In 2017
(Bojar et al., 2017), multiplicative long short-term
memory (MLSTM) units (Pinnis et al., 2017c)
and deep GRU (Sennrich et al., 2017a) models
were introduced in NMT. The same year, self-
attentional (Transformer) models were introduced
(Vaswani et al., 2017). Consequently, in 2018,
most of the top scoring systems in the shared
task on news translation of the Third Conference
on Machine Translation (WMT) were trained us-
ing Transformer models1. However, it is already
evident that the state-of-the-art architectures will

1All 14 of the best automatically scored systems accord-
ing to the information provided by participants in the official
submission portal http://matrix.statmt.org were
indicated as being based on Transformer models.

be pushed even further in 2018 (beyond WMT
2018). For instance, Chen et al. (2018) have
recently proposed RNMT+ models that combine
deep LSTM-based models with multi-head at-
tention and showed that the models outperform
Transformer models.

In WMT 2017, Tilde participated with
MLSTM-based NMT systems (Pinnis et al.,
2017c). In this paper, we compare the MLSTM-
based models with Transformer models for
English-Estonian and Estonian-English and we
show that the state-of-the-art of WMT 2017 is
well behind the new models. Therefore, for WMT
2018, Tilde submitted NMT systems that were
trained using Transformer models.

The paper is further structured as follows: Sec-
tion 2 provides an overview of systems submit-
ted for the WMT 2018 shared task on news trans-
lation, Section 3 describes the data used to train
the NMT systems and the data pre-processing
workflows, Section 4 describes all NMT systems
trained and experiments on handling of named en-
tities and combination of systems, Section 5 pro-
vides automatic evaluation results, and Section 6
concludes the paper.

2 System Overview

For the WMT 2018 shared task on news transla-
tion, Tilde submitted both constrained and uncon-
strained NMT systems (7 in total). The following
is a list of the five MT systems submitted:

• Constrained English-Estonian and Estonian-
English NMT systems (tilde-c-nmt) that were
deployed as ensembles of averaged factored
data (see Section 3) Transformer models. The
models were trained using parallel data and
back-translated data in a 1-to-1 proportion.

• Unconstrained English-Estonian and
Estonian-English NMT systems (tilde-
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nc-nmt) that were deployed as averaged
Transformer models. These models were
also trained using back-translated data sim-
ilarly to the constrained systems, however,
the data, taking into account their relatively
large size, were not factored.

• A constrained Estonian-English NMT system
(tilde-c-nmt-comb) that is a system combina-
tion of six factored data NMT systems.

• Constrained English-Estonian and Estonian-
English NMT systems (tilde-c-nmt-2bt) av-
eraged from multiple best NMT models.
The models were trained using two sets of
back-translated data in a 1-to-1 proportion to
the clean parallel data – one set was back-
translated using a system trained on parallel-
only data and the other set – using an NMT
system trained on parallel data and the first
set of back-translated data.

3 Data

Data preparation was done using one of two dis-
tinct workflows – we used the full workflow
for tilde-c-nmt, tilde-nc-nmt and tilde-c-nmt-comb
submissions. For the tilde-c-nmt-2bt submission
we used the light data preparation workflow.

3.1 Full Workflow
For training of the constrained systems, only data
provided by the WMT 2018 organisers were used,
however, for training of the unconstrained sys-
tems, we also used other publicly available and
proprietary corpora that were available in the Tilde
Data Library2. All parallel corpora were fil-
tered (see Section 3.1.1), pre-processed (see Sec-
tion 3.1.2), and supplemented with additional gen-
erated data (see Section 3.1.3).

3.1.1 Data Filtering
As NMT systems are sensitive to noise in parallel
data (Pinnis et al., 2017a), all parallel data were
filtered using the parallel data filtering methods
described by Pinnis (2018). The parallel corpora
filtering methods remove sentence pairs that have
indications of data corruption or low parallelity
(e.g., source-target length ratio, content overlap,
digit mismatch, language adherence, etc.) issues.

2Tilde Data Library is an integral component of the Tilde
MT platform that provides access to parallel and monolingual
data for MT system development (http://www.tilde.
com/mt/).

Contrary to Tilde’s submissions for WMT 2017,
isolated sentence pair filtering for the WMT 2018
submissions was supplemented with a maximum
content overlap filter (i.e. only one target sentence
for each source sentence was preserved and vice
versa based on the content overlap filter’s score for
each sentence pair).

For filtering, we required probabilistic dictio-
naries, which were obtained from the parallel cor-
pora (different dictionaries for the constrained and
unconstrained scenarios) using fast align (Dyer
et al., 2013). The dictionaries were filtered us-
ing the transliteration-based probabilistic dictio-
nary filtering method by Aker et al. (2014).

During filtering, we identified that one of the
corpora that were provided by the organisers con-
tained a significant amount of data corruption.
It was the Estonian↔English ParaCrawl corpus3.
The corpus consisted of 1.30 million sentence
pairs out of which 0.77 million were identified as
being corrupt. To reduce the high level of noise,
this corpus was filtered using stricter content over-
lap (a threshold of 0.3 instead of 0.1) and language
adherence filters (both the language detection and
the valid alphabet filters had to validate a sentence
pair instead of just one of the filters) than all other
corpora. As a result, only 0.17 million sentence
pairs from the ParaCrawl corpus were used for
training of the constrained systems. Due to the
quality concerns, the corpus was not used for train-
ing of the unconstrained systems.

The corpora statistics before and after filtering
are provided in Table 1.

3.1.2 Data Pre-processing
All corpora were pre-processed using the parallel
data pre-processing workflow from the Tilde MT
platform (Pinnis et al., 2018) that performs the fol-
lowing pre-processing steps:

• First, parallel corpora are cleaned by remov-
ing HTML and XML tags, decoding escaped
symbols, normalising whitespaces and punc-
tuation marks, replacing control characters
with spaces, etc. This step is performed only
on the training data.

• Then, non-translatable entities, such as e-
mail addresses, URLs, file paths, etc. are
identified and replaced with place-holders.
This allows reducing data sparsity where it
is not needed.

3https://paracrawl.eu/download.html
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Workflow Scenario Before filtering (Total / Unique) After filtering (Unique)

Full
(C) 2,178,025 / 1,932,954 968,232
(U) 75,215,347 / 24,660,087 18,755,230

Light (C) 2,178,025 998,679

Table 1: Training data statistics (sentence counts) before and after filtering

• Then, the data are tokenised using the Tilde
MT regular expression-based tokeniser.

• The Moses (Koehn et al., 2007) truecasing
script truecase.perl is used to truecase the
first word of every sentence.

• Then, tokens are split into sub-word units
(Sennrich et al., 2015) using byte-pair en-
coding (BPE) (Gage, 1994). For the con-
strained and unconstrained systems, we use
BPE models consisting of 24,500 and 49,500
merging operations respectively.

• Finally, data for the constrained systems are
factored using an averaged perceptron-based
morpho-syntactic tagger (Nikiforovs, 2014)
for Estonian and the lexicalized probabilis-
tic parser (Klein et al., 2002) from the Stan-
ford CoreNLP toolkit (Manning et al., 2014)
for English. Similarly to Sennrich and Had-
dow (2016), we introduce also a factor indi-
cating a word part’s position in a word (be-
ginning, middle, end, or the word part rep-
resents the whole word - B, I, E, or O). As a
result, the Estonian data consist of the the fol-
lowing factors: word part, position, lemma,
and morpho-syntactic tag. The English data
consist of the following factors: word part,
position, lemma, part-of-speech tag, and syn-
tactic function.

3.1.3 Synthetic Data
Similarly to Tilde’s 2017 systems (Pinnis et al.,
2017c), we submitted systems that were trained
using synthetic data: 1) back-translated data, and
2) data infused with unknown token identifiers.
The back-translated data allow performing domain
adaptation and the second type of synthetic data
allow training NMT models that are robust to un-
known phenomena (e.g., code-mixed content, tar-
get language words in the source text, rare or un-
seen words, etc.) (Pinnis et al., 2017b).

To create the synthetic corpora with unknown
phenomena, we extracted fast align (Dyer et al.,
2013) word alignments for each sentence pair in

Lang. Back- Synth. Total
pair transl. <UNK>

sent. sent.
Full workflow

(C)
en-et 0.97M 1.72M 3.65M
et-en 0.97M 1.79M 3.73M

(U)
en-et 16.21M 28.10M 63.07M
et-en 18.39M 30.77M 67.91M

Light workflow

(C)
en-et 2.11M 3.11M
et-en 2.05M 3.04M

Table 2: Synthetic data and final NMT model training
data statistics

the parallel corpora and randomly replaced one to
three unambiguously (one-to-one) aligned content
words with unknown word identifiers. These syn-
thetic corpora were added to the parallel corpora,
thereby almost doubling the sizes of the available
training data.

The back-translated data were acquired from
two sources: 1) the constrained system data were
acquired from initial Transformer-based NMT
systems that were trained on the filtered and pre-
processed parallel data, which were supplemented
with the unknown phenomena infused data, and 2)
the unconstrained system data were acquired from
pre-existing unconstrained MLSTM-based NMT
systems – the NMT systems that were developed
by Tilde for the Estonian EU Council Presidency
in 2017 (Pinnis and Kalniņš, 2018). In order to
limit noise, the back-translated data were filtered
using the same parallel data filtering methods that
were described in Section 3.1.1 (although with
a higher threshold for the content overlap filter).
Furthermore, in order to train the final systems, we
also generated unknown phenomena infused data
for the back-translated filtered data, thereby also
almost doubling the sizes of the back-translated
data.

The synthetic corpora statistics and the sizes of
the total training data are given in Table 2.
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Name Model Voc. Emb. layer
(f1:..:fN)

Other layers
(enc:dec, size)

Seq.
len.

English-Estonian

(C)

MLSTM MLSTM
25k

350:5:125:10:10 1:1 1024 80
transf

Transformer

512:5:125:11:11
6:6, model: 512

128
transf-2bt 50k 512
transf-l 25k 720:5:125:11:11

7:7, model: 720
(U) transf-u 50k 512
Estonian-English

(C)

MLSTM MLSTM

25k

360:5:125:10 1:1 1024 80
transf

Transformer

512:5:125:14 6:6, model: 512

128
transf-l 720:5:125:14 7:7, model: 720
transf-l2 1024:5:125:14 8:8, model: 1024
transf-2bt

50k
512

6:6, model: 512
(U) transf-u 720

Table 3: NMT system training configuration (all other parameters were set to the default values of the respective
toolkits (Nematus or Sockeye)

3.2 Light Workflow

In the light workflow we used data cleaning
and pre-processing methods described by Rikters
(2018). The filtering part includes the following
filters: 1) unique parallel sentence filter; 2) equal
source-target filter; 3) multiple sources - one target
and multiple targets - one source filters; 4) non-
alphabetical filters; 5) repeating token filter; and
6) correct language filter. The pre-processing con-
sists of the standard Moses (Koehn et al., 2007)
scripts for tokenising, cleaning, truecasing, and
Subword NMT for splitting into subword units.
The filters were applied to the given parallel sen-
tences, monolingual news sentences before per-
forming back-translation, and both sets of syn-
thetic parallel sentences that resulted from back-
translating the monolingual news.

4 NMT Systems

In order to train the NMT systems, we used the
Nematus (Sennrich et al., 2017b) (for MLSTM
models) and Sockeye (Hieber et al., 2017) (for
Transformer models) toolkits. All models were
trained until convergence (i.e., until an early stop-
ping criterion was met).

4.1 Full Workflow

First, we trained constrained system baseline mod-
els using the filtered datasets. For baseline mod-
els, we used the MLSTM and transf configurations
(see Table 3). Then, we used the best-performing
models (based on translation quality on the vali-

dation set), which were the Transformer models
(see Figure 1), and back-translated monolingual
data. As mentioned before, for the unconstrained
systems, we back-translated the monolingual data
using pre-existing MLSTM-based NMT systems.
Then, using the final training data (parallel and
the two synthetic corpora), we trained final Trans-
former models. For the constrained scenario, we
trained multiple models (three for each translation
direction) by experimenting with multiple model
configurations. For the unconstrained scenario, we
trained one model in each of the directions.

In order to acquire the translations for the sub-
missions, we performed model averaging and en-
sembling as follows:

• For the tilde-c-nmt (constrained NMT) sys-
tems, we performed model averaging of the
best four models (according to perplexity) of
the three different run NMT systems and de-
ployed the averaged models in an ensemble.

• For the tilde-nc-nmt (unconstrained NMT)
systems, we performed model averaging of
the best four models.

• For the tilde-c-nmt-comb Estonian-English
system, we performed majority voting (see
Section 4.3) of translations produced by six
different runs of different constrained sys-
tems (using best BLEU (Papineni et al.,
2002) models, averaged models, ensembled
averaged models, ensembled models, and
larger beam search (10 instead of 5)).
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Figure 1: NMT system training progress (BLEU scores on the validation set) for English-Estonian (left) and
Estonian-English (right). Note that batch size may differ between different architectures and BLEU scores are cal-
culated on raw (token level) pre-processed validation sets, therefore, the scores are slightly higher than evaluation
results for the final translations!

4.1.1 Automatic Post-editing of Named
Entities

NMT models so far have struggled with translating
rare or unseen words (not different surface forms,
but rather different words) correctly (Pinnis et al.,
2017c). Named entities and non-translatable enti-
ties (various product names, identifiers, etc.) are
often rare or unknown. In order to aid the NMT
model in translating such tokens better, we ex-
tracted named entity and non-translatable token
dictionaries from the parallel corpora. This was
done by performing word alignment of the par-
allel corpora using fast align (Dyer et al., 2013)
and searching (in a language-agnostic manner)
for transliterated source-target word pairs using a
similarity metric based on Levenshtein distance
(Levenshtein, 1966), which start with upper-case
letters. The dictionaries consist of 15.6 (94.7)
thousand and 6.2 (149.8) thousand entries for the
constrained (unconstrained) English-Estonian and
Estonian-English NMT systems respectively.

When the NMT systems had translated a sen-
tence, source-to-target word alignment was ex-
tracted from the source sentence and the transla-
tion. Then named entity recognition (based on dic-
tionary look-up) was performed on the source text
and, if a named entity was found, the target trans-
lation was validated against the entries in the dic-

tionary. In order to capture different surface forms,
a stemming tool was used. If a translation was
contradicting the entries in the dictionary, it was
replaced with the closest matching (by looking for
the longest matching suffix) translation from the
dictionary.

The automatic post-editing method for named
entities has a marginal impact on translation qual-
ity, however, manual analysis showed that more
named entities were corrected than ruined.

4.2 Light Workflow
The light workflow was used to produce the
tilde-c-nmt-2bt (constrained NMT with two sets
of back-translated data) systems. First, we
trained baseline models using only filtered par-
allel datasets (Parallel-only in Figure 2). Then,
we back-translated the first batches of monolin-
gual news data and trained intermediate NMT sys-
tems (Parallel + First Back-translated). Finally,
we used the intermediate NMT systems to back-
translate the second batches of monolingual news
data and trained final NMT systems (Parallel +
Second Back-translated). The training progress in
Figure 2 shows that the English-Estonian system
benefits from the additional data, but the system in
the other direction – not so much.

For the final translations, we used a post-
processing script (Rikters et al., 2017) to replace
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Figure 2: NMT system training progress (SacreBLEU scores on the validation set) for English-Estonian (left) and
Estonian-English (right).

consecutive repeating n-grams and repeating n-
grams that have a preposition between them (i.e.,
victim of the victim) with a single n-gram. This
problem was more apparent in RNN-based NMT
systems, but it was also noticable in our Trans-
former model outputs.

4.3 System Combination

We attempted to increase the quality of exist-
ing translations by employing a voting scheme
in which multiple machine translation outputs are
combined to produce a single translation. We used
a custom implementation of the majority voting al-
gorithm (Freitag et al., 2014) to combine six of
our best-scoring outputs in the Estonian-English
translation direction in the constrained scenario.
We did not perform the combination for English-
Estonian due to lack of support for alignment ex-
traction for Estonian in Meteor (Denkowski and
Lavie, 2014).

MT system translation combination happens on
the sentence level. The majority voting scheme
assumes a single base translation hypothesis (pri-
mary hypothesis) which is aligned at the word
level to each of the other hypotheses (secondary
hypotheses). The alignments are used to generate
a table of all possible word translations relative to
each position in the primary hypothesis. The table
is then used to count the number of occurrences of
different translations. The word translations with

the highest count at each position constitute the re-
sulting combined hypothesis.

To acquire the necessary word alignments we
used Meteor. Meteor outputs were then converted
to a more easily manageable form using the Jane
toolkit (Freitag et al., 2014) (we used an awk script
distributed with Jane). The majority voting algo-
rithm was implemented in Python.

5 Results

We performed automatic evaluation of the NMT
systems using the SacreBLEU evaluation tool
(Post, 2018). The results (see Table 4) show
that the Transformer models achieved better re-
sults than the MLSTM-based models. For the
constrained scenarios, both ensembles of averaged
models achieved higher scores than each individ-
ual averaged model. It is also evident that the
unconstrained models (tilde-nc-nmt) achieved the
best results.

Although the unconstrained models were not
trained on factored data, the datasets were 17 times
larger than the constrained datasets. However, the
difference is rather minimal and shows that the
current NMT architectures may not able to learn
effectively from large datasets.

The official human evaluation results (see Ta-
ble 5) from the WMT 2018 shared task on
news translation (Bojar et al., 2018) show that
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System Configuration BLEU
English-Estonian
MLSTM
(final)

5 model
ensemble

20.80

transf (final)
4 model
average

22.82
transf-l (final) 23.04
transf
(final; run 2)

22.56

tilde-c-nmt
ensemble of 3
averaged models

23.54

tilde-c-nmt-2bt
3 model
average

23.57

tilde-nc-nmt
(transf-u)

4 model
average

24.35

Estonian-English
MLSTM
(final)

5 model
ensemble

26.79

transf (final)
4 model
average

28.14
transf-l (final) 28.83
transf-l2 (final) 25.40

tilde-c-nmt
ensemble of 3
averaged models

29.46

tilde-c-nmt-comb
6 system
combination

29.36

tilde-c-nmt-2bt
3 model
average

27.99

tilde-nc-nmt
(transf-u)

4 model
average

30.94

Table 4: Automatic evaluation results

our unconstrained scenario systems (tilde-nc-nmt)
ranked significantly higher than any other submis-
sion for both translation directions. Our best con-
strained systems were the second highest ranked
systems among all constrained scenario systems,
at the same time sharing the same cluster with the
highest ranked systems.

6 Conclusion

The paper described the development process of
the Tilde’s NMT systems that were submitted for
the WMT 2018 shared task on news translation.
We compared Transformer models to MLSTM-
based models and showed that the Transformer
models outperform the older NMT architecture.
We also showed that double back-translation may
improve translation quality further than single
back-translation. In terms of model ensembling
and averaging, we showed that the best results
in the constrained scenario were achieved by en-

System BLEU DA Cluster
English-Estonian

(C)
nict 25.16 62.1 2
tilde-c-nmt 23.54 61.6 2
aalto 20.66 58.6 5

(U)
tilde-nc-nmt 24.35 64.9 1
online-b 18.71 52.1 10
neurotolge.ee 15.53 45.7 11

Estonian-English

(C)
nict 30.68 71.1 2
tilde-c-nmt 29.46 69.9 2
uedin 29.38 69.2 2

(U)
tilde-nc-nmt 30.94 73.3 1
online-b 25.81 67.1 2
online-a 22.44 65.4 10

Table 5: Top three systems for the constrained (C) and
unconstrained (U) scenarios according to the official
results of the WMT 2018 shared task on news trans-
lation; ordered by the direct assessment (DA) standard-
ized mean score

sembling different run averaged models. In to-
tal, seven systems were submitted by Tilde for the
English↔Estonian language pair.
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Abstract

We describe our NMT system submitted to
the WMT2018 shared task in news translation.
Our system is based on the Transformer model
(Vaswani et al., 2017). We use an improved
technique of backtranslation, where we iterate
the process of translating monolingual data in
one direction and training an NMT model for
the opposite direction using synthetic parallel
data. We apply a simple but effective filtering
of the synthetic data. We pre-process the input
sentences using coreference resolution in or-
der to disambiguate the gender of pro-dropped
personal pronouns. Finally, we apply two sim-
ple post-processing substitutions on the trans-
lated output.

Our system is significantly (p < 0.05) bet-
ter than all other English-Czech and Czech-
English systems in WMT2018.

1 Introduction

The quality of Neural Machine Translation (NMT)
depends heavily on the amount and quality of the
training parallel sentences as well as on various
training tricks, which are sometimes surprisingly
simple and effective.

In this paper, we describe our NMT system
“CUNI Transformer” (Charles University version
of Transformer), submitted to the English→Czech
and Czech→English news translation shared task
within WMT2018. We describe five techniques,
which helped to improve our system, so that it out-
performed all other systems in these two transla-
tion directions: training data filtering (Section 3),
improved backtranslation (Section 4), tuning two
separate models based on the original language of
the text to be translated (Section 5), coreference
pre-processing (Section 6) and post-processing us-
ing regular expressions (Section 7). Our sys-
tem significantly outperformed all other systems
in WMT2018 evaluation (Section 8).

sentence words (k)data set
pairs (k) EN CS

CzEng 1.7 57 065 618 424 543 184
Europarl v7 647 15 625 13 000
News Commentary v12 211 4 544 4 057
CommonCrawl 162 3 349 2 927
EN NewsCrawl 2016–17 47 483 934 981
CS NewsCrawl 2007–17 65 383 927 348

total 170 951 1 576 923 1 490 516

Table 1: Training data sizes (in thousands).

2 Experimental Setup

Our training data is constrained to the data allowed
in the WMT2018 shared task. Parallel (authentic)
data are: CzEng 1.7, Europarl v7, News Commen-
tary v11 and CommonCrawl. In our backtrans-
lation experiments (Section 4), we used synthetic
data translated by backtranslation of monolingual
data: Czech and (a subset of) English NewsCrawl
articles. We filtered out ca. 3% of sentences from
the synthetic data (Section 3). Data sizes are re-
ported in Table 1.

Note that usually the amount of available mono-
lingual data is orders of magnitude larger than the
available parallel data, but in our case it is compa-
rable (58M parallel vs. 65M/48M monolingual).
We used all the Czech monolingual data allowed
in the constrained task.

We used the Transformer self-attentional
sequence-to-sequence model (Vaswani et al.,
2017) implemented in the Tensor2Tensor
framework.1 We followed the training setup
and tips of Popel and Bojar (2018), but we
trained our models with the Adafactor opti-
mizer (Shazeer and Stern, 2018) instead of the
default Adam: We used T2T version 1.6.0,
transformer_big and hyper-parameters
learning_rate_schedule=rsqrt_decay,

1
https://github.com/tensorflow/tensor2tensor
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learning_rate_warmup_steps=8000,
batch_size=2900, max_length=150,
layer_prepostprocess_dropout=0,
optimizer=Adafactor. For decoding, we
used alpha=1.

We stored model checkpoints each hour and av-
eraged the last eight checkpoints. We used eight
GTX 1080 Ti GPUs.

3 Training Data Filtering

We found out that the Czech monolingual data set
(NewsCrawl 2007–2017) contains many English
sentences. Those sentences were either kept un-
translated or paraphrased when preparing the syn-
thetic data with backtranslation. Thus the syn-
thetic data included many English-English sen-
tence pairs. Consequently, the synth-trained mod-
els had a higher probability of keeping a sentence
untranslated.

In order to filter out the English sentences from
the Czech data, we kept only sentences containing
at least one accented character.2 We also filtered
out sentences longer than 500 characters from the
synthetic data. Most of these sentences would
be ignored anyway because we are training our
Transformer with max_length=150, i.e. filter-
ing out sentences longer than 150 subwords (cf.
Popel and Bojar, 2018, § 4.4). Sometimes a Czech
sentence was much shorter than its English trans-
lation (especially for the translations by Nema-
tus2016) – because of filler words repeated many
times, which is a well-known problem of NMT
systems (e.g. Sudarikov et al., 2016). We filtered
out all sentences with a word (or a pair of words)
repeated more than twice using a regular expres-
sion / (\S+ ?\S+) \1 \1 /. This way, we
filtered out ca. 3% of sentences and re-trained our
systems. After this filtering, we did not observe
any untranslated sentences in the synth-trained
output.

4 Improved Backtranslation

Sennrich et al. (2016b) introduced backtranslation
as a simple way how to utilize target-language
monolingual data in NMT. The monolingual data

2 m/[ěščřžýáíéúůd’t’ň]/i – this simple heuris-
tics is surprisingly effective for Czech. In addition to English
sentences, it filters out also some short Czech sentences, sen-
tences in other languages (e.g. Chinese) and various “non-
linguistic” content, such as lists of football or stock-market
results.

sets are translated (by a target-to-source MT sys-
tem) to the source language, resulting in synthetic
parallel data, which is used as additional training
data (in addition to authentic parallel) for the final
(source-to-target) NMT system.

Sennrich et al. (2017) compared two regimes
of how to incorporate synthetic training data cre-
ated using backtranslation of monolingual data. In
the fine-tuned regime, a system is trained first on
the authentic parallel data and then after several
epochs it is trained on a 1:1 mix of authentic and
synthetic data. In the mixed regime, the 1:1 mixed
data is used from the beginning of training. In
both cases, the 1:1 mix means shuffling the data
randomly at the sentence level, possibly oversam-
pling the smaller of the two data sources.

We used a third approach, termed concat
regime, where the authentic and synthetic parallel
data are simply concatenated (without shuffling).
We observed that this regime leads to improve-
ments in translation quality relative to both mixed
and fine-tuned regimes, especially when check-
point averaging is used.

For obtaining the final English→Czech system,
we iterated the backtranslation process:

1. We downloaded the Nematus2016 models
trained by Sennrich et al. (2016a) using fine-
tuned backtranslation of English NewsCrawl
2015 articles, which were translated “with
an earlier NMT model trained on WMT15
data” (Sennrich et al., 2016a). We used these
Nematus2016 models to translate Czech
NewsCrawl 2007–2017 articles to English.

2. We trained an English→Czech Transformer
on this data (filtered as described in Sec-
tion 3) using concat backtranslation with
checkpoint averaging. We used this
Transformer model to translate English
NewsCrawl 2016–2017 articles into Czech.

3. We trained our Czech→English Transformer
model (used for our WMT18 submission) on
this data using concat backtranslation with
averaging. We translated Czech NewsCrawl
2016–2017 articles into English using this
system, producing a higher-quality synthetic
data than in step 1 (but smaller because of
lack of time and resources).

4. We trained our final English→Czech system
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on this data, again using concat backtransla-
tion with averaging.

Each training (steps 2, 3 and 4) took eight days
on eight GPUs. Translating the monolingual data
with Nematus2016 (step 1) took about two weeks
and with our Transformer models (steps 2 and 3)
took about five days. The final model trained in
step 4 is +0.83 BLEU better than the model trained
in step 2 without data filtering, as measured on
newstest2017 (cf. Table 2).

5 CZ/nonCZ Tuning

In WMT test sets since 2014, half of the sentences
for a language pair X-EN originate from English
news servers (e.g. bbc.com) and the other half
from X-language news servers. All WMT test
sets include the server name for each document
in metadata, so we were able to split our test set
(and dev set newstest2013) into two parts: CZ
(for Czech-domain articles, i.e. documents with
docid containing “.cz”) and nonCZ (for non-
Czech-domain articles). We noticed that when
training on synthetic data, the model performs
much better on the CZ test set than on the nonCZ
test set. When trained on authentic data, it is the
other way round. Intuitively, this makes sense:
The target side of our synthetic data are original
Czech sentences from Czech newspapers, simi-
larly to the CZ test set. In our authentic data,
over 90% of sentences were originally written in
English about “non-Czech topics” and translated
into Czech (by human translators), similarly to the
nonCZ test set. There are two closely related phe-
nomena: a question of domain (topics) in the train-
ing data and a question of so-called translationese
effect, i.e. which side of the parallel training data
(and test data) is the original and which is the
translation.

Based on these observations, we prepared a CZ-
tuned model and a nonCZ-tuned model. Both
models were trained in the same way, they differ
only in the number of training steps. For the CZ-
tuned model, we selected a checkpoint with the
best performance on wmt13-CZ (Czech-origin
portion of newstest2013), which was at 774k
steps. Similarly, for the nonCZ-tuned model, we
selected the checkpoint with the best performance
on wmt13-nonCZ, which was at 788k steps.
Note that both the models were trained jointly in
one experiment, just selecting checkpoints at two
different moments.

6 Coreference Pre-processing

In Czech, as a pro-drop language, it is common
to omit personal pronouns in subject positions.
Usually, the information about gender and num-
ber of the subject is encoded in the verb inflec-
tion, but present-tense verbs have the same form
for the feminine and masculine gender. For ex-
ample, “Není doma” can mean either “She is not
home” or “He is not home”. When translating such
sentences from Czech to English, we must use the
context of neighboring sentences in a given docu-
ment, in order to disambiguate the gender and se-
lect the correct translation. However, our Trans-
former system (similarly to most current NMT
systems) translates each sentence independently of
other sentences. We observed that in practice it al-
ways prefers the masculine gender if the informa-
tion about gender could not be deduced from the
source sentence.

We implemented a simple pre-processing of the
Czech sentences, which are then translated with
our Czech→English Transformer system – we in-
serted pronoun ona (she), where it was “miss-
ing”. We analyzed the source Czech documents
in the Treex NLP framework (Popel and Žabokrt-
ský, 2010), which integrates a coreference re-
solver (Novák, 2017). We found sentences where
a female-gender pronoun subject was dropped and
the coreference link was pointing to a different
sentence (usually the previous one). We restricted
the insertion of ona only to the cases in which the
antecedent in the coreference chain represents a
human (i.e. excluding grammatical-only female
gender of inanimate objects and animals). We
used a heuristic detection of human entities, which
is integrated in Treex.

This preprocessing affected only 1% of sen-
tences in our nestest2017 dev set and for most of
them the English translation was improved (ac-
cording to our judgment), although the overall
BLEU score remained the same. We consider
this solution as a temporary workaround before
document-level NMT (e.g. Kuang et al., 2017) is
available in T2T. That said, the advantage of the
described preprocessing is that it can be applied to
any (N)MT system – without changing its archi-
tecture and even without retraining it.

7 RegEx Post-processing

We applied two simple post-processings to the
translations, using regular expressions.
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English→Czech BLEU BLEU chrF2
system cased uncased cased

Nematus (Sennrich et al., 2016b) 22.80 23.29 0.5059
T2T (Popel and Bojar, 2018) 23.84 24.40 0.5164

our mixed backtranslation 24.85 (+1.01) 25.33 0.5267
our concat backtranslation 25.77 (+0.92) 26.29 0.5352
+ higher quality backtranslation 26.60 (+0.83) 27.10 0.5410
+ CZ/nonCZ tuning 26.81 (+0.21) 27.30 0.5431

Table 2: Automatic evaluation on (English→Czech) newstest2017. The three scores in parenthesis show
BLEU difference relative to the previous line.

We deleted phrases repeated more than twice
(immediately following each other); we kept just
the first occurrence. We considered phrases of one
up to four words. With the training-data filter-
ing described in Section 3, less than 1% sentences
needed this post-processing.

For English→Czech, we converted quotation
symbols in the translations to the correct-Czech
„lower and upper“ quotes using two regexes:
s/(ˆ|[ ({[])("|,,|’’|‘‘)/$1„/g and
s/("|’’)($|[ ,.?!:;)}\]])/“$2/g. In
English, the distinction between "straight" and
“curly” quotes is considered as a rather typograph-
ical (or style-related) issue. However, in Czech,
a mismatch between lower (opening) and upper
(closing) quotes is considered as an error in for-
mal writing.

8 Evaluation

8.1 WMT2017 Evaluation

Table 2 evaluates the relative improvements de-
scribed in Sections 4 and 5 on English→Czech
newstest2017 and compares the results with the
WMT2017 winner – Nematus (Sennrich et al.,
2016b), and with the result of Popel and Bojar
(2018) – T2T without any backtranslation.

The three reported automatic metrics are: case-
sensitive (cased) BLEU, case-insensitive (un-
cased) BLEU and a character-level metric chrF2
(Popović, 2015). We compute all the three metrics
with sacreBLEU (Post, 2018). The reported cased
and uncased variants of BLEU differ also in the
tokenization. The cased variant uses the default
(ASCII-only) for better comparability with the re-
sults at http://matrix.statmt.org. The
uncased variant uses the international tokeniza-
tion, which has higher correlation with humans
(Macháček and Bojar, 2013). The sacreBLEU sig-

natures of the three metrics are:

• BLEU+case.mixed+lang.en-cs+
numrefs.1+smooth.exp+
test.wmt17+tok.13a,

• BLEU+case.lc+lang.en-cs+
numrefs.1+smooth.exp+
test.wmt17+tok.intl and

• chrF2+case.mixed+lang.en-cs+
numchars.6+numrefs.1+
space.False+test.wmt17.

We performed a small-scale manual evaluation
on newstest2017 and noticed that in many cases
the human reference translation is actually worse
than our Transformer output. Thus the results of
BLEU (or any other automatic metric comparing
similarity with references) may be misleading.

8.2 WMT2018 Evaluation
Table 3 the reports results of all English↔Czech
systems submitted to WMT2018, according to
both automatic and manual evaluation. For the
automatic evaluation, we use the same three met-
rics as in the previous section (just with wmt18
instead of wmt17). For the manual evaluation,
we report the reference-based direct assessment
(refDA) scores, provided by the WMT organizers.

Our Transformer is the best system in
English→Czech and Czech→English WMT2018
news task. It is significantly (p < 0.05) better
than the second-best system – UEdin NMT, in
both translation directions and both according to
BLEU bootstrap resampling test (Koehn, 2004)
and according to refDA Wilcoxon rank-sum test.

9 Conclusion

We have presented five simple but effective tech-
niques for improving (N)MT quality. All five tech-

485



English→Czech Czech→English

BLEU BLEU chrF2 refDA BLEU BLEU chrF2 refDA
system uncased cased cased Ave. % uncased cased cased Ave. %

our Transformer 26.82 26.01 0.5372 67.2 35.64 33.91 0.5876 71.8
UEdin NMT 24.30 23.42 0.5166 60.6 34.12 33.06 0.5801 67.9
Online-B 20.16 19.45 0.4854 52.1 33.58 31.78 0.5736 66.6
Online-A 16.84 15.74 0.4584 46.0 28.47 26.78 0.5447 62.1
Online-G 16.33 15.11 0.4560 42.0 25.20 22.53 0.5310 57.5

Table 3: WMT2018 automatic (BLEU, chrF2) and manual (refDA = reference-based direct assessment) evaluation
on newstest2018.

niques can be applied to virtually any NMT sys-
tem. According to the preliminary results of the
manual evaluation, the final translation quality is
comparable to or even better than the quality of
human references.

As a future work, we would like to assess the
relative improvement of each of the five tech-
niques based on manual evaluation (because au-
tomatic single-reference evaluation is not reliable
when the MT quality is near to the quality of ref-
erence translations).

Acknowledgements

The work described in this paper has been sup-
ported by the “NAKI II - Systém pro trvalé
uchování dokumentace a prezentaci historichých
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Abstract

This paper describes the University of
Helsinki’s submissions to the WMT18 shared
news translation task for English-Finnish and
English-Estonian, in both directions. This
year, our main submissions employ a novel
neural architecture, the Transformer, using
the open-source OpenNMT framework. Our
experiments couple domain labeling and fine
tuned multilingual models with shared vocabu-
laries between the source and target language,
using the provided parallel data of the shared
task and additional back-translations. Finally,
we compare, for the English-to-Finnish case,
the effectiveness of different machine transla-
tion architectures, starting from a rule-based
approach to our best neural model, analyzing
the output and highlighting future research.

1 Introduction

The University of Helsinki participated in the
WMT 2018 shared task on news translation with
seven primary submissions. While the main focus
of our work lay on the English-to-Finnish transla-
tion direction, we also participated in the Finnish-
to-English, English-to-Estonian and Estonian-to-
English translation directions.

In 2017, the University of Helsinki participated
in WMT with an in-house implementation of an at-
tentional encoder-decoder architecture based on the
Theano framework, called HNMT (Östling et al.,
2017). Since then, the development of Theano has
stopped, and various open-source Neural Machine
Translation (NMT) toolkits based on alternative
frameworks have been made available (Klein et al.,
2017; Junczys-Dowmunt et al., 2018, inter alia).
In parallel, a novel neural network architecture for
machine translation, called Transformer, has been
introduced (Vaswani et al., 2017). The Transformer
follows the encoder-decoder paradigm, but does not
use any recurrent layers. Instead, its architecture

relies primarily on attention mechanisms, stack-
ing on each layer multiple attention components.
Preliminary experiments with the Transformer ar-
chitecture and its implementation in OpenNMT-py
(Klein et al., 2017) showed consistent performance
improvements compared to our 2017 architecture.
Consequently, we used this setup for our main
WMT 2018 submissions. For English–Finnish, our
submissions also include a rule-based system, an
SMT system, and a NMT system making use of a
morphological analyzer and generator.

This year’s WMT news translation task contains
a multilingual sub-track, which includes all models
that make use of third language data. We trained
a multilingual model with data coming from three
languages, English, Finnish and Estonian and then
fine-tuned on a single language pair. We also gen-
erated synthetic English–Estonian data by pivoting
through Finnish.

Additionally, following recent approaches (John-
son et al., 2016; Tars and Fishel, 2018) we added
a domain label to each input sentence, according
to the data source. For example, each sentence
from the Europarl corpus was prepended with the
〈EUROPARL〉 label. The overall idea of domain
labelling is that data coming from different sources
are of different quality and represent different gen-
res and writing styles. In this way, the translation
model can be informed of the data source without
increasing the number of parameters.

2 English→Finnish

2.1 NMT models
We trained our systems on almost all parallel data
made available by WMT: Europarl (Koehn, 2005),
ParaCrawl1, Rapid, as well as the WMT 2015 test
and development sets. We did not use WikiHead-
lines. For development and tuning of the system

1https://paracrawl.eu/

488

https://doi.org/10.18653/v1/W18-64052


parameters, we used the WMT 2016 and 2017 test
sets.

A common strategy is to create synthetic training
data by back-translation (Sennrich et al., 2016a).
For our WMT 2017 submission, we already used
SMT to create 5.5M sentences of back-translated
data from the Finnish news2014 and news2016 cor-
pora. This year, we created another 5.5M sentences
of back-translation from the Finnish news2014-
news2017 corpora using our previous NMT system
(Östling et al., 2017). The final submissions make
use of both resources.

We applied the standard preprocessing pipeline
consisting of tokenization,2 normalization,3 true-
casing and byte-pair encoding (Sennrich et al.,
2016b). Following Vaswani et al. (2017), we have
used a joint BPE vocabulary of 37 000 units. Re-
garding domain labeling, we marked the develop-
ment and test data from WMT 2015, 2016 and 2017
as 〈NEWS〉. This label is also used for the test sets.

2.2 NMT with morphological analysis and
generation

We also submitted a neural machine translation
model that uses a morphological analyzer, called
TwoStepTransformer. TwoStepTransformer is an
English to Finnish transformer-type NMT model
trained with the Marian NMT framework (Junczys-
Dowmunt et al., 2018), using the default trans-
former settings (corresponding to Google’s original
Transformer setup). The model differs from stan-
dard NMT models in that the Finnish corpus is an-
alyzed with a morphological analyzer (FINTWOL
by Lingsoft Inc.) and segmented into a sequence of
interleaved lemmas and morphological tags. The
output of the model is converted into surface forms
in a separate, deterministic post-processing step.

A similar two-step approach has been found to
improve English to Czech NMT (Tamchyna et al.,
2017), probably due to alleviating data sparsity
caused by morphological complexity. As Finnish is
also a morphologically complex language, adapting
this approach to Finnish should result in a similar
improvement. Finnish is an agglutinative language
with a high degree of allomorphy for root, inflec-
tional and derivational morphemes. For instance,
the plural affix is expressed as t, i or j depending
on the morphological context, and it is common

2We modified the Moses tokenizer to prevent it from split-
ting word-internal colons that occur regularly in Finnish.

3Normalization is applied to English only and consists of
resolving common contractions such as isn’t, we’ll etc.

for root lexemes have more than two allomorphs
(e.g. the lexeme with the meaning ’hand’ has the
allomorphs käsi, käde, käte and kät). This allomor-
phy greatly increases data sparsity if segmentation
methods based on surface form splitting are used.

The annotation format used differs from the one
in Tamchyna et al. (2017) in several aspects, the
most important of which is that the morphologi-
cal tags are not complex, multicategory tags that
are interleaved one-to-one with lemmas. Instead,
each lemma token can be followed by zero or more
morphological tags, each corresponding to a non-
default value in a single morphological category:
komissio
tiedottaa FINTWOL_PAST
neuvosto FINTWOL_ALL EU FINTWOL_GEN
ja
Marokko FINTWOL_GEN
kalastus LS_PRECOMPOUND
kumppanuus LS_PRECOMPOUND
sopimus FINTWOL_PTV
koskeva FINTWOL_ELA FINTWOL_PL
kahden LS_PRECOMPOUND
välinen FINTWOL_ELA FINTWOL_PL
neuvottelu FINTWOL_ELA FINTWOL_PL
.

The first lemma komissio is the only one without
any morphological tags, the rest of the lemmas are
trailed by one or more tags. Tags are only provided
if the value of a morphological category differs
from the default value, so this means that the lemma
komissio has the default value for number (singular)
and case (nominative). The lemma tiedottaa is
a verb lemma (lemma form indicates word class
so no explicit word class annotation is required),
and it has the tag FINTWOL PAST, indicating that
it has the non-default value PAST for the tense
category (default is present tense). Several noun
lemmas have non-default case and number values,
for example neuvottelu, which has allative case
and plural number. The LS PRECOMPOUND tag
indicates the lemma is part of a compound word.

There are several reasons for using implicit de-
fault morphological categories:

1. Explicitly defining each tag would lead to very
long target sentences.

2. Having separate tags for each category theo-
retically allows for more generalization than
complex multi-category tags. For instance,
case generalizations could be learned from
both singular and plural contexts.

3. Languages generally have morphological cat-
egories where the most common value has no
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explicit morpheme, so segmenting with im-
plicit common values makes the segmented
text structurally more similar to natural lan-
guage.

The morphological segmentation (which in-
cludes compound splitting) decreases the amount
of token types in the corpus significantly (from over
a million to about 300,000 for the bilingual WMT
data), but there are still too many token types for
efficient NMT training, due to foreign language
words, incorrectly spelled words, numbers, codes,
character corruption and other out-of-vocabulary
tokens. To lower the type count to a manageable
level, the annotated corpus is further segmented
using BPE. As the model outputs a BPE sequence
of lemmas and morphological tags, producing the
final translation is more complex than simple con-
catenation of subword units. First the BPE tags are
joined and then the surface forms are generated us-
ing the FINTWOL generation functionality, which
takes as input lemmas and morphological tags and
output all compatible surface forms. The default
tags are automatically added for lemmas which do
not have explicit tags. Heuristics are used to select
a surface form if several possibilities are generated.

The submitted model was trained on the bilin-
gual and back-translated data, as adding the back-
translated data greatly improved the quality of the
translations.

2.3 Rule-based MT
Hurskainen and Tiedemann (2017) propose a rule-
based machine translation system for English–
Finnish. During the past year, the rule-based MT
system has been developed in several ways. In ad-
dition to the usual debugging and rule testing, also
some major structural changes have been made.
Below we will discuss the latter type of problems.

Translating locative expressions: While En-
glish uses prepositions for marking location,
Finnish uses locative cases. English has a bewil-
dering number of prepositions for this purpose. At
least the following preposition are used: in, on, at,
with, by, to, into, for, of, from, over, through, and
around. Finnish uses one of the six locative cases
for translating such structures.

Locative cases can be classified into two groups,
which are termed as internal (inessive, elative, and
illative) and external (adessive, ablative, and alla-
tive) locatives. Associating the English locative
preposition with one of the Finnish locative cases

would require several rules with a varying number
of constraints. In the current implementation, the
Finnish locative cases are handled in two phases.
In the first phase, we only consider what type (no
movement, movement from, movement to) the lo-
cation is, without considering whether it is internal
or external.

"<he>" "he" { hän } %SUBJ HUM OUT PRON PERS SG3 NOM
"<sent>" "send" { lähetti } %+FMAINV O-ACC O-LOC3 V

PAST SG
"<letter>" "letter" { kirjeen } %OBJ DEF N SG ACC
"<to>" "to" { M-LOC3 } %ADVL PREP
"<hospital>" "hospital" { sairaalaan } %<P ACE IN

DEF N SG ILL
"<.>" "." { . }

"<he>" "he" { hän } %SUBJ HUM OUT PRON PERS SG3 NOM
"<sent>" "send" { lähetti } %+FMAINV O-ACC O-LOC3 V

PAST SG
"<letter>" "letter" { kirjeen } %OBJ DEF N SG ACC
"<to>" "to" { M-LOC3 } %ADVL PREP
"<me>" "i" { minulle } %<P HUM OUT PRON PERS SG ALL

We see that in both sentences the preposition to
has the tag M-LOC3. This stands for illative and
allative. The head of the preposition decides which
of the cases is selected. If the noun has the tag
OUT, then allative is selected. If it has the tag IN
or no locative tag, then inessive is selected. The
same process applies to the two other locative case
pairs (inessive/adessive and elative/ablative).

A special case of using locatives are the Finnish
place names. No formal rules can be constructed
for producing correct locative inflection. Therefore,
we have to tag each place name separately. We use
internal inflection as default and provide names
using external inflection with the tag OUT.

Translating proper names and acronyms:
There are two major problems in dealing with
proper names and acronyms. One concerns the
question whether the proper name or acronym
should be translated or not. The other problem
concerns the handling of uppercase letters. The
proper names with translation should be listed in
the lexicon or handled as an MWE. It is assumed
that a non-sentence-inital word with capital initial
is a proper name, and possibility to such an interpre-
tation is provided by adding a separate entry with a
tag PROP-CAND. If it is not listed in the lexicon, it
is interpreted as a proper name. Such words which
have also another interpretation in the language are
problematic. Many person names belong to this
category. Attested cases with both interpretations
(i.e. normal translation and proper name) are listed
in the rule system. Then, using context sensitive
rules, the PROP-CAND interpretation is selected
or removed.
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Translating subject and object: The default
case of the subject in Finnish is nominative, but
also other cases, such as adessive, genitive, ela-
tive, ablative, and illative, occur. Rules are needed
only for the special cases. This is implemented
by providing the respective verb with a tag show-
ing the case of the subject. Otherwise the subject
case is always nominative. The direct object has
three cases, partitive, genitive accusative and nom-
inative accusative. The last one is used in special
cases such as the object of imperative verb form
and some modal verbs. Partitive and genitive ac-
cusative dominate as object case. Part of verbs
require always partitive, and some others require
the genitive accusative case. However, most verbs
are such that they may have either of the object
cases. They are not alternatives, however, because
the context defines the case in each situation. There
is the general trend that if the object is indefinite
plural, it is in partitive.

More details of the system are described in
Hurskainen (2018a,b,c,d).

2.4 SMT

As a contrastive system, we also reactivated our
Statistical Machine Translation (SMT) system sub-
mitted at WMT 2016 (Tiedemann et al., 2016).
The system was not retrained and it may thus suf-
fer from poor lexical coverage on recent test data.
Our main motivation for including this baseline
was to have an SMT submission for the Finnish
morphology test suite.

3 Finnish→English

We only submitted a standard NMT transformer
model with domain labeling for this translation
direction. Parallel data and preprocessing steps
are identical as for English-to-Finnish. For back-
translation, we use 2M sentences from the English
news2015 produced with an SMT system, plus
another 6.7M sentences from English news2007–
news2017 produced with HNMT (Östling et al.,
2017).

During the test phase, we discovered that sev-
eral source lines, in particular in the Finnish test
data, consisted of more than one sentence. As our
translation systems were trained mostly on single
sentences, they tended to stop the translation pro-
cess after translating the first sentence of the line,
leaving the remaining sentences untranslated. In
order to avoid this, we applied a simple sentence

splitting script to the test set and translated the split
sentences separately. According to the output of
the sentence splitter, 298 sentences of the Finnish
source and 13 sentences of the English source were
affected. We applied sentence splitting to both files;
while this increased BLEU scores by 0.5 points
on Finnish-to-English, it did not affect the BLEU
scores of English-to-Finnish translation.

4 English–Estonian

We also participated in the English–Estonian task,
in both directions. We used all available parallel
data for training: Europarl, ParaCrawl, and Rapid.
We used the 2018 dev set for system development
and parameter tuning. We applied the same prepro-
cessing steps as for English–Finnish, using again a
shared vocabulary of 37 000 BPE units. Regarding
domain labeling, no parallel data with the 〈NEWS〉
label was provided in this setup. Therefore, we
labelled the test source data with 〈EUROPARL〉,
which we found to be the most reliable of the three
data sources. For comparison, we also tested a
model without domain labels (comparative results
are given in Section 6).

For our English-to-Estonian submission, we cre-
ated back-translations using a simpler translation
model. This model was based on the Transformer
architecture and was trained on a subset of paral-
lel data filtered through a language identification
tool, with 20 000 BPE units. We used this model
to translate parts of the monolingual BigEst corpus
to English; 6.3M back-translations sentences were
obtained.

For the Estonian-to-English submission, we also
generated back-translations using a simple trans-
lation model, as described above, translating parts
of the monolingual English news2007–news2017
corpora; 5.2M back-translation sentences were pro-
duced in this way.

5 Multilingual models

As Estonian is closely related to Finnish, we exper-
imented with multilingual models containing both
languages as well as English. For this experiment,
we included all available parallel data in all direc-
tions. Following Johnson et al. (2016), we used
language labels to indicate the target language cou-
pled with the domain labels, as introduced above.
The only other change in preprocessing is the use
of 50 000 (instead of 37 000) joint BPE units, as
they now need to cover three languages instead of
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Parallel +Back +Back +Synth
Et→ En 2,178,025 7,356,697 8,942,157
En→ Et 2,178,025 8,435,413 10,020,873
Fi→ En 3,136,265 11,918,402 –
En→ Fi 3,136,265 14,198,188 –

Table 1: Number of training sentences, with and
without back-translation (Back) and synthetic data
(Synth).

two. In this way, even though Estonian has no par-
allel news data, the model will see the news label
in the Finnish data. Inspired by Zoph et al. (2016),
we first train the multilingual model with all lan-
guages in all directions, and then fine-tune it on
each specific language pair.

5.1 Synthetic data

Another way to take advantage of the close etymo-
logical relationship between Estonian and Finnish
is to create synthetic training data (Tiedemann,
2012). We explored this option in the following
setup:

1. Train a character-level seq2seq system for
Finnish-to-Estonian, using the Europarl and
EUbookshop (Skadiņš et al., 2014) corpora.

2. Translate the Finnish side of the parallel
English–Finnish corpus to Estonian.

3. Combine the Estonian and English parts of
the corpus and use this dataset as back-
translations to train the final system.

We were able to process 1.5M sentences using
this approach. These sentences complemented the
other training data, consisting of parallel data and
direct English–Estonian back-translations.

6 Experiments

In this section we detail the setup of our experi-
ments. We first describe the size of the training
data and the details of the training; we then report
and discuss the performance of each model accord-
ing to the BLEU score as reported on the online
evaluation matrix4.

Table 1 shows the statistics on the number of
training sentences. The backtranslations allow us
to more than triple the original size of the training
data for all the directions. We trained our models

4http://matrix.statmt.org/

Et→En En→Et
HY-NMT Baseline 21.6 16.7
+Label 20.3 17.6

+Back 26.5 –
+Label +Back 25.4 21.8*

+Back +Synth 26.5* –
+Label +Back +Synth 25.0 21.0
HY-NMT Multilingual – –
+Label 26.4 20.8

Table 2: BLEU-cased scores on newstest2018 for
the English–Estonian language pair in various con-
figurations using domain labels (Label), backtrans-
lated data (Back), or synthetic data (Synth). Our
primary submissions are marked with *.

for 20 epochs, evaluating each of them on the de-
velopment set after every epoch, taking the best
iteration as final model. As hyper-parameters, we
used the base version of the Transformer architec-
ture, following the suggestion of the OpenNMT-py
tool,5 including a shared word embedding space
between encoder and decoder among others. Un-
like last year, we did not include any averaging or
ensembling techniques.

English–Estonian results. Table 2 shows the
performance of our models for the English–
Estonian language pair.6 In general, the best mod-
els include back-translation and synthetic data, im-
proving the BLEU score by around 4 points. The
domain labels help when translating into Estonian,
while they slightly hurt the performance when trans-
lating into English. This behavior could be ex-
plained by the different nature of the two languages,
Estonian being a morphologically rich language, it
could benefit from having a source label indicating
good quality translations even if they come from
a different domain. As concerns our multilingual
model, it achieves results close to our best score,
specially for the Estonian-to-English direction. We
recall that this model also uses domain labels, and
this suggests that, in this case, the Finnish–English
data are indeed helpful to achieve a better BLEU
score for the Estonian-to-English language pair.

English–Finnish results. Table 3 shows the per-
formance of our models for the English–Finnish
language pair. Here, all of our basic Transformer

5http://opennmt.net/OpenNMT-py/FAQ.
html#how-do-i-use-the-transformer-model

6HY stands for Helsingin Yliopisto, i.e. University of
Helsinki, not for hybrid.
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Fi→En En→Fi
Transformer +Label 19.8 15.3
Transformer +Back +Label 23.3* 17.8*
Multilingual +Back +Label 20.6 14.9
TwoStep +Back – 14.5*
Seq2Seq +Back +Label – 12.1
HY-SMT +Back – 10.5*
HY-AH (rule based) – 6.4*

Table 3: BLEU-cased scores on newstest2018 for
the English–Finnish language pair for various sys-
tem architectures. Our primary submissions are
marked with *.

models included domain labeling, motivated by
the fact that news data are present in the training
data, and also by the consistent performance im-
provements observed in initial experiments. Over-
all, back-translations again improve the BLEU
scores for both directions. The multilingual model
achieves lower scores than the standard bilingual
model, suggesting that the Estonian data do not
provide useful complementary information, in par-
ticular because the Estonian data set is rather small
compared to its Finnish counterpart and comes
from exactly the same source. Finally, we also
compare our transformer-based models to other
machine translation paradigms. Table 3 reports the
BLEU scores of the rule based system described
in Section 2.3, the SMT system (Section 2.4) and
an additional 2-layer sequence-to-sequence model
(Bahdanau et al., 2014) trained on the same data as
the Transformer models. Clearly, the Transformer
paradigm achieves the best BLEU scores. Overall,
our best English-to-Finnish model reaches the sec-
ond position in the online ranking using automatic
evaluation metrics. Finally, in the manual evalu-
ation of the official results of the WMT18 News
Translation task (Bojar et al., 2018), our best sys-
tem shared first place in both English-to-Finnish
and Finnish-to-English translation directions.

6.1 English-to-Finnish analysis

To complement the results, we additionally carried
out an analysis of the output of our best English-to-
Finnish system.

Document knowledge. One of the common mis-
takes is related to pronouns, especially when their
antecedents are located in other sentences. As our
systems are trained on isolated sentences, it is hard
to predict the right pronoun when it refers to a previ-

ous sentence. Moreover, more context would help
to better understand the semantics of the sentence.
For example, considering the following translation:

(1) EN: “After burying the bodies, the military
came looking for me,” he says.
FI: “Sotilaat etsivät minut käsiinsä uhrien hau-
taamisen jälkeen”, hän sanoo.

the word bodies has been translated as victims,
which only makes sense if you know the document
context where bodies were those of demonstrators.

World knowledge. We found out that some test
set translations contain information based on world
knowledge” outside of the actual text, and so the
system being trained without any external knowl-
edge fails to output the most appropriate translation.
For example, in the sentences:

(2) EN: “Americans appreciate this as well as any-
one - hence the carefully stage-manged top-
pling of Saddam Hussein in Firdos square in
Baghdad in 2003.”
FI: “Amerikkalaiset tietävät sen yhtä hyvin
kuin muutkin: irakilaiset kaatoivat yhdessä
amerikkalaisten sotilaiden kanssa Saddam
Husseinin patsaan Firdosin aukiolla vuonna
2003.”

the literal translation of the Finnish sentence would
be: “The Americans know it as well as others: the
Iraqi toppled together with American soldiers Sad-
dam Hussein’s statue in Firdos square in 2003.”,
leaving out Baghdad and introducing Iraqi in this
case.

Finally, a number of errors were related to the
different structure and ordering of the words of the
two languages. It seems like the 2018 test set is
translated more freely and document-oriented than
in previous years, which explains the overall low
BLEU scores compared to the last year’s competi-
tion.

7 Conclusions

In this paper, we reported the University of Helsinki
submissions for the WMT18 news translation task.
We participated in the English–Finnish and English–
Estonian language pairs, training the novel neu-
ral architecture, the Transformer, with the Open-
NMT tool, using BPE segmentation, a joint source-
target vocabulary and domain labeling. Addition-
ally, we introduced a multilingual model trained
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on all our data sets, fine-tuning it on each lan-
guage pair. Our best systems are trained on the pro-
vided parallel data augmented with large amounts
of back-translations, achieving top rank results for
the English–Finnish language pair. We also car-
ried out further analyses on the English-to-Finnish
direction, showing the performance of different ma-
chine translation paradigms and highlighting com-
mon mistakes that prevented a higher translation
quality.
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Abstract

This paper describes the statistical machine
translation systems developed at RWTH
Aachen University for the German→English,
English→Turkish and Chinese→English
translation tasks of the EMNLP 2018
Third Conference on Machine Translation
(WMT 2018). We use ensembles of neural
machine translation systems based on the
Transformer architecture. Our main focus
is on the German→English task where we
scored first with respect to all automatic
metrics provided by the organizers. We
identify data selection, fine-tuning, batch size
and model dimension as important hyperpa-
rameters. In total we improve by 6.8% BLEU
over our last year’s submission and by 4.8%
BLEU over the winning system of the 2017
German→English task. In English→Turkish
task, we show 3.6% BLEU improvement over
the last year’s winning system. We further
report results on the Chinese→English task
where we improve 2.2% BLEU on average
over our baseline systems but stay behind the
2018 winning systems.

1 Introduction

In this paper we describe the supervised statis-
tical machine translation (SMT) systems devel-
oped by RWTH Aachen University for the news
translation task of the EMNLP 2018 Third Con-
ference on Machine Translation (WMT 2018).
We use ensembles of neural machine translation
systems to participate in the German→English,
English→Turkish and Chinese→English tasks of
the WMT 2018 evaluation campaign.

For this year’s WMT we switch towards the
Transformer architecture (Vaswani et al., 2017)
implemented in Sockeye (Hieber et al., 2017).
We experiment with different selections from the
training data and various model configurations.

This paper is organized as follows: In Section 2
we describe our data preprocessing. Our trans-
lation software and baseline setups are explained
in Section 3. The results of the experiments for
the various language pairs are summarized in Sec-
tion 4.

2 Preprocessing

For all our experiments on German, English and
Turkish we utilize a simple preprocessing pipeline
which consists of minor text normalization steps
(e.g. removal of some special UTF-8 charac-
ters) followed by tokenization from Moses (Koehn
et al., 2007) and frequent casing from the Jane
toolkit (Vilar et al., 2010). The Chinese side is
segmented using the Jieba4 segmenter 1 except
for the Books 1-10 and data2011 data sets
which were already segmented as mentioned in
(Sennrich et al., 2017).

We apply byte-pair encoding (BPE) to segment
words into subword units for all language pairs
(Sennrich et al., 2016b). Our BPE models are
trained jointly for the source and the target lan-
guage with the exception of the Chinese→English
task. For every language pair we use the paral-
lel data to train the BPE operations, excluding any
synthetic data and the ParaCrawl corpus of the
German→English task. To reduce the number of
rare events we apply a vocabulary threshold of 50
as described in (Sennrich et al., 2017) in all our
German→English systems. We end up with vo-
cabulary sizes of 45k and 34k for German and En-
glish respectively if 50k joint merge operations are
used.

3 MT Systems

All systems submitted by RWTH Aachen are
based on the Transformer architecture imple-

1https://github.com/fxsjy/jieba
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mented in the Sockeye sequence-to-sequence
framework for Neural Machine Translation. Sock-
eye is built on the Python API of MXNet (Chen
et al., 2015).

In the Transformer architecture both encoder
and decoder consist of stacked layers. A layer in
the encoder consists of two sub-layers: a multi-
head self-attention layer followed by a feed for-
ward layer. The decoder contains an additional
multi-head attention layer that connects encoder
and decoder. Before and after each of these sub-
layers preprocessing respectively postprocessing
operations are applied. In our setup layer nor-
malization (Ba et al., 2016) is applied as prepro-
cessing operation while the postprocessing oper-
ation is chosen to be dropout (Srivastava et al.,
2014) followed by a residual connection (He et al.,
2016).2 For our experiments we use 6 layers in
both encoder and decoder and vary the size of their
internal dimension. We set the number of heads
in the multi-head attention to 8 and apply label
smoothing (Pereyra et al., 2017) of 0.1 throughout
training.

We train our models using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.0001 (for En→Tr and Zh→En) respectively
0.0003 (for De→En). A warmup period with con-
stant or increasing learning rate was not used. We
employ an annealing scheme that scales down the
learning rate if no improvement in perplexity on
the development set is seen for several consecutive
evaluation checkpoints. During training we apply
dropout ranging from 0.1 to 0.3. All batch sizes
are specified on the token level and are chosen to
be as big as the memory of the GPUs allows. In
case of the utilization of multiple GPUs we use
synchronized training, i.e. we increase the effec-
tive batch size, which seems to have better conver-
gence properties (Popel and Bojar, 2018).

The weights of embedding matrices and the pro-
jection layer prior to the softmax layer are not
shared in our architecture and for all translation
runs a beam size of 12 is used.

4 Experimental Evaluation

In this section we present our results on the three
tasks we participated in, with the primary focus on

2Note that this is by now also the default behavior of the
Tensor2Tensor implementation https://github.com/
tensorflow/tensor2tensor, differing from the orig-
inal paper.

Data Resource # lines
WMT 2018 (standard parallel data) 5.9M
ParaCrawl (filtered 50%) 18.2M
NewsCrawl 2015 (UEDIN WMT16) 4.2M
NewsCrawl 2017 (random 50%) 13.4M
newstest2008–2014 (for fine-tuning) 19.1k

Table 1: Number of parallel sentence pairs or monolin-
gual sentences of our different training data resources
(De→En). Our strongest systems from Table 3 use all
these resources.

building a strong system for the German→English
system.

For evaluation we use mteval-v13a from the
Moses toolkit (Koehn et al., 2007) and TERCom3

to score our systems on the BLEU (Papineni et al.,
2002) respectively TER (Snover et al., 2006) mea-
sures. In addition we report CTER scores4 (Wang
et al.). All reported scores are given in percentage
and the specific options of the tools are set to be
consistent with the calculations of the organizers.

4.1 German→English

In most experiments for the German→English
task we use a subset of the data resources listed
in Table 1. All models use the Transformer ar-
chitecture as described in Section 3. Our baseline
model is very similar to the ”base” Transformer
of the original paper (Vaswani et al., 2017), e.g.
dmodel = 512 and dff = 2048, however we do not
use weight-tying.

Throughout our experiments we analyze vari-
ous aspects of our experimental setup (e.g. sev-
eral data conditions or the model size). We evalu-
ate our models every 20k iterations and select the
best checkpoint based on BLEU calculated on our
development set newstest2015 afterwards. To
handle all different variations in a well organized
way, we use the workflow manager Sisyphus (Pe-
ter et al., 2018).

In Table 2 we carefully analyze different data
conditions. We can see that the Transformer model
with 20k BPE merging operation already beats our
last year’s final submission by 1.4% BLEU. The
Transformer model was trained using the standard
parallel WMT 2018 data sets (namely Europarl,
CommonCrawl, NewsCommentary and Rapid, in
total 5.9M sentence pairs) as well as the 4.2M sen-

3http://www.cs.umd.edu/˜snover/tercom/
4https://github.com/rwth-i6/CharacTER
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newstest2015 (dev)
Systems BPE BLEU TER CTER

1 RWTH WMT 2017 32.0 - -
2 Transformer 20k 33.4 52.7 48.4
3 + ParaCrawl 20k 30.3 57.8 51.9
4 Transformer 50k 33.9 52.5 47.9
5 + ParaCrawl 50k 31.3 56.5 50.7
6 + Oversample 50k 31.6 56.3 50.5
7 + Filtering 50k 34.7 51.7 46.9

Table 2: Baseline results and analysis of data condi-
tions (De→En). Our baseline starts of with the stan-
dard WMT 2018 training data excluding ParaCrawl
but including already backtranslated NewsCrawl 2015.
”Filtering” refers to filtering ParaCrawl only (50% LM
driven).

tence pairs of synthetic data created in (Sennrich
et al., 2016a). Last year’s submission is an en-
semble of several carefully crafted models using
an RNN-encoder and decoder which was trained
on the same data plus 6.9M additional synthetic
sentences (Peter et al., 2017).

We try 20k and 50k merging operations for BPE
and find that 50k performs better by 0.5% to 1.0%
BLEU. Hence, we use this for all further exper-
iments. As Table 2 shows, just adding the new
ParaCrawl corpus to the existing data hurts the per-
formance by up to 3.1% BLEU.

To counter this effect we oversample Com-
monCrawl, Europarl and NewsCommentary with
a factor of two. Rapid and the synthetic news
data are not oversampled. As we can observe in
Row 6 of Table 2 this gives a minor improve-
ment, but is not enough to counter the negative
effects from adding ParaCrawl. Therefore we
train a 3-gram language model on the monolin-
gual English NewsCrawl2007-2017 data sets us-
ing KenLM (Heafield, 2011) to rank the corpus
and select the best 50% of sentence pairs. To-
gether with oversampling this yields an improve-
ment of 3.4% BLEU over the naive concatenation
of all training data and 0.8% BLEU over the cor-
responding system that does not use ParaCrawl at
all.

Using the best data configuration described we
start to use multiple GPUs instead of one and in-
crease the model size. Each GPU handles a share
of the data and the update steps are synchronized,
such that the effective batch size is increased. As
before we choose the batch size on word level in
such a way that the memory of all GPUs is fully
used. Note that due to time constraints and the size

of the models the reported results are taken from
models which did not yet fully converge. Each
model in Table 3 is trained using 4 GPUs for close
to 8 days.

First we double the dimension of the model
to dmodel = 1024. As can be seen from Ta-
ble 3, together with the increased batch size, this
yields a major improvement of 1.2% BLEU on
newstest2015.

Using a basic English→German system
we backtranslate 26.9M sentences from the
NewsCrawl 2017 monolingual corpus. This
system uses the same transformer configuration
as used for the baseline De→En system and
is trained on the standard parallel WMT 2018
dataset (5.9M sentence pairs). It achieves 28.7%
BLEU and 38.9% BLEU on newstest2015
and newstest2018 respectively. After exper-
imenting with several thresholds we added half
of the backtranslated data (randomly selected)
to our training data which gave us 0.5% BLEU

extra on the development set. Even though
the system is trained on 17.6M synthetic news
sentences from NewsCrawl 2015 (4.2M) and
NewsCrawl 2017 (13.4M), fine-tuning on old
test sets (newstest2008 to newstest2014)
improves it by 0.6% BLEU on newstest2015
and 1.0% BLEU on newstest2017. We set
the checkpoint frequency down to 50 updates
only and select the best out of 14 fine-tuned
checkpoints (selected on newstest2015).
Overall we find it beneficial to match the learning
conditions which are present for the checkpoint
which is fine-tuned: Especially important seems
to be the usage of a similar learning rate in
contrast to using the comparably high initial
learning rate (0.0003).

Adding an extra layer to encoder and decoder
did not change the performance of the system sig-
nificantly. However the model was helpful in the
final ensemble. Similarly increasing the dimen-
sion of the hidden size of the feed forward layers
to 4096 and setting the number of attention heads
to 16 barely changed the performance of the sys-
tem. It turns out to be helpful if we double the
batch size of the model. Because the GPUs avail-
able to us can not handle bigger batches we in-
creased the effective batch size further by accumu-
lating gradient updates before applying them. The
resulting system shown in Table 3 Row 7 is the
best single system provided by RWTH Aachen for
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newstest2015 (dev) newstest2017 newstest2018
Systems BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 Baseline (Table 2 Row 7) 34.7 51.7 46.9 36.4 50.7 47.1 44.5 41.4 39.6
2 + dmodel =1k + 4GPUs 35.9 50.9 46.2 37.6 49.6 45.9 46.1 40.4 38.5
3 + NewsCrawl17 (50%) 36.4 50.1 45.7 38.3 49.2 46.3 46.8 39.6 38.2
4 + fine-tuning 37.0 49.5 45.5 39.3 48.1 45.2 47.5 38.9 37.7
5 + 7th layer 37.2 49.6 45.3 39.3 48.0 45.0 47.5 39.0 37.8
6 + dff =4k + 16 heads 37.0 49.8 45.6 39.0 48.4 45.1 47.5 38.8 37.6
7 + GradAcc=2 37.1 49.2 45.3 39.5 48.0 45.0 47.6 38.8 37.6
8 Ensemble [4,5,7] 37.5 49.1 44.9 39.9 47.6 44.6 48.4 38.1 36.9

Table 3: Main results for the German→English task (Rows 7 and 8 show the submitted system). Note that using
multiple GPUs does not only result in a higher data throughput but also multiplies the effective batch size and
therefore affects the convergence. However if only one GPU is available the results could be still reproduced by
using just gradient accumulation.

nt2015 nt2017
Systems BLEU BLEU TER CTER

Winner 2017 - 35.1 52.4 48.9
RWTH 2017 32.0 33.1 54.2 -
RWTH 2018 37.5 39.9 47.6 44.6

Table 4: Comparison with last years’ submissions on
newstest2015+2017 (De→En). The winning sys-
tem of 2017 was submitted by UEDIN. Missing scores
are due to inconsistent calculations or unavailability.

the German→English task.
Because checkpoint averaging helped in the

past we tried several versions based on last or best
checkpoints of different distances but no version
turned out to be helpful in our case.

Finally model ensembling brought perfor-
mance up to 37.5% BLEU and 39.9% BLEU on
newstest2015 and newstest2017. Overall
we achieved an improvement of 2.8% and 3.5%
BLEU over our baseline.

Table 4 shows that we improved our
system by 6.2% BLEU on average on
newstest2015+2017 since previous year
and by 4.8% BLEU on newstest2017 over the
winning system of 2017 (Sennrich et al., 2017).

4.2 English→Turkish
The English→Turkish task is in a low-resource
setting where the given parallel data consists
of only around 200k sentences. We therefore
apply dropout to various parts of our Trans-
former model: attention/activation of each layer,
pre/post-processing between the layers, and also
embedding—with a dropout probability of 0.3.
This gives a strong regularization and yields 2.6%

BLEU improvement compared to the baseline in
newstest2018 (Row 2 of Table 5).

Although the English and Turkish languages
are from different linguistic roots, we find that
the performance is better by 4.5% BLEU in
newstest2018 when sharing their vocabularies
by tying the embedding matrices (Row 3 of Ta-
ble 5). They are also tied with the transpose of
the output layer projection as done in (Vaswani
et al., 2017). We accordingly use BPE tokens
jointly learned for both languages (20k merge op-
erations). Since the training signals are weak from
the given data, we argue that this kind of parameter
sharing helps to avoid overfitting and copy proper
nouns correctly.

Checkpoint frequency is set to 4k. Other model
parameters and training hyperparameters are the
same as described in Section 3.

Table 5 also shows results with back-translated
data from Turkish News Crawl 2017 (Row 4,
+3.8% BLEU in newstest2018). Using more
than 1M sentences of back-translations does not
help, which might be due to the low quality of
back-translations generated with a weak model
(trained only with 200k parallel sentences). Note
that we oversample the given parallel data to make
the ratio of the parallel/synthetic data 1:1. An
ensemble of this setup with four different ran-
dom seeds shows a slight improvement up to 0.2%
BLEU (Row 4 vs. 6).

Finally, we fine-tune the models with
newstest2016+2017 sets to adapt to the
news domain. We set the learning rate ten times
lower (0.00001) and the checkpoint frequency
to 100. Dropout rate is reduced to 0.1 for a fast
adaptation. This provides an additional boost of
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newsdev2016 (dev) newstest2017 newstest2018
Systems BLEU TER CTER BLEU TER CTER BLEU TER CTER

1 Baseline 6.8 93.0 71.4 7.4 91.6 76.7 7.1 92.1 73.0
2 + dropout 0.3 9.3 84.9 67.0 10.3 83.4 73.4 9.7 84.5 68.0
3 + weight tying 14.2 76.9 59.7 15.8 74.5 61.6 14.2 77.3 62.1
4 + BT 1M sents 16.7 72.3 56.3 20.0 68.0 56.8 17.0 72.3 58.5
5 + fine-tuning 17.6 71.2 56.6 25.0 62.1 53.7 17.7 71.3 58.5
6 Ensemble 4x [4] 16.7 71.8 56.1 20.1 67.7 56.7 17.2 72.0 58.3
7 Ensemble 4x [5] 17.7 70.6 55.8 25.1 62.1 53.1 18.0 71.0 58.0

Table 5: English→Turkish results. Row 6 is the submitted system.

0.7% BLEU for the single model (Row 4 vs. 5)
and 0.8% BLEU for the ensemble (Row 6 vs. 7) in
newstest2018.

4.3 Chinese→English

We use all available parallel data totaling 24.7M
sentence pairs with 620M English and 547M
Chinese words and follow the preprocessing de-
scribed in Section 2. We then learn BPE with
50k merge operations on each side separately.
newsdev2017 and newstest2017 contain-
ing 2002 and 2001 sentences are used as our de-
velopment and test sets respectively. We also re-
port results on newstest2018 with 3981 sam-
ples. We remove sentences longer than 80 sub-
words. We save and evaluate the checkpoints ac-
cording to the BLEU score on the development set
every 10k iterations.

In order to augment our training data, we back-
translate the NewsCrawl2017 monolingual cor-
pus consisting of approximately 25M samples us-
ing a En→Zh NMT system resulting in a total
of 49.5 sentence pairs for training. The En→Zh
NMT model is based on the RNN with attention
encoder-decoder architecture (Bahdanau et al.,
2014) implemented in Returnn5 (Zeyer et al.,
2018). The network is similar to (Bahar et al.,
2017) with 4-layer of bidirectional encoders using
long-short term memory cells (LSTM) (Hochre-
iter and Schmidhuber, 1997). We apply a layer-
wise pre-training scheme that leads to both better
convergence and faster training speed during the
initial pre-train epochs (Zeyer et al., 2018). We
start using only the first layer in the encoder of
the model and add new layers during the train-
ing progress. We apply a learning rate schedul-
ing scheme, where we lower the learning rate if

5https://github.com/rwth-i6/returnn

the perplexity on the development set does not im-
prove anymore.

For Zh→En, we run different Transformer con-
figurations which differ slightly from the model
described in Section 3. Our aim is to investigate
the effect of various hyperparameters especially
the model size, the number of layers and the num-
ber of heads. According to the total number of
parameters, we call these models as below:

• Transformer base: a 6-layer multi-head at-
tention (8 heads) consisting of 512 nodes fol-
lowed by a feed forward layer equipped with
1024 nodes both in the encoder and the de-
coder. The total number of parameters is
121M. Training is done using mini-batches of
3000.

• Transformer medium: a 4-layer multi-head
attention (8 heads) consisting of 1024 nodes
followed by a feed forward layer equipped
with 4096 nodes both in the encoder and the
decoder. The total number of parameters is
271M. Training is done using mini-batches of
2000.

• Transformer large: a 6-layer multi-head at-
tention (16 heads) consisting of 1024 nodes
followed by a feed forward layer equipped
with 4096 nodes both in the encoder and the
decoder. The total number of parameters is
330M. Training is done using mini-batches of
6500 on 4 GPUs.

The results are shown in Table 6. Note that
all models are trained using bilingual plus syn-
thetic data. Comparing the Transformer base and
medium architectures shows that model size is
more important for strong performance than the
number of layers. Adding more layers with big
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newsdev2017 (dev) newstest2017 newstest2018
Systems BLEU TER CTER BLEU TER CTER BLEU CTER

1 Base 23.3 66.8 62.1 23.9 67.2 61.5 24.1 63.8
2 Medium 24.5 65.5 61.0 24.8 65.8 60.9 25.4 63.2
3 Large 24.6 65.2 60.7 25.3 65.6 60.5 26.0 62.8
4 Ensemble (linear) [1,2,3] 25.4 64.5 59.9 25.9 64.9 59.9 26.7 61.8
5 Ensemble (log-linear) [1,2,3] 25.4 64.4 60.1 26.1 64.8 59.4 26.4 62.0
6† Ensemble (linear) 4 checkpoints of [3] 24.4 65.4 60.9 25.6 65.2 60.1 26.7 62.1

Table 6: Results measured in BLEU [%], TER [%] and CTER [%] for Chinese→English. The TER computation on
newstest2018 fails. † indicates the submitted system which is the ensemble of 4 non-converged checkpoints
of the large Transformer.

model size and increasing the batch size up to
6500 provides an additional boost of 0.4% BLEU,
0.3% TER and 0.4% CTER on average on all sets
(see Row 2 and 3). Furthermore, we try an en-
semble of best checkpoints based on BLEU either
using various models or using different snapshots
of the large Transformer. We use both linear and
log-linear ensembling which does not make a dif-
ference in terms of BLEU as shown in the Table.
Log-linear ensembling is slightly better in terms of
TER and is a little bit worse in terms of CTER. We
also combine the 4 best checkpoints of the large
Transformer shown in Row 6 of Table 6.

5 Conclusion

This paper describes the RWTH Aachen Univer-
sity’s submission to the WMT 2018 shared news
translation task. For German→English our ex-
periments start with a strong baseline which al-
ready beats our submission to WMT 2017 by 1.4%
BLEU on newstest2015. Our final submis-
sion is an ensemble of three Transformer mod-
els which beats our and the strongest submis-
sion of last year by 6.8% BLEU respectively 4.8%
BLEU on newstest2017. It is ranked first on
newstest2018 by all automatic metrics for this
year’s news translation task6. We suspect that the
strength of our systems is especially grounded in
the usage of the recently established Transformer
architecture, the usage of filtered ParaCrawl in ad-
dition to careful experiments on data conditions,
the usage of rather big models and large batch
sizes, and effective fine-tuning on old test sets.

In English→Turkish task, we show that proper
regularization (high dropout rate, weight tying)
is crucial for the low-resource setting, yielding

6http://matrix.statmt.org/matrix/
systems_list/1880

a total of up to +7.4% BLEU. Our best system
is using 1M sentences synthetic data generated
with back-translation (+2.8% BLEU), fine-tuned
with test sets of previous year’s tasks (+0.7%
BLEU), and ensembled over four different train-
ing runs (+0.3% BLEU), leading to 18.0% BLEU

in newstest2018. Note that its CTER is better
or comparable to the top-ranked system submis-
sions7. In newstest2017, our system, even if it
is not fine-tuned, outperforms the last year’s win-
ning system by +3.6% BLEU.

For our Chinese→English system multiple
GPU training that allows for larger models and an
increased batch size results in the best preform-
ing single system. A linear ensemble of different
Transformer configurations provides 0.7% BLEU,
0.6% TER and 0.8% CTER on average on top of
the single best model.
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6 Appendix

For our very first experiments with Sockeye a con-
figuration8 from the Sockeye git repository pro-
vided a good starting point.

For our strongest single De→En model (Ta-
ble 3, Row 7) we ended up with the following op-
tions:

--num-layers 6:6

--encoder transformer

--decoder transformer

--num-embed 1024:1024

--transformer-model-size 1024

--transformer-feed-forward

-num-hidden 4096

--transformer-attention-heads 16

--transformer-positional

-embedding-type fixed

--transformer-preprocess n

--transformer-postprocess dr

--embed-dropout 0:0

--transformer-dropout-prepost 0.1

--transformer-dropout-act 0.1

8https://github.com/awslabs/sockeye/
blob/arxiv_1217/arxiv/code/transformer/
sockeye/train-transformer.sh

--transformer-dropout

-attention 0.1

--label-smoothing 0.1

--learning-rate-reduce-num

-not-improved 3

--checkpoint-frequency 20000

--batch-type word

--batch-size 5000

--device-ids -4

--grad-accumulation 2 # see∗

∗ Note that the --grad-accumulation op-
tion is introduced by us and is not provided by the
official Sockeye version. It refers to the accumula-
tion of gradients, described in Section 4.1, which
increases the effective batch-size: In the provided
config the effective batch size is 10000.

For our vocabulary sizes (45k and 34k for Ger-
man and English) the listed configuration results
in a Transformer network with 291M trainable pa-
rameters.
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Abstract
The University of Cambridge submission to
the WMT18 news translation task focuses
on the combination of diverse models of
translation. We compare recurrent, convolu-
tional, and self-attention-based neural mod-
els on German-English, English-German, and
Chinese-English. Our final system combines
all neural models together with a phrase-based
SMT system in an MBR-based scheme. We re-
port small but consistent gains on top of strong
Transformer ensembles.

1 Introduction

Encoder-decoder networks (Pollack, 1990; Chris-
man, 1991; Forcada and Ñeco, 1997; Kalchbren-
ner and Blunsom, 2013) are the current prevail-
ing architecture for neural machine translation
(NMT). Various architectures have been used in
the general framework of encoder and decoder
networks such as recursive auto-encoders (Pol-
lack, 1990; Socher et al., 2011; Li et al., 2013),
(attentional) recurrent models (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015;
Wu et al., 2016; Chen et al., 2018), convolu-
tional models (Kalchbrenner and Blunsom, 2013;
Kaiser et al., 2017; Gehring et al., 2017), and,
most recently, purely (self-)attention-based mod-
els (Vaswani et al., 2017; Ahmed et al., 2017;
Shaw et al., 2018). In the spirit of Chen et al.
(2018) we devoted our WMT18 submission to ex-
ploring the three most commonly used architec-
tures: recurrent, convolutional, and self-attention-
based models like the Transformer (Vaswani et al.,
2017). Our experiments suggest that self-attention
is the superior architecture on the tested language
pairs, but it can still benefit from model com-
bination with the other two. We show that us-
ing large batch sizes is crucial to Transformer
training, and that the delayed SGD updates tech-
nique (Saunders et al., 2018) is useful to increase

the batch size on limited GPU hardware. Further-
more, we also report gains from MBR-based com-
bination with a phrase-based SMT system. We
found this particularly striking as the SMT base-
lines are often more than 10 BLEU points below
our strongest neural models. Our final submis-
sion ranks second in terms of BLEU score in the
WMT18 evaluation campaign on English-German
and German-English, and outperforms all other
systems on a variety of linguistic phenomena on
German-English (Avramidis et al., 2018).

2 System Combination

Stahlberg et al. (2017a) combined SMT and NMT
in a hybrid system with a minimum Bayes-risk
(MBR) formulation which has been proven use-
ful even for practical industry-level MT (Iglesias
et al., 2018). Our system combination scheme is
a generalization of this approach to more than two
systems. Suppose we want to combine q models
M1, . . . ,Mq. We first divide the models into two
groups by selecting a p with 1 ≤ p ≤ q. We
refer to scores from the first group M1, . . . ,Mp

as full posterior scores and from the second group
Mp+1, . . . ,Mq as MBR-based scores. Full poste-
rior models contribute to the combined score with
their complete posterior of the full translation. In
contrast, models in the second group only pro-
vide the evidence space for estimating the prob-
ability of n-grams occurring in the translation.
Full-posterior models need to assign scores via
the standard left-to-right factorization of neural se-
quence models:

logP (yT1 |x,Mi) =

T∑

t=1

logP (yt|yt−11 ,x,Mi)

(1)
for a target sentence y = yT1 of length T given
a source sentence x for all i ≤ p. For exam-
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ple, all left-to-right neural models in this work can
be used as full posterior models, but the right-to-
left models (Sec. 3) and SMT cannot. We com-
bine full-posterior scores log-linearly, and bias the
combined score S(y|x) towards low-risk hypothe-
ses with respect to the MBR-based group as sug-
gested by Stahlberg et al. (2017a, Eq. 4):1

S(y|x) =
T∑

t=1

( p∑

i=1

λi logP (yt|yt−11 ,x,Mi)

︸ ︷︷ ︸
Full posterior

+

q∑

j=p+1

λj

4∑

n=1

P (ytt−n|x,Mj)

︸ ︷︷ ︸
MBR-based n-gram scores

)

(2)
where λ1, . . . , λq are interpolation weights. Eq. 2
also describes how to use beam search in this
framework as hypotheses can be built up from left
to right due to the outer sum over time steps. The
MBR-based models contribute via the probabil-
ity P (ytt−n|x,Mj) of an n-gram ytt−n given the
source sentence x. Posteriors in this form are com-
monly used for MBR decoding in SMT (Kumar
and Byrne, 2004; Tromble et al., 2008), and can
be extracted efficiently from translation lattices us-
ing counting transducers (Blackwood et al., 2010).
For our neural models we run beam search with
beam size 15 and compute posteriors over the 15-
best list. We smooth all n-gram posteriors as sug-
gested by Stahlberg et al. (2017a).

Note that our generalization to more than two
systems can still be seen as instance of the orig-
inal scheme from Stahlberg et al. (2017a) by
viewing the first group M1, . . . ,Mp as ensem-
ble and the evidence space from the second group
Mp+1, . . . ,Mq as mixture model.

The performance of our system combinations
depends on the correct calibration of the interpo-
lation weights λ1, . . . , λq. We first tried to use n-
best or lattice MERT (Och, 2003; Macherey et al.,
2008) to find interpolation weights, but these tech-
niques were not effective in our setting, possi-
bly due to the lack of diversity and depth in n-
best lists from standard beam search. Therefore,
we tune on the first best translation using Pow-
ell’s method (Powell, 1964) with a line search al-

1Eq. 2 differs from Eq. 4 of Stahlberg et al. (2017a) in that
we do not use a word penalty Θ0 here, and we do not tune
weights for different order n-grams separately (Θ1, . . .Θ4).
Both did not improve translation quality in our setting.

gorithm similar to golden-section search (Kiefer,
1953).

3 Right-to-left Translation Models

Standard NMT models generate the translation
from left to right on the target side. Recent work
has shown that incorporating models which gener-
ate the target sentence in reverse order (i.e. from
right to left) can improve translation quality (Liu
et al., 2016; Li et al., 2017; Sennrich et al., 2017;
Hassan et al., 2018). Right-to-left models are of-
ten used to rescore n-best lists from left-to-right
models. However, we could not find improve-
ments from rescoring in our setting. Instead, we
extract n-gram posteriors from the R2L model, re-
verse them, and use them for system combination
as described in Sec. 2.

4 Experimental Setup

4.1 Data Selection
We ran language detection (Nakatani, 2010) and
gentle length filtering based on the number of
characters and words in a sentence on all available
monolingual and parallel data in English, German,
and Chinese. Due to the high level of noise in the
ParaCrawl corpus and its large size compared to
the rest of the English-German data we addition-
ally filtered ParaCrawl more aggressively with the
following rules:

• No words contain more than 40 characters.

• Sentences must not contain HTML tags.

• The minimum sentence length is 4 words.

• The character ratio between source and target
must not exceed 1:3 or 3:1.

• Source and target sentences must be equal af-
ter stripping out non-numerical characters.

• Sentences must end with punctuation marks.

This additional filtering reduced the size of
ParaCrawl from originally 36M sentences to 19M
sentences after language detection, and to 11M
sentences after applying the more aggressive rules.

For backtranslation (Sennrich et al., 2016a)
we selected 20M sentences from News Crawl
2017. We used a single Transformer (Vaswani
et al., 2017) model in Tensor2Tensor’s (Vaswani
et al., 2018) transformer base configuration
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Corpus Over-sampling #Sentences
Common Crawl 2x 4.43M
Europarl v7 2x 3.76M
News Commentary v13 2x 0.57M
Rapid 2016 2x 2.27M
ParaCrawl 1x 11.16M
Synthetic (news-2017) 1x 20.00M
Total 42.19M

Table 1: Training data sizes for English-German
and German-English after filtering.

Corpus Over-sampling #Sentences
CWMT - CASIA2015 2x 2.08M
CWMT - CASICT2015 2x 3.95M
CWMT - Datum2017 2x 1.93M
CWMT - NEU2017 2x 3.95M
News Commentary v13 2x 0.49M
UN v1.0 1x 14.25M
Synthetic (news-2017) 1x 20.00M
Total 46.66M

Table 2: Training data sizes for Chinese-English
after filtering.

for generating the synthetic source sentences. We
over-sampled (Sennrich et al., 2017) WMT data
by factor 2 except the ParaCrawl data and the UN
data on Chinese-English to roughly match the size
of the synthetic data. Tabs. 1 and 2 summarize the
sizes of our final training corpora.

4.2 Preprocessing

We preprocess our English and German data
with Moses tokenization, punctuation normaliza-
tion, and truecasing. On Chinese we first used
the WMT tokenizeChinese.py2 script and
separated segments of Chinese and Latin text
from each other. Then, we removed white-
space between Chinese characters and tokenized
Chinese segments with Jieba3 and the rest with
mteval-v13a.pl. For our neural models
we apply byte-pair encoding (Sennrich et al.,
2016b, BPE) with 32K merge operations. We use
joint BPE vocabularies on English-German and
German-English and separate source/target encod-
ings on Chinese-English.

4.3 Model Hyper-Parameters

We use 1024-dimensional embedding and output
projection layers in all architectures. The embed-
dings are shared between encoder and decoder on

2http://www.statmt.org/wmt17/
tokenizeChinese.py

3https://github.com/fxsjy/jieba

Architecture en-de, de-en zh-en
LSTM 114.2M 192.7M
SliceNet 27.5M 86.4M
Transformer 212.8M 291.4M
Relative Transformer 213.8M 292.5M

Table 3: Number of model parameters.

#Physical Delay #Effective Effective
GPUs factor GPUs batch size BLEU

(g) (d) (g’=gd) (b’=bg’)
1 1 1 2,048 28.2
4 1 4 8,192 29.5
4 4 16 32,768 30.3
4 16 64 131,072 29.8

Table 4: Impact of the effective batch size on
Transformer training on en-de news-test2017 after
3,276M training tokens, beam size 4.

English-German and German-English, but not on
Chinese-English.

LSTM For our recurrent models we adapted the
TensorFlow seq2seq tutorial code base (Luong
et al., 2017) for use inside the Tensor2Tensor li-
brary (Vaswani et al., 2018).4 We roughly fol-
lowed the UEdin WMT17 submission (Sennrich
et al., 2017) and stacked four 1024-dimensional
LSTM layers with layer normalization (Ba et al.,
2016) and residual connections in both the de-
coder and bidirectional encoder. We equipped the
decoder network with Bahdanau-style (Bahdanau
et al., 2015) attention (normed bahdanau).

SliceNet The convolutional model of Kaiser
et al. (2017) called SliceNet is implemented in
Tensor2Tensor. We use the standard configuration
slicenet 1 of four hidden layers with layer
normalization.

Transformer We compare two Transformer
variants available in Tensor2Tensor: the
original Transformer (Vaswani et al., 2017)
(transformer big setup) and the Transformer
of Shaw et al. (2018) with relative positional em-
beddings (transformer relative big
setup). Both use 16-head dot-product attention
and six 1024-dimensional encoder and decoder
layers.

The number of training parameters of our neural
models is summarized in Tab. 3.

4https://github.com/fstahlberg/
tensor2tensor-usr
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Architecture #Effective GPUs Batch size #SGD updates #Training tokens
LSTM 8 4,096 45K 1,475M
SliceNet 4 2,048 800K 6,554M
R2L Transformer 16 2,048 200K 6,554M
Transformer 16 2,048 250K 8,192M
Relative Transformer 16 2,048 250K 8,192M

Table 5: Training setups for our neural models on all language pairs.

4.4 Training

We train vanilla phrase-based SMT systems5 and
extract 1000-best lists of unique translations can-
didates, from which n-gram posteriors are calcu-
lated.

All neural models were trained with the
Adam optimizer (Kingma and Ba, 2015),
dropout (Srivastava et al., 2014), and label
smoothing (Szegedy et al., 2016) using the
Tensor2Tensor (Vaswani et al., 2018) library.
We decode with the average of the last 40
checkpoints (Junczys-Dowmunt et al., 2016a).

We make extensive use of the delayed SGD up-
dates technique we already applied successfully to
syntax-based NMT (Saunders et al., 2018). De-
laying SGD updates allows to arbitrarily choose
the effective batch size even on limited GPU hard-
ware. Large batch training has received some
attention in recent research (Smith et al., 2017;
Neishi et al., 2017) and has been shown partic-
ularly useful for training the Transformer archi-
tecture with the Tensor2Tensor framework (Popel
and Bojar, 2018). We support these findings in
Tab. 4.6 Our technical infrastructure7 allows us to
train on four P100 GPUs simultaneously, which
limits the number of physical GPUs to g = 4 and
the batch size8 to b = 2048 due to the GPU mem-
ory. Thus, the maximum possible effective batch
size without delaying SGD updates is b′ = 8192.
Training with delay factor d accumulates gradients
over d batches and applies the optimizer update
rule on the accumulated gradients. This allows us
to scale up the effective number of GPUs to 16
and improve the BLEU score significantly (29.5
vs. 30.3). Note that training regimens are equiv-
alent if their effective batch size is the same, ie.
training on 4 physical GPUs with d = 4 is mathe-

5Excluding the UN corpus and the backtranslated data.
6We had to reduce the learning rate for g′ = 1 to avoid

training divergence.
7http://www.hpc.cam.ac.uk/
8We follow Vaswani et al. (2017, 2018) and specify the

batch size in terms of number of source and target tokens in
a batch, not the number of sentences.

matically equivalent to training on 16 GPUs with-
out delaying SGD updates. Tab. 5 lists our train-
ing setups for the neural architectures used in this
work. These training hyper-parameters were cho-
sen empirically. Particularly, we did not find im-
provements by increasing the number of effective
GPUs for SliceNet or longer LSTM training.

We use news-test2017 as development set on
all language pairs to tune the model interpolation
weights λ (Eq. 2) and the scaling factor for length
normalization.

4.5 Decoding
We use the beam search strategy with beam size 8
of the SGNMT decoder (Stahlberg et al., 2017b,
2018) in all our experiments. We apply length
normalization (Bahdanau et al., 2015) on German-
English and Chinese-English but not on English-
German. As outlined in Sec. 2 we either use full
posteriors or MBR-style n-gram posteriors from
our individual models. SMT n-gram scores are
extracted as described by Blackwood et al. (2010)
using HiFST’s lmbr tool. We use SGNMT’s
ngram output format to extract n-gram scores
from our neural models.

5 Results

On English-German and German-English news-
test2014 we compute cased BLEU scores with
Moses’ multi-bleu.pl script on tokenized
output to be comparable with prior work (Wu
et al., 2016; Kaiser et al., 2017; Gehring et al.,
2017; Vaswani et al., 2017; Chen et al., 2018). On
all other test sets we use mteval-v13a.pl to
be comparable to the official cased WMT scores.9

First, we will discuss our experiments with a
single architecture, i.e. single systems and ensem-
bles of two systems with the same architecture.
Tab. 6 compares the architectures on all test sets.
PBMT as a single system is clearly inferior to
all neural systems. Ensembling neural systems
helps for all architectures across the board. LSTM

9http://matrix.statmt.org/
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Architecture #Systems English-German German-English Chinese-English
test14 test15 test16 test17 test14 test15 test16 test17 dev17 test17

PBMT 1 19.6 20.9 25.6 20.0 22.5 27.2 32.6 28.2 14.2 15.8

LSTM 1 27.1 28.8 34.6 28.0 33.8 33.3 40.7 34.8 21.8 22.7
2 28.2 29.6 35.5 28.5 34.6 34.0 41.4 35.3 22.7 23.6

SliceNet 1 26.8 28.9 33.6 27.6 32.6 32.3 39.8 33.7 21.4 22.5
2 27.2 29.6 34.6 28.3 33.2 32.9 40.8 34.3 21.8 23.4

R2L Trans. 1 30.3 31.5 36.3 30.2 36.5 35.5 43.5 37.2 24.5 24.9

Transformer 1 30.7 31.9 36.6 30.5 36.7 36.2 43.7 37.9 24.9 25.6
2 31.1 31.8 37.2 31.0 36.9 36.4 44.0 38.1 26.2 26.2

Rel. Trans. 1 31.2 31.9 37.0 31.1 37.0 36.3 44.1 38.1 24.9 25.8
2 31.4 32.3 37.7 31.2 37.2 36.5 44.1 38.4 25.1 26.4

Table 6: Single architecture results on all language pairs for single systems and 2-ensembles.

Full posterior MBR-based n-gram scores BLEU (test2017)
PBMT LSTM∗ SliceNet∗ Trans. Rel. Trans. PBMT LSTM∗ SliceNet∗ R2L Trans. en-de de-en zh-en

1 X 20.0 28.2 15.8
2 X 28.5 35.3 23.6
3 X 28.3 34.3 23.4
4 X 30.5 37.9 25.6
5 X 31.1 38.1 25.8
6 X X 31.3 38.2 26.4
7 X X X X 31.3 38.2 26.4
8 X X X X 31.4 38.2 26.6
9 X X X X X 31.4 38.3 26.8

10 X X X X X X 31.7 38.7 27.1

Table 7: Model combination with ensembling and MBR.Model scores are weighted with MERT and
combined (log-)linearly as described in Sec. 2. ∗: The LSTM and SliceNet models are 2-ensembles.

is usually slightly better than the convolutional
SliceNet, but is much slower to train and decode
(cf. Tab. 3). Note that our LSTM 2-ensemble is
on par with the best BLEU score in WMT17 (Sen-
nrich et al., 2017), which was also based on re-
current models. Transformer architectures outper-
form LSTMs and SliceNets on all test sets. The
right-to-left Transformer is usually slightly worse,
the Transformer with relative positioning slightly
better than the standard Transformer setup.

Tab. 7 summarizes our system combination re-
sults with multiple architectures. Adding LSTM
and SliceNet as full-posterior models to an en-
semble of a Transformer and a Relative Trans-
former does not improve the BLEU score (rows
6 vs. 7). We see very slight improvements when
we use these models to extract n-gram scores in-
stead (rows 6 vs. 8). We report further gains by us-
ing MBR-based n-gram scores from the right-to-
left Transformer and the PBMT system. The im-
provements from adding PBMT are rather small,
but we still found them surprising given that the
PBMT baseline is usally more than 10 BLEU
points worse than our best single neural model.
We list the performance of our submitted systems
on all test sets in Tab. 8.

Direction Test set BLEU

English-German

news-test14 31.6
news-test15 32.6
news-test16 38.5
news-test17 31.7
news-test18 46.6

German-English

news-test14 36.8
news-test15 36.5
news-test16 45.1
news-test17 38.7
news-test18 48.0

Chinese-English
news-dev17 25.7
news-test17 27.1
news-test18 27.7

Table 8: BLEU scores of the submitted systems
(row 10 in Tab. 7).

6 Related Work

There is a large body of research comparing
NMT and SMT (Schnober et al., 2016; Toral and
Sánchez-Cartagena, 2017; Koehn and Knowles,
2017; Menacer et al., 2017; Dowling et al., 2018;
Bentivogli et al., 2016, 2018). Most studies
have found superior overall translation quality
of NMT models in most settings, but comple-
mentary strengths of both paradigms. There-
fore, the literature about hybrid NMT-SMT sys-
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tems is also vast, ranging from rescoring and
reranking methods (Neubig et al., 2015; Stahlberg
et al., 2016; Khayrallah et al., 2017; Grund-
kiewicz and Junczys-Dowmunt, 2018; Avramidis
et al., 2016; Marie and Fujita, 2018), MBR-based
formalisms (Stahlberg et al., 2017a, 2018; Igle-
sias et al., 2018), NMT assisting SMT (Junczys-
Dowmunt et al., 2016b; Du and Way, 2017), and
SMT assisting NMT (Niehues et al., 2016; He
et al., 2016; Long et al., 2016; Wang et al., 2017;
Dahlmann et al., 2017; Zhou et al., 2017). We con-
firm the potential of hybrid systems by reporting
gains on top of very strong neural ensembles.

Ensembling is a well-known technique in NMT
to improve system performance. However, ensem-
bles usually consist of multiple models of the same
architecture. In this paper, we compare and com-
bine three very different architectures (recurrent,
convolutional, and self-attention based) in two dif-
ferent ways (full posterior and MBR-based), and
find that combination with MBR-based n-gram
scores is superior.

7 Conclusion

We have described our WMT18 submission,
which achieves very competitive BLEU scores
on all three language pairs (English-German,
German-English, and Chinese-English) and sig-
nificantly higher accuracies in a variety of lin-
guistic phenomena compared to other submis-
sions (Avramidis et al., 2018). Our system com-
bines three different neural architecture with a tra-
ditional PBMT system. We showed that our MBR-
based scheme is effective to combine these diverse
models of translation, and that adding the PBMT
system to the mix of neural models still yields
gains although it is much worse as stand-alone sys-
tem.
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Abstract
We describe LMU Munich’s unsuper-
vised machine translation systems for
English↔German translation. These systems
were used to participate in the WMT18 news
translation shared task and more specifically,
for the unsupervised learning sub-track. The
systems are trained on English and German
monolingual data only and exploit and com-
bine previously proposed techniques such as
using word-by-word translated data based on
bilingual word embeddings, denoising and
on-the-fly backtranslation.

1 Introduction

The LMU Munich’s Center for Information
and Language Processing participated in the
WMT 2018 news translation shared task for
English↔German translation. Specifically, we
participated in the unsupervised learning task
which focuses on training MT models without ac-
cess to any parallel data. The team has a strong
track record at previous WMT shared tasks (Bojar
et al., 2017, 2016, 2015, 2014, 2013) working on
SMT systems (Cap et al., 2014, 2015; Weller et al.,
2013; Sajjad et al., 2013; Huck et al., 2016; Peter
et al., 2016; Tamchyna et al., 2016) and proposed
a top scoring linguistically informed neural ma-
chine translation system (Huck et al., 2017) based
on human evaluation at WMT17.

Neural machine translation (NMT) is state-of-
the-art in automatic translation. Attention-based
neural sequence-to-sequence models (Bahdanau
et al., 2015) have been established as the basis
for most recent work in MT and furthermore, have
been used to obtain best scoring systems at WMT
in recent years (Bojar et al., 2017, 2016). Previ-
ous work and the best scoring systems at WMT
also showed that NMT can be scaled to millions
of sentence pairs and even achieve human par-
ity (Hassan et al., 2018). However, this comes

under the caveat that we have access to a large
amount of human-translated parallel data. Koehn
and Knowles (2017) showed that NMT models
cannot be properly trained under low resource
conditions and are still behind phrase-based mod-
els. In extremely low resource scenarios, NMT
fails completely which is a big obstacle if we
want to enable automatic translation over a va-
riety of languages. This motivates the unsuper-
vised learning task at WMT this year. The task
is run for three language pairs, but we only fo-
cus on English↔German translation. Although
this language pair has an abundance of parallel
data, we are constrained to only using monolin-
gual data provided for the WMT18 news transla-
tion task, excluding Europarl and News Commen-
tary because of content overlap.

The systems we use for our submissions are
based on the recently proposed techniques for un-
supervised machine translation by several stud-
ies (Artetxe et al., 2018; Lample et al., 2018a,b).
The phrase-based unsupervised system uses bilin-
gual word embeddings (BWEs) to create an ini-
tial phrase table and also utilizes a target-side n-
gram language model. The backbone of the un-
supervised NMT methods is denoising and on-
the-fly backtranslation which enable a standard
NMT architecture to be trained by only leverag-
ing monolingual data. The model for our submis-
sion is mostly based on the work of Lample et al.
(2018b). Additionally, we explore how word-by-
word translated data based on BWEs can be uti-
lized to improve the initial training and experi-
ment with different ways of producing these trans-
lations. We also show that disabling denoising in
the last stages of learning can provide for further
improvements. We refer the reader to Huck et al.
(2018) for our supervised systems for news and
biomedical translation.
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The remainder of the paper outlines the methods
we used for generating BWEs, training a phrase-
based and neural unsupervised machine transla-
tions systems. Moreover, it presents the obtained
results as well as translation examples showcasing
some of the strong and weak points of the NMT
system.

2 Bilingual Word Embeddings

Both our phrase-based and neural unsupervised
machine translation systems are based on bilingual
word embeddings which represent source and tar-
get language words in a shared vector space. Re-
cently, Conneau et al. (2017) showed that good
quality bilingual embeddings can be produced by
training monolingual models for both source and
target languages and mapping them to a shared
space without any bilingual signal. We follow
this approach and use bilingual word embeddings,
trained in an unsupervised fashion, to jump-start
both of our systems.

As our baseline system we produce word-by-
word translations relying only on the embeddings.
For each wordws in the source sentence we induce
its translation:

trwbw(ws) = argmax
w∈Vt

cos(e(ws), e(w))

where e(w) is the vector representation of word
w, cos(x, y) is the cosine similarity of two vectors
and Vt is the target vocabulary.

One problem with the approach arises when
translating German compound words which are
combinations of two or more words that function
as a single unit of meaning. In most of the cases,
these words should be translated into multiple En-
glish words which causes errors when translating
them word by word. The issue is also present
when translating from English to German since
multiple words should be transformed into one
unit. To overcome this issue we experimented with
bigrams in addition to unigrams. We tried a sim-
ple idea, namely, we looked for frequent bigrams
in the English side of both the monolingual input
data and the test set. We replaced bigrams with
their concatenated forms in the sentences and also
kept the original sentence. By training bilingual
word embeddings on this data we automatically al-
low the word-by-word algorithm to translate com-
pound words to bigrams and vice-versa.

To further improve the quality of our algorithm,
we exploited orthographic similarity of words.
Braune et al. (2018) showed that the performance
of inducing word translations can be significantly
improved using orthography. Following the ap-
proach there, we obtained improvements, espe-
cially when translating named entities, by using
the following word translation function:

trorth(ws) = argmax
w∈Vt

max

(
cos(e(ws), e(w)),

λ ∗ orth(ws, w))

)

where λ is a weighting constant and orth(w1, w2)
is the normalized Levenshtein distance of words
w1 and w2.

As a contrastive set of experiments we added
light supervision during the training of bilingual
word embeddings in order to show performance
differences compared to the fully unsupervised
setup. To map monolingual spaces we used or-
thogonal mapping (Xing et al., 2015) with a seed
lexicon of of 5000 word pairs, which was used as
a baseline in (Conneau et al., 2017) as well.

2.1 Technical Details
To train monolingual word embeddings we used
fasttext (Bojanowski et al., 2017) which employs
subword information for better quality representa-
tions. We used 512 dimensional embeddings and
default values for the rest of the parameters. For
both unsupervised and lightly supervised mapping
we used MUSE (Conneau et al., 2017) with de-
fault parameters. We fine-tuned λ on the test set
of WMT 2017 and used the method of (Mikolov
et al., 2013) to mine frequent bigrams.

3 Unsupervised Phrase-based
Translation

We have investigated unsupervised phrase-based
translation (PBT). The results have been worse
than with the neural model in our experiments. In
this section, we therefore only give a short out-
line of the methods which we have explored in that
area.

By means of a straightforward format conver-
sion of the BWE lexicon, we can create a word-
based “phrase table” that can be loaded into the
Moses decoder (Koehn et al., 2007). The cosine
similarities from the BWE model become feature
scores in the phrase table. Note that we refrained
from normalizing the cosine similarities, but wrote
their values directly to the table.
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Using Moses for decoding carries the advantage
that an n-gram language model can be integrated
without any implementation effort. Once we have
added a language model, we can also activate re-
ordering. A distance-based distortion cost may
then be added as a further feature.

An obvious difficulty is how to choose the
weights for the features. If we assume that a
small amount of bitext is actually available (say,
a few hundred sentence pairs), then we can tune
the weights with MERT or MIRA. We did the lat-
ter and built tuned unsupervised phrase-based sys-
tems in the outlined way for both translation direc-
tions.

With this initial system, we created synthetic
training data. We translated around 50 M mono-
lingual sentences from German to English. Not
only the translations, but also the decoding word
alignments were stored. Next, phrases can be ex-
tracted from the synthetic parallel corpus. We can
use this new phrase table in the Moses decoder
to build a better English→German unsupervised
phrase-based system. The feature weights can be
tuned again with MERT/MIRA. Word penalty and
phrase penalty become useful with the phrase ta-
ble from synthetic data. The new phrase table con-
tains phrases of different lengths, not only words
(or word bigrams).

We trained an English→German unsupervised
phrase-based system according to the pipeline that
we just described. Its output was uploaded as a
contrastive submission, but we decided to not ear-
mark it for manual evaluation.

4 Unsupervised Neural Translation

The system we used in this work builds on previ-
ous work on unsupervised neural machine transla-
tion (Artetxe et al., 2018; Lample et al., 2018a,b).
We mostly make use of the techniques suggested
in Lample et al. (2018b).

Before training the unsupervised NMT system
proposed in Lample et al. (2018b), it is impor-
tant to properly initialize certain key components
which are otherwise randomly initialized. For that
purpose, they propose to initialize the encoder and
decoder embeddings with BPE-level embeddings
trained using fasttext (Bojanowski et al., 2017).
The BPE splitting is computed jointly on the Ger-
man and English monolingual data. Given that
these two languages are related and share surface
forms, this technique is a reasonable choice.

The model proposed in Lample et al. (2018b)
consists of two main components, a denoising and
a translation component. The denoising part acts
as a language model and is trained to produce flu-
ent output in a given language based on a noisy
version of the input. We follow the implementa-
tion of Artetxe et al. (2018) where the noisy ver-
sion of the input sentence is obtained by making
random swaps of contiguous words. Denoising
helps to produce fluent output, but it’s also used
to enable reordering, and insertions and deletions
of words. This is necessary since the model ini-
tially tends to do word-by-word translations while
in German and English the word order is different.

The translation component works in a tradi-
tional way. However, given that the model doesn’t
have access to parallel data, it needs to make use
of on-the-fly backtranslation. During training, the
same model is used to backtranslate a sentence
from the monolingual data and this pair of back-
translated sample/gold standard sample is used to
train the model in a traditional fashion.

In order to enable for the denoising, or lan-
guage model effects to be transferred to the trans-
lation component, many parameters in the model
are shared. The encoder is shared for German
and English. This forces the model to produce a
language-agnostic representation of the input sen-
tence. It also enables for the decoder and the at-
tention mechanism to be shared across both lan-
guages. Although the decoder is shared, a lan-
guage identifier token is added at the beginning
of each sentence only on the target side. In our
experiments, we observed problems if we try to
share the softmax layer, because the output tended
to be a mixture of both German and English.

In the model used for our final submission,
we use all of the outlined techniques from Lam-
ple et al. (2018b). However, we used additional
data in the initial learning procedure and modified
the training curricula in order to improve perfor-
mance. In our experiments, we observed some
initial training difficulties. As a result, in order to
facilitate faster and easier learning, we make use
of word-by-word translated synthetic parallel data,
in addition to initializing the encoder and decoder
embeddings. In our model, the training consists of
alternative batches of monolingual data used for
denoising and backtranslation and the word-by-
word translated synthetic data. The word-by-word
translations are obtained as described in Section 2.
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We also apply BPE splitting on this data before us-
ing it in training.

After a certain number of iterations, we stop
with the training of the initial model and “un-
plug” two components of the previous training
procedure. Namely, we remove the word-by-word
translated data since this is useful to jump-start the
learning, but later presumably will impede learn-
ing more nuanced translations. We also observe
better results if we disable the denoising compo-
nent and continue the training by only doing on-
the-fly backtranslation. This improved results on
both translation directions by more than 1 BLEU
(Papineni et al., 2002). However, in subsequent
experiments we observed that this can also lead
to unstable learning and decrease the performance
since bad translation decisions can be reinforced.
As a result, the final training procedure should be
carefully controlled.

As mentioned in Section 2, the model has prob-
lems translating named entities. This stems from
the fact that it is dependent on BWEs, where
two different named entities often mistakenly have
similar representations, causing confusion. Fol-
lowing the improvements the word-by-word trans-
lation obtained by using orthographic similarity,
we also try training a model with word-by-word
translated data utilizing this similarity. We also
use word-by-word translated data obtained by us-
ing bigrams and orthographic similarity.

5 Empirical Evaluation

The models in this work are trained on German
and English NewsCrawl articles from 2007 to
2017. Since the total size of this data is very large,
we randomly sampled 4M sentences for each lan-
guage. Moreover, we study if there is any notice-
able effect if we only utilize more recent data. As a
result, we sampled 4M samples from NewsCrawl
2017 and report results with this dataset as well.

The datasets are tokenized and truecased with
the standard scripts from the Moses toolkit (Koehn
et al., 2007). When training the truecase models,
we actually use all of the available NewsCrawl
data, rather than our subsample. We also use
BPE splitting. The BPE segmentation is com-
puted jointly on all the NewsCrawl data available
for both languages. Then, all sentences with more
than 50 tokens are discarded. The NewsCrawl data
is also used to train the BPE-level embeddings.

We implement our neural system on top of

BWE unsupervised
de-en en-de

wbw 11.50 6.94
wbw+bigram 11.77 6.75

wbw+orth 12.37 7.92
wbw+orth+bigram 12.58 7.64

BWE lightly supervised
de-en en-de

wbw 10.99 7.28
wbw+bigram 11.28 7.08

wbw+orth 11.70 8.24
wbw+orth+bigram 11.98 7.93

Table 1: Baseline results (BLEU) with word-by-word trans-
lation on newstest2018. We indicate the use of bigrams and
orthographic similarity with bigram and orth respectively.

the code made available by Artetxe et al. (2018).
The model is an attention-based encoder-decoder
NMT with 2-layer GRU encoder and decoder. The
number of hidden units is 600. We set the learning
rate to 0.0002 and dropout in the encoder and de-
coder to 0.3. We checkpoint the model each 10K
updates. The batch size is 32.

5.1 BWE Baseline Experiments

We present our word-by-word translation baseline
results in Table 1. Using bigrams on the English
side helped for de-en but not for en-de. By analyz-
ing translations we can conclude that 1) German
compound words are correctly translated to multi-
ple words in many cases and 2) the drop of en-de
direction is caused by incorrectly translating bi-
grams, that are non-compounds on the target side,
to one token units. On the other hand, using or-
thographic information gave significant improve-
ments in both directions. The technique alone pro-
vided for improved translation of named entities
without the use of a costly NER system. We got
our best results by combining bigrams and ortho-
graphic similarity for German→English.

Comparing the results with the unsupervised
and lightly supervised mapping it can be seen that
the two systems are on par in performance, the for-
mer results higher BLEU points in case of de-en
but lower for en-de. Our conjecture is that the mul-
tiple translations of the source words in the used
lexicon helped tackle the morphological richness
of the German language on the target side while it
was not helpful otherwise.
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5.2 Unsupervised PBT Results

The top half of Table 2 reports the translation qual-
ity that we achieved with the phrase-based un-
supervised approach (cf. Section 3), measured in
case-sensitive BLEU. Our test set for these experi-
ments is newstest2017 (whereas the BLEU scores
in Table 1 are on newstest2018). The experi-
ment in the first line of Table 2 is conceptually
equivalent to the unsupervised “wbw” experiment
from Table 1. We use the Moses decoder to per-
form monotonic word-by-word translation with-
out a language model (LM) or any other feature
functions except for the single translation model
(TM) score that we obtain from the cosine simi-
larities. If we add a 4-gram LM and heuristically
weight the LM feature function with a scaling fac-
tor of 0.1 and the TM with 0.9 (second line in Ta-
ble 2), the translation quality improves by more
than 2.5 BLEU points in both of the two transla-
tion directions. By using a small parallel develop-
ment set (newstest2016) to tune the two weights
with MIRA (Cherry and Foster, 2012) (third line),
we barely improve over our guessed scaling fac-
tors of 0.1 for the LM and 0.9 for the TM. Opti-
mized scaling factors are however more relevant
when we allow for reordering (fourth line), since
we then activate a third feature function, namely a
distance-based distortion cost. This adds another
scaling factor, and a good informed guess of rea-
sonable values for three weights becomes increas-
ingly difficult. Activated reordering with tuned
weights boosts our translation quality further.

We can go beyond simple word-by-word trans-
lation if we add our BWE bigrams to the TM,
thus also enabling 1:2, 2:1, and 2:2 translation by
means of new phrase table entries. Reordering and
the 4-gram LM are kept active in the new config-
uration. But to give the system control over the
lengths of the hypothesis translations (which now
can differ from the input sentence lengths), we
also activate the word penalty and phrase penalty
feature functions, and we include three more bi-
nary indicator features for table entries that are
1:2, 2:1, and 2:2, respectively. The scaling factors
are optimized on newstest2016 again. With bi-
grams, we observe higher translation quality in the
German→English translation direction, but not in
the English→German direction (fifth line in Ta-
ble 2). This is consistent with what we noted
above (cf. Table 1).

Finally, we created 50 M synthetic sentence

unsup. PBT
de-en en-de

wbw (Moses decoder) 7.92 4.49
+ 4-gram LM (weighted 0.1) 10.52 7.21

+ tuned weights 10.73 7.20
+ reordering 11.47 7.66

+ bigram 12.44 7.61
synthetic data – 10.66

unsup. NMT
de-en en-de

baseline 13.77 10.45
fine-tune w/o denoising 15.03 12.08

w/ orth 16.06 12.38
w/ orth + bigram 16.98 13.13
NewsCrawl 2017 16.42 12.46

Table 2: BLEU scores with the unsupervised systems on
newstest2017.

pairs from German monolingual data with our
best German→English phrase-based unsuper-
vised system. With a phrase table extracted
from the synthetic data, we achieve our best
phrase-based unsupervised translation result in
the English→German translation direction (sixth
line).1

5.3 Unsupervised NMT Results

We show the results from our unsupervised neu-
ral systems (cf. Section 4) in the bottom half of
Table 2. The translation quality still lags behind
supervised translation systems. Only one other
team (RWTH Aachen University) competed in
the WMT18 unsupervised learning sub-track, and
the performance of their unsupervised systems is
roughly comparable to our submissions.

Our final submission system was trained on
a subsample of NewsCrawl from 2007 to 2017.
We did not include any of the orthographic sim-
ilarity or bigram word-by-word translated data.
The model selection was done based on the new-
stest2017 test set and we use the same model
checkpoint for both translation directions. For the
final submission model, we removed the word-by-
word translated data after 6K iterations and sub-
sequently trained the model for a total of 300K
iterations. This model was able to obtain 13.77
on the de-en and 10.45 on en-de translation task.
Subsequently, we disabled denoising and contin-

1In consideration of the computational cost, we decided to
try synthetic data in only one of the two translation directions.
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ued the training just with on-the-fly backtransla-
tion which managed to provide for further gains
of 1.26 for de-en and 1.63 for en-de. In subse-
quent experiments we observed that removing the
word-by-word translated data does not change the
performance and for the contrastive experiments,
for simplicity, we remove it at the same time as
disabling denoising.

Our contrastive experiments show that the
choice of data can have some effect on the trans-
lation performance. Training a model on a sub-
sample of NewsCrawl 2017, showed to be more
beneficial. Using more recent data can provide
for better correlation between the training and test
sets. However, it is difficult to pinpoint whether
this is because of better general content overlap or
because of the recency of the data.

In the word-by-word translations, the use of or-
thographic similarity proved to be very helpful.
Some of those effects are transfered when we use
that data in the neural system. For de-en it pro-
vided for an improvement of 1.03 BLEU, while
for en-de only 0.30 BLEU.

Adding bigrams did not provide for consis-
tent improvements in the word-by-word transla-
tions. However, the neural system managed to
make use of these translations better, most likely
from the additional reordering that is contained
in this data. Furthermore, compound words in
German are handled better in this way, since we
have a more direct mapping between them and En-
glish words. We only present results with trans-
lations obtained with the combination of ortho-
graphic similarity and bigrams. Adding bigrams,
improved upon the orthographic similarity transla-
tions by 0.92 for de-en and 0.75 for en-de. Using
this technique, we obtain the highest performance
on both translations directions.

We also extracted pseudo parallel sentences by
mining NewsCrawl 2015. The similarity of a sen-
tence pair is computed by calculating the average
similarity between all source-target pairwise word
similarities. The similarity between a source and
target word is computed based on the BWEs and
the orthographic similarity. We extracted ≈8K
sentences. We oversampled the dataset to the
size of the monolingual data and used it at the
beginning of the training. We also attempted to
use the original 8K sentences as a last fine-tuning
step. Both approaches did not provide for im-
provements over our best scoring system.

6 Analysis

In Table 3 we present examples and we compare
German→English translations with the different
contrastive setups we outline in the experimental
results. We show the phenomena that we observed
and discuss some of the challenges that the sys-
tems are still not able to overcome. This can be a
useful analysis that can provide insight into where
future work should focus on.

In the first example we see that the models are
to some extent able to do simple reorderings and
insertions. We can see that most models were able
to properly reorder “wollte die 45-Jährige” to “the
45-year-old wanted”. The Orth. + bigram and
NewsCrawl 2017 were able to move “beruhigen”
(calm) in front of “their brother” and furthermore
inserted the preposition “to”.

In the second example, we can observe that the
models were again able to infer that the phrase
“tot aufgefunden” should be reordered to “found
dead”. Additionally, the whole phrase was in-
serted at a much more appropriate place in the En-
glish sentence rather than at the end. Another in-
teresting phenomenon is that the NewsCrawl 2017
model was able to do a 2-1 mapping by translating
“Einkaufzentrums” to “shopping centre”. On the
other hand, this example shows the challenges our
models encounter. Given the relatively unintuitive
mapping between “Koch” and “Hopkinson” that
we have from the BWEs, the models had difficulty
properly translating this word. Furthermore, most
of them were not able to infer that “nach” in com-
bination with “gezogen” translates to “moved to”
and we see some more literal translations.

The third example shows some of the issues
we had with translating named entities. Mod-
els without the orthographic similarity extension
had trouble finding a suitable translation of “Erdo-
gans”. Furthermore most of the models inferred
that adding the preposition “of” is necessary in
this case.

The last example shows the importance of the
dataset being used. The first three systems are
trained on the same data and didn’t translate
“Kalendar” as opposed to the one trained on a sub-
sample of NewsCrawl 2017. Although not neces-
sarily related to the dataset being more recent, it
shows that it most likely contained sentences that
enabled proper translation to “calendar”.
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source Gemeinsam mit ihrem Lebensgefährten wollte die 45-Jährige ihren Bruder beruhigen.
reference The 45-year-old and her partner wanted to calm down her brother.
Final submission Met with her boyfriend, the 45-year-old wanted their brother calming.
Orthographic Watching her boyfriend, the 45-year-old didn’t have handled their brother.
Orth. + bigram Together with her boyfriend, the 45-year-old wanted to calm their brother.
NewsCrawl 2017 Together with her boyfriend, the 45-year-old wanted to calming their brother.
source Ein 28-jähriger Koch, der vor kurzem nach San Francisco gezogen ist, wurde im Treppenhaus eines

örtlichen Einkaufzentrums tot aufgefunden.
reference A 28-year-old chef who had recently moved to San Francisco was found dead in the stairwell of a

local mall this week.
Final submission A 28-yard Koch, who was pulled before he was pulled after San Francisco, was found in the stairwell

of a local outlet dead Province.
Orthographic A 28-year-old Reid, who has ever been relocated after San Francisco, was found dead in the hallway

of a local crop.
Orth. + bigram A 28-yard Koch, who recently moved after San Francisco, was found dead in the hallway of its local

outlet.
NewsCrawl 2017 A 28-year-old Koch, who was given her home to San Francisco, was found dead in the stairwell of a

local shopping centre.
source Der Sport ist - wie das ganze Land - gespalten in Anhänger und Gegner Erdogans.
reference The sport - like the entire country - is divided into those who support Erdogan, and those who do not.
Final submission The sport is - like the whole country - divided in supporters and opponents Drogba.
Orthographic The BBC is - like the whole country - divided in supporters and opponents of Erdogan.
Orth. + bigram The sports is - like the whole country - divided in supporters and opponents of Erdogan.
NewsCrawl 2017 The sport is - like the whole country - divided in supporters and opponents of Mrs. May.
source Das Treats Magazin arbeitet mit dem Fotografen David Bellemere zusammen, um einen 1970er Jahre

Pirelli-inspirierten Kalendar für 2017 herauszubringen.
reference Treats magazine is partnering with photographer David Bellemere to launch a 1970s’ Pirelli-inspired

calendar for 2017.
Final submission The Treats magazine works with the photographers David Bellemere together, when a 1970s Pirelli-

inspiring Kalendar for 2017 dates.
Orthographic The Treats magazine works with the photographers David Bellemere together to bring a 1970s Pirelli-

inspiring Kalendar for 2017.
Orth. + bigram The Treats magazine works with the photographers David Bellemere together to bring a 1970s Pirelli-

inspected Kalendar for 2017.
NewsCrawl 2017 The Treats magazine works with the brains David Bellemere together to attribute a 1970s Pirelli

inspires calendar for 2017.

Table 3: Example translations obtained using the different neural systems.

7 Conclusion

Corpus-based machine translation approaches typ-
ically require parallel training data. In this work,
we have investigated methods which allow for un-
supervised learning of translation models, i.e., we
have examined how machine translation systems
can be trained without any parallel data.

LMU Munich is one of two teams who partic-
ipated in the WMT18 unsupervised learning sub-
track for machine translation of news articles be-
tween German and English. Our shared task sub-
mission consists of an unsupervised phrase-based
translation system and an unsupervised neural ma-
chine translation system.

We have shown how bigrams and orthographic
similarity in the underlying bilingual word embed-
dings benefit the results. We have presented effec-

tive unsupervised learning techniques for both the
phrase-based and the neural paradigm and have
demonstrated how an effective training curriculum
improves translation quality.
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Abstract

We participated in the WMT 2018 shared
news translation task on English↔Chinese
language pair. Our systems are based
on attentional sequence-to-sequence
models with some form of recursion
and self-attention. Some data augmen-
tation methods are also introduced to
improve the translation performance.
The best translation result is obtained
with ensemble and reranking techniques.
Our Chinese→English system achieved
the highest cased BLEU score among
all 16 submitted systems, and our
English→Chinese system ranked the third
out of 18 submitted systems.

1 Introduction

In recent years, the emergence of seq2seq mod-
els has revolutionized the field of MT by re-
placing traditional phrase-based approaches with
neural machine translation (NMT) systems based
on the encoder-decoder paradigm. A successful
extension of encoder-decoder models is the at-
tention mechanism which conducts a soft search
over source tokens and yields an attentive vec-
tor to represent the most relevant segments of
the source sentence for the current decoding state
(Luong et al., 2015; Bahdanau et al., 2014;
Wu et al., 2016; Sutskever et al., 2014; Tu
et al., 2016; Zhou et al., 2016). Most re-
cently, the Transformer model, which is based
solely on a self-attention mechanism and feed-
forward connections, has further advanced the

field of NMT, both in terms of translation quality
and speed of convergence(Vaswani et al., 2017;
Ahmed et al., 2018). In this paper, we de-
scribe the Tencent NMT (TNMT) systems sub-
missions for the WMT 2018 Chinese→English
and English→Chinese translation task.

We propose two different architectures as our
end to end approaches namely RNMT and Trans-
former. For RNMT, we implemented a hy-
brid multi-layer attention-based encoder-decoder
model. The decoder was implemented as Recur-
rent Neural Networks (RNNs) and the encoder
was represented with self-attention layers. We
also integrated with some recent promising tech-
niques in RNMT including the methods which
made significantly contribution to the success of
Transformer. In doing so, we come up with an
enhanced version of RNMT that achieves compa-
rable performance with Transformer. For Trans-
former, we follow the latest version of the Trans-
former model in the public Tensor2Tensor1 code-
base. The Transformer model replaces the recur-
rent connections with self-attention which can be
taken as a complement with the RNMT model.

For data augmentation, we used automatic
back-translation of a sub-selected monolingual
News corpus as additional training data(Sennrich
et al., 2015). To achieve strong machine trans-
lation performance, we further leverage the joint
training method described in (Hassan et al.,
2018) to optimize both the target-to-source (T2S)
and source-to-target (S2T) model by extending

1https://github.com/tensorflow/tensor2tensor
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the back-translation method. The joint train-
ing method uses both the monolingual and bilin-
gual data and updates NMT models through sev-
eral iterations. We also apply several knowl-
edge distillation methods to leverage the infor-
mation gain of different architectures. To allevi-
ate the exposure bias problem of the left-to-right
(L2R) model, Agreement Regularization was in-
troduced as a teacher network (Hassan et al.,
2018; Liu et al., 2016). Ensemble teacher net-
works and architecture teacher networks are also
introduced to boost the performance of a single
model.

In addition, we consider the system combi-
nation and improve the performance by rerank-
ing (Koehn et al., 2003) the n-best translation
outputs of the ensemble models with some ef-
fective features, including the target-to-source
(T2S) score, left-to-right (L2R) score, right-to-
left (R2L) score, Transformer score and RNMT
score. The ensemble models are trained with dif-
ferent architectures or parameter settings to in-
crease the diversity of the system. As a result, our
Chinese→English system achieved the highest
cased BLEU score among all 16 submitted sys-
tems, and our English→Chinese system ranked
the third out of 18 submitted systems.

2 NMT Baseline System

We apply two different NMT architectures for the
shared news translation task as our baseline sys-
tems.

1. RNMT: A hybrid deep attentional encoder-
decoder networks with a stack Long Short
Term Memory (LSTM) recurrent neural net-
work for decoder and a deep self-attention
network for encoder. Inspired by Trans-
former, Multi-head additive attention is used
instead of the single-head attention in the
RNMT model. Layer normalization is also
applied within the output of LSTM cells. In
our setup, the dimension of word embed-
dings and the hidden layers are both set to
1024. The encoder has 6 self-attention lay-
ers and the decoder has 3 LSTM layers.

2. Transformer: Our reimplementation of ten-
sor2tensor with minor changes. We also im-
plement a C++ version of the system for
speeding up the decoding process. The de-
fault parameters of Transformer Big model
is adopted as our transformer baseline and
we further change the hyper-parameters to
find the best settings on the develop set.

We train the models with adadelta(Zeiler,
2012), reshuffling the training corpus between
epochs. We batched sentence pairs by approx-
imate length, and limited input and output to-
kens per batch to 8192 per GPU. Each resulting
training batch contained approximately 60, 000
source and 60, 000 target tokens. To avoid gra-
dient explosion, the gradients of the cost func-
tion which had `2 norm larger than a predefined
threshold 25 were normalized to the threshold.
During training, we employed label smoothing of
value ranging from 0.05 to 0.2 and set dropout
rate from 0.01 to 0.3(Hinton et al., 2012; Pereyra
et al., 2017). We perform early stopping on
the baseline system and validate the model every
1000 mini-batches against BLEU on the WMT
17 news translation test set.

3 Experiment Techniques

3.1 Back Translation
In statistical machine translation, large monolin-
gual corpora in the output language have tradi-
tionally been used for training language models
to make the system output more fluent. However,
it is difficult to integrate language models in cur-
rent NMT architectures. Instead of ignoring such
large monolingual corpora, Sennrich et al. (2015)
exploited large corpora in the output language by
translating a subset of them into the input lan-
guage and then using the resulting synthetic sen-
tence pairs as additional training data. We trans-
lated monolingual English text into Chinese us-
ing our English→Chinese system and translated
monolingual Chinese text into English using our
Chinese→English system described in Section 2.
To improve the quality of the synthetic corpus we
propose to use the ensemble models to translate
the target sentence.
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To select sentences for back-translation, we
used semi-supervised convolutional neural net-
work classifiers (Chen et al., 2017) and LSTM
language models respectively. We selected 80M
sentences from the target monolingual corpus
based on both their classifier and language model
scores, which reflect their similarity to the in-
domain corpus. The selected sentences are then
translated and divided into 8 portions with each
contains 10M synthetic sentence pairs. Each por-
tion is used to enhance an individual baseline
model.

3.2 Joint Training of Source-to-Target and
Target-to-Source Models

Back translation augments parallel data with
plentiful monolingual data, allowing us to train
source-to-target (S2T) models with the help of
target-to-source (T2S) models. In order to lever-
age both source and target language monolingual
data, and also let S2T and T2S models help each
other, we leverage the joint training method to
optimize them by extending the back-translation
method(Zhang et al., 2018).

The joint training method uses both the source
and the target monolingual data and updates
NMT models through several iterations. In it-
eration 1, the process can be viewed as tradi-
tional back translation methods. The T2S model
translated the target monolingual data to help the
S2T model. Similarly, we can optimize the T2S
translation model with the help of S2T transla-
tion model. In iteration 2, the above process is
repeated, and the synthetic training data are re-
translated with the updated T2S and S2T model.
It is worth noting that ensemble models are used
to generate the synthetic corpus so that the neg-
ative impact of noisy translations can be min-
imized. In order to increase the robustness of
the system, we also re-translated the target of the
bilingual corpus as the synthetic data. The joint
training process continues until the performance
on a development data set is no longer improved.
We repeated three iterations for all our systems.

3.3 Knowledge Distillation
Knowledge distillation describes a method for
training a student network to perform better by
learning from a stronger teacher network. In
our experiments, it is surprising to find that the
teacher network is not necessarily stronger than
the student network. The student network is
capable of learning complementary information
from even a worser heterogeneous teacher. We
therefore investigated three different kinds of
teacher networks to enhance the translation per-
formance of a student NMT network.

R2L Teacher The approach is also referred as
Agreement Regularization of Left-to-Right
and Right-to-Left Models to integrate the in-
formation of R2L models to L2R ones (Has-
san et al., 2018) . Following this work, we
translate the source sentences of the parallel
data with R2L model and use the translated
pseudo corpus to improve the L2R model.
It is worth noting that we filter the pseudo
corpus with BLEU score lower than 30.

Ensemble Teacher We also apply knowledge
distillation on ensemble teacher models
(Freitag et al., 2017). Similar with R2L
teacher model, we use ensemble models to
translate the source side sentence of the par-
allel corpus and then apply the pseudo cor-
pus to the training corpus.

Architecture Teacher The RNMT and Trans-
former models achieve similar perfor-
mances but use very different ways to en-
code and decode context which leverage
the advantages by combine the information
of both architectures. We therefore use a
teacher network to boost a student network
with different arctectures.

3.4 System Combination and Re-ranking
For single models, we average the last 60 check-
points to avoid overfitting. The checkpoint are
saved every 600 seconds. For ensemble models,
we trained 8 systems with different parameters
and the different portion of monolingual corpus
selected in Section 3.1. Since both the source
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and target sentences can be generated from left to
right and from right to left, we can have a total of
eight ensemble systems, which including RNMT-
S2T-R2L, RNMT-S2T-L2R, Transformer-S2T-
L2R, Transformer-S2T-R2L, RNMT-T2S-R2L,
RNMT-T2S-L2R, Transformer-T2S-L2R and
Transformer-T2S-R2L.

For both S2T and T2S direction, we rescored
200-best lists output from four ensemble systems
(S2T or T2S) using a rescoring model consist-
ing of eight features: four S2T ensemble model
scores and four T2S ensemble model scores.

4 Experiments Settings and Results

4.1 Pre-processing and Post-processing

We first segmented the Chinese sentences with
our Chinese word segmentation tool and tok-
enized English sentences with the scripts pro-
vided in Mosess2. To enable open-vocabulary, we
use BPE (Sennrich et al., 2016) with 50K opera-
tions. In our preliminary experiments, we found
that BPE works better than UNK replacement
techniques. We also filter bad sentences accord-
ing to the alignment score obtained by fast-align
toolkit 3 and remove duplications in the training
data. The preprocessed training data consists of
19M bilingual pairs.

For Chinese→English translation, the final
output was true-cased and de-tokenized with the
scripts provided in Moses. For English→Chinese
translation, we normalized the punctuations of
the outputs with our in-house script and remove
the space between the Chinese characters.

4.2 Chinese→English Systems

Table 1 shows the Chinese→English translation
results on validation set (WMT2017). We re-
ported cased BLEU scores calculated with Moses
mteval-v13a.pl script4. The Transformer and
RNMT model achieved similar results in terms of
the mean BLEU scores which is consistent with

2https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

3https://github.com/clab/fast align
4https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/generic/mteval-
v13a.pl

SYSTEM BLEU
RNMT

Baseline 24.2
+ Back Translation 25.4
+ Joint Training 26.1
+ R2L Teacher 27.1
+ Transformer Teacher 27.3
+ Ensemble Teacher 27.7

Transformer
Baseline 24.3
+ALL features 27.6

System Combination
Ensemble Baseline + Rerank 26.1
Ensemble BT + Rerank 27.2
Ensemble Best 27.9
Ensemble Best + Rerank 28.5

Table 1: Chinese→English Systems BLEU results on de-

velopment set (WMT17). Submitted system is the last sys-

tem.

the observations of Chen et al., (2018). In or-
der to obtain more diverse models and better en-
semble results, we trained eight models indepen-
dently with different random initializations and
dropout rate ranging from 0.01 to 0.3.

The synthetic data plays an import role in the
success of our system. As for the single model,
back translation improved the strong baseline by
1.2 BLEU score. Even for system combina-
tion, the synthetic data still achieved a stable im-
provements from 26.1 to 27.2 in terms of BLEU.
As an extension of the back translation method,
the joint training approach interactively makes
data augmentation by boosting source-to-target
and target-to-source NMT systems. The method
again obtained a substantial improvements up to
0.7 BLEU score.

Among knowledge distillation methods, the
R2L teacher significantly enhanced our single
system by 1.0 BLEU score. The Transformer
teacher and ensemble teacher further get an im-
provements by 0.2 and 0.4 in terms of BLEU.

Applying different combinations of the tech-
niques described in Section 3.4, we build eight
single systems with all the optimization tech-
niques described in Section 3. We then obtained
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four ensemble models including Transformer-
L2R, Transformer-R2L, RNMT-L2R and RNMT-
R2L. We then rescored 800 best lists output from
the our ensemble NMT systems using a rescoring
mode consisting of eight features. As can be seen
in the Table 1. After ensemble a little improve-
ment over the best single model by 0.2 BLEU is
achieved. One possible explanation is that the in-
formation gain of the ensemble model has been
obtained by the distillation method. For rerank
model, we finally achieved an improvements of
0.6 BLEU score with fine-tuned feature weights.

4.3 English→Chinese Systems

SYSTEM BLEU
RNMT

Baseline 35.9
+ Joint Training 38.5
+ ALL features 40.1

Transformer
Baseline 35.0
+ALL features 39.8

System Combination
Ensemble Best 40.4
Ensemble Best + Rerank 41.1

Table 2: English→Chinese Systems BLEU results on de-

velopment set (WMT17). Submitted system is the last sys-

tem.

Table 2 shows the English→Chinese trans-
lation results on development set. All re-
sults are evaluated by character-level BLEU.
We followed exactly the same settings with
the Chinese→English translation system. In
this case, the Joint Training method brought a
substantial improvement over 2.6 BLEU scores
showing the advantages of using the monolin-
gual data and integrating the S2T model and T2S
model. For knowledge distillation, We observed
an improvement of 1.6 BLEU score. Finally, we
applied ensemble and reranking methods, which
provided 1.3 BLEU improvements over the best
single model.

5 Conclusion

We present the Tencent NMT systems for WMT
2018 Chinese↔English news translation tasks.
For both translation directions, our final systems
achieved substantial improvements up by 4 ∼ 5
BLEU score over baseline systems by integrating
the following technique:

1. Back translation the target monolingual data
set

2. Joint training of the S2T and T2S systems

3. Knowledge distillation with R2L teacher
networks, architecture teacher networks and
ensemble teacher networks

4. System combination and reranking.

As a result, our submitted Chinese→English
system achieved the highest cased BLEU score
among all 16 submitted systems and our
English→Chinese system ranked the third out of
18 submitted systems.
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Abstract
This paper describes the submission of the
NiuTrans neural machine translation sys-
tem for the WMT 2018 Chinese ↔ En-
glish news translation tasks. Our baseline
systems are based on the Transformer ar-
chitecture. We further improve the trans-
lation performance 2.4-2.6 BLEU points
from four aspects, including architectural
improvements, diverse ensemble decoding,
reranking, and post-processing. Among
constrained submissions, we rank 2nd out
of 16 submitted systems on Chinese → En-
glish task and 3rd out of 16 on English →
Chinese task, respectively.

1 Introduction
Neural machine translation (NMT) exploits
an encoder-decoder framework to model the
whole translation process in an end-to-end
fashion, and has achieved state-of-the-art per-
formance in many language pairs (Wu et al.,
2016; Sennrich et al., 2016c). This paper de-
scribes the submission of the NiuTrans neural
machine translation system for the WMT 2018
Chinese ↔ English news translation tasks.

Our baseline systems are based on the
Transformer model due to the excellent trans-
lation performance and fast training thanks to
the self-attention mechanism. Then we en-
hance it with checkpoint ensemble (Sennrich
et al., 2016c) that averages the last N check-
points of a single training run. To enable open-
vocabulary translation, all the words are seg-
mented via byte pair encoding (BPE) (Sen-
nrich et al., 2016b) for both Chinese and En-
glish. Also, we use back-translation technique
(Sennrich et al., 2016a) to leverage the rich
monolingual resource.

Beyond the baseline, we achieve further
improvement from four aspects, including

architectural improvements, diverse ensem-
ble decoding, reranking and post-processing.
For architectural improvements, we add relu
dropout and attention dropout to improve the
generalization ability and increase the inner
dimension of feed-forward neural network to
enlarge the model capacity (Hassan et al.,
2018). We also use the novel Swish activa-
tion function (Ramachandran et al., 2018) and
self-attention with relative positional represen-
tations (Shaw et al., 2018). Next, we explore
more diverse ensemble decoding via increas-
ing the number of models and using the mod-
els generated by different ways. Furthermore,
at most 17 features tuned by MIRA (Chiang
et al., 2008) are used to rerank the N-best
hypotheses. At last, a post-processing algo-
rithmic is proposed to correct the inconsistent
English literals between the source and target
sentence.
Through these techniques, we can achieve

2.4-2.6 BLEU points improvement over the
baselines. As a result, our systems rank the
second out of 16 submitted systems on Chi-
nese → English task and the third out of 16
on English → Chinese task among constrained
submissions, respectively.

2 Baseline System

Our systems are based on Transformer
(Vaswani et al., 2017) implemented on the
Tensor2Tensor 1. We use base Transformer
model as described in (Vaswani et al., 2017):
6 blocks in the encoder and decoder networks
respectively (word representations of size 512,

1https://github.com/tensorflow/
tensor2tensor/tree/v1.0.14. We choose this
version because we found that this implementation
is more similar to the original model described in
(Vaswani et al., 2017) than newer versions.
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feed-forward layers with inner dimension 2048,
8 attention heads, residual dropout is set to
0.1). We use negative Maximum Likelihood
Estimation (MLE) as loss function, and train
all the models using Adam with β1 = 0.9,
β2 = 0.98, and ϵ = 10−9. The learning rate
is scheduled as described in (Vaswani et al.,
2017): lr = d−0.5 · min(t−0.5, t · 4000−1.5),
where d is the dimension of word embedding,
t is the training step number. To enable the
open-vocabulary translation, we use byte pair
encoding (BPE) (Sennrich et al., 2016b) for
both Chinese and English. All the models are
trained for 15 epochs on one machine with
8 NVIDIA 1080 Ti GPUs. We limit source
and target tokens per batch to 4096 per GPU,
resulting in approximate 25,000 source and
25,000 target tokens in one training batch. We
also use checkpoint ensemble by averaging the
last 15 checkpoints, which are saved at 10-
minute intervals.

For evaluation, we use beam search with
length normalization (Wu et al., 2016). By
default, we use beam size of 12, while the co-
efficient of length normalization is tuned on
development set. We use the home-made C++
decoder as a more efficient alternative to the
tensorflow implementation, which is also nec-
essary for our diverse ensemble decoding (Sec-
tion 3.2). The hypotheses that own too many
consecutive repeated tokens (e.g. beyond the
count of the most frequent token in the source
sentence) are removed. We report all experi-
mental results on newsdev2018 by the official
evaluation tool mteval-v13a.pl.

3 Improvements

We improve the baseline system from four as-
pects, including architectural improvements,
ensemble decoding, reranking and post-
processing.

3.1 Architectural Improvements
Dropout The original Transformer only uses
residual dropout when the information flow is
added between two adjacent layers/sublayers,
while the dropouts in feed-forward neural net-
work (e.g. relu dropout) and self attention
weights (e.g. attention dropout) are not in
use. In practice, we observed the consistent
improvements than baseline when we set relu

dropout to 0.1 and attention dropout to 0.1,
thanks to the regularization effect to overcome
the overfitting.

Larger Feed-Forward Network Limited
by the size of GPU memory, we can not di-
rectly train a big Transformer model with the
batch size as large as the base model. To solve
this, we resort to increase the inner dimension
(refer to dff ) of feed-forward network while
other settings stay the same. It is consistent
with the finding of (Hassan et al., 2018) that
the transformer model can benefit from larger
dff .

Swish Activation Function The stan-
dard Transformer model has a non-linear ex-
pression capability due to the use of Recti-
fied Linear Unit (ReLU) activation function.
Recently, Ramachandran et al. (2018) pro-
pose a new activation function called Swish
by the network automatic search techniques
based on reinforcement-learning. They claim
that Swish tends to work better than ReLU
on deeper models and can transfer well to a
number of challenging tasks. Formally, Swish
is computed as:

Swish(x) = x · sigmoid(βx),

where β is either a constant or a learnable pa-
rameter. In practice, we replace ReLU with
Swish (β = 1) and do not change any other
settings.

Relative Positional Representation
Transformer uses the absolute position encod-
ings based on sinusoids of varying frequency,
while Shaw et al. (2018) point out that the rep-
resentations of relative position can yield con-
sistent improvement over the absolute coun-
terpart. They equip the representations of
both key and value with some trainable pa-
rameters (e.g. aK

ij , aV
ij in (Shaw et al., 2018))

when calculating the self attention. We re-
implement this model, and use clipping dis-
tance k = 16 with the unique edge representa-
tions per layer and head. We use both the ab-
solute and relative positional representations
simultaneously.

3.2 Diverse Ensemble Decoding
Ensemble decoding is a widely used technique
to boost the performance by integrating the
predictions of several models, and has been
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Source: 于是就有了这个去年 9 月发布的P@@ ass@@ p@@ ort 。
Translation: so there is the Pas@@ port , which was released last September .
Post-Processing: so there is the Passport , which was released last September .
Source: Furious residents have savaged Sol@@ i@@ hull Council saying it was

“ useless at dealing with the problem ”.
Translation: 愤怒的居民猛烈抨击了 S@@ ol@@ i@@ h@@ ou@@ s@@

委员会, 称它 “ 在处理这个问题上是无用的” 。
Post-Processing: 愤怒的居民猛烈抨击了 Solihull 委员会, 称它 “ 在处理这个问题上是无用的” 。

Table 1: Samples of the inconsistent translation of the constant literal between source and target sentence.
The subword is split by “@@”. The two samples are picked up from newstest2018.

proved effective in the WMT competitions
(Sennrich and Haddow, 2016; Sennrich et al.,
2017; Wang et al., 2017). Existing experimen-
tal results about ensemble decoding mainly
concentrate upon a small number of models
(e.g. 4 models (Wang et al., 2017; Sennrich
et al., 2016c, 2017)). Besides, the ensembled
models generally lack of sufficient diversity, for
example, Sennrich et al. (2016c) use the last
N checkpoints of a single training run, while
Wang et al. (2017) use the same network archi-
tecture with different random initializations.

In this paper, we study the effects of more
diverse ensemble decoding from two perspec-
tives: the number of models and the diver-
sity of integrated models. We explore at most
15 models for jointly decoding by allocating
two models per GPU device in our C++ de-
coder. In addition to using different ran-
dom seeds, the ensembled models are gener-
ated from more diverse ways, such as different
training steps, model sizes and network archi-
tectures (see Section 3.1).

Every ensembled model is also assigned a
weight to indicate the confidence of predic-
tion. In practice, we simply assign the same
weight 1.0 for each model. We also study the
greedy tuning strategy (randomly initialize all
weights firstly, then fix other weights and only
tune one weight each time), while there is no
significant improvement observed. 2

3.3 Reranking
We apply the reranking module to pick up a
potentially better hypothesis from the n-best
generated by ensemble decoding. The used

2 We do not use some more sophisticated tuning
methods, such as MERT, MIRA, due to the expen-
sive cost for ensemble decoding, especially with a large
beam size.

features for reranking include:

• TFs: Translation features. We totally
use eight types of translation features,
and each type can be represented as a
tuple with four elements: (Ls, Ds, Lt,
Dt), where Ls, Lt ∈ {ZH,EN} denotes
the language of source and target respec-
tively, and Ds, Dt ∈ {L2R, R2L} de-
notes the direction of source and target
sequence respectively. For example, (ZH,
L2R, EN, R2L) denotes a system trained
on ordinal Chinese → reversed English.

• LM: 5-gram language model of target side
3.

• SM: Sentence similarity. The best hy-
pothesis from the target R2L system is
compared to each n-best hypothesis and
used to generate a sentence similarity
score based on the cosine of the two sen-
tence vectors. The sentence vector is rep-
resented by the mean of all word embed-
dings.

Given the above features, we calculate the
ranking score by a simple linear model. All
weights are tuned on the development set via
MIRA. The hypothesis with the highest rank-
ing score is chosen as the refined translation.

3.4 Post-Processing
Current NMT system generates the transla-
tion word by word 4, which is difficult to guar-
antee the consistency of some constant literals
between source sentence and its translation.
In this section, we focus on the English lit-

erals in a Chinese sentence. For example, as
3All language models are trained by KenLM

(Heafield, 2011).
4Actually it is subword by subword in this paper.
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Algorithm 1 Post-processing algorithmic for
inconsistent English literals translation.
Input: S: source sentence; T : NMT transla-

tion;
Output: T ′: translation after post-

processing
1: Initialize: T ′ = T , create S(x, y) saves the

similarity between x and y
2: Get the set of English literals EL from Chi-

nese sentence (either S or T )
3: for each English literal el in EL do
4: if el not in T then
5: for each y in the set of n-gram of

T (1 ≤ n ≤ 3) do
6: S(el, y) = sim(el, y)
7: end for
8: end if
9: y∗ = argmaxyS(el, y)

10: replace el with y∗ in T ′

11: end for

shown in Table 3.2, the literal “Passport” in
Chinese sentence is translated into “Pasport”
wrongly, and a similar error happens between
“Solihull” and its translation “Solihous”.

To solve this issue, we propose a post-
processing method to correct the unmatched
translations for the constant literals, as shown
in Algorithm 1. The basic idea is that the
English literals appearing in Chinese sentence
must be contained in English sentence. The
challenge is that how to align the correct literal
with its wrong one. In practice, we compute
the normalized edit distance as the similarity:

sim(x, y) =
D(x, y)

Lx
, (1)

where D(x, y) denotes the edit-distance be-
tween x and y, Lx is the length of x. Then,
the most similar translated literal is recovered
by the original one.

Since the number of Chinese sentences con-
taining the English literals is relatively small,
our approach can not significantly improve the
BLEU, but we find that it is very effective for
human evaluation.

4 Experiments and Results
4.1 Chinese → English Results
For Chinese → English task, we use all the
CWMT corpus and partial of UN and News-

Commentary combined corpus 5. We also aug-
ment the training data by back-translation of
the NewsCraw2017 corpus using the baseline
system based on the parallel data only. All
texts are segmented by home-made word seg-
mentation toolkit 6. We remove the paral-
lel sentence pairs which is duplicated, excep-
tional length ratio, or bad alignment score
obtained by fast-align 7. As a result, we
use 7.2M CWMT corpus, 4.2M UN and
News-Commentary combined corpus, and 5M
pseudo parallel data. Detailed statistical in-
formation of training data is shown in Table
2. Then we learn BPE codes with 32k merge
operations from independent Chinese and En-
glish text, resulting in the size of source and
target vocabulary is 47K and 33K respectively.
We also study the effect of merge operations,
however no significant gain is found when we
shrink or expand the number of merge opera-
tions.
Table 3 presents the BLEU scores on news-

dev2018 for Chinese → English task. Firstly,
we can see that using checkpoint ensemble
brings +0.82 BLEU than the baseline of single
model. When we equip the Transformer base
model with larger dff and relu & attention
dropout, +0.56 BLEU are improved further.
However, to our disappointment, we do not
observe consistent improvement via Swish or
relative positional representations.
Based on the strong single model baseline,

we firstly study the conventional ensemble de-
coding: 4 models with different random seeds,
resulting in a significant gain of 0.72 BLEU
point. Then we use 4 models with different
architectures: baseline, dff = 4096, dropout
and dff=4096 + dropout, then an interesting
result is that the diverse ensemble decoding is
superior than the ensemble of dff + dropout,
which provides an evidence that diverse mod-
els may be more important than homogeneous
strong models. The beam size of 100 is a
bit better than 12. This result is inconsistent
with previous work claiming that larger beam
size can badly drop down the performance (Tu

5We randomly sample 30% data, and found that it
can achieve comparable performance with the full data.
In this way, we can train more models for our diverse
ensemble decoding and reranking.

6For Chinese, the word segmentation is done based
on unigram language model with Viterbi algorithm.

7https://github.com/clab/fast_align
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Direction Lang. Sentences Tokens Ave. sentence length

ZH → EN ZH 16.5M 391M 23.7
EN 16.5M 415M 25.2

EN → ZH EN 16.9M 505M 29.9
ZH 16.9M 465M 27.5

Table 2: Statistics of the training data
System beam size Valid.

Baselines
Transformer-Base 12 25.09

+checkpoint ensemble 12 25.91
Architectural Improvements +dff =4096 12 26.17

+dropout 12 26.45

Diverse Decoding

4 same models with different random seeds 12 27.21
4 diverse models 12 27.67
4 diverse models with large beam 100 27.69
8 diverse models 100 28.06
15 diverse models 80 28.18

Re-ranking 14 features - 28.46
Post-processing English literal revised* - 28.46

Table 3: BLEU scores [%] on newsdev2018 Chinese-English translation. * denotes the submitted system.

et al., 2017), which needs to be invested fur-
ther. Additionally, we expand the number of
models from 4 to 8 and 15 8, the overall perfor-
mances are further improved +0.35 and +0.52
respectively. For 15 models ensemble decod-
ing, we arrange every two models on one GPU
via our C++ decoder except the big model
which requires one GPU.

Then we rerank the n-best from diverse en-
semble decoding (at most 80 candidates) with
14 features 9, we achieve +0.28 BLEU im-
provement thanks to the complementary infor-
mation brought by the features. At last, we do
post-processing for the reranking output, but
almost no effect on BLEU due to limited En-
glish literals are found in Chinese sentences.

4.2 English → Chinese Results
For English → Chinese translation, the train-
ing data also consists of three parts: CWMT
corpus, part of UN and News-Commentary
combined data and pseudo parallel data from
back-translation. The differences from Chi-

8The types of used models include baseline, dff ,
dropout, dff + dropout, Swish, RPR (relative position
representation), big (Transformer big model with small
batch size) and baseline-epoch20 (training 20 epochs
rather than 15).

9Four (ZH, EN, L2R, L2R) models, four (ZH, EN,
L2R, R2L) models, one (ZH, EN, R2L, L2R) feature,
one (ZH, EN, R2L, R2L) feature, one (EN, ZH, R2L,
L2R) feature, one (EN,ZH,R2L,R2L) feature, one LM
feature and one SM feature.

nese → English translation are that the UN
and News-Commentary combined data is se-
lected by XenC (Rousseau, 2013) 10 accord-
ing to the xmu Chinese monolingual cor-
pus from CWMT, and xin_cmn monolingual
corpus is used for back-translation. Data
preprocessing is same as Section 4.1, re-
sulting in 7.2M CWMT corpus, 3.5M UN
and News-Commentary combined corpus, and
6.2M pseudo parallel data. Then 32k merge
operations are used for BPE.
Like Chinese → English, using checkpoint

ensemble can bring a gain of +0.62 BLEU
solidly. Besides, increasing the dimension of
dff and activate more dropout are proved ef-
fective again. The biggest difference from Chi-
nese → English is that diverse ensemble decod-
ing improves the performance at most +1.33
BLEU when we integrate 10 models. However,
increasing either the number of models or the
diversity is helpful for ensemble decoding. As
for reranking, although we only use four (EN,
ZH, L2R, R2L) models as features due to time
constraint. there is still +0.35 BLEU improve-
ment obtained. At last, post-processing makes
an more obvious effect for English → Chinese
translation than Chinese → English, because
the BLEU4 is computed on characters rather
than tokens.

10https://github.com/antho-rousseau/XenC
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System beam size Valid.
Baselines Transformer-Base 12 38.41

+checkpoint ensemble 12 39.03
Model Variance +dff =4096 12 39.48

+dropout 12 39.61

Diverse Decoding
4 same models with different random seeds 12 40.19
4 diverse models 12 40.46
4 diverse models + big beam 50 40.54
10 diverse models 50 40.94

Re-ranking 4 features - 41.29
Post-processing English literal revised* - 41.41

Table 4: BLEU scores [%] on newsdev2018 English → Chinese translation. * denotes the submitted
system.

5 Conclusion
This paper presents the NiuTrans system to
the WMT 2018 Chinese ↔ English news
translation tasks. Our single model base-
line use the Transformer architecture, and
has achieve comparable performance than the
last year’s best ensembled results. We fur-
ther improve the baseline’s performance from
four aspects, including architectural improve-
ments, diverse ensemble decoding, reranking
and post-processing. We find that increas-
ing the number of models and the diversity
of models is crucial for ensemble decoding. In
addition, as the improvement of ensemble de-
coding, the gain from reranking gradually de-
creases. Among all the constrained submis-
sions to the Chinese ↔ English news task, our
submission is ranked 2nd out of 16 submitted
systems on Chinese → English task and the
3rd out of 16 on English → Chinese task, re-
spectively.
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Abstract
This paper describes the University of
Maryland’s submission to the WMT 2018
Chinese↔English news translation tasks.
Our systems are BPE-based self-attentional
Transformer networks with parallel and
backtranslated monolingual training data.
Using ensembling and reranking, we improve
over the Transformer baseline by +1.4 BLEU
for Chinese→English and +3.97 BLEU
for English→Chinese on newstest2017.
Our best systems reach BLEU scores of
24.4 for Chinese→English and 39.0 for
English→Chinese on newstest2018.

1 Introduction

While machine translation between Chinese and
English has long been considered a challenging
task, with performance lagging behind other lan-
guage pairs (Bojar et al., 2017), neural architec-
tures have helped achieve large improvements.
A new state-of-the-art on Chinese→English news
translation was recently obtained (Hassan et al.,
2018) using a deep Transformer model in com-
bination with many other techniques including
Dual Learning (He et al., 2016), joint training of
source-to-target and target-to-source models, and
Deliberation Networks (Xia et al., 2017). The re-
sulting high quality translation comes at the cost
of large models and complex training pipelines,
which make such models difficult to train and de-
ploy with constrained resources.

In this shared task, our goal is to evaluate the
performance of systems inspired by Hassan et al.
(2018) but with fewer and smaller components,
which require less time and memory at training
and decoding time. Our systems are based on a
multi-layer encoder-decoder architecture with at-
tention mechanism. We experiment with differ-
ent network architectures, including single-layer
RNN, deep Stacked RNN as used in Zhou et al.

(2016), and self-attentional Transformer networks
(Vaswani et al., 2017). The best results are ob-
tained with deep Transformer models.

Our best systems reach BLEU scores of 24.4 for
Chinese→English and 39.0 for English→Chinese
on newstest2018. Using a combination of back-
translation (Section 2.2), ensembling, and rerank-
ing (Section 2.3) we improve over the base Trans-
former models by +1.4 BLEU (Chinese→English)
and +3.97 BLEU (English→Chinese) on new-
stest2017. We describe each component of the
system (Section 2), and its contribution for each
language pair (Section 4). We show that the im-
pact of backtranslation and reranking is not sym-
metric in the two translation directions, and that,
compared to oracle scores, the reranker leaves
much room for improvement.

2 Approach

2.1 Neural Machine Translation Models

Currently, state-of-the-art Neural Machine Trans-
lation (NMT) (Bahdanau et al., 2014) is generally
based on a sequence-to-sequence encoder-decoder
model with attention mechanism, which represent
the conditional probability p(y|x) of a target sen-
tence y given a source input x.

This model comprises two components: an en-
coder Θenc and a decoder Θdec. The encoder en-
codes an input sentence x into a sequence or set
of continuous representations, while the decoder
predicts the conditional probability distribution of
the target words given the encoder’s output states.
Θenc and Θdec are trained to maximize the like-
lihood of a parallel training data comprised of N
pairs of source and target sentences:

L(Θ) =
N∑

n=1

T∑

t=1

log p(y
(n)
t |h

(n)
t−1, Attn; Θdec)

(1)
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where

Attn = fattn(fenc(x(n); Θenc), h
(n)
t−1) (2)

h
(n)
t−1 denotes the decoder’s hidden states con-

ditioned on y
(n)
<t , the target words preceding step

t. The attention model fattn computes a weighted
sum over the encoder’s outputs fenc(x(n); Θenc)
where the weights are determined by the “similar-
ity” between each of the encoder’s outputs and the
decoder’s hidden state h

(n)
t−1.

State-of-the-art NMT encoders and decoders in-
clude Stacked RNNs (Zhou et al., 2016), convo-
lutional sequence-to-sequence models (ConvS2S)
(Gehring et al., 2017), and Transformer models
(Vaswani et al., 2017). The ConvS2S and Trans-
former models differ from RNNs in that they
replace the recurrent processing in RNNs with
convolutional representation and self-attention re-
spectively, which enable the parallelization of the
computation and make the encoded representation
less sensitive to the sequence length.

ConvS2S uses stacked convolutional represen-
tation to model the dependencies between nearby
words on lower layers, while longer-distance de-
pendencies are modeled through upper layers. In
contrast, the Transformer model captures source
context via self-attention, which allows to attend
to any source word regardless of position, and
therefore has the potential to model long-distance
dependencies more directly.

In addition, the Transformer uses multi-head at-
tention, which lets the model attend to information
from different representation subspaces at differ-
ent positions. The attention function can be inter-
preted as mapping a query and a set of key-value
pairs into an output – the output is generally com-
puted as a weighted sum of the values, and the
weights are computed by a function of the query
and the corresponding key. Instead of computing
a single attention pass, multi-head attention con-
sists of several stacked attention layers in which
the same attention function is applied to differ-
ent transformations of the query, keys and values.
And then the output vectors from the above atten-
tion layers are concatenated together and linearly
transformed, resulting in the final output.

The Transformer model has achieved significant
improvements over RNN-based encoder-decoders
on several NMT tasks (Vaswani et al., 2017), while
RNNs outperform ConvS2S (Hieber et al., 2017).

We therefore only experiment with the Trans-
former and RNN architectures.

2.2 Backtranslating Monolingual Data

We leverage the monolingual data provided in the
shared task using backtranslation (Sennrich et al.,
2016a). For each language pair, we select mono-
lingual corpora from the target language based on
their similarity to the parallel corpus as measured
by cross-entropy difference (Moore and Lewis,
2010). Following the setup from Hassan et al.
(2018), we backtranslate the monolingual data us-
ing a single Transformer model, and then use a
mixture of parallel and backtranslated monolin-
gual data with a proportion of 2:1 for training a
new Transformer model.

2.3 Reranking n-best Hypotheses

In order to improve the translation quality, we
rerank the n-best results using features extracted
from different NMT models (Cherry and Foster,
2012; Neubig et al., 2015; Hassan et al., 2018).

Right-to-left NMT Model Sequence-to-
sequence models generate sequences on a
token-by-token basis, and suffer from the expo-
sure bias problem (Bengio et al., 2015). Exposure
bias refers to the problem that models are trained
using contexts from human generated references
while tested using model-generated contexts,
and thus at test time previous mistakes may be
amplified and lead to subsequent errors. In order
to address this issue, we train a right-to-left (R2L)
NMT model using the same training data but with
inverted target data. Then for each hypothesis
from the n-best list, we invert the hypothesis
sequence and use the perplexity score given by the
right-to-left NMT model as a reranking feature.

Target-to-source NMT Model In order to im-
prove the translation quality in terms of adequacy,
we also use features from target-to-source (T2S)
NMT models for reranking. We use the perplex-
ity score given the translation as input and the
source sentence as reference. The score repre-
sents the conditional probability of the source sen-
tence given the translation, which can be viewed
as an adequacy score. Since we participate in both
Chinese→English and English→Chinese tasks,
we can just use the models trained in the opposite
direction for reranking.
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Reranking Model First we generate n-best
translation hypotheses for each source sentence.
Then we get the perplexity scores for each hypoth-
esis with L2R, R2L, and T2S models. The scores
are treated as features which we use to train a k-
best batch MIRA ranker (Cherry and Foster, 2012)
to find out the optimal weights for reranking.

3 Data and Preprocessing

Parallel Data We use all the parallel data avail-
able for the shared tasks. The training data for
both tasks consists of about 15.8M sentence pairs
from the UN Parallel Corpus, 9M sentence pairs
from the CWMT Corpora, 332K sentence pairs
from the News Commentary Corpus. In addition
to the criteria used in Hassan et al. (2018) to filter
the parallel data, we add a criterion of bad sen-
tences according to the alignment score given by
the fast-align toolkit1. The overall criteria
are the following:

• Duplicate sentence pairs are removed.

• Sentences with characters of other languages
are removed.

• Chinese sentences without Chinese charac-
ters are removed.

• The length of each sentence must be between
3 and 50.

• The length ratio of sentence pairs must not
exceed 1.6.

• Bad sentence pairs according to the align-
ment score are removed.

Table 1 shows the data statistics after filtering,
tokenization, truecasing, and BPE.

Monolingual Data We further augment the
training data with backtranslated monolingual
data. For Chinese→English systems, we select
8M sentences from “News Crawl: articles from
2017” that are most similar to the bilingual data
using cross-entropy difference (Moore and Lewis,
2010). For English→Chinese systems, we select
8M sentences from the XMU Corpus based on the
same criteria.

Tuning and Testing Data The official news-
dev2017 is used as the validation set, and new-
stest2017 is used as the test set.

1https://github.com/clab/fast_align

Preprocessing All corpora are processed con-
sistently. We tokenize the English sentences and
perform truecasing with the Moses scripts (Koehn
et al., 2007). Chinese sentences are segmented
with the Jieba segmenter2. We segment English
and Chinese tokens into subwords via Byte-pair
Encoding (BPE) (Sennrich et al., 2016b). We train
the BPE models for English and Chinese sepa-
rately, and use 32K subwords for each side.

4 Experiments

4.1 Baseline systems
The baseline system is a bidirectional RNN with
attention mechanism as used in Bahdanau et al.
(2014). Our systems are built on Sockeye (Hieber
et al., 2017). We use word embedding size of 1024
and hidden layer size of 1024. We filter out sen-
tences with length larger than 50. We use Adam
optimizer with initial learning rate of 0.0002. We
adopt layer normalization (Ba et al., 2016) and la-
bel smoothing (Szegedy et al., 2016). We tie the
output weight matrix with the target embeddings
(Press and Wolf, 2017). The beam size is set to 10.

The deep RNN is based on Stacked RNNs with
attention (Zhou et al., 2016). We use the same sys-
tem settings as the baseline but set the number of
stack layers to 4.

The Transformer network (Section 2.1) is a
6-layer Transformer model with model size of
1024, feed-forward network size of 4096, and 16
attention heads. We adopt label smoothing and
weight tying, and set the beam size to 10.

Table 2 shows the total number of parame-
ters for each model and the BLEU scores on
Chinese→English and English→Chinese new-
stest2017. Results show that the Transformer
outperforms RNNs in both directions, although
it is not a controlled comparison since the
Transformer has 1.6 times as many parameters
as the deep RNN model. Based on this strong
performance, we select the Transformer as the
base model for further improvements.

4.2 Results on Chinese→English Translation
Table 3 shows the results for the Chinese→English
translation task. We report cased BLEU
computed on detokenized output with the
multi-bleu-detok.pl script. The baseline,
deep RNN, and Transformer models are trained
on the 17.6M bilingual data. We backtranslate

2https://github.com/fxsjy/jieba
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train valid test
Sentences 17577153 17577153 2002 2002 2001 2001
Tokens 392490201 433127957 72494 69775 68360 64012
Types 49475 32102 4593 9911 4913 9171
OOVs – – 104 32 121 25

Table 1: Data sizes for Chinese/English training (train), validation (valid) and test sets respectively. All statistics
are computed after filtering, tokenization, truecasing, and BPE. The Types column shows the number of distinct
tokens in each data set. The OOVs column shows the number of distinct out-of-vocabulary tokens.

System Size C→E E→C
baseline 108.77M 20.99 30.45
deep RNN 165.46M 21.65 31.63
Transformer 259.94M 24.00 34.50

Table 2: BLEU scores for baseline models on
Chinese→English and English→Chinese new-
stest2017. The Size column shows the total number
of parameters.

System BLEU
baseline 20.99
deep RNN 21.65
Transformer 24.00
+synthetic 24.12
+ensemble 24.76
+reranking (L2R, T2S) 25.20
+reranking (L2R, T2S, R2L) 25.37
+beam size from 10 to 30 25.41

Table 3: Chinese→ English Results on newstest2017.
The submitted system is the last one.

the selected 8M monolingual data using the
English→Chinese Transformer model. Training
the Transformer model on the mixed paral-
lel/synthetic data improves the model by +0.1
BLEU. We further train 3 independent Trans-
former models with different random seeds, and
gain +0.6 BLEU score by ensembing. Finally, by
rescoring the n-best lists with L2R, R2L, and T2S
models, we gain +0.6 BLEU score. Increasing the
beam size from 10 to 30 also brings improvements
when reranking. We submit the last system and
get 24.4 BLEU score on the official test set.

4.3 Results on English→Chinese Translation

Table 4 shows the results for the English→Chinese
translation task. We report character-
based BLEU calculated with the Moses
multi-bleu-detok.pl script. Similar
to the Chinese→English systems, the baseline
systems are trained on the parallel data. Aug-

System BLEU
baseline 30.45
deep RNN 31.63
Transformer 34.50
+synthetic 36.69
+ensemble 38.28
+reranking (L2R, T2S) 38.19
+reranking (L2R, T2S, R2L) 38.42
+beam size from 10 to 30 38.47

Table 4: English→ Chinese Results on newstest2017.
The submitted system is the last one.

menting the training data with the backtranslated
monolingual data improves BLEU by +2.2 points.
The ensemble model improves over the single
best system by +1.6 BLEU. Rescoring with L2R,
R2L, and T2S models brings an improvement of
+0.1 BLEU. We further increase the beam size
from 10 to 30 to gain more from reranking. Our
submitted system outperforms the best system in
WMT17 (Wang et al., 2017) by +2.1 BLEU on
newstest2017 and obtains a BLEU score of 39.0
on the official test set.

We note that the components added to the base-
line Transformer model have an asymmetric im-
pact in the two translation directions. While back-
translation improves the results by +2.2 BLEU
for the English→Chinese task, it doesn’t help as
much for Chinese→English (+0.1). In contrast,
rescoring with L2R, R2L, and T2S models brings
more improvements for Chinese→English (+0.6)
than the other (+0.2). One possible explanation is
that in a parallel corpus sentences originally writ-
ten in language A and sentences translated from
language B to A may have different styles due to
translationese effects (Volansky et al., 2015).

While the original language is not known for all
training documents, it seems reasonable to assume
that the majority of documents are translated from
English into Chinese: the UN corpus is known
to comprise primarily original English documents
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Beam C→E E→C
reranker oracle reranker oracle

10 25.37 28.72 38.42 42.84
30 25.41 30.44 38.47 44.78
100 25.40 33.05 38.38 47.17

Table 5: A comparison of BLEU scores when using
the reranker trained with L2R, R2L, and T2S features
versus the oracle, with varying beam sizes.

(Tolochinsky et al., 2018). For other training data
sources beyond UN, a bilingual Chinese-English
speaker manually inspected a random sample of
100 sentence pairs, and estimated that 87% sen-
tences were originally written in English. This
might explain why rescoring with the T2S models
helps more in the Chinese→English direction than
in the other, and why the English→Chinese sys-
tems benefit more from backtranslated data which
introduces some (machine) translated Chinese to
complement the translation direction observed in
the parallel training data.

4.4 Experiments on Reranking

To estimate an upper-bound for reranking meth-
ods, we build an oracle that returns the translation
in the n-best list that gets the highest BLEU score.

Table 5 shows the comparison of BLEU scores
when using the reranker trained with L2R, R2L,
and T2S features versus the oracle. Increasing the
beam size from 30 to 100 doesn’t improve the re-
sults when using the reranker, but improves the or-
acle scores. This is consistent with prior findings
that beam search only improves translation qual-
ity for narrow beams and deteriorates with larger
beams (Koehn and Knowles, 2017), but differs in
that we rerank the n-best lists instead of adopt-
ing the 1-best results from beam search. The re-
sults also show that better translations according
to BLEU exist in the n-best lists with larger beam
size, but are ranked low by the models.

In addition, we find that the oracle scores are al-
ways higher than the reranker scores, and the gap
increases with beam size. When comparing the
MSR’s best system results (28.46 BLEU achieved
by Combo-4 in Hassan et al. (2018) with the ora-
cle, we find that the oracle score is still higher by
4-5 BLEU. The results show that there is room for
improvement by introducing more useful rescor-
ing features and warrant further investigation.

5 Conclusion

This paper presents the University of Maryland’s
NMT systems for WMT 2018 Chinese↔English
news translation tasks. Our experiments confirm
the benefits of using Transformer networks over
RNN-based architectures. We report performance
gains from incorporating monolingual data, using
ensemble models and reranking with target-to-
source and right-to-left models, although the im-
pact of these techniques depends on the translation
direction. By comparing the oracle and reranking
results, we find that there is potential for further
improvement with more useful rescoring features.
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Abstract

We present the results of automatic evalua-
tion of discourse in machine translation (MT)
outputs using the EVALD tool. EVALD was
originally designed and trained to assess the
quality of human writing, for native speakers
and foreign-language learners. MT has seen
a tremendous leap in translation quality at the
level of sentences and it is thus interesting to
see if the human-level evaluation is becoming
relevant.

1 Introduction

The output quality of machine translation has sub-
stantially improved in the last few years thanks to
the neural models (NMT). In some setups, NMT
systems may even surpass the quality of human
reference translations if evaluated at the level of
individual sentences. The natural next step is (1)
to start evaluating MT using larger pieces of texts,
e.g. whole documents, and (2) to evaluate using
methods suitable for the text quality produced by
humans.

Our contribution to the WMT18 test suites re-
sponds to both of these goals. We experiment
with the application of automatic, reference-less
evaluation of text quality which was originally de-
signed to evaluate texts written by humans. In this
exploratory study, we do not have the human re-
sources for a contrastive manual evaluation of the
texts. We thus limit the comparison to overall MT
system quality as provided by WMT.

In Section 2, we briefly describe the tool we use,
EVALD. Section 3 describes the texts and MT sys-
tem used. Section 4 provides and discusses the
empirical results and we conclude in Section 5.

2 Evaluating Discourse

EVALD (Evaluator of Discourse)1 was used for
the automatic evaluation of the translated texts.
There are two main versions of EVALD: EVALD
for native speakers of Czech (“L1”) and EVALD
for non-native speakers (“L2”). The versions share
the same features but differ in training texts.

EVALD L1 was trained on 1118 essays written
by native speakers, while EVALD L2 was trained
on 945 essays written by learners of Czech as a
foreign language. Both systems use the same 180
features that can be divided into two types: (i)
shallow features that use information from lower
layers of language description, namely spelling,
vocabulary, morphology and syntax, and (ii) deep
text features directly related to surface coherence
and reaching also beyond the sentence bound-
aries, namely coreference, discourse connectives
diversity, discourse connectives quantity, and sen-
tence information structure. Details about the sys-
tems can be found in Novák et al. (2018), Rysová
et al. (2018), Novák et al. (2017), or Rysová et al.
(2017).

We expect EVALD L2 to work better because
it was designed and trained for evaluation of texts
that are usually not fully coherent. The same as-
pect is expected by the automatically translated
texts – they can be sometimes disrupted from the
linguistic point of view.

EVALD L1 and L2 also differ in the class labels
assigned. We normalize both of them to assign
scores from 1 (worst) to 5 or 6 (best; L1 uses 5
classes, L2 uses 6 classes).

3 Data

Since the domain of WMT18 Shared Translation
Task is news, we needed to find a different input

1https://lindat.mff.cuni.cz/services/
evald-foreign/

541

https://doi.org/10.18653/v1/W18-64059


ENG NRE PSY SOC EDU HIS IOE PHI POL CLS ECO LIN NUR BIO CEE MEC PHY
Creative Writing 3/1 1/- 1/- 1/-
Critique 4/- 2/2 -/2 2/- -/1 1/1 2/- 3/-
Essay 4/1 -/1 -/2 2/- 1/1 -/2 -/1 3/- 1/- 1/- 1/-
Proposal 1/- 1/- -/2 3/- 1/1 2/- 2/1 1/2 -/1
Report -/2 -/2 -/6 2/3 -/3 -/2 -/3 -/1 1/- 2/- -/1 -/1
Research Paper 2/- 4/- 1/- -/1 -/2 -/2

Table 1: Texts in our test suite by genre and domain. The numbers indicate texts written by a native/non-native
English speaker.

texts which matches more closely to domain that
EVALD is trained for.

3.1 Evaluated Texts

We selected Michigan Corpus of Upper-Level Stu-
dent Papers (MICUSP),2 an open-source collec-
tion of original English texts developed at the
University of Michigan (English Language Insti-
tute). MICUSP contains about 830 papers (2.6
million words). The texts come from four aca-
demic areas: Humanities and Arts, Social Sci-
ences, Biological and Health Sciences, Physical
Sciences. At the same time, various text genres
are present (argumentative essay, creative writing,
critique/evaluation, proposal report, research pa-
per, response paper). Authors of the papers are fi-
nal year undergraduate and graduate students who
reached an A grade. The corpus contains texts
written by the native as well as non-native speak-
ers of English. The overview of the MICUSP texts
selected for evaluation is presented in Table 1.

The genre that should fit EVALD best is cre-
ative writing. We thus specifically extracted all 7
texts labelled as creative writing. To further extend
our test suite, we selected texts of suitable length
across the genres and domains, as summarized in
Table 1. In total, there are 56 texts written by na-
tive speakers and 51 texts written by non-native
speakers.

We segmented the texts into individual sen-
tences and manually edited them to correct any
errors in segmentation, to remove auxiliary seg-
ments like “[Figure]” and to abbreviate them oc-
casionally by removing e.g. inline tables.

3.2 MT Systems Used

The final texts were included in inputs of MT sys-
tems participating in the WMT18 News Transla-
tion Task. In addition to the “primary” systems
CUNI Transformer, UEDIN and the online sys-
tems, we also added three baseline (contrastive)

2http://micusp.elicorpora.info/

systems: CUNI Chimera, CUNI Chimera noDep-
fix and CUNI Moses.

CUNI Moses is a phrase-based MT system
(Koehn et al., 2007) trained on very large data
and domain-adapted for the news text. CUNI
Chimera (Bojar et al., 2013) is a hybrid MT system
combining the outputs of transfer-based TectoMT
(Žabokrtský et al., 2008) and recently also neural
MT outputs from Nematus (Sennrich et al., 2017)
and Neural Monkey (Helcl et al., 2018). The back-
bone of Chimera is nevertheless phrase-based, so
Chimera suffers from the standard problems of flu-
ency. Depfix (Rosa et al., 2012) is a rule-based
grammar correction system that served very well
as the last step of Chimera prior to NMT. For a
contrast, we also provide the outputs of Chimera
without this rule-based component.

CUNI Transformer (Popel and Bojar, 2018) is a
highly optimized NMT system based on the non-
recurrent architecture of Transformer (Vaswani
et al., 2017). Based on the preliminary evaluation,
CUNI Transformer is expected to perform compa-
rably or better than humans when evaluating indi-
vidual sentences in isolation.

UEDIN is a 4-way ensemble of deep RNN sys-
tem, running left-to-right and reranked with 4 deep
right-to-left systems. It uses subword units (BPE)
and back-translation. The other systems are com-
mercial ones and their description is not available.

The manual evaluation of WMT18 is still in
progress, so what we can provide now are only au-
tomatic scores as reported in matrix.statmt.
org, see Table 2. None of the WMT18 evalua-
tions will be strictly comparable to ours due to the
difference in the domain and the set of sentences.
Nevertheless, it is still the best indication of MT
output quality we can get.

4 Evaluation

We apply EVALD to all the MT outputs and also
to the source. No Czech reference is available for
the texts, so we take the source as the lower bound:

542



System BLEU BLEU-cased TER BEER 2.0 CharactTER
CUNI Transformer 26.6 26.0 0.638 0.567 0.532
UEDIN 24.0 23.4 0.666 0.554 0.550
CUNI Chimera noDepFix 21.0 19.8 0.703 0.528 0.600
CUNI Chimera 20.8 19.2 0.704 0.522 0.605
CUNI Moses 17.5 16.4 0.739 0.509 0.632

Table 2: Automatic results of WMT18 English-Czech systems as listed at http://matrix.statmt.org/
matrix/systems_list/1883.

EVALD version L1 L2
CUNI Transformer 5.00±0.00 5.02±0.91
CUNI Chimera noDepFix 5.00±0.00 4.92±0.88
UEDIN 5.00±0.00 4.77±0.89
online-B 5.00±0.00 4.76±0.87
CUNI Moses 4.97±0.29 4.69±0.83
online-A 5.00±0.00 4.60±0.81
CUNI Chimera 5.00±0.00 4.58±0.80
online-G 4.97±0.29 4.58±0.81
Source 1.00±0.00 1.00±0.00

Table 3: Overall EVALD scores for individual MT sys-
tems. L1: EVALD for native speakers with 5 being the
best mark, L2: EVALD for non-natives with 6 being
the best possible mark.

EVALD L2 Score # Docs #
Creative Writing 6.00±0.00 7 56
Report 4.72±0.84 29 289
Essay 4.67±0.89 21 153
Critique 4.65±0.90 20 136
Research Paper 4.59±0.70 12 90
Proposal 4.52±0.66 18 132

Table 4: Results for individual genres.

EVALD, trained for Czech, should very much dis-
like the original English text.

The overall EVALD score across the 107 texts
produced by each MT system is listed in Table 3.
Clearly, the L1 version of EVALD aimed at na-
tive speakers is non-discerning. All systems get
almost the same score. It is actually the best possi-
ble score, but this tells us primarily that the system
trained for L1 is not suitable for our setting. Only
the source gets the worst possible score.

The L2 version is more interesting. As ex-
pected, English Source receives the worst rating,
1.0 with no variance at all. MT systems score
around 4 or 5. While this is a clear overestimation
of the text quality (6 would be the best score and
e.g. phrase-based MT Moses gets 4.69), it reveals
some differences between the systems.

We thus explore only EVALD L2 in the follow-
ing.

Table 4 lists EVALD L2 scores for individual
genres across MT systems; Source was not con-
sidered. The columns “#” and “# Docs” specify

EVALD L2 Score # # Docs
HIS 5.48±0.89 27 3
ENG 5.23±0.97 83 13
NRE 5.11±0.63 35 4
IOE 5.03±0.79 65 7
PSY 4.83±0.97 88 11
SOC 4.79±0.91 160 17
BIO 4.74±0.60 38 4
CEE 4.62±0.61 32 4
ECO 4.56±0.73 16 2
EDU 4.55±0.86 78 12
POL 4.48±0.80 63 9
LIN 4.44±0.73 59 7
NUR 4.37±0.49 43 5
MEC 4.36±0.50 11 1
PHY 4.36±0.50 11 1
CLS 4.27±0.46 15 3
PHI 4.00±0.00 32 4

Table 5: Results for individual domains.

EVALD L2 Score # # Docs
Native Speaker 4.86±0.93 298 56
Non-Native Speaker 4.68±0.82 558 51

Table 6: Results depending on whether the author of
the English original was an English native speaker.

the size of the sample in terms of individual scor-
ings and distinct documents, respectively.

We see that all 56 translations of the 7 doc-
uments of Creative Writing seemed excellent.
Again, EVALD is non-discerning in this setting.
Other genres exhibit some divergence in scores.
Since all the genres differ from the news texts
that the MT systems are geared towards, it is not
easy to explain the stability of the score in Cre-
ative Writing. Possibly, EVALD is checking many
shallow discourse features (e.g. the presence of
a certain variety of conjunctions) and our texts in
Creative Writing superficially include the required
diversity, and this diversity is preserved by all MT
systems.

Table 5 looks at text domains. There is a reason-
able variance across the translations and texts (ex-
cept PHIlosophy) but it is again difficult to come
up with a unified view. For instance, natural sci-
ences like BIOlogy or PHYsics span a wide range
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Discourse-Specific Other All
CUNI Transformer 4.56±1.18 4.79±1.16 5.02±0.91
CUNI Chimera noDepFix 4.52±1.15 o 4.86±1.17 4.92±0.88
UEDIN 4.52±1.15 4.86±1.09 4.77±0.89
online-B 4.39±1.17 4.82±1.12 4.76±0.87
online-G 4.35±1.15 4.68±1.21 4.58±0.81
online-A 4.34±1.12 4.66±1.28 o 4.60±0.81
CUNI Moses 4.30±1.24 o 4.69±1.28 o 4.69±0.83
CUNI Chimera 3.98±1.36 4.66±1.20 4.58±0.80
Source 1.86±1.65 2.00±1.73 1.00±0.00

Table 7: Comparison of EVALD L2 scores using discourse-specific (deep) features, other (shallow) features, and
all features. Vertical tildes mark differences in rank in comparison with the rank given by the discourse-specific
features.

Avg. var. of scores
across nativeness 0.88
across MT systems 0.85
across genre 0.67
across domain 0.67

Table 8: Variance in EVALD L2 scores across various
aspects of our test suite.

of ranks, as humanities do (HIStory or the men-
tioned PHIlosophy).

Table 6 documents the effect of the mother
tongue of the author of the original English text
before the translation.

Table 7 compares EVALD L2 scores in three
experimental settings: using only the deep text
features (marked discourse-specific in the table),
shallow features (marked other) and all features.3

Vertical tildes mark differences in rank in compar-
ison with the rank given by the deep text features.
Agreement in five first ranks using the deep fea-
tures and all features indicates that the full version
of EVALD (i.e. using all features) really evaluates
the translation systems based on the quality of the
text coherence, rather than on the basis of shallow
features.

Table 8 summarizes the variance of EVALD
scores according to individual aspects captured in
the previously mentioned tables. The highest vari-
ance of the scores appeared in the aspect of native-
ness of the text author.

The second most diverse results are across MT
systems. The evaluation proposed here thus seems
as a promising research direction, although a care-
ful analysis of EVALD features and their adapta-
tion will be needed to obtain more discerning eval-
uation. Finally, the genre and domain of the orig-
inal text also play a role but this is always to be
expected.

3See Section 2 for the list of features.

5 Conclusion

We presented the results of automatic evaluation
of Czech text quality applied to the output of gen-
erally good MT systems translating from English
into Czech.

The results indicate that EVALD, as now trained
for human-authored texts, is ineffective in its ver-
sion for native speakers. However, EVALD ver-
sion for non-natives has a rather promising poten-
tial for evaluating automatic translations because
it allows distinguishing individual MT systems.

The most diversity of scores can be attributed to
the nativeness of the author of the original text. We
conclude that the examined MT systems in general
preserve sufficient traits of source text quality for
this.

EVALD-style of evaluation seems promising
because the second most differentiating aspect
is the MT system used. Further exploration of
EVALD features as well as a direct comparison
with manual assessment of translation quality are,
however, necessary to make EVALD a useful MT
evaluation method.
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and Jiřı́ Mı́rovský. 2017. Incorporating corefer-
ence to automatic evaluation of coherence in es-
says. In Statistical Language and Speech Process-
ing, number 10583 in Lecture Notes in Computer
Science, pages 58–69, Cham, Switzerland. Claude
Chappe Informatics Institute at University of Le
Mans, Springer International Publishing.

Martin Popel and Ondej Bojar. 2018. Training Tips
for the Transformer Model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Rudolf Rosa, David Mareček, and Ondej Dušek. 2012.
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Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. 2008.
TectoMT: Highly Modular Hybrid MT System
with Tectogrammatics Used as Transfer Layer. In
Proc. of the ACL Workshop on Statistical Machine
Translation, pages 167–170, Columbus, Ohio, USA.

545



Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 546–560
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64060

The WMT18 Morpheval test suites for English–Czech,
English–German, English–Finnish and Turkish–English

Franck Burlot
Lingua Custodia

1, Place Charles de Gaulle
78180 Montigny-le-Bretonneux

franck.burlot@linguacustodia.com

Yves Scherrer
Department of Digital Humanities

University of Helsinki
Helsinki, Finland

yves.scherrer@helsinki.fi

Vinit Ravishankar
Charles University

Faculty of Mathematics and Physics
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Abstract

Progress in the quality of machine translation
output calls for new automatic evaluation pro-
cedures and metrics. In this paper, we ex-
tend the Morpheval protocol introduced by
Burlot and Yvon (2017) for the English-to-
Czech and English-to-Latvian translation di-
rections to three additional language pairs, and
report its use to analyze the results of WMT
2018’s participants for these language pairs.
Considering additional, typologically varied
source and target languages also enables us
to draw some generalizations regarding this
morphology-oriented evaluation procedure.

1 Introduction

The success of rather opaque neural machine
translation systems has called for more fine-
grained types of evaluation than traditional auto-
matic evaluation metrics offer. In particular, we
would like to obtain more detailed information

about systems performance than just one over-
all number (even if it correlates well with hu-
man judgement). Evaluation metrics that focus on
various aspects of the translation, such as syntax
or morphology, rather than on general translation
quality, have thus seen renewed interest. This in-
terest has spurred the inclusion of additional test
suites into the WMT 2018 news translation task.

Burlot and Yvon (2017, B&Y in the follow-
ing) present a test suite for evaluating the mor-
phological competence of machine translation sys-
tems. They provide a set of sentence pairs in the
source language that differ by one morphologi-
cal contrast. A sentence pair is considered cor-
rect if the morphological contrast is also conveyed
in the target language translations of the two sen-
tences of the pair. B&Y developed their test suite
for English–Czech and English–Latvian and ap-
plied it to a selection of MT systems that partic-
ipated in WMT 2017. For WMT 2018, we have
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extended the English–Czech test suite1 and cre-
ated similar Morpheval test suites for three ad-
ditional translation directions: English–German,2

English–Finnish,3 and Turkish–English.4 All pri-
mary WMT submissions of these translation direc-
tions were evaluated.5

We start by summarizing the components of the
Morpheval test suites and their language-specific
implementations.

2 The Morpheval test suites

A Morpheval test suite according to B&Y consists
of three aspects:

• the definition of a set of contrasts that can be
triggered in the source language and evalu-
ated in the target language;

• a procedure to generate contrast pairs from a
monolingual source language corpus;

• and a procedure to score the target language
translations of the contrast pairs.

B&Y describe three types of contrasts. Type A
contrasts resemble paradigm completion tasks, in
which one single morphological feature (num-
ber, gender, tense, etc.) is evaluated. The two
sentences of a contrast pair only differ in one
word (or phrase) and across one feature at a time.
Type B contrasts contain somewhat more com-
plicated substitutions that are mainly evaluated
in terms of agreement. For example, a contrast
pair contains a pronoun or an adjective-noun noun
phrase, and its evaluation is correct if the adjec-
tive and noun agree. Type C contrasts concern
lexical replacements of the same category, testing
whether the morphological agreement still holds
if an adjective is replaced by a hyponym. Table 1
summarizes the set of contrasts implemented for
the different language pairs, according to this ty-
pology. The contrasts that are not described in

1Contributors: Franck Burlot and François Yvon; test
suite and evaluation scripts are available at https://
github.com/franckbrl/morpheval_v2

2Contributors: Franck Burlot and François Yvon; test
suite and evaluation scripts are available at https://
github.com/franckbrl/morpheval_v2

3Contributors: Yves Scherrer, Maarit Koponen, Tommi
Nieminen, Stig-Arne Grönroos; test suite, evaluation
scripts and logs are available at https://github.com/
Helsinki-NLP/en-fi-testsuite

4Contributors: Vinit Ravishankar and Ondřej Bojar
5The same method has also been adapted to English-to-

French: significance tests, as well as concrete examples, are
provided for this language pair in Burlot and Yvon (2018).

B&Y will be presented in detail in the following
sections.

Before that, we discuss some language-specific
implementation differences of the generation and
scoring procedures.

2.1 Sentence selection and contrast
generation

We follow the algorithm provided by B&Y for
sentence selection and contrast generation:

1. Collect a large number of short sentences
(length < 15 words) containing a source fea-
ture of interest.

As source corpora, we use the English News-
2007 and 2008 corpora (for EN-CS and EN-
DE), the English News-2007 corpus (for EN-
FI), and SETIMES2 (for TR-EN). In order
to detect the source features, the corpora are
annotated using TreeTagger (Schmid, 1994)
and/or CoreNLP (Manning et al., 2014) (for
English), or an Apertium (Forcada et al.,
2011) morphological analyser (for Turkish).
For the named entities feature used in EN-FI,
we additionally annotate the source corpora
with the Stanford NER tagger (Finkel et al.,
2005).

2. Generate a variant as prescribed by the con-
trast feature.

For English corpora, we follow B&Y and use
the Pymorphy morphological generator6 to
create the variants. For the Turkish corpus,
we use Apertium.

3. Compute an average language model (LM)
score for the base/variant pair, and remove
the 33% worst pairs based on the LM score.

We use a 5-gram language model trained
on all English monolingual data available at
WMT 2015. No language model filtering is
applied to the Turkish data.

4. Randomly select 500 pairs per feature (400
for Turkish) for inclusion.

B&Y identify one of the sentences of a contrast
pair as the “base” and the other one as the “vari-
ant”. We keep this terminology for the sake of
simplicity, but do not intend to imply (1) that the
base is in any way “easier” to translate than the

6http://pymorphy.readthedocs.io/
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Feature B&Y EN-CS EN-DE EN-FI TR-EN

Paradigm contrast features:
Singular vs. plural noun A-1 X X X
Singular vs. plural pronoun A-2 X X X
Masculine vs. feminine pronoun A-3 X X S
Present vs. future tense A-4 X X S X
Present vs. past tense A-5 X X X X
Indicative vs. conditional mode X X
Positive vs. comparative adjective A-6 X X X
Positive vs. superlative adjective X X
Affirmative vs. negative verb form A-7 X X X X
Compound generation X
Human vs. non-human pronoun X
Definite vs. possessive determiner X
Definite vs. indefinite determiner S
Reported speech subordinate clauses X
First vs. second person verb form X
Present vs. future subject participle X
Present vs. future object participle X
Agreement features:
Pronoun vs. Adj+Nouns B-1 X X X
Pronoun vs. coordinated nouns B-2 X
Simple vs. coordinated verbs B-3 X X
Adposition case (+ position) B-4 X X X
Coreference link X X
Strong/weak adjective X
Local postposition/adverb case X
Rare word features:
Named entities X
Numbers X
Consistency features:
Adjective hyponyms C-1 X X
Noun hyponyms C-2 X X
Verb hyponyms C-3 X X

Table 1: List of contrast features implemented in the Morpheval test suites. The features already proposed by B&Y
are marked by their corresponding code in the second column. S indicates features used to measure stability (see
Section 2.5).
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variant, (2) that the base always is the unmodified
sentence extracted from the corpus and the vari-
ant the automatically modified one, or (3) that the
evaluation of the base would be more lenient than
the evaluation of the variant.

For consistency features (see Table 1), we se-
lect a noun, an adjective or a verb and replace it
with a random hyponym, producing an arbitrary
number of sentences. Sentence selection slightly
differs from the description above: during step 2,
we generate as many variants as possible. Each
variant is then scored with a language model and
only the top four variants are kept, leading to buck-
ets of five sentences. For hyponym generation, we
use WordNet (Miller, 1995).

2.2 Scoring procedures

The automatic scoring procedure for a given con-
trast pair receives two target language sentences
(the MT output of the two source language sen-
tences forming the contrast pair) as input and re-
turns a binary correct/incorrect judgement. A con-
trast pair is judged correct if the two target sen-
tences differ and the differences encode the con-
trast that is expressed in the source sentences. A
contrast pair is judged incorrect if the two sen-
tences are identical or if they differ in a way that
is irrelevant to the examined contrast.

For consistency features, we wish to assess the
MT system consistency with respect to lexical
variation in a fixed context; accordingly, we mea-
sure the success based on the average normalized
entropy of morphological features in the set of tar-
get sentences.

The target language sentences of all participat-
ing systems are morphologically analyzed to facil-
itate scoring. The following tools are used:

• Czech: MorphoDiTa (Straková et al., 2014)

• German: SMOR (Schmid et al., 2004)

• Finnish: The finnish-analyze-words script7

provided by the Language Bank of Finland8

and based on the Omorfi morphology (Piri-
nen, 2015) and the HFST toolkit (Lindén
et al., 2011)

• English: MorphoDiTa (Straková et al., 2014)

7http://urn.fi/urn:nbn:fi:
lb-2018041701

8https://www.kielipankki.fi/

As shown by B&Y, there is no need to perform
a full morphological disambiguation in the target
side, as we merely need to check whether some
morphological features are present or absent. In
fact, full automatic disambiguation could be harm-
ful due to error propagation.

2.3 Additional English–Czech contrasts

The English–Czech evaluation procedure follows
B&Y, to which we added a handful of new tests.

Conditional
Paradigm contrast features introduce a new ver-
bal test. In the test suite, a verb in future tense
is turned into its conditional form: I will write
→ I would write. In the Czech variant, we
check whether the verb translation is in condi-
tional mode.

Superlative
The superlative task is comparable to the compar-
ative task introduced in B&Y. The base sentence
contains an adjective and the variant contains its
superlative form. In the output, we look for the
adjective translation and check whether is has a
superlative form.

Coreference
Agreement features introduce a new coreference
task. The test suite for this task was produced us-
ing English coreference annotations obtained us-
ing CoreNLP (Manning et al., 2014). We col-
lected sentences containing a coreference link in-
volving a personal pronoun (it) or a relative pro-
noun (that, which, who, whom, whose). The base
sentence remains unchanged. In order to gener-
ate the variant, the antecedent noun of the pro-
noun is then changed to a synonym using WordNet
(Miller, 1995):

• Personal pronoun: This cat is cute and I love
it. → This dog is cute and I love it.

• Relative pronoun: The woman who left was
angry. → The man who left was angry.

In the output of the MT system, we are then able
to locate the antecedent of the pronoun by look-
ing for the only noun that differs between the base
and variant translations (namely, the translation of
cat/woman in the base and dog/man in the variant).
Finally, we check whether the noun and personal
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pronoun bear the same gender.9 We also check
number agreement for the relative pronoun. Note
that for this specific task, we can compute accu-
racy scores on both base and variant.

2.4 Additional English–German contrasts

English–German is a new language pair we intro-
duce in the current paper. It takes most of the pre-
vious tasks introduced in B&Y for English into
Czech and Latvian. Conditional, superlative and
coreference tasks are also adapted to German (see
Section 2.3).

Compounds

This task consists in assessing the ability of the
MT system to generate correct compounds that ac-
tually exist in German. For this purpose, the base
sentence in the English test suite contains a multi-
word expression that is most likely translated by
a compound in German. To generate the variant,
we modify one single English word in the multi-
word expression, such that the new German trans-
lation should result in a compound that has at least
one morpheme in common with the one seen in the
base translation. For instance, the English expres-
sion apple juice in the base translates into the Ger-
man compound Apfelsaft. We modify the word ap-
ple and obtain orange juice, which translates into
Orangensaft. In the MT output we finally com-
pare both compounds Apfelsaft and Orangensaft
and report a success if they have at least one mor-
pheme in common. Here, the common morpheme
is -saft.

For the test suite generation, we needed a trans-
lation dictionary containing compounds on the
German side and multi-word expressions on the
English side. We gathered all the English-German
parallel data we could find on OPUS (Tiede-
mann, 2012) and removed the data available at the
WMT18 News Translation shared task. This re-
sulted in nearly 40M parallel sentences. We ob-
tained a phrase table out of this data using the
Moses toolkit (Koehn et al., 2007). We finally ex-
tracted from this phrase table a dictionary contain-
ing a compound on the German side and several
multi-word expressions on the English side (re-
moving punctuation and other noisy tokens).

9We do not control whether the chosen synonym trans-
lates to a noun of a different gender. In some cases, the trans-
lation of the pronoun in the base and variant should thus re-
main unchanged, sharing the same gender.

The test suite generation starts with the identi-
fication in the base sentence of an English multi-
word expression that is present in our dictionary.
We then look for a new English multi-word ex-
pression that has at least one common word with
the previous one (we have apple juice, we get the
expression orange juice, since both have juice in
common). Finally, if both expressions translate
into German compounds that have at least one
morpheme in common (relying on SMOR analy-
sis), the new English expression is inserted into
the sentence, which produces the variant sentence.

At evaluation step, we look for the word in the
base sentence that is not in the variant sentence
and vice-versa. We report a success when both
words are known compounds and when they con-
tain at least one common morpheme (using SMOR
analysis).

Verb position
The test suite is generated by locating complex
sentences where (a) the principal clause can be
omitted and (b) the subordinate clause leads to a
German translation where the verb should be lo-
cated at the end of the clause. Using CoreNLP
annotations, we focus on specific English conjunc-
tions that lead to a verb shift in German, like that
→ dass, because → weil, etc. In order to gener-
ate the variant sentence, we simply omit all words
from the beginning of the sentence up to the con-
junction: I think that life is hard. → Life is hard.

Once both sentences are translated into German,
we simply check that the conjugated verb is closer
to the end of the sentence in the base than it is
in the variant: Ich denke, dass das Leben hart ist.
(last position) → Das Leben ist hart. (second to
last).

Strong adjective
This task focuses on the contrast between weak
and strong forms of the German adjective. We rely
on a quite simple rule of German, stating that an
adjective following a definite article does not con-
tain any gender marker in its ending, whereas it
does contain it when following, e.g. a possessive
determiner.

We therefore identified English sentences with
a subject noun phrase containing a definite article,
an adjective and a noun (according to CoreNLP
analysis). To generate the variant, we simply re-
place the article by a possessive determiner: The
small dog is gone. → Our small dog is gone.

550



In the MT output, we check whether the vari-
ant contains a strong form of the adjective (using
SMOR analysis): Der kleine Hund ist weg. →
Unser kleiner Hund ist weg.

2.5 Additional English–Finnish contrasts

For English–Finnish, we reuse most of B&Y’s
paradigm contrast features, but repurpose some of
them as stability features (see Table 1 and below).
We reuse a limited subset of agreement features.
After initial experiments, we decided against using
consistency features, as they yielded a high per-
centage of unnatural and sometimes even unintel-
ligible sentences. We provide additional features
tailored to Finnish in both categories and provide
an additional class of language-independent rare
word features. In the following sections, we de-
scribe these features in more detail.

Human vs. non-human pronoun
Both English and Finnish distinguish between pro-
nouns whose antecedents are human (English I,
he, she, . . . , Finnish minä, hän, . . . ) and pro-
nouns whose antecedents are non-human (English
it, Finnish se).

The conversion procedure identifies base sen-
tences with instances of me, us, him, or her, and
generates the variants by replacing the pronouns
with it. We discard subject contexts and make
sure that no other pronoun is present in the sen-
tence. We also discard prepositional phrase con-
texts which would command the use of possessive
suffixes in Finnish. Note that no treatment is ap-
plied to the antecedent of the pronoun. This is
generally not an issue because we do not need to
preserve the meaning between the base and vari-
ant sentence, we only need to check if human vs.
non-human aspect of the pronoun is preserved.

The scoring procedure checks if the correct
Finnish pronoun lemma (se) is used in the variant.

Definite vs. possessive determiner
In contrast to English, Finnish uses suffixation to
indicate possession, e.g. -ni for the 1st person sin-
gular and -si for 2nd person singular as in kirja+ni
‘my book’, kirja+si ‘your book’. We wanted to
test how well current MT systems are able to gen-
erate these suffixes.

The conversion procedure selects variant sen-
tences with noun phrases containing a possessive
determiner and generates the base by replacing the
possessive determiner with the.

The scoring script checks whether the posses-
sive suffix (or alternatively, the possessive deter-
miner) of the correct person is generated.

Reported speech subordinate clauses
In English, the structure of affirmative and inter-
rogative subordinate clauses is rather similar: X
says that A vs. X asks if A, without any structural
differences in X or A. In Finnish, various types of
expressions A are possible for say+that, but none
of them is structurally identical to the ask+if sub-
ordinate clause, which corresponds to a (direct)
question with the question particle -ko/kö.

The conversion procedure is bidirectional: it
selects sentences containing say+that and trans-
forms them to ask+if and vice-versa. Idiomatic
constructions like having said that or when asked
if are discarded.

The scoring procedure reports success if one of
the correct constructions is identified in the affir-
mative sentence, and if the -ko/kö-construction is
identified in the interrogative sentence.

Stability features
Two of the paradigm contrast features reported by
B&Y do not apply to Finnish. Feature A-3 tests
whether the masculine/feminine contrast between
the pronouns he and she is conveyed in the target
language, but Finnish uses the same pronoun hän
regardless of the gender of the antecedent. Feature
A-4 tests whether the present tense/future tense
contrast is conveyed in the target language, but
Finnish does not have a future tense and generally
uses present tense in such cases.

Instead of measuring contrast, we can use these
two features to measure stability: an MT system
can be considered stable if two source sentences
differing only in one word according to the con-
trasts presented above yield completely identical
translations. Note that stability is not necessar-
ily a good measure of overall translation quality:
text can be translated in various ways, and two
completely different translations can still be both
correct, adequate and natural. However, stability
may be an important criterion for particular appli-
cations of machine translation. For instance, for
purposes of manual post-editing, stability may be
preferable as it leads to easier predictability of the
output. Our findings concerning the relation be-
tween stability and general translation quality will
be discussed below.

We introduce a third stability feature that relies
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on the absence of determiners in Finnish: we se-
lect sentences with noun phrases containing the in-
definite determiner a and replace it with the defi-
nite determiner the. We try to avoid noun phrases
in object positions, where determinacy can be ex-
pressed through case in Finnish.

The scoring procedure for stability features is
simple: a contrast pair is considered stable if the
strings of both translations are identical.

These stability features can be compared to the
consistency features used for Czech and German.
For both feature types, the variants are created
through some type of transformation that is sup-
posed to be invariant with respect to target mor-
phology. For the consistency features, this trans-
formation is semantic (based on the hyponymy re-
lation), whereas it is morphological for the stabil-
ity features.

Adposition case
B&Y introduce a feature where an English prepo-
sition is replaced by another one such that their
counterparts in the target language govern two
different cases. In Finnish, case government is
closely tied to word order: most adpositions are
postpositions and require genitive case, but some
adpositions are prepositions and require partitive
case. There are only two frequent prepositions,
namely ennen ‘before’ and ilman ‘without’. We
restrict this feature to the former, as the latter of-
ten appears in idiomatic expressions from which
variants are difficult to generate.

The sentence selection script produces the con-
trast pairs before → after and before → during
(base followed by variant). Idiomatic construc-
tions such as named after, looking after, come be-
fore are discarded, as well as particle readings of
these words.

The scoring procedure verifies if a preposition
with a noun or pronoun in partitive case to its right
is present in the base, and if a postposition with
a noun or pronoun in genitive case to its left is
present in the variant. It also accepts the post-
positional use of ennen in conjunction with pro-
nouns (sitä ennen), as well as the use of bare (ad-
/in-)essive case instead of the postposition aikana
‘during’.

Local postposition case
Finnish local postpositions (the equivalents of
over, under, next to, between, etc.) can be inflected
themselves using the Finnish local cases, e.g.

sisällä/sisältä/sisälle ‘inside/from inside/towards
inside’, edessä/edestä/eteen ‘in front of/from in
front of/towards in front of’.

The conversion procedure yields the following
contrast pairs: in front of→ behind, underneath→
next to, outside→ inside, inside→ outside, above
→ below, below→ above. Non-prepositional and
idiomatic readings are discarded as far as they
could be discovered during development.

The scoring procedure checks that the English
prepositions are translated correctly and that the
case type (locative/separative/lative, as in the ex-
amples above) matches between the two sentences
of the contrast pair.

Rare word features
In the early days of NMT, translation of out-of-
vocabulary words was virtually impossible and
hampered the performance when compared with
SMT. In recent years however, most systems have
adopted an approach in which rare words are
split into “subwords” during preprocessing (see
e.g. Sennrich et al., 2016), such that any un-
known word can be composed of various subword
chunks during test time. Several subword chunk-
ing algorithms with various parameter settings can
be used, but their respective performance differ-
ences are hard to assess as they typically concern
low-frequency words with low impact on general
translation quality. Therefore, we introduce two
features that specifically deal with low-frequency
items. These features are language-independent
and do not require the use of a morphological an-
alyzer.

For the first feature, we identify large numbers
(at least 3 digits) in the English source text and
modify them by subtracting a constant number.
For example, the number 27,801 would be trans-
formed into 27,628. The scoring procedure veri-
fies if the original and modified numbers are found
in the respective sentences.

For the second feature, we use the Stanford
Named entity recognizer to identify named enti-
ties in the English source text. We then consider
two subsets of named entities, frequent ones (oc-
curring more than 1000 times) and rare ones (oc-
curring between 20 and 100 times). Contrast pairs
are generated by identifying sentences with a fre-
quent named entity, and replacing it by a rare one.
We restrict the replacement to single-word named
entities of the same class and make sure that the re-
placement candidate contains at least two differing
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System BLEU Ave. z

CUNI-Transformer 26.6 0.594
uedin 24.0 0.384
online-B — 0.101
online-A — -0.115
online-G — -0.246

Table 2: BLEU scores and human evaluation scores
computed on newstest-2018 for English–Czech.

System BLEU Ave. z

online-Z — 0.653
online-B — 0.561
Microsoft-Marian 48.9 0.551
MMT-production-system 46.7 0.539
UCAM 47.1 0.537
NTT 47.0 0.491
KIT 46.9 0.454
online-Y — 0.396
JHU 43.9 0.377
uedin 44.9 0.352
LMU-nmt 40.6 0.213
online-A — 0.060
online-F — -0.385
online-G — -0.416
RWTH-UNSUPER 15.9 -0.966
LMU-unsup 15.8 -1.122

Table 3: BLEU scores and human evaluation scores
computed on newstest-2018 for English–German.

characters, as in the following example: Extensive
damage was reported in Cuba. → Extensive dam-
age was reported in Tuzla.

The scoring procedure checks that both named
entity strings are found in the respective sentences.
The frequent named entities are likely to be trans-
lated (e.g., English Africa would become Finnish
Afrikka, in oblique cases Afrika-). Therefore, we
add a small hand-crafted dictionary containing the
most frequent entities, and compare these entries
with the base forms obtained by the morphologi-
cal analyzer. We currently do not verify case con-
sistency, as many rare entities are not recognized
by the morphological analyzer.

2.6 Additional Turkish–English contrasts

We introduce Turkish–English as another new lan-
guage pair in the paper. Note that the translation
direction is opposite to the other pairs, with En-
glish acting as the target language. We include the
B&Y tests for verb tense and polarity and add sev-
eral tests for Turkish-specific features.

System BLEU Ave. z

NICT 18.2 0.521
HY-NMT 17.8 0.466
uedin 16.7 0.324
Aalto 16.2 0.271
HY-NMT2step 14.5 0.258
talp-upc 14.3 0.238
CUNI-Kocmi 14.7 0.184
online-B — 0.183
online-A — -0.212
online-G — -0.233
HY-SMT 10.5 -0.334
HY-AH 6.4 -0.369

Table 4: BLEU scores and human evaluation scores
computed on newstest-2018 for English–Finnish.

SETIMES2 newstest-2018
System BLEU BLEU Ave.z

online-G 25.86 — 0.101
online-A 27.03 — 0.077
Alibaba-Ensemble — — 0.030
online-B 24.84 — 0.027
uedin 48.42 26.9 -0.008
NICT 40.64 26.7 -0.040

Table 5: BLEU scores computed on SETIMES2
and newstest-2018 and human evaluation scores on
newstest-2018 for Turkish–English.

Verb person
Turkish models verbal agreement with number
and person agglutinatively, often making pronouns
superfluous. We modify first person verbal agree-
ment to second person, keeping the number intact:
kitap okuyorum→ kitap okuyorsun. We check the
MT output for the presence of the pronoun you: I
am reading a book→ you are reading a book.

Participles
Turkish features several participles that form rela-
tive clauses. These include, relevant to our tests,
present-tense subject and object participles, and
future tense participles. We introduce two tests.
One transforms present tense subject participles
to future tense ones: Bu gelen adam → Bu gele-
cek adam. For the English translations, our (fairly
simple) test involves searching through the trans-
lation output for the tense-imparting strings, will,
shall, would and going (as a simple test for the
presence of ‘going to’): The man who is coming
→ The man who will come.

Object participles function similarly, however,
they use transitive verbs that take an argument:
Okuduğum kitap → okuyacağım kitap. Our tests
for the MT output are similar: the book that I read
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Verbs Pronouns Nouns Adjectives Average

System Past Future Cond. Neg. Fem. Plur. Plur. Compar. Superl.

CUNI-Transformer 84.2 88.0 59.0 97.4 94.2 92.2 76.4 74.0 89.8 83.9
uedin 92.0 83.0 73.4 96.6 94.2 92.8 78.8 78.8 88.8 86.5
online-B 87.8 77.6 57.4 94.2 92.8 92.0 80.0 75.8 69.8 80.8
online-A 86.8 86.8 71.2 94.4 94.0 89.6 81.2 74.6 61.0 82.2
online-G 81.4 84.0 70.8 78.4 98.0 89.4 79.2 73.0 50.4 78.3

Table 6: Accuracy values for the English-Czech test suite (paradigm contrast features).

Coordinated verbs Co. N. Adj+Nouns Coref. rel. Prep. Cor. per. Average

System Nbr Pers Tense Case Gdr Nbr Case Gdr Nbr Case Gdr

CUNI-Transformer 88.0 88.4 84.8 99.6 96.4 97.0 97.0 76.5 77.3 95.4 66.4 87.9
uedin 84.8 84.8 81.8 99.8 94.6 94.8 94.8 81.0 82.2 96.9 64.3 87.3
online-B 82.2 83.2 80.0 99.8 91.2 91.8 91.6 79.5 80.1 91.6 64.8 85.1
online-A 68.8 67.6 65.0 99.2 91.0 89.4 91.2 81.9 82.9 96.1 55.0 80.7
online-G 62.6 61.2 58.8 100.0 83.2 80.4 82.6 76.7 77.5 84.6 42.0 73.6

Table 7: Accuracy values for the English-Czech test suite (agreement features).

Nouns Adjectives Verbs Average

System Case Gender Number Case Number Person Tense Negation

CUNI-Transformer 0.109 0.191 0.193 0.203 0.110 0.077 0.096 0.069 0.131
uedin 0.095 0.185 0.184 0.189 0.099 0.081 0.097 0.072 0.125
online-B 0.105 0.186 0.186 0.195 0.108 0.071 0.099 0.067 0.127
online-A 0.096 0.202 0.201 0.207 0.182 0.129 0.154 0.105 0.159
online-G 0.153 0.229 0.229 0.237 0.242 0.161 0.190 0.119 0.195

Table 8: Entropy values for the English-Czech test suite (consistency features).

→ the book that I will read.

3 Results

In Tables 2–5, we summarize the WMT18 submis-
sions of the four language directions in terms of
BLEU scores10 and human evaluation scores on
the official test set (Bojar et al., 2018).11

In the following, we present the results of all our
tests across languages in an as uniform way as pos-
sible. Bolding in the tables means simply the best
result in that category. We do not use any signifi-
cance tests here. All tables are sorted according to
the human evaluation scores.

3.1 English–Czech
Results for the paradigm contrast features in
English–Czech are shown in Table 6. Not taking
into account online systems whose architectures
are unknown, the table shows a contrast between
a Recurrent Neural Network model (uedin) and
a Transformer model (CUNI-Transformer). The

10http://matrix.statmt.org
11With the exception of Turkish–English, we are not able

to compute BLEU scores on the test suite data, as no refer-
ence translations are available.

former obtains slightly higher accuracies than the
latter. This is especially obvious in verb tasks
(past and conditional), as well as for noun num-
ber. This might suggest that Transformer models
have more difficulty in conveying a morphological
feature from source to target.12

However, we observe no such difference for
agreement features (Table 7), where uedin ob-
tains an average accuracy of 87.3 and CUNI-
Transformer obtains 87.9. The latter is slightly
better for coordinated verbs and noun phrase in-
ner agreement (see the Adj+Nouns columns), but
the former is significantly better in terms of coref-
erence with a relative pronoun (Coref. rel.).

Both systems obtain similar average entropy
values in Table 8. These results can be compared
to the ones shown in Table 7 of B&Y, although
they were computed on another version of the test
suite containing different sentences. Whereas the

12It is however important to note that not preserving past
of conditional form of the verb needs not lead to a lower
translation quality in general because in many situations, less
precise wording does not really affect the overall meaning.
The reader may subconsciously correct smaller discrepan-
cies among sentences while enjoying the more fluent or more
common wording.
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Verbs Pronouns Nouns Adjectives Average

System Past Future Cond. Neg. Plur. Compd. Nbr. Compar. Superl.

online-Z 85.0 42.2 79.2 95.8 97.7 63.1 58.2 87.6 93.9 78.1
online-B 91.3 86.8 92.3 98.4 99.2 63.7 67.3 92.8 98.7 87.8
Microsoft-Marian 90.4 71.3 97.6 99.4 98.6 63.6 65.2 94.9 99.6 86.7
MMT-production-system 92.3 79.7 86.4 98.4 97.3 67.2 63.1 93.1 98.9 86.3
UCAM 94.7 84.6 98.0 99.2 99.0 64.0 68.0 97.5 100.0 89.5
NTT 93.9 89.2 97.2 99.2 99.6 61.2 68.5 96.5 100.0 89.5
KIT 89.6 74.4 96.6 98.8 98.8 61.9 64.9 93.4 99.6 86.4
online-Y 91.5 81.4 91.3 98.8 98.8 66.1 67.3 94.0 99.1 87.6
JHU 92.6 90.4 94.6 97.4 99.6 67.2 69.0 93.6 98.9 89.3
uedin 93.1 79.4 97.4 99.4 97.2 66.4 65.4 94.4 99.1 88.0
LMU-nmt 93.6 80.2 98.4 99.4 97.3 66.8 70.9 94.9 99.8 89.0
online-A 93.5 87.5 95.4 99.2 99.4 62.6 71.9 95.5 99.1 89.3
online-F 98.7 2.1 98.4 99.4 100.0 63.4 70.5 95.1 99.3 80.8
online-G 90.2 52.8 92.8 98.8 95.8 54.2 63.1 90.7 97.5 81.8
RWTH-UNSUPER 92.3 52.3 99.2 98.6 95.7 18.9 71.1 88.3 98.1 79.4
LMU-unsup 74.7 45.4 97.2 88.6 93.8 58.0 67.2 84.7 99.7 78.8

Table 9: Accuracy values for the English-German test suite (paradigm contrast features).

Coordinated verbs Verb Adj+Nouns Coref. rel. Cor. per. Adj. Average

System Nbr Pers Tense Pos Gdr Nbr Gdr Nbr Gdr Strong

online-Z 80.5 80.7 80.3 90.8 99.8 99.8 65.5 65.5 93.2 79.8 83.6
online-B 98.7 98.7 98.7 96.0 100.0 100.0 69.6 69.6 88.7 95.7 91.6
Microsoft-Marian 96.3 96.3 96.3 93.8 100.0 100.0 70.1 70.1 93.8 96.7 91.3
MMT-production-system 92.3 92.6 92.3 94.8 99.3 99.6 68.7 68.7 94.4 94.1 89.7
UCAM 97.4 97.4 97.4 93.8 100.0 100.0 68.4 68.4 94.8 99.1 91.6
NTT 98.9 98.9 98.4 94.8 100.0 100.0 70.0 70.0 93.3 96.8 92.1
KIT 97.0 97.0 96.7 93.4 100.0 100.0 69.6 69.6 93.4 96.1 91.3
online-Y 97.1 97.1 97.1 97.2 100.0 100.0 70.8 70.8 93.0 97.9 92.1
JHU 99.6 99.8 99.8 94.2 100.0 100.0 70.1 70.1 91.6 97.4 92.2
uedin 99.1 99.1 99.1 94.0 99.5 100.0 68.5 68.5 94.1 99.6 92.2
LMU-nmt 98.5 99.0 99.0 96.2 100.0 100.0 72.2 72.2 84.7 96.9 91.9
online-A 99.7 100.0 99.0 88.5 100.0 100.0 70.1 70.1 85.3 98.2 91.1
online-F 99.8 100.0 99.3 92.6 100.0 100.0 68.6 68.6 90.8 100.0 92.0
online-G 99.0 100.0 99.5 56.6 100.0 100.0 65.2 65.2 78.6 92.5 85.6
RWTH-UNSUPER 98.7 99.7 98.4 95.4 98.0 100.0 65.7 65.7 72.6 98.9 89.3
LMU-unsup 97.1 100.0 96.5 88.3 99.4 99.7 45.6 45.6 95.1 99.3 86.7

Table 10: Accuracy values for the English-German test suite (agreement features).

Nouns Adjectives Verbs Average

System Case Gender Number Number Person Tense

online-Z 0.038 0.034 0.030 0.069 0.055 0.091 0.053
online-B 0.015 0.010 0.008 0.025 0.013 0.055 0.021
Microsoft-Marian 0.014 0.006 0.004 0.022 0.015 0.051 0.019
MMT-production-system 0.015 0.017 0.015 0.031 0.020 0.071 0.028
UCAM 0.015 0.007 0.005 0.014 0.006 0.048 0.016
NTT 0.015 0.001 0.000 0.019 0.012 0.049 0.016
KIT 0.017 0.009 0.008 0.024 0.017 0.059 0.022
online-Y 0.019 0.013 0.011 0.033 0.019 0.073 0.028
JHU 0.009 0.007 0.006 0.027 0.013 0.063 0.021
uedin 0.011 0.005 0.003 0.024 0.017 0.051 0.019
LMU-nmt 0.020 0.003 0.003 0.023 0.008 0.067 0.021
online-A 0.015 0.003 0.001 0.037 0.011 0.070 0.023
online-F 0.005 0.002 0.001 0.011 0.004 0.034 0.010
online-G 0.030 0.006 0.001 0.068 0.014 0.087 0.034
RWTH-UNSUPER 0.031 0.015 0.010 0.060 0.009 0.115 0.040
LMU-unsup 0.019 0.015 0.000 0.098 0.015 0.137 0.047

Table 11: Entropy values for the English-German test suite (consistency features).
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Figure 1: Distribution of correct labels across examples for English–Finnish. n correct represents the number of
examples (out of the total 500 per contrast) for which n systems (out of a total of 12) were able to generate the
contrast correctly.

best system listed there (LIMSI FNMT) obtained
an average entropy of 0.168, the WMT 2018 sys-
tems uedin and CUNI-Transformer turn out to
be significantly lower (0.125 and 0.131, respec-
tively).

3.2 English–German

Results for the paradigm contrast features in
English–German are shown in Table 9. It is clear
from the table that certain tasks are now too easy
for the current state-of-the-art: verb negation, pro-
noun plural and superlative are very close to a per-
fect accuracy across nearly all systems. The hard-
est task seems to be the one involving compound
generation (Nouns Compd. in Table 9), where
accuracies range from 18.9 to 66.4. Verb future
tense also causes considerable difficulties to sev-
eral systems, including the top-scoring online-Z.
As with English–Czech, we see that the systems
best ranked according to manual evaluation (closer
to the top of the list) do not necessarily score well
in this detailed evaluation and vice versa. One ex-
ample is the anonymous Online-Z system, which
is rather bad at preserving verb attributes, noun
number or comparative adjectives.

Table 10 shows even more clearly how easy cer-
tain tasks are. Indeed, noun phrase internal agree-
ment (gender and number) seems to be perfectly
modeled by every system (accuracies range from
98.0 to 100, see the columns Adj+Nouns). Co-

ordinated verbs and strong/weak adjectives seem
rather easy as well, with all accuracies over 90%.
Coreference with relative pronouns (Coref. rel.)
seems to be the most difficult task. Note that we
observe exactly the same results for gender and
number: this is due to the fact that the SMOR anal-
ysis of relative pronouns is highly ambiguous. E.g.
the pronoun die is both singular and plural, and
has no specific gender in plural form, therefore it
may agree with any noun. Strictly all the errors for
this task are due to the fact that we could not find
the right noun or pronoun in the sentence, which
leads to no difference between gender and num-
ber. Hence the task does not measure agreement
as much as the ability of a system to output a rela-
tive pronoun.

Consistency tasks are shown in Table 11. Strik-
ingly, the online-Z system, ranked best on human
judgement, shows the worst entropy score. Over-
all, the consistency task figures do not seem to cor-
relate well with general translation quality mea-
sures. Compared to to the Czech values in Ta-
ble 8, we notice that the German average entropy
values are quite low. This could be explained by
the fact that Czech has a richer nominal, adjecti-
val and verbal morphology than German. For in-
stance, whereas German has four cases, Czech has
seven, which impacts the entropy values computed
for this task.
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Verbs Nouns Pronouns Det Adj SConj
System Past Neg Plur Plur Hum Poss Compar Type Average

NICT 94.4 98.6 79.2 94.6 90.4 88.4 88.0 96.2 91.2
HY-NMT 93.8 99.0 74.8 82.6 67.4 83.6 78.6 96.0 84.5
uedin 94.0 98.8 75.0 93.6 82.6 85.0 87.8 90.2 88.4
Aalto 93.4 98.8 72.0 88.4 77.4 90.8 81.6 87.6 86.3
HY-NMT2step 95.2 99.0 69.8 91.4 83.8 94.0 81.6 87.4 87.8
talp-upc 91.0 98.4 72.2 94.0 80.2 83.0 79.8 84.4 85.4
CUNI-Kocmi 89.0 98.0 73.8 91.4 80.4 86.2 78.6 76.6 84.3
online-B 92.0 98.6 76.4 91.0 78.0 77.0 82.2 84.8 85.0
online-A 87.6 99.0 78.6 94.2 82.0 84.6 86.0 23.4 79.4
online-G 82.8 92.6 76.8 86.8 66.2 83.0 88.2 3.2 72.5
HY-SMT 79.0 96.2 53.2 62.8 59.4 80.6 68.8 6.8 63.4
HY-AH 93.4 98.2 88.8 99.0 94.8 76.0 87.2 1.0 79.8

Table 12: Accuracy values for the English–Finnish test suite (paradigm completion features).

Adj+ Prep / Local
System Noun Postp case Average

NICT 96.2 88.2 81.2 88.5
HY-NMT 87.8 81.8 68.6 79.4
uedin 92.0 83.0 80.4 85.1
Aalto 93.2 81.4 69.8 81.5
HY-NMT2step 90.0 86.8 70.4 82.4
talp-upc 91.8 70.4 77.4 79.9
CUNI-Kocmi 91.4 63.8 71.2 75.5
online-B 90.2 72.8 66.0 76.3
online-A 81.2 41.4 78.4 67.0
online-G 84.6 33.8 80.2 66.2
HY-SMT 78.6 48.0 41.4 56.0
HY-AH 89.8 74.0 81.8 81.9

Named
System entities Numbers Average

NICT 90.4 99.4 94.9
HY-NMT 91.6 98.4 95.0
uedin 92.4 99.8 96.1
Aalto 82.4 96.0 89.2
HY-NMT2step 81.8 97.0 89.4
talp-upc 79.8 98.8 89.3
CUNI-Kocmi 86.6 99.8 93.2
online-B 94.8 99.0 96.9
online-A 90.2 99.8 95.0
online-G 86.2 100.0 93.1
HY-SMT 81.6 93.8 87.7
HY-AH 85.0 99.8 92.4

Table 13: Accuracy values for the English–Finnish test suite (left: agreement features, right: rare word features).

Verbs Pronouns Det
System Fut Gender Def Average

NICT 68.4 87.0 70.6 75.3
HY-NMT 65.0 84.2 58.8 69.3
uedin 73.0 84.6 65.4 74.3
Aalto 71.2 74.8 63.6 69.9
HY-NMT2step 64.4 75.4 57.2 65.7
talp-upc 61.0 75.0 53.2 63.1
CUNI-Kocmi 54.0 65.6 48.8 56.1
online-B 68.8 88.6 55.2 70.9
online-A 59.6 84.8 70.2 71.5
online-G 62.2 91.0 73.6 75.6
HY-SMT 33.8 79.6 42.2 51.9
HY-AH 71.4 95.0 89.0 85.1

Table 14: Accuracy values for the English–Finnish test suite (stability features).

Verbs Obj. Part. Subj. Part. Average

System Person Future Past Neg. Future Future

online-G 60.0 67.3 75.5 68.3 41.0 21.8 55.65
online-A 71.3 72.3 77.3 72.0 49.5 30.5 62.15
online-B 46.8 66.8 76.3 66.5 40.3 26.8 53.92
uedin 53.5 65.0 66.5 64.5 39.0 17.0 50.92
NICT 57.8 69.0 73.3 67.8 45.5 22.3 55.95

Table 15: Accuracy values for the Turkish–English test suite.
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3.3 English–Finnish

As a general overview of the English–Finnish fea-
tures and their difficulty, Figure 1 shows the distri-
bution of correct labels across examples and fea-
tures. It can be seen that some features (e.g., verb
negation or numbers) pose very few problems to
current MT systems, whereas others (e.g. sub-
ordinate clause type, see SConj Type in the fig-
ure) are much more difficult. In contrast to Ger-
man, the pronoun plural feature seems to be harder
for Finnish systems. In particular, the 0 Correct
and 1-2 Correct categories may indicate poten-
tial problems in the example generation or scoring
process.

We performed a manual analysis of a small sam-
ple of contrast pairs (20-30 examples per feature)
regarding the grammaticality of the automatically
generated sentences and the recall of the automatic
evaluation script. For the features Noun Plur, Pron
Hum, Det Poss, Adj Compar Adj and Local case,
more than 20% of the annotated examples showed
either problems in the source sentence (incomplete
sentences due to splitting errors, ungrammatical or
meaningless sentences due to tagging errors, com-
plete meaning changes, etc.), or problems with the
evaluation method. Errors of the first class how-
ever may not necessarily affect the results of the
test suite, as most systems handle incomplete or
meaningless sentences rather well. Still, the re-
sults of the mentioned features may not be as reli-
able as those of the remaining ones.

The paradigm completion features (Table 12)
show a clear advantage for those two systems
that explicitly model target morphology, HY-
NMT2step and HY-AH. On average, these two sys-
tems are however outperformed by the NICT sys-
tem, confirming its first rank in the manual eval-
uation. Most other NMT systems yield compara-
ble accuracies, but it is striking to see that uedin
repeatedly ranks higher than HY-NMT despite its
lower BLEU and manual evaluation scores. The
only submitted SMT system, HY-SMT, clearly un-
derperforms in almost all features. The rule-based
HY-AH system shows good overall performance,
but is penalized by its complete failure on the sub-
ordinate clause type task, probably due to some
missing or defective rules. We manually checked
some examples of the subordinate clause feature,
as several systems completely failed on it, and are
able to confirm that these systems were indeed un-

able to correctly generate indirect questions.13

The agreement features (left half of Table 13)
show a somewhat different picture, with the NICT
system clearly leading the board, suggesting that
good data selection strategies may be more impor-
tant for these types of features than explicit mod-
eling of morphology. Still, the HY-NMT2step and
HY-AH yield better scores than their official rank-
ings would suggest.

The rare word features (right half of Table 13)
surprise by the exceptional performance of the on-
line systems. It is likely that these systems con-
tain some type of copy mechanism to handle out-
of-vocabulary words, whereas such mechanisms
are typically not included in research systems.
The participating NMT systems use three differ-
ent subword splitting algorithms: Aalto uses Mor-
fessor, talp-upc and CUNI-Kocmi use wordpieces
as implemented in Tensor2Tensor, and NICT, HY-
NMT and uedin use byte-pair encoding. The re-
sults suggest that byte-pair encoding performs bet-
ter than its competitors, but a more careful analysis
would be required to confirm this hypothesis. The
best performance in rare word features is achieved
by online systems B and G, but without knowledge
of their internals, we cannot link this performance
to training data or dedicated components.

Although a large-scale manual evaluation of
the sentence pairs was not within the scope of
this paper, a number of English-to-Finnish sen-
tence pairs were extracted for a manual “sanity
check”. In particular, we focused on cases where
only the rule-based system output was evaluated
as correct, in order to identify potential false pos-
itives/negatives caused by the equally rule-based
scoring procedure. One observed weakness of
the scoring procedure is that it favors more literal
(word-for-word) renderings of the source. This
tendency produces false negatives in the cases
where the NMT output contained a less literal
translation, which may however be both fluent and
adequate. False positives can also be observed
in some cases where the literal translation in the
RBMT output, marked correct, is in fact not a cor-
rect translation of the source. These often involved
idiomatic expressions (such as This brings us to
X), which occasionally occur in the sentence pairs
even though idioms had been excluded to the ex-

13Most failing translations used one of the following con-
structions: Hän kysyi, jos se ei tapahtuisi Kaliforniassa. /
Hän pyyti jos se ei tapahtuisi Kaliforniassa. ‘She asked if it
would not happen in California.’
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tent possible.

The stability features (Table 14) show lower fig-
ures on average. As could be expected, the rule-
based system is the most stable one, as it explic-
itly encodes the mappings between English and
Finnish morphological categories. The online sys-
tems again performed quite well on these features.
Again, the SMT system is worse than the NMT
systems, something that was not necessarily ex-
pected, as SMT systems tend to produce more lit-
eral translations than NMT systems. Similarly to
the German consistency features, the Finnish sta-
bility features do not seem to correlate strongly
with the human judgement scores. In particular,
the poor scores of CUNI-Kocmi are surprising and
not expected from the other features.

As noted above, stability is not necessarily al-
ways a reflection of overall quality, and it may
not always be most adequate to produce identi-
cal translations for sentence pairs differing in only
one feature (verb tense, pronoun gender, definite-
ness). An interesting example of this was ob-
served in the case of indefinite and definite de-
terminers. As Finnish lacks determiners, transla-
tions for sentences involving the definiteness con-
trast were expected to be identical. This was gen-
erally the case for the RBMT system, but NMT
systems were observed to produce sentences with
word order changes that are used in Finnish to
indicate distinctions corresponding to the English
definite/indefinite articles. The sample extracted
for this manual check is insufficient to determine
whether these word order differences can be con-
sidered something the NMT system has learned
from the corpus or simply random variation, but
the observation that they occur is interesting. Cer-
tainly, NMT systems do have the capacity to learn
to express sentence information structure but it is
not yet clear if it is sufficiently exemplified in the
training data.

An overall point should also be made that the
sentence pair evaluation only compares the spe-
cific feature being evaluated, or compares whether
the sentences are identical in the case of the stabil-
ity features. The overall correctness, adequacy or
fluency is not evaluated, and sentences evaluated
as correct for a specific feature may – and indeed
often do – contain other errors or problems.

3.4 Turkish–English
Finally, we present our evaluation results for
Turkish–English in Table 15.14

We can observe that none of the systems per-
form particularly well on either of the participle
contrast pairs. Interestingly, performance is worse
on the more frequent subject participles. There is
also a stark difference in performance across dif-
ferent systems in subject participles, with Online-
A’s accuracy (30.5%) being almost twice that of
uedin (17.0%).

Again, the overall translation performance is
not quite in line with the performance on our test
suite.

4 Conclusions

The contrastive evaluation of morphological com-
petence, as introduced by B&Y, has proved to
be easy to adapt to additional language pairs and
linguistic features. The data collected from the
systems participating in WMT18 allows for fine-
grained analysis of the impact of system archi-
tectures, training parameters and data on the vari-
ous aspects of morphological competence. In gen-
eral, the systems that perform well on global qual-
ity evaluation also show good morphological com-
petence, but a few striking differences have been
found. First, rule-based systems such as HY-AH
for English–Finnish tend to obtain much higher
morphology scores than expected from their over-
all quality. This is not surprising, as rule-based
systems usually contain an explicit morphologi-
cal generation component, but it requires more re-
search on the factors that influence the correlation
between morphological tests and overall transla-
tion quality. Second, we found that features fo-
cusing on consistency and stability (i.e., those pre-
sented in Tables 8, 11 and 14) correlate poorly
with human judgement. This suggests that the ro-
bustness of current MT system has almost no rela-
tion to their quality.
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Abstract

We present a pilot study of machine transla-
tion of selected grammatical contrasts between
Czech and English in WMT18 News Transla-
tion Task. For each phenomenon, we run a
dedicated test which checks if the candidate
translation expresses the phenomenon as ex-
pected or not. The proposed type of analysis is
not an evaluation in the strict sense because the
phenomenon can be correctly translated in var-
ious ways and we anticipate only one. What is
nevertheless interesting are the differences be-
tween various MT systems and the single ref-
erence translation in their general tendency in
handling the given phenomenon.

1 Introduction

English and Czech are typologically different lan-
guages. It goes without saying that some struc-
tural phenomena of either lack a direct structural
equivalent in the other; for instance, Czech has not
grammaticalized noun definiteness, while it boasts
a complex system of verb aspect, which is absent
in English. Such 1:n correspondences can pose
translation problems in human as well as in ma-
chine translation. Intuitively, a translation system
that has mastered these 1:n phenomena ought to be
more successful than one that has not. Therefore
we investigate whether there is a positive correla-
tion between mastering some of these problematic
phenomena and the performance of an En-Cs MT
system.

2 Selected Linguistic Phenomena

Based on our experience as Czech learners of En-
glish, translators and developers/evaluators of MT
systems, we have selected the following phenom-
ena for EN-CS translation evaluation: English
gerundial clause and English verb control with
controlled infinitive.

The data comes from a manually-parsed, word-
aligned parallel treebank of English news texts and
their human Czech translations (see Section 3).

2.1 English gerundial clause (and other
ing-forms)

Modern Czech has no counterpart of the English
gerund. Older Czech (i.e. until approximately
1950), used to have a verb form called present
transgressive, which would be very handy to
translate many cases of English gerundial clauses,
but this form is perceived as archaic and hardly
ever used. Modern Czech has the following op-
tions to render the English gerund:

1. finite clause with a choice of subordinators or
conjunctions;

2. non-finite clause (infinitive clause, nominal-
ization, or adjective/present participle).

In this study we tested whether the Czech equiva-
lent in the reference vs. automatic translation was
a finite clause or anything else.

2.1.1 Czech finite clause as equivalent to
English gerundial clause

Czech is more sensitive to convoluted expressions
than English. Therefore non-finite clauses are usu-
ally most smoothly translated with finite clauses.
To keep the Czech text coherent, though, human
translators usually link the gerundial clause to the
main clause with an explicit discourse connective
– either a conjunction or a subordinator, based on
their knowledge of context and their world knowl-
edge. This may pose a challenge for MT systems.
The most typical discourse connectives used to
translate gerundial clauses would be -li (a clitic
if or whether), což (which referring to a predi-
cate), protože (because), když (when), že (that as
subordinator), jak (approximately as expressing
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an event parallel to the main-clause event), and a
(and). Example:

(1) When they arrived at the door, all were afraid
to go in, fearing that they would be out of
place.
Ale když přišli ke dveřı́m, všichni se báli
vstoupit, protože se báli, že budou působit
trapně.
(But when they arrived at the door, all were
afraid to go in, because they feared that they
would be out of place.1 )

(2) He said he was surprised by the EC’s reac-
tion, calling it “vehement, even frenetic.”
Řekl, že byl překvapen reakcı́ ES, a nazval ji
”prudkou, ba i bouřlivou”.
(He said he was surprised by the EC’s reac-
tion, and he called it “vehement, even fre-
netic”.)

2.1.2 Czech infinitive as equivalent to English
gerundial clause

Infinitive clause occurs in our sample to translate
gerundial clauses in the subject position and in
control in some verbs. Example:

(3) Avoiding failure is easy.
Vyhnout se neúspěchu je snadné.
(To avoid failure is easy.)

(4) So far no one has suggested putting the
comptroller back on the board.
Zatı́m nikdo nenavrhl znovu dosadit do Rady
také kontrolora.
(So far no one has suggested to put the
comptroller back on the board.)

2.1.3 Nominalizations as equivalents to
gerundial clause

The choice between deverbal noun and event noun
is lexically motivated. A deverbal noun is a noun
derived from a verb stem by suffixes -nı́, -tı́; e.g.
stát v. – stánı́ n., proklı́t v. – prokletı́ n. This is an
almost universal derivational mechanism, but it is
stylistically associated with officialese and easily
overused.

An event noun is a noun with either no deriva-
tive relation to any semantically close verb stem

1To make the structure of the target Czech reference sen-
tence more accessible to non-Czech speakers, we enhance
this paper with their literal English translations. We enclose
these—naturally awkward—sentences in parentheses.

(restaurace, n. – NULL v.2) or a less productive
derivation relation to a verb stem; e.g. podpořit v.
– podpora n., letět v. – let n.). Also these nom-
inalizations are to be used sparingly to preserve
readability.

Example:

(5) Consider adopting your spouse’s name.
Zvažte přijetı́ přı́jmenı́ svého partnera.
(Consider the adopting of your spouse’s
name.)

(6) The Canadian wound up writing a check.
Kanaďan ukončil vysvětlovánı́ vypsánı́m
šeku.
(The Canadian wound up with the writing of
a check. )

(7) Fear of AIDS hinders hiring at few hospitals.
Strach z AIDS komplikuje nábor v několika
nemocnicı́ch.
(Fear of AIDS hinders recruitment at few
hospitals.)

2.1.4 Present participle as equivalent to
gerundial clause

The Czech present participle is derived from a
verb but behaves like a regular adjective, includ-
ing inflection; e.g. spát v. – spı́cı́ adj.

As an equivalent to the English gerundial
clause it requires a syntactic transformation of the
source clause, approximately as though the origi-
nal clause contained a participial clause instead of
the gerund. Square brackets in the following ex-
ample show the syntactic dependencies in English
imagined by the translator and the corresponding
structure in Czech. The main predicate is typeset
in bold. Example:

(8) [[Mr. Fukuyama, [peering]] through binocu-
lars at the end of history, said] ... [[Francis
Fukuyama [nakukujı́cı́]] skrz brýle na konci
historie, ... uvádı́], že ...

(9) [Other steelmakers envision steel [roofs
[covering]] suburbia.] [Dalšı́ výrobci oceli si
představujı́ ocelové [střechy [pokrývajı́cı́]]
předměstı́.]

2The verb restaurovat means restore, whereas the noun
restaurace means restaurant.
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2.2 English infinitive clause
The English infinitive clause has many functions;
e.g. verb control or a convoluted subordinate
clause. Infinitive as controlled verb in verb control
is present in both languages, but the many other
uses of the English infinitive clause have different
structure equivalents in Czech—mostly different
types of finite subordinate clauses. A correct pars-
ing would possibly make it easier for an MT sys-
tem to select a plausible Czech equivalent struc-
ture, but the parser was not able to reliably identify
the correct syntactic governing node of an infini-
tive clause in our data sample.

Since we could not rely on the parser to tell in-
finitive clause as an argument from an adjunct, we
did not limit our search to arguments. Our sam-
ple contains the following Czech structural equiv-
alents to English infinitive clauses:

1. infinitive or noun phrase;

2. finite clause.

2.2.1 Infinitive as controlled verb
A proportion of verb control cases have a 1:1
translation to Czech.

Example:

(10) Comair said it paid cash but declined to dis-
close the price.
Společnost Comair uvedla, že zaplatila ho-
tově, avšak odmı́tla uvést cenu.

However, many English controlling verbs have
a Czech equivalent verb that cannot act as a con-
trolling verb. To avoid a verbose paraphrase with
an expletive pronoun and a subordinate content
clause, Czech can resort to a nominalization (de-
verbal noun or event noun; see Section 2.1.3):

Example:

(11) Mr. Friend says he agreed to strike Mr.
Alexander above the belt.
Pan Friend řı́ká, že souhlasil s udeřenı́m pana
Alexandera nad opaskem.
(Mr. Friend says he agreed with a striking of
Mr. Alexander above the belt.)

The verbose translation would say:

(12) Pan Friend řı́ká, že souhlasil s tı́m, že udeřı́
pana Alexandera nad opaskem.
(Mr. Friend says he agreed with it that he
would strike Mr. Alexander above the belt.)

2.2.2 Finite clause as equivalent to English
infinitive clause

English has an infinitive structure that resembles
a consecutive clause but involves a semantic shift
towards temporal sequence of two events. This
structure exists in Czech, too, but it is not com-
mon. A more natural translation would use a co-
ordination of finite clauses. Example:

(13) The stock gained $2.75 Thursday to close at
a then-52 week high.
Cenný papı́r ve čtvrtek navýšil o 2.75 dolaru
a uzavı́ral na vrcholu tehdejšı́ch 52 týdnů.
(The stock gained $2.75 Thursday and was
closing at a then-52 week high.)

Purpose and consecutive clauses, as well as con-
tent clauses, are typically finite in Czech, using a
range of subordinators (cf. Section 2.1.4).

Examples:

(14) It also redesigned Oil of Olay’s packaging,
stamping the traditional pink boxes with gold
lines to create a more opulent look.
Společnost rovněž změnila obal krému, na
tradičnı́ růžová polı́čka přidala zlaté linky,
čı́mž vytvořila lukrativnějšı́ vzhled.
(It also redesigned Oil of Olay’s packaging,
stamping the traditional pink boxes with gold
lines, by which it created a more opulent
look.)

(15) At least three other factors have encouraged
the IMF to insist on increased capital.
Nejméně tři dalšı́ faktory přiměly MMF k
tomu, aby na zvýšenı́ kapitálu trval.
(At least three other factors have encouraged
the IMF to that it should insist on increased
capital.)

3 Data Set

Our sentences come from the Prague Czech-
English Dependency Treebank 2.0 (PCEDT 2.0)
(Hajič et al., 2012). PCEDT 2.0 is a multi-layered
parallel treebank with automatic word alignment,
manually built upon the Penn Treebank (Marcus
et al., 1994) and its translation into Czech. It has
two syntactic layers of rooted dependency trees
with labeled edges: the analytical (a-) layer with
surface syntax and the tectogrammatical (t-) layer
with deep syntax.

563



Figure 1: A sentence representation in PCEDT 2.0. The English part also contains the original PennTreebank.

In the a-layer, each word token is represented
by one node. The inner structure of each node con-
tains the word form, lemma, POS-tag, dependency
label (afun), and reference to the governing node.
The t-layer represents the linguistic meaning of
each sentence by a tree that somewhat abstracts
from details of morphology and surface syntax,
but remains, by and large, a syntactic dependency
tree. Each node contains references to the a-layer
corresponding a-layer node(s), along with a whole
range of other attribute values. Different reference
types to content and auxiliary words, respectively.
Apart from that, the t-layer provides semantic role
labeling (functors), as well as coreference and el-
lipsis resolution.

Figure 1 illustrates the data structure of PCEDT
2.0 including the alignment links pointing from
English to Czech.

We have automatically selected 3782 sen-
tences, using the the PMLTQ search query engine
(Štěpánek and Pajas, 2010), using the Czech coun-
terpart of the corpus as reference translation. All
the pre-selected sentences were included in inputs
of MT systems participating in the WMT18 News
Translation Task. In addition to the “primary”
systems CUNI Transformer, UEDIN and the on-
line systems, we also added three baseline (con-
trastive) systems: CUNI Chimera, CUNI Chimera
noDepfix and CUNI Moses.

CUNI Transformer is a carefully trained system
(Popel and Bojar, 2018) based on the Transformer
architecture (Vaswani et al., 2017) and thus with-
out recurrent connections.

UEDIN is an ensemble of deep RNN systems
translating left-to-right and reranked by a deep
right-to-left RNN model.

CUNI Moses serves as the ultimate baseline. It
is phrase-based (Koehn et al., 2007) and trained on
a very large parallel corpus and further adapted for

the news text.
CUNI Chimera is the hybrid setup that served

very well in 2013–2015 (Bojar et al., 2013).
A phrase-based backbone is used to combine
translations by a transfer-based system TectoMT
(Žabokrtský et al., 2008), by Nematus (Sennrich
et al., 2017) and by Neural Monkey (Helcl et al.,
2018) with phrase pairs from the large parallel cor-
pus. The final step of Chimera was the applica-
tion of a dependency-based automatic error cor-
rection tool Depfix (Rosa et al., 2012). In this
paper we report the performance of both the full
CUNI Chimera and a version without a the depfix
post-correction, labelled CUNI Chimera noDep-
Fix.

Since our sentences originally come from the
WSJ section of the Penn Treebank, they belong to
the domain of the translation task.

4 Evaluation

For each phenomenon we implemented a small
test relying on an automatic analysis of the source
English to the surface syntactic tree (a-layer, in
the terminology of PCEDT), an automatic anal-
ysis of the Czech translation to surface (a-layer)
along with a deep (t-layer) syntactic tree, and on
automatic word alignments between the English a-
layer and Czech a-layer and t-layer. We aligned
directly English to each of the Czech layers; a
more rigorous approach would have been align-
ing only the a-layers and follow the links between
a-layer and t-layer on the Czech side, but since
all our annotations are automatic, we do not ex-
pect much difference in these approaches due to
random errors in all processing steps. The anno-
tation was provided by the pipeline used in the
creation of corpus CzEng (Bojar et al., 2016)3

3http://ufal.mff.cuni.cz/czeng
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as implemented in the Treex toolkit (Popel and
Žabokrtský, 2010). For the alignment, we re-
lied on an intersection of GIZA++ (Och and Ney,
2000) alignments.

The test searched for the keyword related to the
phenomenon (e.g. the controlled English verb),
followed the word-alignment links to the tested
some morphological or syntactic properties of the
corresponding Czech word or node in t-layer anal-
ysis. The result of the test was “Good” if the
Czech expression was the best possible transla-
tion, “Bad” otherwise, and “Unknown” if the tar-
get word or node was not found, e.g. due to errors
in word alignment.

It is important to note that “Bad” does not al-
ways mean an inacceptable translation. It merely
means that the translation is not the most straigh-
forward one.

Table 1 below presents the detailed results of
these tests.

While the manual evaluation of WMT18
systems is not yet available, we can as-
sume that it will match the automatic evalua-
tion available at http://matrix.statmt.
org/matrix/systems_list/1883 and re-
produced here in Table 2. One caveat to keep in
mind is that this evaluation is based on a different
set of sentences than we use in our testsuite.

Disregarding the “Unknowns”, we plot the re-
sults in Figure 2 and Figure 3 by systems and by
phenomena, respectively.

5 Discussion

One observation is that the reference generally
adopts the most typical translation in all the phe-
nomena. (A small exception is the performance
of UEDIN in EN-gerund-CS-finclause on the re-
fined set; not confirmed on the larger set though.)
At the same time, the reference does not always
match our expectation. The most divergent phe-
nomenon is EN-gerund-CS-finclause where the
reference uses the expected finite clause only in
56/(56 + 25.3) = 68.9% of cases.

In general, the reference seems a little harder
to process (“Unk” higher than for MT systems),
probably due to a less verbatim translation and
thus a less straightforward word alignment.

The order of MT systems does not match their
overall automatic performance. CUNI Trans-
former, the best-performing system overall (and a
system that is actually likely to surpass humans

this year in sentence-level evaluation) appears in
the middle of our list. This suggests that Trans-
former outputs may be “more creative”, departing
more from the reference. UEDIN, on the other
hand, seems to be very close to the reference in the
studied phenomena. Finally, phrase-based Moses
has been clearly surpassed in all evaluations. As a
next step, we plan to obtain and compare manual
evaluations of individual sentences . The annota-
tors will rate the automatic and reference transla-
tions alike, without knowing which is which. For
each system, we will compare the correlation be-
tween the quality rating and the agreement with
the reference translation.

6 Conclusion

We have presented a testsuite focused on English–
Czech translation of a small set of extremely fre-
quent verb-related phenomena. The testsuite of
about 3000 automatically preselected sentences
reveals that the two overall top-performing sys-
tems UEDIN and CUNI Transformer differ con-
siderably in their handling of the phenomena. Fur-
ther investigation, esp. in link with the manual
annotation which is now running for WMT18, is
needed to validate whether the less expected trans-
lations for our selected phenomena reflect the as-
sessed translation quality.

The dataset is publicly accessible via the
LINDAT-CLARIN repository:

http://hdl.handle.net/11234/1-2856
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mecký, Jana Šindlerová, Jan Štěpánek, Josef Toman,
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362–368, Montréal, Canada. Association for Com-
putational Linguistics.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017. The university of edinburgh’s neural mt sys-
tems for wmt17. In Proceedings of the Second Con-
ference on Machine Translation, Volume 2: Shared
Task Papers, pages 389–399, Copenhagen, Den-
mark. Association for Computational Linguistics.
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Total Bad Good Unk Total Bad Good Unk
EN-control-CS-finclause Reference 76 7.9 72.4 19.7 100 8.0 71.0 21.0
EN-control-CS-finclause UEDIN 76 34.2 53.9 11.8 100 39.0 50.0 11.0
EN-control-CS-finclause CUNI Chimera 76 o 27.6 51.3 21.1 100 o 31.0 47.0 22.0
EN-control-CS-finclause CUNI Chimera noDepFix 76 27.6 51.3 21.1 100 31.0 47.0 22.0
EN-control-CS-finclause CUNI Transformer 76 o 23.7 o 56.6 19.7 100 o 23.0 o 60.0 17.0
EN-control-CS-finclause online-B 76 23.7 o 59.2 17.1 100 27.0 53.0 20.0
EN-control-CS-finclause online-A 76 68.4 22.4 9.2 100 71.0 20.0 9.0
EN-control-CS-finclause online-G 76 71.1 18.4 10.5 100 o 69.0 o 21.0 10.0
EN-control-CS-finclause CUNI Moses 76 o 67.1 17.1 15.8 100 o 67.0 18.0 15.0
EN-control-CS-nofinclause Reference 104 0.0 70.2 29.8 1819 0.6 74.2 25.2
EN-control-CS-nofinclause UEDIN 104 20.2 64.4 15.4 1819 18.0 68.4 13.6
EN-control-CS-nofinclause CUNI Chimera 104 23.1 60.6 16.3 1819 20.2 62.3 17.4
EN-control-CS-nofinclause CUNI Chimera noDepFix 104 23.1 60.6 16.3 1819 20.2 o 62.4 17.4
EN-control-CS-nofinclause CUNI Transformer 104 26.9 54.8 18.3 1819 o 18.2 o 64.9 16.9
EN-control-CS-nofinclause online-B 104 28.8 52.9 18.3 1819 18.6 61.2 20.2
EN-control-CS-nofinclause online-A 104 o 10.6 o 77.9 11.5 1819 o 8.7 o 79.2 12.0
EN-control-CS-nofinclause online-G 104 11.5 76.0 12.5 1819 o 7.3 o 81.3 11.4
EN-control-CS-nofinclause CUNI Moses 104 o 5.8 o 80.8 13.5 1819 o 5.3 79.2 15.6
EN-control-CS-subjunctclause Reference 90 2.2 65.6 32.2 1130 4.0 70.7 25.3
EN-control-CS-subjunctclause UEDIN 90 23.3 o 66.7 10.0 1130 22.4 60.7 16.9
EN-control-CS-subjunctclause CUNI Chimera 90 o 21.1 58.9 20.0 1130 29.6 47.6 22.7
EN-control-CS-subjunctclause CUNI Chimera noDepFix 90 21.1 58.9 20.0 1130 29.6 47.6 22.7
EN-control-CS-subjunctclause CUNI Transformer 90 o 18.9 o 61.1 20.0 1130 o 21.7 o 57.5 20.8
EN-control-CS-subjunctclause online-B 90 20.0 58.9 21.1 1130 25.3 52.7 21.9
EN-control-CS-subjunctclause online-A 90 50.0 36.7 13.3 1130 52.8 30.4 16.7
EN-control-CS-subjunctclause online-G 90 57.8 30.0 12.2 1130 64.6 20.4 15.0
EN-control-CS-subjunctclause CUNI Moses 90 63.3 16.7 20.0 1130 o 61.6 17.1 21.3
EN-gerund-CS-finclause Reference 75 25.3 56.0 18.7 165 21.2 59.4 19.4
EN-gerund-CS-finclause UEDIN 75 26.7 o 58.7 14.7 165 28.5 57.0 14.5
EN-gerund-CS-finclause CUNI Chimera 75 o 24.0 o 60.0 16.0 165 o 24.2 56.4 19.4
EN-gerund-CS-finclause CUNI Chimera noDepFix 75 24.0 60.0 16.0 165 24.2 56.4 19.4
EN-gerund-CS-finclause CUNI Transformer 75 28.0 50.7 21.3 165 26.7 51.5 21.8
EN-gerund-CS-finclause online-B 75 34.7 48.0 17.3 165 32.7 47.3 20.0
EN-gerund-CS-finclause online-A 75 60.0 26.7 13.3 165 57.6 32.7 9.7
EN-gerund-CS-finclause online-G 75 61.3 o 28.0 10.7 165 63.6 27.9 8.5
EN-gerund-CS-finclause CUNI Moses 75 o 38.7 o 45.3 16.0 165 o 36.4 o 48.5 15.2
EN-gerund-CS-nofinclause Reference 218 0.5 72.9 26.6 368 2.2 70.1 27.7
EN-gerund-CS-nofinclause UEDIN 218 16.1 67.4 16.5 368 19.8 64.9 15.2
EN-gerund-CS-nofinclause CUNI Chimera 218 29.4 53.7 17.0 368 28.3 53.8 17.9
EN-gerund-CS-nofinclause CUNI Chimera noDepFix 218 29.4 53.7 17.0 368 28.3 53.8 17.9
EN-gerund-CS-nofinclause CUNI Transformer 218 o 17.0 o 62.8 20.2 368 o 16.6 o 63.0 20.4
EN-gerund-CS-nofinclause online-B 218 19.3 59.6 21.1 368 20.7 58.2 21.2
EN-gerund-CS-nofinclause online-A 218 o 12.8 o 75.7 11.5 368 o 14.7 o 72.8 12.5
EN-gerund-CS-nofinclause online-G 218 17.4 71.6 11.0 368 16.3 71.5 12.2
EN-gerund-CS-nofinclause CUNI Moses 218 33.5 50.5 16.1 368 32.1 51.4 16.6

Table 1: Detailed results of automatic tests. Left: Manually refined set, Right: larger, pre-selected set.
Systems sorted by average performance in our testsuite. “o” indicates lines ouf of sequence in the “Bad” or “Good”
columns.

System BLEU BLEU-cased TER BEER 2.0 CharactTER
CUNI Transformer 26.6 26.0 0.638 0.567 0.532
UEDIN 24.0 23.4 0.666 0.554 0.550
CUNI Chimera noDepFix 21.0 19.8 0.703 0.528 0.600
CUNI Chimera 20.8 19.2 0.704 0.522 0.605
CUNI Moses 17.5 16.4 0.739 0.509 0.632

Table 2: Automatic results of WMT18 English-Czech systems. From matrix.statmt.org.
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Figure 2: Performance by systems on the refined set. Each facet represents one MT system; each bar represents
one pair of En phenomenon – Cs translation option. The result is computed as the proportion of agreements of
the given MT system with the reference in the total number of cases (x-scale). In addition, we display the exact
number inside each bar.
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Abstract

We evaluate the output of 16 English-to-
German MT systems with respect to the trans-
lation of pronouns in the context of the WMT
2018 competition. We work with a test suite
specifically designed to assess system quality
in various fine-grained categories known to
be problematic. The main evaluation scores
come from a semi-automatic process, combin-
ing automatic reference matching with exten-
sive manual annotation of uncertain cases. We
find that current NMT systems are good at
translating pronouns with intra-sentential ref-
erence, but the inter-sentential cases remain
difficult. NMT systems are also good at the
translation of event pronouns, unlike systems
from the phrase-based SMT paradigm. No
single system performs best at translating all
types of anaphoric pronouns, suggesting unex-
plained random effects influencing the transla-
tion of pronouns with NMT.

1 Introduction

Data-driven machine translation (MT) systems are
very good at making translation choices based
on the words in the immediate neighbourhood
of the word currently being generated, but as-
pects of translation that require keeping track of
long-distance dependencies continue to pose prob-
lems. Linguistically, long-distance dependencies
often arise from discourse-level phenomena such as
pronominal reference, lexical cohesion, text struc-
ture, etc. Initially largely ignored, such problems
have attracted increasing attention in the statisti-
cal MT (SMT) community in recent years (Hard-
meier, 2012; Sim Smith, 2017). One important
problem that has proved to be surprisingly difficult
despite extensive research is the translation of pro-
nouns (Hardmeier et al., 2015; Guillou et al., 2016;
Loáiciga et al., 2017).

*All authors contributed equally.

Since the invention of the BLEU score (Papineni
et al., 2002), the MT community has measured
progress to a large extent with the help of summary
scores that are easy to compute, but strongly af-
fected by the corpus-level frequency of certain phe-
nomena, and that tend to neglect specific linguistic
relations and problems that occur infrequently. The
advent of neural MT (NMT) with its improved ca-
pacity for modeling more complex relationships be-
tween linguistic elements has brought an increased
interest in linguistic problems perceived as difficult,
which are often not captured well by metrics like
BLEU. It has been suggested that test suites com-
posed of difficult cases could provide more relevant
insights into the performance of MT systems than
corpus-level summary scores (Hardmeier, 2015).
In this paper, we present a semi-automatic evalu-
ation of the systems participating in the English–
German news translation track of the MT shared
task at the WMT 2018 conference.

The analysis was carried out with the help of an
English–German adaptation of the PROTEST test
suite for pronoun translation (Guillou and Hard-
meier, 2016). The test suite allows us to perform
a fine-grained evaluation for different types of pro-
nouns. Whilst the translation of event pronouns,
which caused serious problems in earlier evalu-
ations of SMT systems (Hardmeier et al., 2015;
Hardmeier and Guillou, 2018), seems to be han-
dled fairly well by modern NMT systems, we find
that translating anaphoric pronouns is still difficult,
especially (but not only) if the pronoun has an an-
tecedent in a different sentence. Our results also
confirm earlier findings that suggested the need
for a careful evaluation that is sensitive to specific
linguistic problems. Whilst BLEU scores as a mea-
sure of general translation quality are strongly cor-
related with pronoun correctness, there are signifi-
cant outliers that would be missed by an evaluation
focusing on BLEU only. Moreover, evaluating pro-
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noun translations by comparison with a reference
translation is not reliable for all types of pronouns
(Guillou and Hardmeier, 2018). This fact limits the
usefulness of automatic pronoun evaluation met-
rics such as APT (Miculicich Werlen and Popescu-
Belis, 2017) and affects the semi-automatic evalua-
tion of our test suite as well.

2 Related Work

Research on pronoun translation was boosted by
three past shared tasks (Hardmeier et al., 2015;
Guillou et al., 2016; Loáiciga et al., 2017). They
focused on English, French, German and Spanish
in different directions. To avoid the effort and cost
of manual evaluation, the tasks were designed and
evaluated as classification rather than MT tasks,
except for the first year, which featured both MT
and classification tasks. At the time of the first
of these shared tasks, phrase-based SMT systems
were still competitive and the winning system was
a strong n-gram language model (not involving any
translation) trained as a baseline. By the time of
the last pronoun focused shared task, however, an
NMT system with no explicit knowledge about
pronouns ranked first (Jean et al., 2017).

Automatic metrics computed by matching the
candidate and reference translations offer little ex-
planation of the causes for error. Additionally, the
neural architectures of current end-to-end systems
make it difficult to find out where exactly a transla-
tion went wrong by inspection. Test suites ease the
evaluation process in general, since they allow us to
simultaneously measure quantitative performance
and diagnose qualitative shortcomings with regard
to the targeted set of problems.

Test suites assessing NMT have focused on
contrastive pairs or sets of sentences automati-
cally generated. These include Burlot and Yvon
(2017), for the evaluation of morphology in the
English-to-Latvian and to-Czech language pairs;
Sennrich (2017), who evaluates noun phrase and
subject-verb agreement, particle verbs, polarity,
and transliteration; and Rios Gonzales et al. (2017)
whose work concentrates on word sense disam-
biguation for the German-to-English and German-
to-French pairs. The test suite used in our work is
based on the PROTEST test suite, which was orig-
inally created for English–French by Guillou and
Hardmeier (2016). Closest to our work is the test
suite of English-to-French anaphoric pronouns and
coherence and cohesion by Bawden et al. (2018).

Their test suite includes 50 examples of contrastive
pairs of sentences, which are manually created and
targeted towards object pronouns.

3 Test Suite Construction

The data for our test suite was taken from the
ParCorFull corpus (Lapshinova-Koltunski et al.,
2018), a German-English parallel corpus manually
annotated for co-reference. Although the corpus
is designed for nominal co-reference, it includes
annotations of two types of antecedents: entities
and events. Entities can be either pronouns or
noun phrases, whereas events can be verb phrases,
clauses, or a set of clauses.

ParCorFull includes texts from TED talks tran-
scripts and newswire data. Specifically, it includes
the datasets used in the ParCor corpus (Guillou
et al., 2014), the DiscoMT workshop (Hardmeier
et al., 2016), and the test sets from the WMT 2017
shared task (Bojar et al., 2017).

We constructed a test suite of 200 pronoun trans-
lation examples for English–German with a focus
on the ambiguous English pronouns it and they and
the aim of providing a set of examples that repre-
sents the different problems machine translation
researchers should consider. We extracted the ex-
amples from the TED talks section of ParCorFull.

The selection is based on a two-level hierarchy
which considers pronoun function at the top level,
followed by other pronoun attributes at the more
granular lower level (for anaphoric pronouns only).

The English pronoun they functions as an
anaphoric pronoun, whereas it can function as ei-
ther an anaphoric (1), pleonastic (2), or event ref-
erence1 pronoun (3), with each function requiring
the use of different pronouns in German.

(1) a. The infectious disease that’s killed more hu-
mans than any other is malaria. It’s carried
in the bites of infected mosquitos.

b. Jene Krankheit, die mehr Leute als jede
andere umgebracht hat, ist Malaria gewe-
sen. Sie wird über die Stiche von infizierten
Moskitos übertragen.

(2) a. And it seemed to me that there were three
levels of acceptance that needed to take
place.

b. Und es schien, dass es drei Stufen der
Akzeptanz gibt, die alle zum Tragen kom-

1Event reference is more commonly known as abstract
anaphora or discourse deixis.
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men mussten.

(3) a. But I think if we lost everyone with Down
syndrome, it would be a catastrophic loss.

b. Aber, wenn wir alle Menschen mit Down-
Syndrom verlören, wäre das ein katas-
trophaler Verlust.

At the more granular lower level, anaphoric pro-
nouns are subdivided according to the following
attributes: whether the pronoun appears in the same
sentence as its antecedent (intra-sentential) or a dif-
ferent sentence (inter-sentential), the antecedent
is a group noun, the pronoun is in subject or non-
subject position (it only), or an instance of they is
used as a singular pronoun (for example, to refer to
a person of unknown gender). An overview of the
resulting categories is provided in Table 2.

The distribution of test suite examples over the
pronoun categories in the hierarchy can be found in
the first row of Table 3. The number of examples
assigned to each category reflects a) the functional
ambiguity of the pronoun it, b) the number of differ-
ent translation options possible in German, and c)
the number of pronouns in the corpus that belong
to the category (for example, there are very few
instances of singular they available). Within each
category, we aim to create a balance in terms of the
expected pronoun translation token. We achieve
this by considering the translation of the set of pos-
sible candidates in the reference translation.

4 Evaluation Results

The evaluation included 10 systems submitted to
the English–German sub-task of the WMT 2018
competition and 6 anonymized online translation
systems. Among the WMT submissions, all of the
systems are neural models, with the Transformer
(Vaswani et al., 2017) being a popular architecture
choice. Implementation details can be found in the
system description papers published at WMT 2018.

4.1 Automatic Evaluation

We provide scores from two different automatic
evaluation metrics for all systems in our dataset
(see Table 1 and Figure 1). To give a general im-
pression of the translation quality achieved by the
various systems, we include the BLEU scores on
the TED talks from which the test suite is derived.
These scores differ from the BLEU scores of the
official WMT evaluation because they are com-
puted on a different test set, containing texts from

System BLEU APT

Microsoft-Marian 32.6 3 66.0 7

NTT 31.8 7 70.0 1

UCAM 32.3 5 69.0 2

uedin 30.7 9 68.0 4

MMT-prod 33.2 1 65.0 8

KIT 31.6 8 68.5 3

online-Z 32.5 4 66.5 6

online-B 32.7 2 62.5 10

online-Y 31.9 6 68.0 5

JHU 28.8 10 62.0 12

online-F 18.8 14 60.5 13

LMU-nmt 28.5 11 63.0 9

online-A 27.4 12 62.0 11

online-G 22.3 13 59.5 14

RWTH-UNS 13.7 15 54.5 15

LMU-uns 10.5 16 –

Table 1: Automatic evaluation results.

a different domain. For a more pronoun-specific
evaluation, we also compute APT scores (Miculi-
cich Werlen and Popescu-Belis, 2017).2 For better
comparability, the set of pronouns evaluated by
APT was restricted to the 200 items included in
the test suite. Following the recommendations of
Guillou and Hardmeier (2018), we did not define
any “equivalent” pronouns in the APT metric, but
counted exact matches only.

A regression fit between the BLEU scores ob-
tained and the number of examples annotated as
correct by each system indicates a strong correla-
tion between the two (Figure 2; r = 0.912, N = 16,
p < 0.001), as does a similar analysis for the APT
score (r = 0.887, N = 15, p < 0.001). These re-
sults, however, should be taken with a grain of salt,
as we argue further in Section 5.

4.2 Semi-automatic Evaluation
The semi-automatic evaluation method is a two-
pass procedure. It is motivated by the observation
that automatic reference-based methods can iden-
tify correct examples with relatively high precision,
but low recall (Guillou and Hardmeier, 2018). The
evaluation procedure relies on word alignments,
which were generated automatically by running
Giza++ (Och and Ney, 2003) in both directions
with grow-diag-final symmetrization (Koehn et al.,
2005). The word alignments for the examples in
the reference translation were corrected manually.

In the first step, the candidate translations are
matched against the reference translation to ap-

2The APT score could not be computed for the LMU-uns
system because the scorer cannot handle completely untrans-
lated sentences, which occur occasionally in the output of that
system.
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Figure 1: BLEU and APT scores. The three highest ranking systems are highlighted in orange.
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Figure 2: Correlation between the BLEU and APT scores and the number of instances annotated as correct. The
gray zone indicates a 95% confidence interval.

prove examples that we can assume to be correct
with reasonable confidence. Examples in the event
and pleonastic categories can be approved based
on a pronoun match alone; for the anaphoric cate-
gories, we also require matching antecedent trans-
lations. Two pronoun translations are considered
to match if the sets of words aligned to the pro-
nouns have at least one element in common after
lowercasing. For antecedent translations, the word
sequences aligned to the source antecedent must be
completely equal for an automatic match. As a spe-
cial exception, no automatic matches are generated
for pronoun translations containing the word sie
alone, so that the ambiguity between third-person
plural sie and the pronoun of polite address Sie can
be manually resolved.

In the second step, all examples not automati-
cally approved are loaded into a graphical analysis
tool specifically designed for the PROTEST test
suite (Hardmeier and Guillou, 2016). The tool
presents the annotator with the source pronoun, its
translation by a given system, and the previous
sentence for context. In the case of anaphoric pro-
nouns, the context includes the sentence with the
antecedent and one additional sentence. The ex-
amples were split randomly over four annotators.
The annotators, who are translator trainees at Saar-

Category – + total correct

Anaphoric
intra-sent subj. it 5 39 44 88.6%
intra-sent non-subj. it 6 13 19 68.4%
inter-sent subj. it 13 16 29 55.2%
inter-sent non-subj. it 9 21 30 70.0%
intra-sent they – – – –
inter-sent they – – – –
singular they – – – –
group it/they – 9 9 100.0%

Event reference it 14 68 82 82.9%
Pleonastic it – 137 137 100.0%

Total 47 303 350 86.6%

Table 2: Human evaluation of automatically approved
examples

land University, are all native speakers of German
with a good knowledge of English. To improve
the quality of the annotations, the annotators had
been trained beforehand on the output of a baseline
NMT system.

In total, 3,200 pronoun examples from 16 sys-
tems were evaluated. 1,150 examples were ap-
proved automatically and 2,050 examples were re-
ferred for manual annotation. To verify the validity
of the semi-automatic method, we also solicited
manual annotations for a random sample of 350
examples that had been approved automatically.
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The first step of our two-step procedure can only
approve examples, it never rejects them automati-
cally. As a consequence, our semi-automatic eval-
uation is biased towards correctness with respect
to a fully manual evaluation. The scores presented
in Table 3 will therefore tend to overestimate the
actual system performance.

The results of the human annotation of the
random sample of 320 examples automatically
matched as correct are presented in Table 2. Con-
sistently with similar results for French (Hardmeier
and Guillou, 2018), 86.6% of the automatically ap-
proved examples were accepted as correct by the
evaluators. However, we must highlight that the
accuracy of the automatic evaluation varies substan-
tially across categories. Whilst pronouns known to
be pleonastic can be checked automatically with
very good confidence, the automatic evaluation of
anaphoric pronouns is much more difficult, with an
evaluation accuracy as low as 55.2% in the inter-
sentential subject it case. This reflects the general
difficulty of automatic pronoun evaluation (Guillou
and Hardmeier, 2018) and reinforces the positive
bias discussed in the previous paragraph for these
categories in particular.

The results of the semi-automatic evaluation are
displayed in Table 3. For the counts in this table,
we used manual annotations wherever possible.
Automatic annotations were used only for those
examples that had not been annotated manually.

The best result was obtained by the Microsoft-
Marian system, which translated 157 out of 200
pronouns correctly. It is followed by a group of 5
shared task submissions that achieved scores be-
tween 145 and 148. Three of the online systems
also reached scores over 140. The remaining shared
task submissions are JHU with a score of 132 and
LMU-nmt with a score of 127. Unsurprisingly, the
unsupervised submissions are ranked last.

5 Discussion

Generally speaking, a high BLEU score indicates
good translation quality and vice versa. The APT
score has been shown to capture good pronoun
translations with reasonable precision, if unsatis-
factory recall (Guillou and Hardmeier, 2018), but it
is also trivially correlated with our test suite score
to some extent because the automatic part of our
semi-automatic evaluation identifies good transla-
tion with a mechanism that is very similar to that
of APT. In the right half of Figure 2, we observe

that the APT score introduces spurious differences
between systems reaching exactly the same number
of correctly translated items (NTT, UCAM, uedin)
and fails to reward correct pronoun translations in
some of the systems (Microsoft-Marian, online-B).
As a result, the score can serve as an indicator,
but not as a reliable replacement of a manual or
semi-automatic evaluation.

Moreover, the small size of the test suite and the
differences between the system architectures must
be kept in mind. Considering these two factors, a
larger threshold in any of the two scores is needed
to claim that one system is actually better than an-
other (Berg-Kirkpatrick et al., 2012). This caveat
appears to be confirmed by the two outliers seen in
the left part of Figure 2. Interestingly, the online-F
system achieves many good pronoun translations
despite a low BLEU score. The RWTH-uns sys-
tem is also much better on correct pronouns than
LMU-uns (the other unsupervised system) than the
difference in BLEU scores would suggest.

The results of manual evaluation vary signifi-
cantly by category. In the anaphoric it categories, it
is evident that intra-sentential anaphora is easier to
handle than inter-sentential anaphora. In the intra-
sentential case, the best systems produce correct
translations for 70–80% of the examples, which
is a fair result, but indicates that the problem is
not completely solved yet. In the inter-sentential it
categories, the average performance is below 50%
despite the positive bias of our evaluation method,
and even the best-performing systems are not much
better. It is worth noting that no single system
performs best over all anaphoric categories, which
suggests that the top scores achieved for this part
of the test suite could be random strokes of luck.
The results for pronouns in subject and non-subject
positions are not very different. This contrasts with
the results of Hardmeier and Guillou (2018) for
English–French, where non-subject pronouns were
found to be substantially harder to translate. It
might be due to the fact that the direct object forms
of French personal pronouns coincide with those of
the definite article, a problem that does not apply
to German.

The plural cases of they do not cause any serious
problems, at least for the stronger systems, since
they can usually be translated straightforwardly us-
ing the German pronoun sie. The errors occurring
in these categories are often due to confusion with
the pronoun of polite address Sie (“you”). When

574



Pronouns Antecedents

anaphoric event pleonastic

it they it/they it it

intra inter intra inter sing. group

subj. non-subj. subj. non-subj. Total

Examples 25 25 25 25 10 10 5 15 30 30 200 140

Microsoft-Marian 18 20 12 15 9 10 2 13 29 29 157 132
NTT 16 18 14 16 10 10 1 8 26 29 148 135
UCAM 19 20 13 11 10 10 2 11 22 30 148 134
uedin 19 19 10 11 10 10 – 11 29 29 148 132
MMT-prod 20 19 11 15 10 8 – 9 25 29 146 137
KIT 19 18 15 11 9 9 1 6 27 30 145 126
online-Z 21 18 10 10 10 10 2 11 24 29 145 132
online-B 20 15 12 12 8 10 – 8 27 30 142 128
online-Y 18 17 11 12 10 9 1 8 24 30 140 136
JHU 12 17 8 11 8 10 3 10 24 29 132 119
online-F 13 16 10 11 10 10 2 7 21 28 128 115
LMU-nmt 10 9 10 13 7 10 1 9 28 30 127 125
online-A 11 9 12 16 5 10 2 5 27 30 127 130
online-G 10 6 15 11 2 8 2 7 23 30 114 119
RWTH-uns 9 5 9 8 3 8 1 7 19 29 98 99
LMU-uns 4 2 2 2 4 8 – 5 15 8 50 87

Average
count 14.9 14.3 10.9 11.6 7.8 9.4 1.3 8.4 24.4 28.0 130.9 124.1
percentage 59.8 57.0 43.5 46.3 78.1 93.8 25.0 56.3 81.3 93.5 65.4 88.6

Table 3: Pronoun and antecedent translations marked as correct, per system

they has a singular antecedent or refers to a group,
however, it is mistranslated much more frequently.

The only system that has noticeable problems
with pleonastic it is the unsupervised LMU-uns
submission. Translating event it seems to be more
difficult, but many systems still achieve close to
perfect results in this category. Similarly to the re-
sults of Hardmeier and Guillou (2018) for English–
French, this suggests that NMT systems are quite
good at identifying pronouns with event reference
and producing appropriate translations for them.

6 Conclusions

We have presented a detailed analysis of 16 NMT
systems, assessing their performance in the trans-
lation of pronouns using a semi-automatic evalu-
ation based on a balanced test suite. The results
reinforce the idea that automatic evaluation scores
are correlated with manual evaluation results, but
they also confirm that automatic evaluation can pro-
vide a misleading picture of the behavior of some
systems. The evaluation has also reinforced that
special attention should be paid to the problematic
cases that are only identifiable through the careful
balance of categories achieved in the test suite de-
sign. This balanced design has also made us aware
of the progress made by NMT in the modeling

of context for the translation of pleonastic, event
and intra-sentential anaphoric pronouns. Pleonas-
tic pronouns are handled almost perfectly by most
systems, so we suggest that future evaluations em-
phasize the more challenging cases. Anaphoric
pronouns depending on the inter-sentential con-
text remain a significant challenge. They present
an ideal test case for the development of context-
aware NMT systems. Research in that direction
has recently gained some traction (Tiedemann and
Scherrer, 2017; Wang et al., 2017; Tu et al., 2018)
and has claimed promising results specifically for
pronoun translation (Voita et al., 2018). It remains
to be seen whether the development of such meth-
ods will lead to a breakthrough in the translation
of inter-sentential anaphoric pronouns in the near
future.
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Abstract

We present an analysis of 16 state-of-the-art
MT systems on German-English based on a
linguistically-motivated test suite. The test sui-
te has been devised manually by a team of lan-
guage professionals in order to cover a broad
variety of linguistic phenomena that MT of-
ten fails to translate properly. It contains 5,000
test sentences covering 106 linguistic pheno-
mena in 14 categories, with an increased focus
on verb tenses, aspects and moods. The MT
outputs are evaluated in a semi-automatic way
through regular expressions that focus only on
the part of the sentence that is relevant to each
phenomenon. Through our analysis, we are ab-
le to compare systems based on their perfor-
mance on these categories. Additionally, we
reveal strengths and weaknesses of particular
systems and we identify grammatical pheno-
mena where the overall performance of MT is
relatively low.

1 Introduction

The evaluation of Machine Translation (MT) has
mostly relied on methods that produce a numeri-
cal judgment on the correctness of a test set. These
methods are either based on the human percepti-
on of the correctness of the MT output (Callison-
Burch et al., 2007), or on automatic metrics that
compare the MT output with the reference transla-
tion (Papineni et al., 2002; Snover et al., 2006). In
both cases, the evaluation is performed on a test-
set containing articles or small documents that are
assumed to be a random representative sample of
texts in this domain. Moreover, this kind of evalua-
tion aims at producing average scores that express
a generic sense of correctness for the entire test
set and compare the performance of several MT
systems.

Although this approach has been proven valua-
ble for the MT development and the assessment of

new methods and configurations, it has been sug-
gested that a more fine-grained evaluation, asso-
ciated with linguistic phenomena, may lead in a
better understanding of the errors, but also of the
efforts required to improve the systems (Burchardt
et al., 2016). This is done through the use of test
suites, which are carefully devised corpora, whose
test sentences include the phenomena that need to
be tested. In this paper we present the fine-grained
evaluation results of 16 state-of-the-art MT sy-
stems on German-English, based on a test suite
focusing on 106 German grammatical phenomena
with a focus on verb-related phenomena.

2 Related Work

The use of test suites in the evaluation of NLP ap-
plications (Balkan et al., 1995) and MT systems in
particular (King and Falkedal, 1990; Way, 1991)
has been proposed already in the 1990’s. For in-
stance, test suites were employed to evaluate state-
of-the-art rule-based systems (Heid and Hilden-
brand, 1991). The idea of using test suites for
MT evaluation was revived recently with the emer-
gence of Neural MT (NMT) as the produced trans-
lations reached significantly better levels of quali-
ty, leading to a need for more fine-grained qualita-
tive observations. Recent works include test suites
that focus on the evaluation of particular lingui-
stic phenomena (e.g. pronoun translation; Guillou
and Hardmeier, 2016) or more generic test sui-
tes that aim at comparing different MT technolo-
gies (Isabelle et al., 2017; Burchardt et al., 2017)
and Quality Estimation methods (Avramidis et al.,
2018). The previously presented papers differ in
the amount of phenomena and the language pairs
they cover.

This paper extends the work presented in
Burchardt et al. (2017) by including more test sen-
tences and better coverage of phenomena. In con-
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trast to that work, which applied the test suite in
order to compare 3 different types of MT systems
(rule-based, phrase-based and NMT), the evaluati-
on in the publication at hand has been applied on
16 state-of-the-art systems whose majority follows
the NMT methods.

3 Method

This test suite is a manually devised test set, ai-
ming to investigate the MT performance against a
wide range of linguistic phenomena or other qua-
litative requirements (e.g. punctuation).

It contains a set of sentences in the source lan-
guage, written or chosen by a team of linguists
and professional translators with the aim to co-
ver as many linguistic phenomena as possible, and
particularly the ones that MT often fails to trans-
late properly. Each sentence of the test suite ser-
ves as a paradigm for investigating only one par-
ticular phenomenon. Given the test sentences, the
evaluation tests the ability of the MT systems to
properly translate the associated phenomena. The
phenomena are organized in categories (e.g. alt-
hough each verb tense is tested separately with the
respective test sentences, the results for all tenses
are aggregated in the broader category of verb ten-
se/aspect/mood).

Our test suite contains about 5,000 test sen-
tences, covering 106 phenomena organized in 14
categories. For each phenomenon at least 20 test
sentences were devised to allow better generali-
zations about the capabilities of the MT systems.
With 88%, the majority of the test suite covers
verb phenomena, but other categories, such as
negation, long distance dependencies, valency or
multi-word expressions are included as well. A
full list of the phenomena and their categories can
be seen in Table 1. An example list of test sen-
tences with correct and incorrect translations is
available on GitHub1.

3.1 Construction of the Test Suite

The test suite was constructed in a way that al-
lows a semi-automatic evaluation method, in order
to assist the efficient evaluation of many transla-
tion systems. A simplified sketch of the test sui-
te construction is shown in Figure 1. First (Figu-
re 1, stage a), the linguist choses or writes the test
sentences in the source language with the help of

1https://github.com/DFKI-NLP/TQ_
AutoTest

translators. The test sentences are manually writ-
ten or chosen, based on whether their translation
has demonstrated or is suspected to demonstrate
MT errors of the respective error categories. Test
sentences are selected from various parallel cor-
pora or drawn from existing resources, such as
the TSNLP Grammar Test Suite (Lehmann et al.,
1996) and online lists of typical translation errors.
Then (stage b) the test sentences are passed as an
input to the some sample MT systems and their
translations are fetched.

Based on the output of the sample MT systems
and the types of the errors, the linguist devises a
set of hand-crafted regular expressions (stage c)
while the translator ensures the correctness of the
expressions. The regular expressions are used to
automatically check if the output correctly trans-
lates the part of the sentence that is related to the
phenomenon under inspection. There are regular
expressions that match correct translations (posi-
tive) as well as regular expressions that match in-
correct translations (negative).

3.2 Application of the Test Suite
During the evaluation phase, the test sentences are
given to several translation systems and their out-
puts are acquired (stage d). The regular expressi-
ons are applied to the MT outputs (stage e) to auto-
matically check whether the MT outputs translate
the particular phenomenon properly. An MT out-
put is marked as correct (pass), if it matches a po-
sitive regular expression. Similarly, it is marked as
incorrect (fail), if it matches a negative regular ex-
pression. In cases where the MT output does not
match either a positive or a negative regular ex-
pression, the automatic evaluation flags an uncer-
tain decision (warning). Then, the results of the
automatic annotation are given to a linguist or a
translator who manually checks the warnings (sta-
ge f) and optionally refines the regular expressi-
ons in order to cover similar future cases. It is also
possible to add full sentences as valid translations,
instead of regular expressions. In this way, the test
suite grows constantly, whereas the required ma-
nual effort is reduced over time.

Finally, for every system we calculate the
phenomenon-specific translation accuracy:

accuracy =
correct translations

sum of test sentences
The translation accuracy per phenomenon is given
by the number of the test sentences for the pheno-
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Figure 1: Example of the preparation and application of the test suite for one test sentence

menon which were translated properly, divided by
the number of all test sentences for this phenome-
non.

This allows us also to perform comparisons
among the systems, focusing on particular pheno-
mena. The significance of every comparison bet-
ween two systems is confirmed with a two-tailed
Z-test with α = 0.95, testing the null hypothesis
that the difference between the two respective per-
centages is zero.

3.3 Experiment setup

The evaluation of the MT outputs was performed
with TQ-AutoTest (Macketanz et al., 2018), a tool
that organizes the test items in a database, allowing
the application of the regular expressions on new
MT outputs. For the purpose of this study, we have
compared the 16 systems submitted to the test sui-
te task of the EMNLP2018 Conference of Machi-
ne Translation (WMT18) for German→English.
At the time that this paper is written, the creators
of 11 of these systems have made their develop-
ment characteristics available, 10 of them stating
that they follow a NMT method and one of them a
method combining phrase-based SMT and NMT.

After the application of the existing regular ex-
pressions to the outputs of these 16 systems, there
was a considerable amount of warnings (i.e. un-
certain judgments) that varied between 10% and
45% per system. A manual inspection of the out-
puts was consequently performed (Figure 1, sta-
ge f) by a linguist, who invested approximately 80
hours of manual annotation. A small-scale manual
inspection of the automatically assigned pass and
fail labels indicated that the percentage of the er-

roneously assigned labels is negligible. The ma-
nual inspection therefore focused on warnings and
reduced their amount to less than 10% warnings
per system2. In particular, 32.1% of the original
system outputs ended in warnings, after the ap-
plication of the regular expressions, whereas the
manual inspection and the refining of the regular
expressions additionally validated 14,000 of the-
se system outputs, i.e. 15.7% of the original test
suite.

In order to analyze the results with respect to the
existence of warnings, we performed two different
types of analysis:

1. Remove all sentences from the overall com-
parison that have even one warning for one
system and the translation accuracy on the re-
maining segments. The unsupervised systems
are completely excluded from this analysis in
order to keep the sample big enough. This
way, all systems are compared on the same
set of segments.

2. Remove the sentences with warnings per sy-
stem and calculate the translation accuracy
on the remaining segments. The unsupervi-
sed systems can be included in this analysis.
In this way, the systems are not compared on
the same set of segments, but more segments
can be included altogether.

4 Results

The final results of the evaluation can be seen in
Table 2, based on Analysis 1 and Table 3, based

2Here, we do not take into account the two unsupervised
systems for the reasons explained in Section 4.1.
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on Analysis 2. Results for verb-related phenomena
based on Analysis 1 are detailed in Tables 4 and 5
and other indicative phenomena in Table 6. The
filtering prior to Analysis 1 left a small number of
test sentences per category, which limits the pos-
sibility to identify significant differences between
the systems. Analysis 2 allows better testing of
each system’s performance, but observations need
to be treated with caution, since the systems are te-
sted against different test sentences and therefore
the comparisons between them are not as expressi-
ve as in Analysis 1. Moreover, the interpretability
of the overall averages of these tables is limited,
as the distribution of the test sentences and the lin-
guistic phenomena does not represent an objective
notion of quality.

We have calculated the mean values per system
as non-weighted average and as weighted avera-
ge. The non-weighted average was calculated by
dividing the sum off all correct translations by the
sum of all test sentences. The weighted average
for a system was computed by taking a mean of
the averages per category. We have not calculated
statistical significances for the weighted averages
as these are less meaningful due to the dominance
of the verb tense/aspect/mood category.

4.1 Comparison between systems

The following results are based on Analysis 1.
The system that achieves the highest accuracy in
most linguistic phenomena, as compared to the
rest of the systems, is UCAM, which is in the
first significance cluster for 11 out of the 12 de-
cisive error categories in Analysis 1 and achieves
a 86.0% non-weighted average accuracy over all
test sentences. UCAM obtains a significantly bet-
ter performance than all other systems concerning
verb tense/aspect/mood, reaching a 86.9% accura-
cy, 1.5% better than MLLP and NTT which are
following in this category. The different perfor-
mance may be explained by the fact that UCAM
differs from others, since it combines several diffe-
rence neural models together with a phrase-based
SMT system in an syntactic MBR-based scheme
(Stahlberg et al., 2016). Despite its good perfor-
mance in grammatical phenomena, UCAM has a
very low accuracy regarding punctuation (52.9%).

The system with the highest weighted average
score is RWTH. Even though it reaches higher ac-
curacies for some categories than UCAM, the dif-
ferences are not statistically significant.

Another system that achieves the best accura-
cies at the 11 out of the 12 categories is Online-A.
This system performs close to the average of all
systems concerning verb tense/aspect/mood, but it
shows a significantly better performance on the ca-
tegory of punctuation (96.1%). Then, 6 systems
(JHU, NTT, Online-B, Online-Y, RWTH, Ubiqus)
have the best performance at the same amount of
categories (10 out of 12), having lost the first po-
sition in punctuation and verb tense/aspect/mood.

Two systems that have the lowest accuracies
in several categories are Online-F and Online-
G. Online-F has severe problems with the punc-
tuation (3.9%) since it failed producing proper
quotation marks in the output and mistranslated
other phenomena, such as commas and the punc-
tuation in direct speech (see Table 6). Online-G
has the worst performance concerning verb ten-
se/aspect/mood (45.8%). Additionally, these two
systems together demonstrate the worst perfor-
mance on coordination/ellipsis and negation.

The unsupervised systems form a special ca-
tegory of systems trained only on monolingual
corpora. Their outputs suffer from adequacy pro-
blems, often being very “creative” or very far from
a correct translation. Thus, the automatic evalua-
tion failed to check a vast amount of test sen-
tences on these systems. Therefore, we conduc-
ted Analysis 2. As seen in Table 3, unsupervised
systems suffer mostly on MWE (11.1% - 17.4%
accuracy), function words (15.7% - 21.7%), ambi-
guity (26.9% - 29.1%) and non-verbal agreement
(38.3% - 39.6%).

4.2 Linguistic categories

Despite the significant progress in the MT quali-
ty, we managed to devise test sentences that indi-
cate that the submitted systems have a mediocre
performance for several linguistic categories. On
average, all current state-of-the-art systems suf-
fer mostly on punctuation (and particularly quo-
tation marks), MWE, ambiguity and false friends
with an average accuracy of less than 64% (ba-
sed on Analysis 1). Verb tense/aspect/mood, non-
verbal agreement, function words and coordinati-
on/ellipsis are also far from good, with average ac-
curacies around 75%.

The two categories verb valency and named en-
tities/terminology cannot lead to comparisons on
the performance of individual systems, since all
systems achieve equal or insignificantly different
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performance on them. The former has an average
accuracy of 81.4%, while the latter has an average
accuracy of 83.4%.

We would like to present a few examples in or-
der to provide a better understanding of the lingui-
stic categories and the evaluation. Example (1) is
taken from the category of punctuation. Among
others, we test the punctuation in the context of
direct speech. While in German it is introduced by
a colon, in English it is introduced by a comma. In
this example, the NTT system produces a correct
output (therefore highlighted in boldface), where-
as the other two systems depict incorrect translati-
ons with a colon.

(1) Punctuation
source: Er rief: ”Ich gewinne!“
NTT: He shouted, “I win!”
Online-F: He called: “I win!”
Ubiqus: He cried: “I win!”

We may assume that these errors are attributed to
the fact that punctuation is often manipulated by
hand-written pre- and post-processing tools, whe-
reas the ability of the neural architecture to proper-
ly convey the punctuation sequence has attracted
little attention and is rarely evaluated properly.
Negation is one of the most important catego-
ries for meaning preservation. Two commercial
systems (Online-F and Online-G) show the lowest
accuracy for this category and it is disappointing
that they miss 4 out of 10 negations. In Example
(2), the German negation particle “nie” should be
translated as “never”, but Online-G omits the who-
le negation. In other cases it negates the wrong ele-
ment in the sentence.

(2) Negation
source: Tim wäscht seine Kleidung nie

selber.
Online-B: Tim never washes his clothes

himself.
Online-G: Tim is washing his clothes my-

self.

MWE, such as idioms or collocations, are prone
to errors in MT as they cannot be translated in
their separate elements. Instead, the meaning of
the expression has to be translated as a whole. Ex-
ample (3) focuses on the German idiom “auf dem
Holzweg sein” which can be translated as “being
on the wrong track”. However, a literal transla-

tion of “Holzweg” would be “wood(en) way”,
“wood(en) track” or “wood(en) patch”. As can be
seen in the example, MLLP and UCAM provide a
literal translation of the separate segments of the
MWE rather than translating the whole meaning
of it, resulting in a translation error.

(3) MWE
source: Du bist auf dem Holzweg.
MLLP: You’re on the wood track.
RWTH: You’re on the wrong track.
UCAM: You’re on the wooden path.

4.3 Linguistic phenomena

As mentioned above, a large part of the test suite
is made up of verb-related phenomena. Therefo-
re, we have conducted a more fine-grained ana-
lysis of the category “Verb tense/aspect/mood”.
In Table 4 we have grouped the phenomena by
verb tenses. Table 5 shows the results for the verb-
related phenomena grouped by verb type. Regar-
ding the verb tenses, future II and future II sub-
junctive show the lowest accuracy with a maxi-
mum accuracy of about 30%. The highest accura-
cy value on average (weighted and non-weighted)
is achieved by UCAM with 63.5%, respectively
61.5%. UCAM is the only system that is one of
the best-performing systems for all the verb tenses
as well as for all the verb types. The second-best
system on average for verb tenses and verb types
is NTT.

While the accuracy scores among the phenome-
na range between 33.4% and 63.5% for the verb
tenses, the scores for the verb types are higher with
45.7% - 86.9%.

Table 6 shows interesting individual phenome-
na with at least 15 valid test sentences. The accu-
racy for compounds and location is generally quite
high. There are other phenomena that exhibit a lar-
ger range of accuracy scores, as for example quo-
tation marks, with an accuracy ranging from 0%
to 94.7% among the systems. The system Online-
F fails on all test sentences with quotation marks.
The failure results from the system generating the
quotation marks analogously to the German punc-
tuation, e.g., introducing direct speech with a co-
lon, as seen in Example (1). Online-F furthermo-
re also fails on all test sentences with question
tags, as does NJUNMT. For the phenomenon lo-
cation, on the other hand, none of the systems is
significantly better than any other system. They all
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perform similarly good, with an accuracy ranging
from 86.7% to 100%. RWTH is the only system
that reaches an accuracy of 100% twice in these
selected phenomena.

5 Conclusion and Further Work

We used a test suite in order to perform fine-
grained evaluation in the output of the state-of-
the-art systems, submitted at the shared task of
WMT18. One system (UCAM), that uses a syn-
tactic MBR combination of several NMT and
phrase-based SMT components, stands out regar-
ding to verb-related phenomena. Additionally, two
systems fail to translate 4 out of 10 negations. Ge-
nerally, submitted systems suffer on punctuation
(and particularly quotation marks, with the excep-
tion of Online-A), MWE, ambiguity and false fri-
ends, and also on translating the German future
tense II. 6 systems have approximately the same
performance in a big number of linguistic catego-
ries.

Fine-grained evaluation would ideally provide
the potential to identify particular flaws at the de-
velopment of the translation systems and suggest
specific modifications. Unfortunately, at the time
that this paper was written, few details about the
development characteristics of the respective sy-
stems were available, so we could provide only
few assumptions based on our findings. The dif-
ferences observed may be attributed to the design
of the models, to pre- and post-processing tools,
to the amount, the type and the filtering of the cor-
pora and other development decisions. We believe
that the findings are still useful for the original de-
velopers of the systems, since they are aware of all
their technical decisions and they have the techni-
cal possibility to better inspect the causes of spe-
cific errors.
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Abstract

We present a task to measure an MT
system’s capability to translate ambigu-
ous words with their correct sense ac-
cording to the given context. The task
is based on the German–English Word
Sense Disambiguation (WSD) test set
ContraWSD (Rios Gonzales et al., 2017),
but it has been filtered to reduce noise,
and the evaluation has been adapted to
assess MT output directly rather than
scoring existing translations. We eval-
uate all German–English submissions to
the WMT’18 shared translation task, plus
a number of submissions from previous
years, and find that performance on the
task has markedly improved compared to
the 2016 WMT submissions (81%→93%
accuracy on the WSD task). We also
find that the unsupervised submissions to
the task have a low WSD capability, and
predominantly translate ambiguous source
words with the same sense.

1 Introduction

Ambiguous words are often difficult to translate
automatically, since the MT system has to decide
which sense is correct in the given context. Er-
rors in lexical choice can result in bad or even in-
comprehensible translations. However, document-
level metrics, such as BLEU (Papineni et al., 2002)
are not fine-grained enough to assess this type of
error.

Early evaluations have shown that neural ma-
chine translation (NMT) produces translations that
are substantially more fluent, i.e. more grammat-
ical and natural, than the previously dominant
phrase-based/syntax-based statistical models, but
results are more mixed when comparing ade-

quacy, the semantic faithfulness of the translation
to the original (Bojar et al., 2016; Bentivogli et al.,
2016; Castilho et al., 2017; Klubička et al., 2017).

For example, in the fine-grained human evalu-
ation by Klubička et al. (2017), mistranslations
were the most frequent error category for the
NMT system they evaluated, whereas fluency er-
rors dominated in phrase-based machine transla-
tion.1 Our aim is to quantify one aspect of ad-
equacy, word sense disambiguation (WSD), in
a reproducible and semi-automatic way, to track
progress over time and compare different types of
systems in this respect.

We present a German→English test set to semi-
automatically assess an MT systems performance
on word sense disambiguation. The test set is
based on ContraWSD (Rios Gonzales et al., 2017),
but has been further filtered to reduce noise, and
we use a different evaluation protocol. Instead
of scoring a set of translations and measuring
whether the reference translation is scored high-
est, we base the evaluation on the 1-best trans-
lation output to make the evaluation applicable
to black-box systems. We report results on all
German→English submissions to the WMT 2018
shared translation task (Bojar et al., 2018), plus a
number of baseline systems from previous years.

2 Test Suite

Rather than measuring word sense disambiguation
against a manually defined sense inventory such
as those in Wordnet (Miller, 1995), we perform
a task-based evaluation, focusing on homonyms
whose different senses have distinct translations.2

1Note that, while mistranslations were the most frequent
error category in NMT, their absolute number was still lower
in the NMT system output than in the phrase-based one.

2Other task-based evaluation sets for word sense disam-
biguation include (Lefever and Hoste, 2013; Gorman et al.,
2018).
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The collection of test cases consists of 3249
German–English sentence pairs where the Ger-
man source contains one of 20 ambiguous words
that have more than one possible translation in
English.3 We have associated the 20 ambiguous
words with a total of 45 word senses, and extracted
up to 100 examples for each sense.

The set of ambiguous words and sentence pairs
are based on the test set described in (Rios Gon-
zales et al., 2017).4 The original test set was de-
signed to use scoring for the evaluation, however,
in the present task we let the systems translate the
source sentences, and evaluate the translation out-
put. This change in evaluation protocol required
further filtering of the original test set, specifi-
cally, the removal of German words with an En-
glish translation that covers multiple senses. For
instance, the original test set contains Stelle with
two English senses: job and place. Both meanings
can be translated as position, in which case we
would not be able to assess the translation as cor-
rect or wrong, therefore Stelle was removed from
our set of ambiguous words.

Since for most ambiguous words, one or more
of their meanings are relatively rare, a large
amount of parallel text is necessary to extract a
sufficiently balanced number of examples.5 The
correct translation is automatically determined for
each pair through the reference translation. Ta-
ble 1 lists all the ambiguous German words in the
test set with with their translations in English. We
base our statistics on the number of ambiguous
source words, which is slightly higher (3363) than
the number of sentences (3249). Sentence pairs

3The test set and evaluation scripts are available
from https://github.com/a-rios/ContraWSD/
tree/master/testsuite_wmt18

4The identification of ambiguous words and senses was
performed with the help of lexical translation probabilities.

5Sentence pairs have been extracted from the following
corpora:

• WMT test and development sets 2006-2016 (de-en) and
2006-2013 (de-fr)

• Crédit Suisse News Corpus https://pub.cl.
uzh.ch/projects/b4c/de/

• Corpora from OPUS (Tiedemann, 2012):

– Global Voices (http://opus.lingfil.
uu.se/GlobalVoices.php)

– Books (http://opus.lingfil.uu.se/
Books.php)

– EU Bookshop Corpus (http://opus.
lingfil.uu.se/EUbookshop.php)

• MultiUN (Ziemski et al., 2016)

where the reference translation contains more than
one possible sense as a translation have been re-
moved. For instance, if a given reference con-
tains the word investment as a translation for An-
lage, but also attachment as a translation of an-
other source word, this sentence pair cannot be
part of the test set, since word alignment would
be required to assess it correctly.

The evaluation is semi-automatic: We automat-
ically check for each sentence in the MT output
if one of the correct translations of the ambiguous
word is present, and if the output contains one of
the other possible translations of the word, i.e. if
it has been translated with one of its other senses.
Note that we check for more variation in the au-
tomatic matching than shown in Table 1, e.g. for
Absatz - sales, we also consider verbal forms such
as sold, sells, selling etc. as correct, using manu-
ally created lists of valid translations.6

There are four possible outcomes of this auto-
matic evaluation:

1. we find only instances of the correct transla-
tions→ counts as correct7

2. we find only instances of the other transla-
tions→ counts as wrong

3. we find both the correct and one of the other
translations→ manual inspection

4. we find none of the known translations →
manual inspection

2.1 Manual Evaluation Protocol

The large majority of translation outputs could be
categorized as correct or wrong automatically. For
the remaining approximately 5%, we manually as-
signed a label. Overall, around 25% of these were
labelled as correct.

Case 3 typically indicates that the same ambigu-
ous source word occurs multiple times in the in-
put, and a manual annotator provided the number

6Since we do not use word alignment, there is a risk that
we mistakenly match a translation from another part of the
sentence. However, this is only a problem in the rare case
where, at the same time, the ambiguous source word itself
is not translated into a known translation, since conflicting
matches trigger a manual inspection.

7If there are multiple instances of the ambiguous source
word in the sentence, we automatically count the number of
correct translations to assign credit.
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word translations/senses
sense 1 sense 2 sense 3 sense 4

Absatz heel paragraph sales
Anlage attachment, annex installation, facility, plant investment
Annahme acceptance, approval assumption, conjecture
Aufgabe abandonment, surrender task, exercise
Auflösung dissolution, liquidation resolution
Decke blanket, cover ceiling
Einsatz bet commitment usage, application
Gericht court, tribunal dish, meal
Himmel heaven sky
Karte card menu ticket map
Kurs course, class price, rate
Lager storage, stock camp
Opfer victim sacrifice
Preis prize price, cost, fee
Rat advice, counsel council, board
Raum region,area room, space
Schlange serpent, snake queue, line
Ton tone, sound clay
Tor door, gate goal
Wahl election choice, selection

Table 1: List of ambiguous German words, and the English translations of their different senses, included
in the test suite.

source Im Allgemeinen lässt sich deshalb mit Recht behaupten, dass – mit der richtigen Be-
ratung und Sorgfalt – Hedge-Fund-Anlagen nicht zwangsläufig risikoreicher sind als tra-
ditionelle Anlagen.

reference It is therefore fair to say that properly advised hedge fund investments are, generally
speaking, not necessarily riskier than traditional investments.

MT translation In general, therefore, it is fair to say that, with the right advice and care, hedge fund
assets are not necessarily more risky than traditional plants.

Table 2: Example sentence pair for ambiguous word Anlagen with translation from uedin-nmt-2017. The
first translation assets is correct, the second (plants) wrong.
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of correct translations. See Table 2 with an exam-
ple from one of the baseline systems, where the
ambiguous word Anlage occurs twice, both times
in the financial sense. The MT system translates
the first form correctly, but the second with one of
its other meanings, plant.

Case 4 can indicate that the ambiguous source
word was translated into a variant not covered by
our automatic patterns, or left untranslated.8 Man-
ual assessment by the main author is used to dis-
tinguish between the two.

3 Evaluation

We present results for all submissions to
the WMT’18 shared translation task for
German→English. In addition, we include
several baseline systems in our evaluation to track
performance over time. We report results for
Edinburgh’s WMT’16 and WMT’17 submitted
neural systems for German→English (Sennrich
et al., 2016, 2017), which were ranked first in
2016, and tied first in 2017.9 We also include
Edinburgh’s WMT’16 syntax-based system
(Williams et al., 2016), ranked tied second in
2016, to compare the now dominant neural
systems to a more traditional SMT system.

We report the WSD accuracy for each system,
in two variants: automatic and full. For auto-
matic accuracy only case 1 is considered correct,
and cases 2–4 are considered wrong. Full accu-
racy considers some cases 3 and 4 (where both a
correct and an incorrect translation, or none of the
listed translations, are found) correct, if they were
found to be correct upon manual inspection. We
also report BLEU scores on newstest2018, and on
the WSD test suite, for comparison.

4 Results

Results on the WSD test suite are shown in Ta-
ble 3. Table 4 shows an error analysis with two
categories, distinguishing between predicting the
wrong sense, and leaving the ambiguous source
word untranslated. Globally, we observe a strong
correlation between WSD accuracy and BLEU on
the WSD test suite (Kendall’s τ = 0.91), and a
smaller (but still strong) correlation between WSD
accuracy and BLEU on newstest2018 (τ = 0.72).

8This includes cases where the original source word is
used in the translation.

9Available at http://data.statmt.org/wmt16_systems/

and http://data.statmt.org/wmt17_systems/

However, there are some notable differences be-
tween BLEU and WSD accuracy. Especially
some unconstrained, anonymous systems (online-
A/B/G/Y) perform better on the WSD test suite
than newstest2018 relative to other systems, which
is likely due to differences in domain focus and
training data: most constrained systems built for
the shared task use monolingual news data for do-
main adaptation, whereas the online systems likely
do not. At the same time, the online systems may
be using extra training resources, and we cannot
rule out that they train on corpora from which the
WSD test suite is extracted.

The unsupervised systems RWTH-UNSUPER
and LMU-unsup, as well as the anonymous rule-
based system online-F clearly fall behind. In many
cases, these systems stick to one translation of a
given ambiguous word. This becomes obvious
when looking at the number of cases where the
translation contains one of the other meanings of
the translated words. The less common a given
sense, the more likely it is translated with one of
its other meanings - this is true for all systems, but
more pronounced in the unsupervised models. Not
only do they translate words with a wrong mean-
ing more often, they seem to have learned some
spurious correlations. For instance, the German
word Preis (price/prize) was translated in almost
all cases as call by LMU-unsup. Generally, the
unsupervised systems tend to translate words in
a deterministic fashion, i.e. they use mostly the
same translation for an ambiguous source word,
regardless of context.

We observe that there is little difference in
WSD accuracy between the syntax-based and neu-
ral uedin systems from 2016, even though the neu-
ral system achieves a substantially higher BLEU
score. This is consistent with human compar-
isons of statistical and neural systems at the time,
which found large improvements in fluency, but
only small differences in adequacy, or specifically
the number of mistranslations (Bojar et al., 2016;
Castilho et al., 2017; Klubička et al., 2017). Inter-
estingly, we observe major improvements in lex-
ical choice since the 2016 systems, with a jump
of 5 percentage points in 2017, and another 8 per-
centage points by the best system in 2018.

While these experiments were not under con-
trolled data conditions10, we believe that this im-

10There was a moderate improvement in the amount of
training data in 2017 through the inclusion of the Rapid cor-
pus of EU press releases (+20%), and a large increase in 2018
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system
WSD accuracy BLEU

automatic full newstest2018 WSD test suite
uedin-syntax-2016 79.7 81.3 36.1 26.9
uedin-nmt-2016 79.8 81.1 41.3 27.7
uedin-nmt-2017 84.9 86.3 43.5 30.5
RWTH 92.4 93.6 48.4 33.6
UCAM 91.1 92.4 48.0 32.9
online-B 89.4 91.3 43.9 32.5
NTT 89.7 91.2 46.8 32.6
JHU 88.9 90.3 45.3 31.7
online-Y 88.0 89.8 39.5 30.9
MLLP-UPV 88.4 89.7 45.1 30.7
uedin 87.1 88.8 43.9 30.8
Ubiqus-NMT 86.7 88.3 44.1 31.0
online-A 86.6 88.0 40.6 29.7
online-G 85.4 86.9 31.9 29.1
NJUNMT-private 84.3 86.0 38.3 28.2
LMU-nmt 80.4 81.7 40.9 28.1
online-F 50.7 51.4 22.0 15.8
RWTH-UNSUPER 44.9 47.2 18.6 11.4
LMU-unsup 42.6 43.3 17.9 10.0

Table 3: Results on WSD test suite. WSD accuracy before and after manual inspection, and BLEU on
newstest2018, and on references from WSD test suite.

system wrong sense untranslated

uedin-syntax-2016 17.4 1.3
uedin-nmt-2016 16.5 2.4
uedin-nmt-2017 11.7 2.1
RWTH 5.2 1.2
UCAM 6.4 1.2
online-B 6.5 2.1
NTT 7.0 1.8
JHU 8.5 1.2
online-Y 9.0 1.2
MLLP-UPV 9.5 0.8
uedin 10.1 1.2
Ubiqus-NMT 9.3 2.3
online-A 11.0 1.0
online-G 11.6 1.5
NJUNMT-private 9.3 4.7
LMU-nmt 16.3 2.1
online-F 47.8 0.7
RWTH-UNSUPER 48.9 3.9
LMU-unsup 49.8 6.9

Table 4: Proportion of ambiguous words trans-
lated with the wrong sense, or left untranslated (in
%).

provement is only partially explainable by the in-
crease in the amount of training data. We highlight
a number of systems to illustrate this point.

Paracrawl is a noisy resource, and most submis-
sion systems report using a filtered version of it.
Ubiqus-NMT does not use Paracrawl at all, and
is thus comparable to uedin-nmt-2017 in terms of
training data, but outperforms it in WSD accu-
racy. This is even more impressive considering
that Ubiqus-NMT is based on a single model, out-
performing the reranked ensembles of uedin-nmt-
2017.

A second interesting comparison is that be-
tween different architectures. LMU-nmt is based
on a shallow RNN encoder-decoder, similar to
uedin-nmt-2016, and exhibits a similarly low
WSD accuracy. Most submissions are based on
deep Transformer or RNN architectures, and show
a higher WSD accuracy. Neural network depth
was also one of the main differences between
uedin-nmt-2016 and uedin-nmt-2017, and our re-
sults indicate that this is an important factor for
lexical choice. Experiments by Tang et al. (2018),
conducted in parallel to this work, on WMT17
training data also show that neural architectures

through the inclusion of Paracrawl (+700%).
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play an important role in the performance on
WSD, with a substantial lead for the Transformer
over the tested RNN and CNN architectures.

The error analysis in Table 4 exposes other dif-
ferences between systems. The rule-based sys-
tem online-F is least prone to leaving the am-
biguous source words untranslated (0.7%), while
this is a more serious problems in the unsuper-
vised systems (up to 6.9%) and some neural sys-
tems (up to 4.7%). It has been argued that SMT,
which uses a coverage mechanism during decod-
ing, is less prone to undertranslation than NMT
(Tu et al., 2016). On the WSD test set, we find
that uedin-nmt-2016 leaves more of the ambigu-
ous words untranslated (2.4%) than the contempo-
raneous uedin-syntax-2016 (1.3%), but most NMT
systems submitted to this year’s shared transla-
tion task improve upon this number. While this
is a very narrow evaluation of the undertransla-
tion problem (only on one data set, and looking at
specific source words), we consider it encouraging
that we could measure some progress.

5 Conclusions

We present a targeted evaluation of 16 systems
regarding their performance in lexical choice. A
comparison against a baseline consisting of the
top ranked systems from WMT 2016 and 2017
for German-English shows that translation models
in general have improved substantially. Further-
more, we observe that unsupervised systems are at
a clear disadvantage when it comes to word sense
disambiguation: they are less flexible and tend to
stick to one translation of a given ambiguous word,
regardless of context.

The current study is focused on a small set of
20 ambiguous nouns and 45 word senses, and a
large-scale test set is created by extracting 3249
sentence pairs containing one of these word senses
from various parallel corpora. This focus on am-
biguous source words without lexical overlap be-
tween word senses in the target language allowed
us to define an evaluation protocol that is mostly
automatic: manual inspection was only necessary
for about ≈ 5% of sentences, and had little ef-
fect on the ranking. However, this narrow focus
also comes with limitations, and it would be inter-
esting to evaluate word sense disambiguation on a
larger set of words, and including other parts-of-
speech such as verbs and adverbs, which consti-
tuted a substantial proportion of lexical choice er-

rors in previous analyses of MT systems (Williams
et al., 2015).
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Appendix A

system
WSD accuracy

automatic full
uedin-syntax-2016 77.6 79.3
uedin-nmt-2016 77.7 79.1
uedin-nmt-2017 83.0 84.6
RWTH 91.8 93.2
UCAM 90.3 91.7
online-B 88.5 90.6
NTT 88.5 90.3
JHU 87.7 89.3
online-Y 87.1 89.1
MLLP-UPV 87.2 88.7
uedin 85.6 87.5
Ubiqus-NMT 85.3 87.2
online-A 85.4 86.9
online-G 84.4 86.1
NJUNMT-private 83.1 85.1
LMU-nmt 78.1 79.6
online-F 48.3 49.0
RWTH-UNSUPER 38.5 41.2
LMU-unsup 38.3 38.9

Table 5: Results on WSD test suite, ignoring sen-
tences from WMT dev/test data. WSD accuracy
before and after manual inspection.
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Abstract

This paper describes the multimodal Neural
Machine Translation systems developed by
LIUM and CVC for WMT18 Shared Task
on Multimodal Translation. This year we
propose several modifications to our previ-
ous multimodal attention architecture in or-
der to better integrate convolutional features
and refine them using encoder-side infor-
mation. Our final constrained submissions
ranked first for English→French and second
for English→German language pairs among
the constrained submissions according to the
automatic evaluation metric METEOR.

1 Introduction

In this paper, we present the neural machine trans-
lation (NMT) and multimodal NMT (MMT) sys-
tems developed by LIUM and CVC for the third
edition of the shared task. Several lines of work
have been conducted since the introduction of the
shared task on MMT in 2016 (Specia et al., 2016).
The majority of last year submissions including
ours (Caglayan et al., 2017a) were based on the
integration of global visual features into various
parts of the NMT architecture (Elliott et al., 2017).
Apart from these, hierarchical multimodal atten-
tion (Helcl and Libovický, 2017) and multi-task
learning (Elliott and Kádár, 2017) were also ex-
plored by the participants.

This year we decided to revisit the multimodal
attention (Caglayan et al., 2016) since our previ-
ous observations about qualitative analysis of the
visual attention was not satisfying. In order to im-
prove the multimodal attention both qualitatively
and quantitatively, we experiment with several re-
finements to it: first, we try to use different in-
put image sizes prior to feature extraction and sec-
ond we normalize the final convolutional feature
maps to assess its impact on the final MMT per-
formance. In terms of architecture, we propose to

refine the visual features by learning an encoder-
guided early spatial attention. In overall, we find
that normalizing feature maps is crucial for the
multimodal attention to obtain a comparable per-
formance to monomodal NMT while the impact of
the input image size remains unclear. Finally, with
the help of the refined attention, we obtain modest
improvements in terms of BLEU (Papineni et al.,
2002) and METEOR (Lavie and Agarwal, 2007).

The paper is organized as follows: data prepro-
cessing, model details and training hyperparame-
ters are detailed respectively in section 2 and sec-
tion 3. The results based on automatic evaluation
metrics are reported in section 4. Finally the paper
ends with a conclusion in section 5.

2 Data

We use Multi30k (Elliott et al., 2016) dataset pro-
vided by the organizers which contains 29000,
1014, 1000 and 1000 English→{German,French}
sentence pairs respectively for train, dev,
test2016 and test2017. A new training split
of 30014 pairs is formed by concatenating the
train and dev splits. Early-stopping is per-
formed based on METEOR computed over the
test2016 set and the final model selection is
done over test2017.

Punctuation normalization, lowercasing and ag-
gressive hyphen splitting were applied to all sen-
tences prior to training. A Byte Pair Encoding
(BPE) model (Sennrich et al., 2016) with 10K
merge operations is jointly learned on English-
German and English-French resulting in vocabu-
laries of 5189-7090 and 5830-6608 subwords re-
spectively.

2.1 Visual Features
Since Multi30k images involve much more com-
plex region-level relationships and scene composi-
tions compared to ImageNet (Russakovsky et al.,
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Figure 1: Filtered attention (FA): the convolutional feature maps are dynamically masked using an attention con-
ditioned on the source sentence representation.

2015) object classification task, we explore dif-
ferent input image sizes to quantify its impact in
the context of MMT since rescaling the input im-
age has a direct effect on the size of the recep-
tive fields of the CNN. After normalizing the im-
ages using ImageNet mean and standard devia-
tion, we resize and crop the images to 224x224
and 448x448. Features are then extracted from the
final convolutional layer (res5c relu) of a pre-
trained ResNet50 (He et al., 2016) CNN.1 This led
to feature maps V ∈ R2048×w×w where the spatial
dimensionality w is 7 or 14.

2.1.1 Feature Normalization
We conjecture that transferring ReLU features
from a CNN into a model that only makes use of
bounded non-linearities like sigmoid and tanh,
can saturate the non-linear neurons in the very
early stages of training if their weights are not
carefully initialized. Instead of tuning the initial-
ization, we experiment with L2 normalization over
the channel dimension so that each feature vector
(∈ R2048) has an L2 norm of 1.

3 Models

In this section we will describe our baseline
NMT and multimodal NMT systems. All mod-
els use 128 dimensional embeddings and GRU
(Cho et al., 2014) layers with 256 hidden states.
Dropout (Srivastava et al., 2014) is applied over
source embeddings xs, encoder states Henc and
pre-softmax activations ot. We also apply L2 reg-
ularization with a factor of 1e−5 on all parame-
ters except biases. The parameters are initialized
using the method proposed by He et al. (2015)
and optimized with Adam (Kingma and Ba, 2014).
The total gradient norm is clipped to 1 (Pascanu
et al., 2013). We use batches of size 64 and an
initial learning rate of 4e−4. All systems are im-

1We use torchvision for feature extraction.

plemented using the PyTorch version of nmtpy2

(Caglayan et al., 2017b).

3.1 Baseline NMT
Let us denote the length of the source sentence
{x1, . . . , xS} and the target sentence {y1, . . . , yT }
by S and T respectively. The source sentence is
first encoded with a 2-layer bidirectional GRU to
obtain the set of hidden states:

Henc ← Enc({x1, . . . , xS}),Henc ∈ RS×512

The decoder is a 2-layer conditional GRU
(CGRU) (Sennrich et al., 2017) with tied embed-
dings (Press and Wolf, 2016). CGRU is a stacked
2-layer recurrence block with the attention mech-
anism in the middle. We use feed-forward atten-
tion (Bahdanau et al., 2014) which encapsulates a
learnable layer. The first decoder (which is ini-
tialized with a zero vector) receives the previous
target embeddings as inputs (equation 1). At each
timestep of the decoding stage, the attention mech-
anisms produces a context vector ctxtt (equation 2)
that becomes the input to the second GRU (equa-
tion 3). Finally, the probability over the target vo-
cabulary is conditioned over a transformation of
the final hidden state hdec2t (equation 4, 5).

hdec1t = DEC1(yt−1, h
dec2
t−1 ) (1)

ctxtt = ATTtxt(H
enc, hdec1t ) (2)

hdec2t = DEC2(c
txt
t , hdec1t ) (3)

ot = tanh(Woh
dec2
t + bo) (4)

P (yt) = softmax(Wvot) (5)

3.2 Multimodal Attention (MA)
Our baseline multimodal attention (MA) system
(Caglayan et al., 2016) applies a spatial attention
mechanism (Xu et al., 2015) over the visual fea-
tures. At each timestep t of the decoding stage,

2github.com/lium-lst/nmtpytorch
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a multimodal context vector ct is computed and
given as input to the second decoder (equation 3):

ct = Wf

[
ctxtt ;Wvisc

vis
t

]
(6)

cvist = ATTvis(V, h
dec1
t ) (7)

Previous analysis showed that the attention over
the visual features is inconsistent and weak. We
argue that this is because of the diluted relevant
visual information, and the competition with the
far more relevant source text information.

3.3 Filtered Attention (FA)

In order to enhance the visual attention, we pro-
pose an extension to the multimodal attention
where the objective is to filter the convolutional
feature maps using the last hidden state of the
source language encoder (Figure 1). We conjec-
ture that a learnable masking operation over the
convolutional feature maps can help the decoder-
side visual attention mechanism by filtering out
regions irrelevant to translation and focus on the
most important part of the visual input. The fil-
tered convolutional feature map Ṽ is computed as
follows:

βpre = ConvAtt(
[
Tile(hencS );V

]
) (8)

Ṽ = βpre �V, βpre ∈ R1×w×w (9)

ConvAtt block is inspired from previous works
in visual question answering (VQA) (Yang et al.,
2016; Kazemi and Elqursh, 2017). It basi-
cally computes a spatial attention distribution βpre

which we further use to mask the actual convolu-
tional features V. The filtered Ṽ replaces V in the
equation 7 instead of being pooled into a single
visual embedding in contrast to VQA models.

EN→DE test2017 BLEU METEOR

Baseline NMT 31.0 ± 0.3 52.1 ± 0.4

MA448 28.6 ± 0.8 50.1 ± 0.3
MA448 + L2-norm 30.8 ± 0.5 52.0 ± 0.2

Table 1: Impact of L2 normalization on the perfor-
mance of multimodal attention.

4 Results

We train each model 4 times using different seeds
and report mean and standard deviation for the fi-
nal results using multeval (Clark et al., 2011)

Feature Normalization We can see from Ta-
ble 1 that without L2 normalization, multimodal
attention is not able to reach the performance of
baseline NMT. Applying the normalization con-
sistently improves the results for all input sizes by
around ∼2 points in BLEU and METEOR. From
now on, we only present systems trained with nor-
malized features.

EN→DE test2017 BLEU METEOR

MA224 30.6 ± 0.4 51.8 ± 0.2
MA448 30.8 ± 0.5 52.0 ± 0.2

FA224 31.5 ± 0.5 52.2 ± 0.5
FA448 31.6 ± 0.5 52.5 ± 0.4

Table 2: Impact of input image width on the perfor-
mance of multimodal attention variants.

Image Size Although the impact of doubling
the image width and height at the input seems
marginal (Table 2), we switch to 448x448 images
to benefit from the slight gains which are consis-
tent across both attention variants.

4.1 Monomodal vs Multimodal Comparison

We first present the mean and standard deviation
of BLEU and METEOR over 4 runs on the inter-
nal test set test2017 (Table 3). With the help of
L2 normalization, MA system almost reaches the
monomodal system but fails to improve over it. On
the contrary, the filtered attention (FA) mechanism
improves over the baseline and produces hypothe-
ses that are statistically different than the baseline
with p ≤ 0.02.

The improvements obtained for EN→DE lan-
guage pair are not reflected on the EN→FR perfor-
mance. One should note that the hyperparameters
from EN→DE task were transferred to EN→FR
without any other tuning.

The automatic evaluation of our final submis-
sions (which are ensembles of 4 runs) on the of-
ficial test set test2018 is presented in Table 5.
In addition to our submissions, we also provide
the best constrained and unconstrained systems3

in terms of METEOR. However, it should be noted
that the submitted systems will be primarily eval-
uated using human direct assessment.

On EN→DE, our constrained FA system is
comparable to the constrained UMONS submis-
sion. On EN→FR, our submission obtained the

3www.statmt.org/wmt18/multimodal-task.html
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English→German # Params
test2017 (µ± σ)

BLEU METEOR TER

Baseline NMT 4.6M 31.0 ± 0.3 52.1 ± 0.4 51.2 ± 0.5

Multimodal Attention (MA) 10.0M 30.8 ± 0.5 52.0 ± 0.2 51.1 ± 0.7
Filtered Attention (FA) 11.3M 31.6 ± 0.5 52.5 ± 0.4 50.5 ± 0.5

Table 3: EN→DE results: Filtered attention is statistically different than the NMT (p ≤ 0.02).

English→French # Params
test2017 (µ± σ)

BLEU METEOR TER

Baseline NMT 4.6M 53.1 ± 0.3 69.9 ± 0.2 31.9 ± 0.8

Multimodal Attention (MA) 10.0M 52.6 ± 0.3 69.6 ± 0.3 31.9 ± 0.4
Filtered Attention (FA) 11.3M 52.8 ± 0.2 69.6 ± 0.1 31.9 ± 0.1

Table 4: EN→FR results: multimodal systems are not able to improve over NMT in terms of automatic metrics.

EN→DE BLEU METEOR TER

MeMAD† 38.5 56.6 44.5
UMONS? 31.1 51.6 53.4
LIUMCVC-FA? 31.4 51.4 52.1
LIUMCVC-NMT? 31.1 51.5 52.6

EN→FR

CUNI† 40.4 60.7 40.7
LIUMCVC-FA? 39.5 59.9 41.7
LIUMCVC-NMT? 39.1 59.8 41.9

Table 5: Official test2018 results (†: Unconstrained,
?: Constrained.)

highest automatic evaluation scores among the
constrained submissions and is slightly worse than
the unconstrained CUNI system.

5 Conclusion

MMT task consists of translating a source sen-
tence into a target language with the help of an
image representing the source sentence. The dif-
ferent level of relevance of both input modalities
makes it a difficult task where the image should be
used with parsimony. With the aim of improving
the attention over visual input, we introduced a fil-
tering technique to allow the network to ignore ir-
relevant parts of the image that should not be con-
sidered during decoding. This is done by using an
attention-like mechanism between the source sen-
tence and the convolutional feature maps. Results
show that this mechanism significantly improves
the results for English→German on one of the test
sets. In the future, we plan to qualitatively analyze

the spatial attention and try to improve it further.
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Abstract

This paper describes the MeMAD project
entry to the WMT Multimodal Machine
Translation Shared Task.
We propose adapting the Transformer neu-
ral machine translation (NMT) architec-
ture to a multi-modal setting. In this pa-
per, we also describe the preliminary exper-
iments with text-only translation systems
leading us up to this choice.
We have the top scoring system for both
English-to-German and English-to-French,
according to the automatic metrics for
flickr18.
Our experiments show that the effect of
the visual features in our system is small.
Our largest gains come from the quality of
the underlying text-only NMT system. We
find that appropriate use of additional data
is effective.

1 Introduction
In multi-modal translation, the task is to trans-
late from a source sentence and the image
that it describes, into a target sentence in
another language. As both automatic image
captioning systems and crowd captioning ef-
forts tend to mainly yield descriptions in En-
glish, multi-modal translation can be useful
for generating descriptions of images for lan-
guages other than English. In the MeMAD
project1, multi-modal translation is of inter-
est for creating textual versions or descrip-
tions of audio-visual content. Conversion to
text enables both indexing for multi-lingual
image and video search, and increased access

1https://www.memad.eu/

Data set images en de fr sentences
Multi30k ✓ ✓ ✓ ✓ 29k
MS-COCO ✓ ✓ + + 616k
OpenSubtitles ✓ ✓ ✓ 23M/42M

1M, 3M, and 6M subsets used.

Table 1: Summary of data set sizes. ✓means at-
tribute is present in original data. + means data
set augmented in this work.

to the audio-visual materials for visually im-
paired users.

We adapt2 the Transformer (Vaswani et al.,
2017) architecture to use global image fea-
tures extracted from Detectron, a pre-trained
object detection and localization neural net-
work. We use two additional training corpora:
MS-COCO (Lin et al., 2014) and OpenSub-
titles2018 (Tiedemann, 2009). MS-COCO is
multi-modal, but not multi-lingual. We ex-
tended it to a synthetic multi-modal and multi-
lingual training set. OpenSubtitles is multi-
lingual, but does not include associated im-
ages, and was used as text-only training data.
This places our entry in the unconstrained cat-
egory of the WMT shared task. Details on the
architecture used in this work can be found in
Section 4.1. Further details on the synthetic
data are presented in Section 2. Data sets are
summarized in Table 1.

2 Experiment 1: Optimizing
Text-Based Machine Translation

Our first aim was to select the text-based MT
system to base our multi-modal extensions on.

2Our fork available from https://github.com/
Waino/OpenNMT-py/tree/develop_mmod
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en-fr flickr16 flickr17 mscoco17
multi30k 61.4 54.0 43.1

+subsfull 53.7 48.9 47.0
+domain-tuned 66.1 59.7 51.7

+ensemble-of-3 66.5 60.2 51.6

en-de flickr16 flickr17 mscoco17
multi30k 38.9 32.0 27.7

+subsfull 41.3 34.1 31.3
+domain-tuned 43.3 38.4 35.0

+ensemble-of-3 43.9 39.6 37.0

Table 2: Adding subtitle data and domain tuning
for image caption translation (BLEU% scores). All
results with Marian Amun.

We tried a wide range of models, but only in-
clude results with the two strongest systems:
Marian NMT with the amun model (Junczys-
Dowmunt et al., 2018), and OpenNMT (Klein
et al., 2017) with the Transformer model.

We also studied the effect of additional train-
ing data. Our initial experiments showed that
movie subtitles and their translations work
rather well to augment the given training data.
Therefore, we included parallel subtitles from
the OpenSubtitles2018 corpus to train bet-
ter text-only MT models. For these experi-
ments, we apply the Marian amun model, an
attentional encoder-decoder model with bidi-
rectional LSTM’s on the encoder side. In our
first series of experiments, we observed that
domain-tuning is very important when using
Marian. The domain-tuning was accomplished
by a second training step on in-domain data af-
ter training the model on the entire data set.
Table 2 shows the scores on development data.
We also tried decoding with an ensemble of
three independent runs, which also pushed the
performance a bit.

Furthermore, we tried to artificially increase
the amount of in-domain data by translating
existing English image captions to German
and French. For this purpose, we used the
large MS-COCO data set with its 100,000 im-
ages that have five image captions each. We
used our best multidomain model (see Table 2)
to translate all of those captions and used
them as additional training data. This proce-
dure also transfers the knowledge learned by
the multidomain model into the caption trans-
lations, which helps us to improve the cover-
age of the system with less out-of-domain data.

en-fr flickr16 flickr17 mscoco17
A subs1MH+MS-COCO 66.3 60.5 52.1
A +domain-tuned 66.8 60.6 52.0
A +labels 67.2 60.4 51.7
T subs1MLM +MS-COCO 66.9 60.3 52.8
T +labels 67.2 60.9 52.7

en-de flickr16 flickr17 mscoco17
A subs1MH+MS-COCO 43.1 39.0 35.1
A +domain-tuned 43.9 39.4 35.8
A +labels 43.2 39.3 34.3
T subs1MLM +MS-COCO 44.4 39.4 35.0
T +labels 44.1 39.8 36.5

Table 3: Using automatically translated image
captions and domain labels (BLEU% scores). A is
short for Amun, T for Transformer.

Hence, we filtered the large collection of trans-
lated movie subtitles to a smaller portion of re-
liable sentence pairs (one million in the exper-
iment we report) and could train on a smaller
data set with better results.

We experimented with two filtering meth-
ods. Initially, we implemented a basic heuris-
tic filter (subsH), and later we improved on
this with a language model filter (subsLM ).
Both procedures consider each sentence pair,
assign it a quality score, and then select the
highest scoring 1, 3, or 6 million pairs, discard-
ing the rest. The subsH method counts termi-
nal punctuation (‘.’, ‘...’, ‘?’, ‘!’) in the source
and target sentences, initializing the score as
the negative of the absolute value of the differ-
ence between these counts. Afterwards, it fur-
ther decrements the score by 1 for each occur-
rence of terminal punctuation beyond the first
in each of the sentences. The subsLM method
first preprocesses the data by filtering samples
by length and ratio of lengths, applying a rule-
based noise filter, removing all characters not
present in the Multi30k set, and deduplicating
samples. Afterwards, target sentences in the
remaining pairs are scored using a character-
based deep LSTM language model trained on
the Multi30k data. Both selection procedures
are intended for noise filtering, and subsLM

additionally acts as domain adaptation. Ta-
ble 3 lists the scores we obtained on develop-
ment data.

To make a distinction between automati-
cally translated captions, subtitle translations
and human-translated image captions, we also
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introduced domain labels that we added as
special tokens to the beginning of the input
sequence. In this way, the model can use ex-
plicit information about the domain when de-
ciding how to translate given input. However,
the effect of such labels is not consistent be-
tween systems. For Marian amun, the effect
is negligible as we can see in Table 3. For the
Transformer, domain labels had little effect on
BLEU but were clearly beneficial according to
chrF-1.0.

2.1 Preprocessing of textual data
The final preprocessing pipeline for the tex-
tual data consisted of lowercasing, tokeniz-
ing using Moses, fixing double-encoded enti-
ties and other encoding problems, and normal-
izing punctuation. For the OpenSubtitles data
we additionally used the subsLM subset selec-
tion.

Subword decoding has become popular in
NMT. Careful choice of translation units is
especially important as one of the target lan-
guages of our system is German, a morpho-
logically rich language. We trained a shared
50k subword vocabulary using Byte Pair En-
coding (BPE) (Sennrich et al., 2015). To pro-
duce a balanced multi-lingual segmentation,
the following procedure was used: First, word
counts were calculated individually for English
and each of the 3 target languages Czech3,
French and German. The counts were nor-
malized to equalize the sum of the counts for
each language. This avoided imbalance in the
amount of data skewing the segmentation in
favor of some language. Segmentation bound-
aries around hyphens were forced, overriding
the BPE.

Multi-lingual translation with target-
language tag was done following Johnson et al.
(2016). A special token, e.g. <TO_DE>
to mark German as the target language,
was prefixed to each paired English source
sentence.

3 Experiment 2: Adding Automatic
Image Captions

Our first attempt to add multi-modal infor-
mation to the translation model includes the

3Czech was later dropped as a target language due
to time constraints.

en-fr flickr16 flickr17 mscoco17
multi30k 61.4 54.0 43.1

+autocap (dual attn.) 60.9 52.9 43.3
+autocap 1 (concat) 61.7 53.7 43.9
+autocap 1-5 (concat) 62.2 54.4 44.1

en-de flickr16 flickr17 mscoco17
multi30k 38.9 32.0 27.7

+autocap (dual attn.) 37.8 30.2 27.0
+autocap 1 (concat) 39.7 32.2 28.8
+autocap 1-5 (concat) 39.9 32.0 28.7

Table 4: Adding automatic image captions (only
the best one or all 5). The table shows BLEU
scores in %. All results with Marian Amun.

incorporation of automatically created image
captions in a purely text-based translation en-
gine. For this, we generated five English cap-
tions for each of the images in the provided
training and test data. This was done by
using our in-house captioning system (Shetty
et al., 2018). The image captioning system
uses a 2-layer LSTM with residual connections
to generate captions based on scene context
and object location descriptors, in addition to
standard CNN-based features. The model was
trained with the MS-COCO training data and
used to be state of the art in the COCO leader-
board4 in Spring 2016. The beam search size
was set to five.

We tried two models for the integration of
those captions: (1) a dual attention multi-
source model that adds another input se-
quence with its own decoder attention and (2)
a concatenation model that adds auto captions
at the end of the original input string sepa-
rated by a special token. In the second model,
attention takes care of learning how to use the
additional information and previous work has
shown that this, indeed, is possible (Niehues
et al., 2016; Östling et al., 2017). For both
models, we applied Marian NMT that already
includes a working implementation of dual at-
tention translations. Table 4 summarizes the
scores on the three development test sets for
English-French and English-German.

We can see that the dual attention model
does not work at all and the scores slightly
drop. The concatenation approach works bet-
ter probably because the common attention

4https://competitions.codalab.org/
competitions/3221
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model learns interactions between the different
types of input. However, the improvements
are small if any and the model basically learns
to ignore the auto captions, which are often
very different from the original input. The
attention pattern in the example of Figure 1
shows one of the very rare cases where we ob-
serve at least some attention to the automatic
captions.

Figure 1: Attention layer visualization for an ex-
ample where at least one of the attention weights
for the last part of the sentence, which corresponds
to the automatically generated captions, obtains a
value above 0.3

4 Experiment 3: Multi-modal
Transformer

One benefit of NMT, in addition to its strong
performance, is its flexibility in enabling differ-
ent information sources to be merged. Differ-
ent strategies to include image features both
on the encoder and decoder side have been
explored. We are inspired by the recent suc-
cess of the Transformer architecture to adapt
some of these strategies for use with the Trans-
former.

Recurrent neural networks start their pro-
cessing from some initial hidden state. Nor-
mally, a zero vector or a learned parameter
vector is used, but the initial hidden state is
also a natural location to introduce additional
context e.g. from other modalities. Initializing
can be applied in either the encoder (IMGE) or

decoder (IMGD) (Calixto et al., 2017). These
approaches are not directly applicable to the
Transformer, as it is not a recurrent model,
and lacks a comparable initial hidden state.

Double attention is another popular
choice, used by e.g. Caglayan et al. (2017).
In this approach, two attention mechanisms
are used, one for each modality. The atten-
tions can be separate or hierarchical. While
it would be possible to use double attention
with the Transformer, we did not explore it
in this work. The multiple multi-head at-
tention mechanisms in the Transformer leave
open many challenges in how this integration
would be done.

Multi-task learning has also been used,
e.g. in the Imagination model (Elliott and
Kádár, 2017), where the auxiliary task consists
of reconstructing the visual features from the
source encoding. Imagination could also have
been used with the Transformer, but we did
not explore it in this work.

The source sequence itself is also a pos-
sible location for including the visual informa-
tion. In the IMGW approach, the visual fea-
tures are encoded as a pseudo-word embedding
concatenated to the word embeddings of the
source sentence. When the encoder is a bidi-
rectional recurrent network, as in Calixto et al.
(2017), it is beneficial to add the pseudo-word
both at the beginning and the end to make
it available for both encoder directions. This
is unnecessary in the Transformer, as it has
equal access to all parts of the source in the
deeper layers of the encoder. Therefore, we
add the pseudo-word only to the beginning of
the sequence. We use an affine projection of
the image features V ∈ R80 into a pseudo-word
embedding xI ∈ R512

xI = Wsrc · V + bI .

In the LIUM trg-mul (Caglayan et al., 2017),
the target embeddings and visual features
are interacted through elementwise multiplica-
tion.

y′
j = yj ⊙ tanh(W dec

mul · V )

Our initial gating approach resembles trg-mul.

4.1 Architecture
The baseline NMT for this experiment is
the OpenNMT implementation of the Trans-
former. It is an encoder-decoder NMT system
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using the Transformer architecture (Vaswani
et al., 2017) for both the encoder and de-
coder side. The Transformer is a deep,
non-recurrent network for processing variable-
length sequences. A Transformer is a stack
of layers, consisting of two types of sub-layer:
multi-head (MH) attention (Att) sub-layers
and feed-forward (FF) sub-layers:

Att(Q, K, V ) = softmax(
QKT

√
dk

)V

ai = Att(QWQ
i ,KWK

i , V W V
i )

MH(Q, K, V ) = [a1; . . . ; ah]WO

FF(x) = max(0, xW1 + b1)W2 + b2

(1)

where Q is the input query, K is the key, and
V the attended values. Each sub-layer is indi-
vidually wrapped in a residual connection and
layer normalization.

When used in translation, Transformer lay-
ers are stacked into an encoder-decoder struc-
ture. In the encoder, the layer consists of a
self-attention sub-layer followed by a FF sub-
layer. In self-attention, the output of the pre-
vious layer is used as queries, keys and values
Q = K = V . In the decoder, a third context
attention sub-layer is inserted between the self-
attention and the FF. In context attention, Q
is again the output of the previous layer, but
K = V is the output of the encoder stack. The
decoder self-attention is also masked to pre-
vent access to future information. Sinusoidal
position encoding makes word order informa-
tion available.

Decoder gate. Our first approach is in-
spired by trg-mul. A gating layer is intro-
duced to modify the pre-softmax prediction
distribution. This allows visual features to di-
rectly suppress a part of the output vocabu-
lary. The probability of correctly translating a
source word with visually resolvable ambiguity
can be increased by suppressing the unwanted
choices.

At each timestep the decoder output sj is
projected to an unnormalized distribution over
the target vocabulary.

yj = W · sj + b

Before normalizing the distribution using a

en-fr flickr16 flickr17 mscoco17
IMGW 68.30 62.45 52.86
enc-gate 68.01 61.38 53.40
dec-gate 67.99 61.53 52.38
enc-gate + dec-gate 68.58 62.14 52.98

en-de flickr16 flickr17 mscoco17
IMGW 45.09 40.81 36.94
enc-gate 44.75 41.44 37.76
dec-gate 45.21 40.79 36.47
enc-gate + dec-gate 44.91 41.06 37.40

Table 5: Comparison of strategies for in-
tegrating visual information (BLEU% scores).
All results using Transformer, Multi30k+MS-
COCO+subs3MLM , Detectron mask surface, and
domain labeling.

softmax layer, a gating layer can be added.

g = σ(W dec
gate · V + bdec

gate)

y′
j = yj ⊙ g (2)

Preliminary experiments showed that gating
based on only the visual features did not work.
Suppressing the same subword units during
the entire decoding of the sentence was too
disruptive. We addressed this by using the de-
coder hidden state as additional input to con-
trol the gate. This causes the vocabulary sup-
pression to be time dependent.

gj = σ(Udec
gate · sj + W dec

gate · V + bdec
gate)

(3)

Encoder gate. The same gating proce-
dure can also be applied to the output of the
encoder. When using the encoder gate, the
encoded source sentence is disambiguated, in-
stead of suppressing part of the output vocab-
ulary.

gi = σ(U enc
gate · hi + W enc

gate · V + benc
gate)

h′
i = hi ⊙ gi (4)

The gate biases bdec
gate and benc

gate should be
initialized to positive values, to start training
with the gates opened. We also tried combin-
ing both forms of gating.

4.2 Visual feature selection
Image feature selection was performed using
the LIUM-CVC translation system (Caglayan
et al., 2017) training on the WMT18 training
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en-fr flickr16 flickr17 mscoco17
subs3MLM detectron 68.30 62.45 52.86

+ensemble-of-3 68.72 62.70 53.06
−visual features 68.74 62.71 53.14

−MS-COCO 67.13 61.17 53.34
−multi-lingual 68.21 61.99 52.40

subs6MLM detectron 68.29 61.73 53.05
subs3MLM gn2048 67.74 61.78 52.76
subs3MLM text-only 67.72 61.75 53.02

en-de flickr16 flickr17 mscoco17
subs3MLM detectron 45.09 40.81 36.94

+ensemble-of-3 45.52 41.84 37.49
−visual features 45.59 41.75 37.43

−MS-COCO 45.11 40.52 36.47
−multi-lingual 44.95 40.09 35.28

subs6MLM detectron 45.50 41.01 36.81
subs3MLM gn2048 45.38 40.07 36.82
subs3MLM text-only 44.87 41.27 36.59

+multi-modal finetune 44.56 41.61 36.93

Table 6: Ablation experiments (BLEU% scores).
The row subs3MLM detectron shows our best sin-
gle model. Individual components or data choices
are varied one by one. + stands for adding a com-
ponent, and − for removing a component or data
set. Multiple modifications are indicated by in-
creasing the indentation.

data, and evaluating on the flickr16, flickr17
and mscoco17 data sets. This setup is differ-
ent from our final NMT architecture as the vi-
sual feature selection stage was performed at
an earlier phase of our experiments. However,
the LIUM-CVC setup without training set ex-
pansion was also faster to train which enabled
a more extensive feature selection process.

We experimented with a set of state-of-the-
art visual features, described below.

CNN-based features are 2048-
dimensional feature vectors produced by
applying reverse spatial pyramid pooling on
features extracted from the 5th Inception mod-
ule of the pre-trained GoogLeNet (Szegedy
et al., 2015). For a more detailed description,
see (Shetty et al., 2018). These features are
referred to as gn2048 in Table 6.

Scene-type features are 397-dimensional
feature vectors representing the association
score of an image to each of the scene types
in SUN397 (Xiao et al., 2010). Each associ-
ation score is determined by a separate Ra-
dial Basis Function Support Vector Machine
(RBF-SVM) classifier trained from pre-trained
GoogLeNet CNN features (Shetty et al., 2018).

Action-type features are 40-dimensional

feature vectors created with RBF-SVM classi-
fiers similarly to the scene-type features, but
using the Stanford 40 Actions dataset (Yao
et al., 2011) for training the classifiers. Pre-
trained GoogLeNet CNN features (Szegedy
et al., 2015) were again used as the first-stage
visual descriptors.

Object-type and location features are
generated using the Detectron software5 which
implements Mask R-CNN (He et al., 2017)
with ResNeXt-152 (Xie et al., 2017) features.
Mask R-CNN is an extension of Faster R-CNN
object detection and localization (Ren et al.,
2015) that also generates a segmentation mask
for each of the detected objects. We generated
an 80-dimensional mask surface feature vector
by expressing the image surface area covered
by each of the MS-COCO classes based on the
detected masks.

We found that the Detectron mask surface
resulted in the best BLEU scores in all eval-
uation data sets for improving the German
translations. Only for mscoco17 the results
could be slightly improved with a fusion of
mask surface and the SUN 397 scene-type fea-
ture. For French, the results were more var-
ied, but we focused on improving the German
translation results as those were poorer over-
all. We experimented with different ways of
introducing the image features into the trans-
lation model implemented in LIUM-CVC, and
found as in (Caglayan et al., 2017), that trg-
mul worked best overall.

Later we learned that the mscoco17 test set
has some overlap with the COCO 2017 train-
ing set, which was used to train the Detec-
tron models. Thus, the results on that test
set may not be entirely reliable. However, we
still feel confident in our conclusions as they
are also confirmed by the flickr16 and flickr17
test sets.

4.3 Training
We use the following parameters for the net-
work:6 6 Transformer layers in both encoder
and decoder, 512-dimensional word embed-
dings and hidden states, dropout 0.1, batch

5https://github.com/facebookresearch/
Detectron

6Parameters were chosen following the OpenNMT
FAQ http://opennmt.net/OpenNMT-py/FAQ.html#
how-do-i-use-the-transformer-model
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Figure 2: Image 117 was translated correctly as
feminine “eine besitzerin steht still und ihr brauner
hund rennt auf sie zu .” when not using the image
features, but as masculine “ein besitzer …” when
using them. The English text contains the word
“her”. The person in the image has short hair and
is wearing pants.

size 4096 tokens, label smoothing 0.1, Adam
with initial learning rate 2 and β2 0.998.

For decoding, we use an ensemble procedure,
in which the predictions of 3 independently
trained models are combined by averaging af-
ter the softmax layer to compute combined
prediction.

We evaluate the systems using uncased
BLEU using multibleu. During tuning, we also
used characterF (Popovic, 2015) with β set to
1.0.

There are no images paired with the sen-
tences in OpenSubtitles. When using Open-
Subtitles in training multi-modal models, we
feed in the mean vector of all visual features in
the training data as a dummy visual feature.

4.4 Results
Based on the previous experiments, we chose
the Transformer architecture, Multi30k+MS-
COCO+subs3MLM data sets, Detectron mask
surface visual features, and domain labeling.

Table 5 shows the BLEU scores for this con-
figuration with different ways of integrating
the visual features. The results are inconclu-
sive. The ranking according to chrF-1.0 was
not any clearer. Considering the results as a
whole and the simplicity of the method, we
chose IMGW going forward.

Table 6 shows results of ablation experi-
ments removing or modifying one component

or data choice at a time, and results when us-
ing ensemble decoding. Using ensemble decod-
ing gave a consistent but small improvement.
Multi-lingual models were clearly better than
mono-lingual models. For French, 6M sen-
tences of subtitle data gave worse results than
3M.

We experimented with adding multi-
modality to a pre-trained text-only system
using a fine tuning approach. In the fine
tuning phase, a dec-gate gating layer was
added to the network. The parameters of the
main network were frozen, allowing only the
added gating layer to be trained. Despite the
freezing, the network was still able to unlearn
most of the benefits of the additional text-only
data. It appears that the output vocabulary
was reduced back towards the vocabulary
seen in the multi-modal training set. When
the experiment was repeated so that the fine-
tuning phase included the text-only data, the
performance returned to approximately the
same level as without tuning (+multi-modal
finetune row in Table 6).

To explore the effect of the visual features
on the translation of our final model, we per-
formed an experiment where we retranslated
using the ensemble while “blinding” the model.
Instead of feeding in the actual visual features
for the sentence, we used the mean vector of
all visual features in the training data. The
results are marked -visual features in Table 6.
The resulting differences in the translated sen-
tences were small, and mostly consisted of mi-
nor variations in word order. BLEU scores for
French were surprisingly slightly improved by
this procedure. We did not find clear examples
of successful disambiguation. Figure 2 shows
one example of a detrimental use of visual fea-
tures.

It is possible that adding to the training
data forward translations of MS-COCO cap-
tions from a text-only translation system intro-
duced a biasing effect. If there is translational
ambiguity that should be resolved using the
image, the text-only system will not be able
to resolve it correctly, instead likely yielding
the word that is most frequent in that textual
context. Using such data for training a multi-
modal system might bias it towards ignoring
the image.
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On this year’s flickr18 test set, our system
scores 38.54 BLEU for English-to-German and
44.11 BLEU for English-to-French.

5 Conclusions

Although we saw an improvement from in-
corporating multi-modal information, the im-
provement is modest. The largest differences
in quality between the systems we experi-
mented with can be attributed to the quality
of the underlying text-only NMT system.

We found the amount of in-domain training
data and multi-modal training data to be of
great importance. The synthetic MS-COCO
data was still beneficial, despite being forward
translated, and the visual features being over-
confident due to being extracted from a part
of the image classifier training data.

Even after expansion with synthetic data,
the available multi-modal data is dwarfed by
the amount of text-only data. We found that
movie subtitles worked well for this purpose.
When adding text-only data, domain adapta-
tion was important, and increasing the size of
the selection met with diminishing returns.

Current methods do not fully address the
problem of how to efficiently learn from both
large text-only data and small multi-modal
data simultaneously. We experimented with
a fine tuning approach to this problem, with-
out success.

Although the effect of the multi-modal in-
formation was modest, our system still had
the highest performance of the task partici-
pants for the English-to-German and English-
to-French language pairs, with absolute differ-
ences of +6.0 and +3.5 BLEU%, respectively.
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Abstract

AFRL-Ohio State extends its usage of visual
domain-driven machine translation for use as
a peer with traditional machine translation sys-
tems. As a peer, it is enveloped into a system
combination of neural and statistical MT sys-
tems to present a composite translation.

1 Introduction

Most of the submissions to the Second Confer-
ence on Machine Translation (WMT17) Multi-
modal submissions for Task 1 (Elliott et al., 2017)
used the visual domain to enhance machine trans-
lation of the image+caption pair. The exception
was a Visual Machine Translation (VMT) system
where the image is the driver for the translation
(Duselis et al., 2017). While the scores for this
submission did not approach baseline, except by
human scoring, it did introduce the concept that the
visual domain can approach parity with the tradi-
tional text based MT systems.
TheAFRL-Ohio State Third Conference onMa-

chine Translation (WMT18) submission also ex-
plores viability of a VMT system enhancing cur-
rent techniques. Previous work by Calixto et al.
(2017) ensembled different multimodal machine
translation (MMT) systems, with the visual do-
main used in conjunction with the text domain.
Similarly, we incorporate the VMT system with a
small sampling of neural and statistical MT sys-
tems in order to give indicators on how the perfor-
mance is affected by mutual inclusion.

2 The AFRL-Ohio State 2018
Multimodal System Submission

A Visual Machine Translation system is one that
utilizes the visual domain, whether it is a video or
picture, as the driver for MT. This assumes that
there is a visual analogue for the relevant source

text. This is a specialized form of Multimodal Ma-
chine Translation (MT) in which the image is pro-
ducing candidate target language sentences.
Current trends in MT use system combinations

or ensembles of various MT systems (statistical,
neural, rule-based, etc.) to create a consensual fi-
nal answer. A key ingredient to this method is in-
troducing variability of MT outputs to reach the
conclusion (Freitag et al., 2014). We posit that
adding the VMT to the system will enhance the
overall results.
AFRL-Ohio State submitted three systems for

official scoring. The focus of explanation will be
on the 4Combo system because it underwent hu-
man evaluation, but the other two will be revisited
in the analysis portion. No post-editing was per-
formed for any of the submission systems.

2.1 The AFRL-Ohio State WMT17
Submission

Here is an overview of the VMT system submit-
ted to the WMT17 submission (Duselis et al.,
2017). This system architecture assumes a cap-
tionator can be trained in a target language to
give meaningful output in the form of a set of the
most probable n target language candidate cap-
tions. A learned mapping function of the encoded
source language caption to the corresponding en-
coded target language candidate captions is thus
employed. Finally, a distance function is applied,
and the nearest candidate caption is selected to be
the translation of the source caption.

2.2 Captionator

The current instantiation of our VMT system uses
the Google Show and Tell captionator (Vinyals
et al., 2015) trained on the training set from
Flickr30k, augmented with data from ImageCLEF
2008 (Grubinger et al., 2006).
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The captionator was trained on the 29,000 train-
ing image+German caption pairs, plus 20,000
image+German captions from ImageCLEF 2008.
This was slightly fewer than the number used on
the WMT17 submission. Additional models were
trained on the constrained set of the 29,000 WMT
pairs, one with a single caption per image and an-
other with five captions per image. However, the
Show and Tell system generated a high number
of ’unknown word’ tokens. Filtering out the sen-
tences with unknown tokens produced a bias to-
wards short, generic captions. Augmenting with
the ImageCLEF data produced noticeably better
results. This was the only change for the caption-
ator. Consistent with the prior year’s submission,
no accommodations were made for out of vocabu-
lary words.

2.3 Caption Selection
Stemming from critique and results fromWMT17,
the simple neural network was revised to cen-
ter around a two sided Long Short Term Mem-
ory (LSTM) encoder. One side of the LSTM
was trained to encode English sentences, while
the other was trained to encode German sentences.
Each of the LSTMs has a state size of 256 nodes.
The multiclass hinge loss function was used to
evaluate the encodings, penalizing the loss by the
highest-scoring incorrect match between the En-
glish and German sentences in a training batch.
The training data comprised the WMT18 Mul-

timodal Task 1 English and German training sen-
tences from the 2018 Multi30k dataset. The words
were tokenized and transformed to lower case, and
punctuation was removed. Words were then em-
bedded using the FastText pretrained word embed-
ding vectors (Bojanowski et al., 2017), with di-
mension 300. The Adam optimizer (Kingma and
Ba, 2014) was employed to train the network pa-
rameters with a batch size of 32. The network was
trained for approximately 100 epochs using Ten-
sorFlow on a GeForce GTX 1080.
We tested the caption selection mechanism on

the 2018 Multi30k datasets, encoding both the
given English captions and the given German cap-
tions. Each English caption was matched with the
German caption in the set with minimum hinge
loss. On the 29,000-image training set, each En-
glish caption was correctly matched with its corre-
sponding German caption 99.4% of the time. On
the 1,014-image test set, the matching accuracy
was 92.4%.

2.4 “Standard” Machine Translation

Inspired by Gwinnup et al. (2017), we trained mul-
tiple MT systems with differing toolkits and char-
acteristics for use in system combination with our
VMT efforts. These toolkits include: OpenNMT
(Klein et al., 2017), Marian (Junczys-Dowmunt
et al., 2018), and Moses (Koehn et al., 2007).
All systemswere trainedwith the approximately

41 million parallel lines of preprocessed German–
English data provided by the WMT18 organizers.

2.4.1 OpenNMT

The OpenNMT system was trained using the
German-English Parallel Data from the WMT18
organizers for the News Task, but excluding the
ParaCrawlData. It incorporates case features and a
vocabulary from 2000 byte-pair encoding merges.
This small vocabulary was chosen to reduce the
number of out-of-vocabulary tokens resulting from
morphology and compounding.

2.4.2 Marian

The Marian toolkit was used to train a baseline
system using the pre-BPE’d data provided by the
WMT18 news task organizers. This system em-
ployed a deep bi-directional (or “BiDeep”) archi-
tecture as outlined in Miceli Barone et al. (2017)
and Sennrich et al. (2017). Further details of the
exact settings used to train this system are avail-
able in the wmt2017-uedin example shown in the
marian-examples GitHub repository1.

2.4.3 Moses

For variety, a phrase-based Moses system was
trained using the same BPE’d data as the above
Marian system. This system employed a hier-
archical reordering model (Galley and Manning,
2008), 5-gram operation sequence model (Dur-
rani et al., 2011) and a 5-gram BPE’d KenLM
(Heafield, 2011) languagemodel trained on the tar-
get side of the provided parallel data.

2.5 System Combination

RWTH’s Jane System combination (Freitag et al.,
2014) was used to combine the outputs of the
three traditional MT systems with the output of our
VMT approach.

1https://github.com/marian-nmt/
marian-examples/tree/master/wmt2017-uedin
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3 Analysis

3.1 Results
The AFRL-Ohio State WMT18 4Combo submis-
sion, although a better showing than our WMT17
submission, failed to meet baseline. Compar-
ing the VMT component to last year’s system
showed the expected improvement in results.
The official results are presented in Table 3.1,
mirroring the results presented in Specia et al.
(2018). VMT is the visually driven MT system.
2Combo is the VMT+Marian, 3Combo is the Mar-
ian+Moses+OpenNMT system. 4Combo is all four
systems.

System BLEU ↑ Meteor ↑ TER ↓
VMT 5.0 17.7 80.1
2Combo 10.0 25.4 79.0
3Combo 23.8 44.5 59.7
4Combo 24.3 45.4 58.6

Table 1: Systems Scoring

Examining the 3Combo and 4Combo outputs, we
note a positive performance trend when adding the
VMT system to combinations of traditional MT
systems.

3.1.1 Captionator Output - Oracle Scoring
To gain more insight, a document level Meteor and
BLEU Oracle scoring for the captionator output
was applied.
The three observables were the most probable

sentence from the captionator, the AFRL-Ohio
State caption selection mechanism, and the best
scoring caption output. This analysis is based on
the WMT17 multimodal validation set.
We performed a posteriori analysis, to deter-

mine how well our caption selector compares with
other possibilities. We considered two options.
First, the one-best is the caption the captionator
considers the most likely, without regard to the
source-side text. Second, we found an oracle cap-
tion for each image, based on Meteor score. The
oracle captions determine an upper-bound on the
Meteor score the caption selector can achieve. Re-
sults are shown in Table 2.

4 Future Work

Our purpose in developing the visual domain is to
include it as an equal to the text or as a driver for the
MT at a higher level of abstraction than the neural
layer. Using the captionator to produce sentences

Method BLEU ↑ METEOR ↑
1-best 1.53 10.69
LSTM 5.74 18.59
Oracle 18.78 36.74

Table 2: Oracle scoring for the VMT system.

limits the VMT to the the captionator’s abilities.
Instead, we next plan to employ a more general-
ized approach to estimate objects or concepts that
are particularly difficult to translate directly from
the image (or video clip, if available) rather than at-
tempting to estimate an actual sentence structure.
We expect the use of such information from the
visual content to be more amenable to bias or in-
fluence other MT systems.
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Abstract

We present our submission to the WMT18
Multimodal Translation Task. The main fea-
ture of our submission is applying a self-
attentive network instead of a recurrent neu-
ral network. We evaluate two methods of in-
corporating the visual features in the model:
first, we include the image representation as
another input to the network; second, we train
the model to predict the visual features and use
it as an auxiliary objective. For our submis-
sion, we acquired both textual and multimodal
additional data. Both of the proposed methods
yield significant improvements over recurrent
networks and self-attentive textual baselines.

1 Introduction

Multimodal Machine Translation (MMT) is one
of the tasks that seek ways of capturing the rela-
tion of texts in different languages given a shared
“grounding” information in a different (e.g. vi-
sual) modality.

The goal of the MMT shared task is to gen-
erate an image description (caption) in the target
language using a caption in the source language
and the image itself. The main motivation for this
task is the development of models that can exploit
the visual information for meaning disambigua-
tion and thus model the denotation of words.

During the last years, MMT was addressed as
a subtask of neural machine translation (NMT). It
was thoroughly studied within the framework of
recurrent neural networks (RNNs) (Specia et al.,
2016; Elliott et al., 2017). Recently, the archi-
tectures based on self-attention such as the Trans-
former (Vaswani et al., 2017) became state-of-the-
art in NMT.

In this work, we present our submission based
on the Transformer model. We propose two ways
of extending the model. First, we tweak the archi-
tecture such that it is able to process both moda-

lities in a multi-source learning scenario. Second,
we leave the model architecture intact, but add an-
other training objective and train the textual en-
coder to be able to predict the visual features of the
image described by the text. This training compo-
nent has been introduced in RNNs by Elliott and
Kádár (2017) and is called the “imagination”.

We find that with self-attentive networks, we
are able to improve over a strong textual baseline
by including the visual information in the model.
This has been proven challenging in the previous
RNN-based submissions, where there was only
a minor difference in performance between tex-
tual and multimodal models (Helcl and Libovický,
2017; Caglayan et al., 2017).

This paper is organized as follows. Section 2
summarizes the previous submissions and related
work. In Section 3, we describe the proposed
methods. The details of the datasets used for the
training are given in Section 4. Section 5 describes
the conducted experiments. We discuss the results
in Section 6 and conclude in Section 7.

2 Related Work

Currently, most of the work has been done within
the framework of sequence-to-sequence learning.
Although some of the proposed approaches use
explicit image analysis (Shah et al., 2016; Huang
et al., 2016), most methods use image representa-
tion obtained using image classification networks
pre-trained on ImageNet (Deng et al., 2009), usu-
ally VGG19 (Simonyan and Zisserman, 2014) or
ResNet (He et al., 2016a).

In the simplest case, the image can be repre-
sented as a single vector from the penultimate
layer of the image classification network. This
vector can be then plugged in at various places of
the sequence-to-sequence architecture (Libovický
et al., 2016; Calixto and Liu, 2017).
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Several methods compute visual context infor-
mation as a weighted sum over the image spa-
tial representation using the attention mechanism
(Bahdanau et al., 2014; Xu et al., 2015) and com-
bine it with the context vector from the textual
encoder in doubly-attentive decoders. Caglayan
et al. (2016) use the visual context vector in a gat-
ing mechanism applied to the textual context vec-
tor. Caglayan et al. (2017) concatenate the context
vectors from both modalities. Libovický and Helcl
(2017) proposed advanced strategies for comput-
ing a joint attention distribution over the text and
image. We follow this approach in our first pro-
posed method described in Section 3.1.

The visual information can also be used as an
auxiliary objective in a multi-task learning setup.
Elliott and Kádár (2017) propose an imagination
component that predicts the visual features of an
image from the textual encoder representation, ef-
fectively regularizing the encoder part of the net-
work. The imagination component is trained us-
ing a maximum margin objective. We reuse this
approach in our method described in Section 3.2.

3 Architecture

We examine two methods of exploiting the visual
information in the Transformer architecture. First,
we add another encoder-decoder attention layer to
the decoder which operates over the image fea-
tures directly. Second, we train the network with
an auxiliary objective using the imagination com-
ponent as proposed by Elliott and Kádár (2017).

3.1 Doubly Attentive Transformer

The Transformer network follows the encoder-
decoder scheme. Both parts consist of a number
of layers. Each encoder layer first attends to the
previous layer using self-attention, and then ap-
plies a single-hidden-layer feed-forward network
to the outputs. All layers are interconnected with
residual connections and their outputs are normal-
ized by layer normalization (Ba et al., 2016). A
decoder layer differs from an encoder layer in two
aspects. First, as the decoder operates autoregres-
sively, the self-attention has to be masked to pre-
vent the decoder to attend to the “future” states.
Second, there is an additional attention sub-layer
applied after self-attention which attends to the fi-
nal states of the encoder (called encoder-decoder,
or cross attention).

The key feature of the Transformer model is the

use of attention mechanism instead of recurrence
relation in RNNs. The attention can be conceptu-
alized as a soft-lookup function that operates on
an associative array. For a given set of queries Q,
the attention uses a similarity function to compare
each query with a set of keys K. The resulting
similarities are normalized and used as weights to
compute a context vector which is a weighted sum
over a set of values V associated with the keys. In
self-attention, all the queries, keys and values cor-
respond to the set of states of the previous layer.
In the following cross-attention sub-layer, the set
of resulting context vectors from the self-attention
sub-layer is used as queries, and keys and values
are the states of the final layer of the encoder.

The Transformer uses scaled dot-product as a
similarity metric for both self-attention and cross-
attention. For a query matrix Q, key matrix K and
value matrix V , and the model dimension d, we
have:

A(Q,K, V ) = softmax

(
QK>√

d

)
V. (1)

The attention is used in a multi-head setup. This
means that we first linearly project the queries,
keys, and values into a number of smaller matri-
ces and then apply the attention function A inde-
pendently on these projections. The set of result-
ing context vectors C is computed as a sum of the
outputs of each attention head, linearly projected
to the original dimension:

C =

h∑

i=1

A(QWQ
i ,KW

K
i , V W

V
i )WO

i (2)

where (WO
i )>, WQ

i , WK
i , and W V

i ∈ Rd×dh

are trainable parameters, d is the dimension of the
model, h is the number of heads, and dh is a di-
mension of a single head. Note that despite K
and V being identical matrices, the projections are
trained independently.

In this method, we introduce the visual informa-
tion to the model as another encoder via an addi-
tional cross-attention sub-layer. The keys and val-
ues of this cross-attention correspond to the vec-
tors in the last convolutional layer of a pre-trained
image processing network applied on the input im-
age. This sub-layer is inserted between the tex-
tual cross-attention and the feed-forward network,
as illustrated in Figure 1. The set of the context
vectors from the textual cross-attention is used as
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self-attention

⊕

textual cross-attentionencoder

⊕

visual cross-attentionimage CNN map

⊕

feed-forward layer

⊕

Figure 1: One layer of the doubly-attentive Trans-
former decoder with 4 sub-layers connected with resid-
ual connections.

queries, and the context vectors of the visual cross-
attention are used as inputs to the feed-forward
sub-layer. Similarly to the other sub-layers, the
input is linked to the output by a residual connec-
tion. Equation 3 shows the computation of the vi-
sual context vectors given trainable matrices ZQ

i ,
ZK
i , ZV

i , and ZO
i for i = 1, . . . , h; the set of tex-

tual context vectors is denoted by Ctxt and the ex-
tracted set of image features as F :

Cimg =
h∑

i=1

A(CtxtZ
Q
i , FZ

K
i , FZ

V
i )ZO

i . (3)

3.2 Imagination
We use the imagination component of Elliott and
Kádár (2017) originally proposed for training mul-
timodal translation models using RNNs. We adapt
it in a straightforward way in our Transformer-
based models.

The imagination component serves effectively
as a regularizer to the encoder, making it consider
the visual meaning together with the words in the
source sentence. This is achieved by training the
model to predict the image representations that
correspond to those computed by a pre-trained im-
age classification network. Given a set of encoder
states hj , the model computes the predicted image
representation as follows:

ŷimg =WR
2 max(0,WR

1

∑
jhj) (4)

where WR
1 ∈ Rr×d and WR

2 ∈ Rn×r are trainable
parameter matrices, d is the Transformer model
dimension, r is a hidden layer dimension of the

en de fr cs

Training 29,000 sentences

Tokens 378k 361k 410k 297k
Average length 13.0 12.4 14.1 10.2
# tokens range 4–40 2–44 4–55 2–39

Validation 1,014 sentences

Tokens 13k 13k 14k 10k
Average length 13.1 12.7 14.2 10.2
# tokens range 4–30 3–33 5–36 4–27

OOV rate 1.28% 3.09% 1.20% 3.95%

Table 1: Multi30k statistics on training and validation
data – total number of tokens, average number of to-
kens per sentence, and lengths of the shortest and the
longest sentence.

imagination component, and n is the dimension
of the image feature vector. Note that Equation 4
corresponds to a single-hidden-layer feed-forward
network with a ReLU activation function applied
on the sum of the encoder states.

We train the visual feature predictor using an
auxiliary objective. Since the encoder part of the
model is shared, additional weight updates are
propagated to the encoder during the model opti-
mization w.r.t. this additional loss. For the gen-
erated image representation ŷ and the reference
representation y, the error is estimated as margin-
based loss with margin parameter α:

Limag = max (0, α+ d(ŷ, y)− d(ŷ, yc)) (5)

where yc is a contrastive example randomly drawn
from the training batch and d is a distance function
between the representation vectors, in our case the
cosine distance.

Unlike Elliott and Kádár (2017), we sum both
translation and imagination losses within the train-
ing batches rather than alternating between train-
ing of each component separately.

4 Data

The participants were provided with the Multi30k
dataset (Elliott et al., 2016), an extension of the
Flickr30k dataset (Plummer et al., 2017) which
contains 29,000 train images, 1,014 validation im-
ages and 1,000 test images. The images are ac-
companied with six captions which were inde-
pendently obtained through crowd-sourcing. In
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Multi30k, each image is accompanied also with
German, French, and Czech translations of a sin-
gle English caption. Table 1 shows statistics of the
captions contained in the Multi30k dataset.

Since the Multi30k dataset is relatively small,
we acquired additional data, similarly to our last
year submission (Helcl and Libovický, 2017). The
overview of the dataset structure is given in Ta-
ble 2.

First, for German only, we prepared synthetic
data out of the WMT16 MMT Task 2 training
dataset using back-translation to English (Sen-
nrich et al., 2016). This data consists of five addi-
tional German descriptions of each image. Along
with the data for Task 1 which is the same as the
training data this year, the back-translated part of
the dataset contains 174k sentences.

Second, for Czech and German, we selected
pseudo in-domain data by filtering the available
general domain corpora. For both languages, we
trained a character-level RNN language model on
the corresponding language parts of the Multi30k
training data. We use a single layer bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) net-
work with 512 hidden units and character em-
beddings with dimension of 128. For Czech, we
compute perplexities of the Czech sentences in
the CzEng corpus (Bojar et al., 2016b). We se-
lected 15k low-perplexity sentence pairs out of
64M sentence pairs in total by setting the perplex-
ity threshold to 2.5. For German, we used the
additional data from the last year (Helcl and Li-
bovický, 2017), which was selected out of several
parallel corpora (EU Bookshop (Skadiņš et al.,
2014), News Commentary (Tiedemann, 2012) and
CommonCrawl (Smith et al., 2013)).

Third, also for Czech and German, we applied
the same criterion on monolingual corpora and
used back-translation to create synthetic parallel
data. For Czech, we took 333M sentences of
CommonCrawl and 66M sentences of News Crawl
(which is used in the WMT News Translation
Task; Bojar et al., 2016a) and extracted 18k and
11k sentences from these datasets respectively.

Finally, we use the whole EU Bookshop as an
additional out-of-domain parallel data. Since the
size of this dataset is large relative to the sizes
of the other parts, we oversample the rest of the
data to balance the in-domain and out-of-domain
portions of the training dataset. The oversampling
factors are shown in Table 2.

de fr cs

Multi30k 29k
– oversampling factor 273× 366× 9×

Task 2 BT 145k — —
in-domain parallel 3k — 15k
in-domain BT 30k — 29k
– oversampling factor 39× — 7×

EU Bookshop 9.3M 10.6M 445k

COCO (English only) 414k

Table 2: Overview of the data used for training our
models with oversampling factors. The EU Book-
shop data was not oversampled. BT stands for back-
translation.

For the unconstrained training of the imagina-
tion component, we used the MSCOCO (Lin et al.,
2014) dataset which consists of 414k images along
with English captions.

5 Experiments

In this year’s round, two variants of the MMT
tasks were announced. As in the previous years,
the goal of Task 1 is to translate an English cap-
tion into the target language given the image. The
target languages are German, French and Czech.
In Task 1a, the model receives the image and its
captions in English, German, and French and is
trained to produce the Czech translation. In our
submission, we focus only on Task 1.

In our submission, we experiment with three
distinct architectures. First, in textual architec-
tures, we leave out the images from the train-
ing altogether. We use this as a strong baseline
for the multimodal experiments. Second, multi-
modal experiments use the doubly attentive Trans-
former decoder described in Section 3.1. Third,
the experiments referred to as imagination employ
the imagination component as described in Sec-
tion 3.2.

We train the models in constrained and uncon-
strained setups. In the constrained setup, only the
Multi30k dataset is used for training. In the uncon-
strained setup, we train the model using the addi-
tional data described in Section 4. We run the mul-
timodal experiments only in the constrained setup.

In the unconstrained variant of the imagina-
tion experiments, the dataset consists of exam-
ples that can miss either the textual target values
(MSCOCO extension), or the image (additional
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en-cs en-fr en-de
single averaged single averaged single averaged

Caglayan et al. (2017) N/A 54.7/71.3 56.7/73.0 37.8/57.7 41.0/60.5
C

on
s. Textual 29.6/28.9 30.9/29.5 59.2/73.7 59.7/74.4 38.1/56.2 38.3/56.0

Imagniation 29.8/29.4 30.5/29.6 59.4/74.2 59.7/74.4 38.8/56.4 39.2/56.8
Multimodal 30.5/29.7 31.0/29.9 60.6/75.0 60.8/75.1 38.4/53.1 38.7/57.2

U
nc

. Textual 31.2/30.1 32.3/30.7 62.0/76.7 62.5/76.7 39.6/58.7 40.4/59.0
Imagination 36.3/32.8 35.9/32.7 62.8/77.0 62.8/77.0 42.7/59.1 42.6/59.4

Table 3: Results on the 2016 test set in terms of BLEU score and METEOR score. We compare our results with
the last year’s best system (Caglayan et al., 2017) which used model ensembling instead of weight averaging.

parallel data). In these cases, we train only the de-
coding component with specified target value (i.e.
imagination component on visual features, or the
Transformer decoder on the textual data). As said
in Section 3.2, we train both components by sum-
ming the losses when both the image and the target
sentence are available in a training example.

In all experiments, we use the Transformer net-
work with 6 layers with model dimension of 512
and feed-forward hidden layer dimension of 4096
units. The embedding matrix is shared between
the encoder and decoder and its transposition is
reused as the output projection matrix (Press and
Wolf, 2017). For each language pair, we use a
vocabulary of approximately 15k wordpieces (Wu
et al., 2016). We extract the vocabulary and train
the model on lower-cased text without any further
pre-processing steps applied. We tokenize the text
using the algorithm bundled with the tensor2tensor
library (Vaswani et al., 2018). The tokeniza-
tion algorithm splits the sentence to groups of al-
phanumeric and non-alphanumeric groups, throw-
ing away single spaces that occur inside the sen-
tence. We conduct the experiments using the Neu-
ral Monkey toolkit (Helcl and Libovický, 2017).1

For image pre-processing, we use ResNet-50
(He et al., 2016a) with identity mappings (He
et al., 2016b). In the doubly-attentive model, we
use the outputs of the last convolutional layer be-
fore applying the activation function with dimen-
sionality of 8 × 8 × 2048. We apply a trainable
linear projection to the maps into 512 dimensions
to fit the Transformer model dimension. In the
imagination experiments, we use average-pooled
maps with 2048 dimensions. Following Elliott and
Kádár (2017), we set the margin parameter α from
Equation 5 to 0.1.

1https://github.com/ufal/neuralmonkey

For each model, we keep 10 sets of parameters
that achieve the best BLEU scores (Papineni et al.,
2002) on the validation set. We experiment with
weight averaging and model ensembling. How-
ever, these methods performed similarly and we
thus report only the results of the weight averag-
ing, which is computationally less demanding.

In all experiments, we use the Adam opti-
mizer (Kingma and Ba, 2014) with initial learn-
ing rate 0.2, and Noam learning rate decay scheme
(Vaswani et al., 2017) with β1 = 0.9, β2 = 0.98
and ε = 10−9 and 4,000 warm-up steps.

6 Results

We report the quantitative results of measured on
the Multi30k 2016 test set in Table 3.

The Transformer architecture achieves gener-
ally comparable or better results than the RNN-
based architecture. Adding the visual informa-
tion has a significant positive effect on the system
performance, both when explicitly provided as a
model input and when used as an auxiliary ob-
jective. In the constrained setup which used only
the data from the Multi30k dataset, the doubly-
attentive decoder performed best.

The biggest gain in performance was achieved
by training on the additional parallel data. The
imagination architecture outperforms the purely
textual models.

As the performance of single models increases,
the positive effect of weight averaging diminishes.
The effect of checkpoint averaging is smaller than
the results reported by Caglayan et al. (2017) who
use ensembles of multiple models trained with a
different initialization – we use only checkpoints
from a single training run.

During the qualitative analysis, we noticed that
mostly for Czech target language, the systems are
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often incapable of capturing morphology. In or-
der to quantify this, we also measured the BLEU
scores using the lemmatized system outputs and
references. The difference was around 4 BLEU
points for Czech, less than 3 BLEU points for
French, and around 2 BLEU points for German.
These differences were consistent among different
types of models.

We hypothesize that in the imagination exper-
iments, the visual information is used to learn a
better representation of the textual input, which
eventually leads to improvements in the transla-
tion quality. In the multimodal experiments, the
improvements can come from the refining of the
textual representation rather than from explicitly
using the image as an input.

In order to determine whether the visual in-
formation is used also at the inference time, we
performed an adversarial evaluation by providing
the trained multimodal model with randomly se-
lected “fake” images. In French and Czech, BLEU
scores dropped by more than 1 BLEU point. This
suggests that the multimodal models utilize the
visual information at the inference time as well.
The German models seem to be virtually unaf-
fected. We hypothesize this might be due to a dif-
ferent methodology of acquiring the training data
for German and the other two target languages (El-
liott et al., 2016).

7 Conclusions

In our submission for the WMT18 Multimodal
Translation Task, we experimented with the Trans-
former architecture for MMT. The experiments
show that the Transformer architecture outper-
forms the RNN-based models.

Experiments with a doubly-attentive decoder
showed that explicit incorporation of visual infor-
mation improves the model performance. The ad-
versarial evaluation confirms that the models also
take into account the visual information.

The best translation quality was achieved by ex-
tending the training data by additional image cap-
tioning data and parallel textual data. It this un-
constrained setup, the best scoring model employs
the imagination component that was previously
introduced in RNN-based sequence-to-sequence
models.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Yepes, Philipp Koehn, Varvara Logacheva,
Christof Monz, Matteo Negri, Aurelie Névéol, Mar-
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Abstract

This paper describes the University of
Sheffield’s submissions to the WMT18 Mul-
timodal Machine Translation shared task. We
participated in both tasks 1 and 1b. For task 1,
we build on a standard sequence to sequence
attention-based neural machine translation
system (NMT) and investigate the utility of
multimodal re-ranking approaches. More
specifically, n-best translation candidates
from this system are re-ranked using novel
multimodal cross-lingual word sense disam-
biguation models. For task 1b, we explore
three approaches: (i) re-ranking based on
cross-lingual word sense disambiguation (as
for task 1), (ii) re-ranking based on consensus
of NMT n-best lists from German-Czech,
French-Czech and English-Czech systems,
and (iii) data augmentation by generating En-
glish source data through machine translation
from French to English and from German
to English followed by hypothesis selection
using a multimodal-reranker.

1 Introduction

This paper describes the University of Sheffield’s
submissions for both Tasks 1 and 1b of the third
edition of the Multimodal Machine Translation
shared task. Task 1 consists in translating source
sentences in English that describe an image into
German (DE) or French (FR) or Czech (CS), given
the image. Task 1b consists in translating source
sentences in English that describe an image into
Czech, given the image and the French and Ger-
man translations of the source sentence.

This task poses the challenging problem of
building models that use both language and image
modalities. The dataset for the shared task (Specia
et al., 2016) has sentences with simple language
constructions and it has been observed by earlier
systems (Specia et al., 2016; Elliott et al., 2017)

that standard text-only sequence to sequence neu-
ral machine translation models (NMT) with atten-
tion are able to obtain very high performance.

Building on this, for further inspection, we built
our own standard NMT systems for EN-DE, EN-
FR and EN-CS language directions and noticed
that the translation hypotheses besides the 1-best
output are also of high quality. We made our sys-
tems produce 20 translation hypotheses for En-
glish descriptions in the validation set and se-
lected the hypothesis with the highest sentence-
level METEOR (Denkowski and Lavie, 2014)
score, called the Oracle, and compared this to the
1-best. In this experiment, we observed that the
Oracle performs way better (11 to 13.5 METEOR
points) than the 1-best output (See Table 1). This
preliminary experiment motivated us to investigate
re-ranking approaches.

Lang-Pair 1-best Best of 20best Scope/difference
(Oracle) (Oracle - 1-best)

EN-DE 48.36 61.85 +13.49
EN-FR 64.91 76.87 +11.96
EN-CS 33.87 44.71 +10.84

Table 1: Motivation for re-ranking. In this prelim-
inary experiment, we observe that re-ranking of the
20-best translation hypotheses generated by a standard
NMT model has the potential of improving translation
by upto 10.84 to 13.49 METEOR points for the three
language pairs.

For a re-ranking strategy, we were inspired by
how humans use images to translate image de-
scriptions. We believe humans look at the im-
age usually to disambiguate ambiguous words in
the source sentence especially in those instances
where the text alone is not sufficient. For exam-
ple, translating ‘A sportsperson is playing foot-
ball’ into French requires us to know whether the
sportsperson is a male or a female and accordingly
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the translation is ‘Une sportif joue au football’
(male) or ‘Une sportive joue au football’ (female).
In such cases, humans usually look at the image
to disambiguate and select the correct translation
which is what we try to mimic in our approach.

More specifically, in our systems we adopt a
two-step pipeline approach. In the first step, we
use an ensemble of text-only models initialized
with different seeds to produce lists of 10-best
translation hypotheses. In the second step, we re-
rank the 10-best hypotheses using a novel multi-
modal cross-lingual Word Sense Disambiguation
(WSD) approach. For control experiments, we
also compare our results with monomodal cross-
lingual WSD (Lefever and Hoste, 2013) and a sys-
tem that performs re-ranking using the Most Fre-
quent Sense (MFS) baseline (Section 3.1.2).

Our main goal is to investigate a multimodal,
image-based, cross-lingual WSD that predicts
the translation candidate which correctly disam-
biguates ambiguous words in the source sentence.

Our baseline NMT system is based on the at-
tentive encoder-decoder (Bahdanau et al., 2015)
approach with a Conditional GRU (CGRU) (Cho
et al., 2014) decoder and is built using NMTPY
toolkit (Caglayan et al., 2017b).

Our cross-lingual WSD models are based on
neural sequence learning models for WSD (Ra-
ganato et al., 2017; Yuan et al., 2016; Kågebäck
and Salomonsson, 2016) applied to the Multi-
modal Lexical Translation Dataset (Lala and Spe-
cia, 2018).

For task 1b, we explore three approaches. The
first approach concatenates the 10-best translation
hypotheses from DE-CS, FR-CS and EN-CS MT
systems and then re-ranks them using the image-
aware multimodal cross-lingual WSD mentioned
earlier (the same way as in Task 1) (Section 3.1.2).

The second approach explores the consensus
between the different 10-best lists. The best hy-
pothesis is selected according to the number of
times it appeared in the different 10-best lists. We
followed the order of the n-best lists, meaning that
the highest ranked hypothesis with the majority
votes was selected.

The third approach uses data augmentation that
hinges on the fact that the objective is to translate
from English into Czech. Extra source data is gen-
erated by building systems that translate from Ger-
man into English and French into English. With
this extra data, we build an EN-CS system. We

then obtain a 10-best list over training, develop-
ment and test sets respectively. For selecting the
best hypothesis from the 10-best list, we exper-
iment with a classification-based approach. We
calculate METEOR (Denkowski and Lavie, 2014)
scores for each hypothesis in the 10-best list of the
training set and threshold the scores to build classi-
fiers to distinguish good from bad translations us-
ing a) word embeddings and image features with a
Random Forest model and b) a multimodal Recur-
rent Neural Network (RNN) model.

In Section 3 we describe our systems in detail.
We describe the data preprocessing in Section 2.
The results are discussed in Section 4.

2 Data

2.1 Translation models
We use the Multi30K (Elliott et al., 2016) dataset
provided by the organizers. Each image i contains
one English description eni taken from Flickr30K
and human translations into German dei, French
fri and Czech czi. In other words, each instance
is a 5-tuple of the form (i, eni, dei, fri, czi). The
dataset contains 29,000 training and 1,014 devel-
opment instances.

For Task 1, the test sets of the previous two edi-
tions (2016 and 2017) have also been provided for
validation purposes. These do not contain Czech
translations. A new test set of 1,071 tuples con-
taining an English description and its correspond-
ing image is provided for evaluation.

For Task 1b, a test set of 1,000 tuples contain-
ing English, French, and German descriptions and
their corresponding images is provided for evalu-
ation. This test set corresponds to the unseen por-
tion of the Czech Test 2017 data. The test set of
2016 is provided for validation purposes.

2.2 Cross-lingual WSD models
For the cross-lingual WSD models, we use the
Multimodal Lexical Translation Dataset (MLTD)
(Lala and Specia, 2018), which was extracted from
the Multi30K (Elliott et al., 2016) dataset. MLTD
consists of 4-tuples of the form (x, i, eni, xt)
where x is an ambiguous1 word in the English de-
scription eni of the image i, and xt is the lexical
translation of x in a specified target language t ∈

1We use the term ‘ambiguous’ for those words in the
source language that have multiple translations in the target
language in the training portion of the given parallel corpus,
where these translations represent different ‘senses’ of the
word in that corpus.
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{German, French, Czech} that conforms with the
image and the description. Only instances from
the training portion of the Multi30K dataset are
used to train the cross-lingual WSD models.

For English-German, MLTD consists of 745
ambiguous words in English with 4.09 different
translations per word (on average) in German and
17.69 instances per translation (on average) to-
talling 53,868 MLTD instances.

For English-French, MLTD consists of 661 am-
biguous words in English with 2.98 different trans-
lations per word (on average) in French and 22.73
instances per translation (on average) totalling
44,779 MLTD instances.

For English-Czech2, MLTD consists of 3,217
ambiguous words in English with 5.15 different
translations per word (on average) in Czech and
11.32 instances per translation (on average) to-
talling 187,495 MLTD instances.

2.3 Image features

We used the ResNet-50 image features pro-
vided by the task organizers. These are 2048-
dimensional features extracted from pool5 of a
pretrained ResNet-50 (He et al., 2016) model
which has been trained on the ImageNet dataset
(Russakovsky et al., 2015).

3 System descriptions

In this section we describe the systems submitted
for both tasks.

3.1 Task 1 systems

Our two-step pipeline consists in first obtaining
high quality hypotheses from a NMT model, fol-
lowed by a re-ranking step. We describe the setup
of the NMT in Section 3.1.1. The cross-lingual
WSD models used for re-ranking are described in
Section 3.1.2 and the re-ranking formulation with
examples is shown in Section 3.1.3.

3.1.1 Baseline NMT model setup
We make use of an ensemble of text only attention
based NMT models (Bahdanau et al., 2015) with
a conditional gated recurrent units (CGRU) (Cho
et al., 2014) decoder. We build the system us-
ing the NMTPY toolkit (Caglayan et al., 2017b).

2This dataset has been extracted using the same proce-
dure in Lala and Specia (2018) except the human filtering
step and thus it contains noise: mainly, the multiple ”senses”
can sometimes correspond to morphological variants or syn-
onym words.

Our models have a setting similar to Caglayan
et al. (2016) with a bi-directional 256-dimensional
recurrent GRU followed by a conditional GRU
which is initialized with a non-linear transforma-
tion of the mean of encoder states. We use a sim-
ple feedforward network to compute the attention
scores as described in Caglayan et al. (2016). We
use Adam optimizer with a learning rate of 5e−5
and a batch size of 64. We set the embedding di-
mensionality of encoder and decoder to 128 and
follow the default parametrization in (Caglayan
et al., 2017a). Our final baseline model is an en-
semble of different runs of the model with five dif-
ferent seeds.

3.1.2 Crosslingual WSD models
The goal of cross-lingual WSD (Lefever and
Hoste, 2013) is to generate contextually correct
translations of ambiguous words in the source lan-
guage into the target language. For this, the sense
inventory for the ambiguous words is created from
the parallel corpus. MLTD (Lala and Specia,
2018) (Section 2.2) provides us with the data set-
tings needed for this task.

As a baseline we have the Most Frequent
Sense (MFS) model, which returns the most fre-
quent translation of a given ambiguous word as
seen in the training corpus. For example in
the English-French MLTD, the ambiguous word
woods appears 95 times in the training set. In
16 times the translation is forêt (forest), while in
the remaining 79 times the translation is bois (tim-
ber/wood). In this case, the MFS model translates
the word woods as bois irrespective of the context.

As a second baseline, we have a text-only Lex-
ical Translation (LT) model. This is a sin-
gle layer Bidirectional Long Short-Term Memory
(BiLSTM) network (Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005) used as a
sequence tagger as depicted in Figure 1.

For the LT model, we convert the classification
task of cross-lingual WSD into a sequence tagging
task as demonstrated in (Raganato et al., 2017).
The 4-tuples of MLTD are transformed into a se-
quential tagged dataset. This consists of English
sentences where each word is tagged to itself if it
is unambiguous and tagged to the correct lexical
translation in the target language if it is ambigu-
ous.3

3We tried a few more data settings - like each word tagged
to ‘NA’ if it is unambiguous - but these did not result in any
improvements.
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people   walking    down         a          _trail         in           the       _woods  

people   walking    down         a        _sentier      in           the       _bois  

Embeddings

Bi LSTM

Softmax

Figure 1: Lexical Translation (LT) model - A BiL-
STM that tags each input word in the source sentence.
The training is done such that an unambiguous word is
tagged with itself, while an ambiguous word, like trail
and woods in this example, is tagged with the corre-
sponding lexical translation in the target language like
sentier and bois respectively.

Our proposed model is a Multimodal Lexical
Translation (MLT) model. It has the same ar-
chitecture as the LT model except that the LSTM
weights are initialized with the image features. 4

To avoid dimensionality mismatch, the image fea-
tures (Section 2.3) undergo a dimensionality re-
duction via a fully connected layer, which is also
trained.

Training: Both LT and MLT models are trained
on only those sentences which have at least one
ambiguous word as per MLTD. For optimization,
we use the ADAM (Kingma and Ba, 2014) algo-
rithm with a learning rate = 0.001 and batch size
= 32. The LSTM hidden state dimensions and the
word embedding dimensions are set to 300 and the
dropout rate is set to 0.3. Training is stopped early
if model accuracy over the validation set does not
improve for 30 epochs. These models are imple-
mented and trained in the TensorFlow framework.

The performance of the models (Table 2)5, mea-
sured in terms of percentage of correctly trans-
lated ambiguous words (accuracy), suggests that
the image-aware MLT model is slightly better than
the text-only LT and MFS models.

4We tried a few other ways of using the image features -
like concatenating it to word embeddings, using it as a sepa-
rate word, etc. - but these did not result in any improvements.

5The performance of cross-lingual WSD models for EN-
CS language direction could not be evaluated because the
EN-CS Multimodal Lexical Translation Dataset was noisy.
The clean ‘filtered by human’ versions of the EN-CS MLTD
test sets were not ready at the time of submitting this paper.

test17flickr test17coco test16 train val

EN-DE
MFS 60.47 52.49 65.34 68.93 70.25

LT 61.40 57.22 69.61 79.71 67.77
MLT 59.68 57.48 69.79 80.18 68.85

EN-FR
MFS 77.29 67.12 77.73 78.38 79.33

LT 76.83 70.52 80.35 88.05 81.15
MLT 75.20 70.75 80.43 88.44 80.87

Table 2: Performance of cross-lingual WSD models
(Section 3.1.2) measured in terms of accuracy: propor-
tion of correctly translated ambiguous words.

1. un groupe de personnes descendant un sentier dans les bois (0.23)
2. un groupe de personnes descendant un sentier dans la forêt (0.17)
3. un groupe de personnes marchant sur une piste dans la forêt (0.11)

a group of people walking down a trail in the woods

a group of people walking down a _sentier in the _forêt 

1. un groupe de personnes descendant un sentier dans la forêt (0.17 + 2)
2. un groupe de personnes descendant un sentier dans les bois (0.23 + 1)
3. un groupe de personnes marchant sur une piste dans la forêt (0.11 + 1)

Base model: ENSEMBLE
Cross-Lingual WSD model:

MFS or LT or MLT

Re-ranking

Figure 2: Task 1 system pipeline. The base model gen-
erates n-best translation candidates of the source sen-
tence. The cross-lingual WSD model translates am-
biguous words in the source sentence. The re-ranking
step uses these lexical translations to re-score the trans-
lation candidates.

3.1.3 Re-ranking

Our re-ranking strategy is depicted in Figure 2.
First, given an English source sentence, the base
model generates an n-best list of translation candi-
dates with a likelihood score. The idea is to select
the translation candidate in the n-best translations
which correctly disambiguates as many ambigu-
ous words in the source sentence as possible.

The source sentence in our example (Figure 2)
contains two ambiguous words trail and woods as
per the English-French MLTD. We use a cross-
lingual WSD model, MFS or LT or MLT, to pre-
dict the lexical translations of these words (the cor-
rect ones being sentier and forêt respectively in
this example). Next, we match these to the words
in the translation candidates and add the number of
matching words to the original score6 of the candi-
dates. Then, the n-best translations are re-ranked
using the new scores and the top candidate (which
has the highest number of matches) is used in the
evaluation.

6The likelihood score assigned to the candidate by the
baseline NMT model
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3.2 Task 1b systems

Three different approaches were explored in our
submissions for Task 1b. The first approach fol-
lows the re-raking experiments using MLT for
Task 1. The second approach exploits consensus-
based selection and the third explores data aug-
mentation and n-best selection through classifica-
tion. We try two different types of classifiers -
Random Forest and Recurrent Neural Network.

Re-ranking using MLT For the re-ranking ap-
proach, we first train three baseline EN-CS, DE-
CS and FR-CS NMT models. Given a source sen-
tence in the test set, we generate 10-best transla-
tion hypotheses using each of the three models.
The three 10-best lists are concatenated to form a
list of 30 translation hypotheses. We then use the
trained EN-CS MLT model for cross-lingual WSD
and perform re-ranking as mentioned in 3.1.2
and 3.1.3.

Consensus-based selection For the consensus-
based selection approach, we again use the three
10-best translation hypotheses coming from the
EN-CS, DE-CS and FR-CS systems. We then
explore consensus between the different 10-best
lists. The best hypothesis is selected according to
the number of times it appears in the different lists.
We follow the order of the EN-CS 10-best list: the
highest ranked hypothesis in the EN-CS list with
the majority of the votes (measured in terms of
whether it occurs in the DE-CS and FR-CS 10-best
lists) is selected.

Data augmentation We explore data augmenta-
tion by creating systems that first translate source
sentences from French, German and Czech into
English. This leads to variants of the source data
that translate into the same Czech sentence. The
augmented data is used to train an NMT system to
translate test source sentences from English into
Czech. We then obtain a 10-best list for the train-
ing, development and test sets. For the selection
approach, we compute METEOR scores for each
of the hypotheses in the 10-best list of the train-
ing set. To treat this as a binary classification task,
we set a threshold such that the top four hypothe-
ses are assumed to be the best translations and are
chosen as positive samples, with the remaining six
as bad examples.7 This is then used to train two
types of classifiers:

7This threshold was empirically defined.

• Random Forest (RF) classifier: we use the
image vectors concatenated with sentence
embeddings from source and target sentences
as features for training the classifier. For ex-
tracting sentence embeddings, we use the ap-
proach of Arora et al. (2016). Pre-trained
embeddings for English and Czech from
MUSE8 (Conneau et al., 2018) are used.The
RF algorithm in the scikit-learn framework
(Pedregosa et al., 2011) is trained to distin-
guish between good and bad translations.
• RNN classifier: We use a simple RNN-based

classifier where the last hidden state of the
encoded sentence is concatenated with the
image vector and used with a hinge loss to
distinguish between good and bad transla-
tions.

4 Results

For both tasks, the initial evaluation was per-
formed in terms of METEOR, BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006), with
METEOR as the primary metric. Direct human
assessments of translation adequacy will be used
for the final evaluation by the task organizers.

For task 1, our submitted systems consisted
of: a) SHEF LT: re-ranking using LT model;
b) SHEF MLT: re-ranking using MLT model; c)
SHEF MFS: re-ranking using MFS model; and d)
SHEF Baseline: our baseline text-only ensemble
NMT model

Table 3 shows the official evaluation results of
our systems submitted to Task 1 and the baseline
system provided by the organizers. For all lan-
guage pairs, our systems outperform the official
baseline for all metrics.

For EN-DE and EN-FR, the systems with LT
and MLT are slightly better than the system with
MFS. For EN-CS, however, the MFS system
scores better than the LT and MLT variants. This
is, perhaps, because the EN-CS MLTD (on which
LT and MLT models are trained) is noisy, as pre-
viously mentioned. The dataset has been extracted
using the same procedure in (Lala and Specia,
2018) except for the human filtering step, which
is crucial for a clean dataset.

On further inspection, we observe that the
cross-lingual WSD re-ranking affects only 127 to

8https://github.com/facebookresearch/
MUSE
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EN-DE EN-FR EN-CS
METEOR BLEU TER METEOR BLEU TER METEOR BLEU TER

SHEF LT 50.7 30.5 53.0 59.8 38.8 41.5 29.1 28.3 51.7
SHEF MLT 50.7 30.4 52.9 59.8 38.9 41.5 29.1 28.2 51.7

SHEF Baseline 50.7 30.9 52.4 59.8 38.9 41.2 29.4 29.0 51.1
SHEF MFS 50.7 30.3 53.1 59.7 38.8 41.6 29.2 27.8 52.4

Baseline 47.4 27.6 55.2 56.9 36.3 41.6 27.7 26.5 54.4

Table 3: Evaluation of our systems and the baseline for Task 1. We show METEOR, BLEU and TER scores.

MFS LT MLT

EN-DE 189 (239) 149 (200) 148 (189)
EN-FR 163 (244) 127 (180) 129 (192)
EN-CS 484 (649) 100 (124) 124 (148)

Table 4: The effect of re-ranking approaches on the
baseline NMT model outputs. The number outside the
bracket shows the number of instances that are affected
due to re-ranking in the 1071 test instances. The num-
ber inside the bracket ‘()’ shows the number of words
in the entire test set that are affected (deleted, added or
replaced) due to re-ranking.

METEOR BLEU TER

SHEF CON 27.6 24.7 52.1
SHEF MLT 27.5 24.5 52.5

SHEF ARNN 27.5 25.2 53.9
SHEF ARF 27.1 24.1 54.6

Baseline 26.8 23.6 54.2

Table 5: Evaluation of our systems and the baseline
for Task 1b.

189 test instances (for EN-DE and EN-FR only9)
out of the total 1,071 test instances (See Table 4).
These usually result in changing only one or two
words and as a result it affects only 180 to 244
words in the entire test set (See Table 4). In other
words, only 1.4% words in the entire test set are
affected by the re-ranking, which may explain why
the performance of all the systems is so similar. It
also suggests that automatics metrics like BLEU,
METEOR and TER may not be sufficient to de-
tect subtle changes in translation quality making
it difficult to deduce insights from our re-ranking
approaches. We hope to rely on Direct Human As-
sessment and other more sensitive metrics to help
to better understand the affects.

For Task 1b, we submitted four models:

9We ignore EN-CS in this observation because the EN-
CS MLTD is noisy and thus the trained cross-lingual WSD
models are not reliable for this language pair.

a) SHEF CON: consensus based model; b)
SHEF MLT: a re-ranking approach using MLT
model; c) SHEF ARNN: a data augmentation and
hypothesis selection approach using an RNN clas-
sifier; and d) SHEF ARF: data augmentation and
hypothesis selection approach using an RF classi-
fier.

Table 5 shows the automatic metric scores for
our systems and the official baseline. Our sys-
tems outperform the baseline in terms of BLEU
and METEOR. For TER, all systems are better
than the baseline except for SHEF ARF. Our best
performing system is SHEF CON.

5 Conclusions

We have described our submissions to the Mul-
timodal Machine Translation shared task at
WMT18. We explored novel multimodal n-best
re-ranking approaches for task 1, and consensus-
based approaches for task 1b using image infor-
mation for re-ranking of an augmented n-best list
with outputs from different translation models.

All our models perform better than the offi-
cial baseline for all metrics and language pairs
in task 1. However, we observe that SHEF LT
and SHEF MLT, for the dataset and in the cur-
rent setup, are not significantly different and their
performance are nearly identical which indicates
that the image information is not contributing sig-
nificantly for this task and cross-lingual WSD is,
perhaps, not very useful. On the other hand, it is
worth emphasising that the corpora used may not
show many ambiguous words and our model is not
expected to be beneficial in this case.

For task 1b, our models also outperform the
official baseline, with the best model being
SHEF CON. As for task 1, the use of image infor-
mation do not lead to improvements when eval-
uated using automatic metrics METEOR, BLEU
and TER.
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Abstract

This paper describes multimodal machine
translation systems developed jointly by Ore-
gon State University and Baidu Research for
WMT 2018 Shared Task on multimodal trans-
lation. In this paper, we introduce a simple
approach to incorporate image information by
feeding image features to the decoder side. We
also explore different sequence level training
methods including scheduled sampling and re-
inforcement learning which lead to substantial
improvements. Our systems ensemble several
models using different architectures and train-
ing methods and achieve the best performance
for three subtasks: En-De and En-Cs in task 1
and (En+De+Fr)-Cs task 1B.

1 Introduction

In recent years, neural text generation has at-
tracted much attention due to its impressive gen-
eration accuracy and wide applicability. In addi-
tion to demonstrating compelling results for ma-
chine translation (Sutskever et al., 2014; Bahdanau
et al., 2014), by simple adaptation, similar models
have also proven to be successful for summariza-
tion (Rush et al., 2015; Nallapati et al., 2016), im-
age or video captioning (Venugopalan et al., 2015;
Xu et al., 2015) and multimodal machine trans-
lation (Elliott et al., 2017; Caglayan et al., 2017;
Calixto and Liu, 2017; Ma et al., 2017), which
aims to translate the caption from one language to
another with the help of the corresponding image.

However, the conventional neural text gener-
ation models suffer from two major drawbacks.
First, they are typically trained by predicting the
next word given the previous ground-truth word.
But at test time, the models recurrently feed their
own predictions into it. This “exposure bias”
(Ranzato et al., 2015) leads to error accumulation

∗ Equal contribution
† Contributions made while at Baidu Research

during generation at test time. Second, the models
are optimized by maximizing the probability of the
next ground-truth words which is different from
the desired non-differentiable evaluation metrics,
e.g. BLEU.

Several approaches have been proposed to
tackle the previous problems. Bengio et al. (2015)
propose scheduled sampling to alleviate “exposure
bias” by feeding back the model’s own predictions
with a slowly increasing probability during train-
ing. Furthermore, reinforcement learning (Sutton
et al., 1998) is proven to be helpful to directly opti-
mize the evaluation metrics in neural text genera-
tion models training. Ranzato et al. (2015) suc-
cessfully use the REINFORCE algorithm to di-
rectly optimize the evaluation metric over multi-
ple text generation tasks. Rennie et al. (2017);
Liu et al. (2017) achieve state-of-the-art on im-
age captioning using REINFORCE with baseline
to reduce training variance.

Moreover, many existing works show that neu-
ral text generation models can benefit from model
ensembling by simply averaging the outputs of
different models (Elliott et al., 2017; Rennie et al.,
2017). Garmash and Monz (2016) claim that it is
essential to introduce diverse models into the en-
semble. To this end, we ensemble models with
various architectures and training methods.

This paper describes our participation in the
WMT 2018 multimodal tasks. Our submitted sys-
tems include a series of models which only con-
sider text information, as well as multimodal mod-
els which also include image information to ini-
tialize the decoders. We train these models using
scheduled sampling and reinforcement learning.
The final outputs are decoded by ensembling those
models. To the best of our knowledge, this is the
first multimodal machine translation system that
achieves the state-of-the-art using sequence level
learning methods.

632

https://doi.org/10.18653/v1/W18-64070


 3

A bird water… <s> Ein

…

Encoder Decoder

h img

hd[he : he]

Vogel

CNN

Figure 1: Multimodal Machine Translation Model

2 Methods

Our model is based on the sequence-to-sequence
RNN architecture with attention (Bahdanau et al.,
2014). We incorporate image features to initialize
the decoder’s hidden state as shown in Figure 1.
Originally, this hidden state is initialized using the
concatenation of last encoder’s forward and back-
ward hidden states,

−→
he and

←−
he resp. We propose

to use the sum of encoder’s output and image fea-
tures himg to initialize the decoder. Formally, we
have the final initialization state hd as:

hd = tanh(We[
−→
he;
←−
he] +Wimghimg + b). (1)

where We and Wimg project the encoder and im-
age feature vector into the decoder hidden state
dimensionality and b is the bias parameter. This
approach has been previously explored by Calixto
and Liu (2017).

As discussed previously, translation systems are
traditionally trained using cross entropy loss. To
overcome the discrepancy between training and
inference distributions, we train our models using
scheduled sampling (Bengio et al., 2015) which
mixes the ground truth with model predictions,
further adopting the REINFORCE algorithm with
baseline to directly optimize translation metrics.

2.1 Scheduled Sampling
When predicting a token ŷt, scheduled sampling
uses the previous model prediction ŷt−1 with prob-
ability ε or the previous ground truth prediction
yt−1 with probability 1− ε. The model prediction
ŷt−1 is obtained by sampling a token according to
the probability distribution by P (yt−1|ht−1). At
the beginning of training, the sampled token can
be very random. Thus, the probability ε is set very
low initially and increased over time.

One major limitation of scheduled sampling is
that at each time step, the target sequences can be

incorrect since they are randomly selected from
the ground truth data or model predictions, re-
gardless of how input was chosen (Ranzato et al.,
2015). Thus, we use reinforcement learning tech-
niques to further optimize models on translation
metrics directly.

2.2 Reinforcement Learning

Following Ranzato et al. (2015) and Rennie et al.
(2017), we use REINFORCE with baseline to di-
rectly optimize the evaluation metric.

According to the reinforcement learning litera-
ture (Sutton et al., 1998), the neural network, θ,
defines a policy pθ, that results in an “action” that
is the prediction of next word. After generating the
end-of-sequence term (EOS), the model will get a
reward r, which can be the evaluation metric, e.g.
BLEU score, between the golden and generated
sequence. The goal of training is to minimize the
negative expected reward.

L(θ) = −Ews∼pθ [r(ws)] . (2)

where sentence ws = (ws1, ..., w
s
T ).

In order to compute the gradient ∇θL(θ), we
use the REINFORCE algorithm, which is based
on the observation that the expected gradient of
a non-differentiable reward function can be com-
puted as follows:

∇θL(θ) = −Ews∼pθ [r(ws)∇θ log pθ(ws)] . (3)

The policy gradient can be generalized to com-
pute the reward associated with an action value
relative to a reference reward or baseline b:

∇θL(θ) = −Ews∼pθ [(r(ws)− b)∇θ log pθ(ws)] .
(4)

The baseline does not change the expected gra-
dient, but importantly, it can reduce the variance
of the gradient estimate. We use the baseline in-
troduced in Rennie et al. (2017) which is obtained
by the current model with greedy decoding at test
time.

b = r(ŵs) (5)

where ŵs is generated by greedy decoding.
For each training case, we approximate the ex-

pected gradient with a single sample ws ∼ pθ:

∇θL(θ) ≈ −(r(ws)− b)∇θ log pθ(ws). (6)
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Train Dev. Vocab. Vocab. after BPE
En 2,900 1,014 10,212 7,633
De 2,900 1,014 18,726 5,942
Fr 2,900 1,014 11,223 6,457
Cs 2,900 1,014 22,400 8,459

Table 1: Statistics of Flickr30K Dataset

2.3 Ensembling

In our experiments with relatively small train-
ing dataset, the translation qualities of models
with different initializations can vary notably. To
make the performance much more stable and im-
prove the translation quality, we ensemble dif-
ferent models during decoding to achieve better
translation.

To ensemble, we take the average of all model
outputs:

ŷt =

N∑

i=1

ŷit
N

(7)

where ŷit denotes the output distribution of ith
model at position t. Similar to Zhou et al. (2017),
we can ensemble models trained with different ar-
chitectures and training algorithms.

3 Experiments

3.1 Datasets

We perform experiments using Flickr30K (Elliott
et al., 2016) which are provided by the WMT or-
ganization. Task 1 (Multimodal Machine Trans-
lation) consists of translating an image with an
English caption into German, French and Czech.
Task 1b (Multisource Multimodal Machine Trans-
lation) involves translating parallel English, Ger-
man and French sentences with accompanying im-
age into Czech.

As shown in Table 1, both tasks have 2900 train-
ing and 1014 validation examples. For prepro-
cessing, we convert all of the sentences to lower
case, normalize the punctuation, and tokenize. We
employ byte-pair encoding (BPE) (Sennrich et al.,
2015) on the whole training data including the four
languages and reduce the source and target lan-
guage vocabulary sizes to 20k in total.

3.2 Training details

The image feature is extracted using ResNet-101
(He et al., 2016) convolutional neural network

En-De En-Fr En-Cs
NMT 39.64 58.36 31.27
NMT+SS 40.19 58.67 31.38
NMT+SS+RL 40.60 58.80 31.73
MNMT 39.27 57.92 30.84
MNMT+SS 39.87 58.80 31.21
MNMT+SS+RL 40.39 58.78 31.36
NMT Ensemble 42.54 61.43 33.15
MIX Ensemble 42.45 61.45 33.11

Table 2: BLEU scores of different approaches on
the validation set. Details of the ensemble models
are described in Table 9.

trained on the ImageNet dataset. Our implemen-
tation is adapted from Pytorch-based OpenNMT
(Klein et al., 2017). We use two layered bi-LSTM
(Sutskever et al., 2014) as the encoder and share
the vocabulary between the encoder and the de-
coder. We adopt length reward (Huang et al.,
2017) on En-Cs task to find the optimal sentence
length. We use a batch size of 50, SGD optimiza-
tion, dropout rate as 0.1 and learning rate as 1.0.
Our word embeddings are randomly initialized of
dimension 500.

To train the model with scheduled sampling, we
first set probability ε as 0, and then gradually in-
crease it 0.05 every 5 epochs until it’s 0.25. The re-
inforcement learning models are trained based on
those models pre-trained by scheduled sampling.

3.3 Results for task 1

To study the performance of different approaches,
we conduct an ablation study. Table 2 shows the
BLEU scores on validation set with different mod-
els and training methods. Generally, models with
scheduled sampling perform better than baseline
models, and reinforcement learning further im-
proves the performance. Ensemble models lead
to substantial improvements over the best single
model by about +2 to +3 BLEU scores. How-
ever, by including image information, MNMT per-

Task System NMT+SS NMT+SS+RL MNMT+SS MNMT+SS+RL

En-De
NMT 7 6 0 0
MIX 7 6 5 4

En-Fr
NMT 9 5 0 0
MIX 9 0 3 0

En-Cs
NMT 7 6 0 0
MIX 7 6 5 4

Table 3: Number of different models used for en-
sembling.
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Rank BLEU METEOR TER
OSU-BD-NMT 1 32.3 50.9 49.9
OSU-BD-MIX 2 32.1 50.7 49.6
LIUMCVC-MNMT-E 3 31.4 51.4 52.1
UMONS-DeepGru 4 31.1 51.6 53.4
LIUMCVC-NMT-E 5 31.1 51.5 52.6
SHEF1-ENMT 6 30.9 50.7 52.4
Baseline - 27.6 47.4 55.2

Table 4: En-De results on test set. 17 systems in
total. (Only including constrained models).

Rank BLEU METEOR TER
LIUMCVC-MNMT-E 1 39.5 59.9 41.7
UMONS 2 39.2 60 41.8
LIUMCVC-NMT-E 3 39.1 59.8 41.9
OSU-BD-NMT 4 39.0 59.5 41.2
SHEF-MLT 5 38.9 59.8 41.5
OSU-BD-MIX 9 38.6 59.3 41.5
Baseline - 28.6 52.2 58.8

Table 5: En-Fr results on test set. 14 systems in
total. (Only including constrained models).

Rank BLEU METEOR TER
OSU-BD-NMT 1 30.2 29.5 50.7
OSU-BD-MIX 2 30.1 29.7 51.2
SHEF1-ENMT 3 29.0 29.4 51.1
SHEF-LT 4 28.3 29.1 51.7
SHEF-MLT 5 28.2 29.1 51.7
SHEF1-MFS 6 27.8 29.2 52.4
Baseline - 26.5 27.7 54.4

Table 6: En-Cs results on test set. 8 systems in
total. (Only including constrained models).

En-Cs Fr-Cs De-Cs (En+Fr+De)-Cs
NMT 31.27 28.48 26.96 29.47
MNMT 30.84 27.02 25.99 29.23

Table 7: BLEU scores on validation set for task 1B

forms better than NMT only on the En-Fr task with
scheduled sampling.

Table 4, 5 and 6 show the test set performance
of our models on En-De, En-Fr and En-Cs sub-
tasks with other top performance models. We rank
those models according to BLEU. Our submitted
systems rank first in BLEU and TER on En-De and
En-Cs subtasks.

3.4 Results for task 1B

Table 7 shows the results on validation set with-
out sequence training. En-Cs, Fr-Cs, De-Cs are
models trained from one language to another.
(En+Fr+De)-Cs models are trained using multiple
source data. Similar to the Shuffle method dis-

Rank BLEU METEOR TER
OSU-BD-NMT 1 26.4 28.0 52.1
OSU-BD-MIX 1 26.4 28.2 52.7
SHEF1-ARNN 3 25.2 27.5 53.9
SHEF-CON 4 24.7 27.6 52.1
SHEF-MLTC 5 24.5 27.5 52.5
SHEF1-ARF 6 24.1 27.1 54.6
Baseline - 23.6 26.8 54.2

Table 8: Task 1B multi-source translation results
on test set. 6 systems in total.

Task System
Model Rank Team Rank

Num † BLEU MET. TER Num ‡ BLEU MET. TER

En-De
NMT 11 1 4 2

5 1 3 1
MIX 11 2 5 1

En-Fr
NMT 11 4 9 1

6 3 5 1
MIX 11 9 10 3

En-Cs
NMT 6 1 1 1

3 1 1 1
MIX 6 2 2 3

En-Cs NMT 6 1 2 1
3 1 1 1

(1B) MIX 6 1 1 5

Table 9: Rank of our models. † represents the total
number of models. ‡ represents the total number
of teams.

cussed in multi-reference training (Zheng et al.,
2018), we randomly shuffle the source data in all
languages and train using a traditional attention
based-neural machine translation model in every
epoch. Since we do BPE on the whole train-
ing data, we can share the vocabulary of different
languages during training. The results show that
models trained using single English to Czech data
perform much better than the rest.

Table 8 shows results on test set. The submitted
systems are the same as those used in En-Cs task
of task 1. Although we only consider the English
source during training, our proposed systems still
rank first among all the submissions.

4 Conclusions

We describe our systems submitted to the shared
WMT 2018 multimodal translation tasks. We use
sequence training methods which lead to substan-
tial improvements over strong baselines. Our en-
sembled models achieve the best performance in
BLEU score for three subtasks: En-De, En-Cs of
task 1 and (En+De+Fr)-Cs task 1B.
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Abstract

For the WMT 2018 shared task of translat-
ing documents pertaining to the Biomedical
domain, we developed a scoring formula that
uses an unsophisticated and effective method
of weighting term frequencies and was inte-
grated in a data selection pipeline. The method
was applied on five language pairs and it per-
formed best on Portuguese-English, where a
BLEU score of 41.84 placed it third out of
seven runs submitted by three institutions. In
this paper, we describe our method and re-
sults with a special focus on Spanish-English
where we compare it against a state-of-the-art
method. Our contribution to the task lies in in-
troducing a fast, unsupervised method for se-
lecting domain-specific data for training mod-
els which obtain good results using only 10%
of the general domain data.

1 Introduction

The 2018 Biomedical Translation Task, held as
part of the Third Conference on Machine Trans-
lation, aims at evaluating systems on scientific
publications from Medline (Neves et al., 2018).
The task is particularly challenging as there is still
not enough bilingual medical data available for
training high quality Machine Translation (MT)
systems. We develop and apply a data selection
method on five out of the nine language pairs ad-
dressed by the task: English-Spanish, Spanish-
English, English-Portuguese, Portuguese-English
and English-Romanian.

Data selection, as a domain adaptation tech-
nique, exploits all available (bilingual) general do-
main corpora with the purpose of extracting sen-
tences that have a strong relationship to a given
in-domain. All sentences from the general domain
pool are scored according to a similarity function/
algorithm/ method and after being sorted, the most
similar ones are selected to take part in the MT

training pipeline. The subsampling is usually done
using a threshold, which is the number of sentence
(pairs) or a percentage of the sentences to be con-
sidered in-domain.

We introduce a data selection method which is
fast to apply and yields good results when com-
pared with a strong baseline and a state-of-the-art
method. The simplicity of the method has at its
core term frequencies and a newly developed sim-
ilarity function. On the one hand, no models need
to be trained and the method is unsupervised, but
on the other hand, the method does not consider
the context of the words or their semantics. How-
ever, the results are very encouraging with BLEU
(Papineni et al., 2002) scores between 31.05 and
41.84 for four language pairs.

The paper is structured as follows: the next
section briefly presents related work, Section 3
describes the experimental results along with a
description of our algorithm, Section 4 gives an
overview of the results obtained in the task and ad-
ditional experiments and the last section presents
conclusions and future work.

2 Related work

Related work in data selection is ample, there-
fore this section only mentions methods that fit in
the same category with our method and we also
shortly describe the widely known state-of-the art
method of performing data selection, introduced
by Axelrod et al. (2011), since it is the chosen
method for comparing results in this paper.

Our scoring function relies heavily on term fre-
quency. Therefore, it falls in the category of TF-
IDF1 based approaches. Hildebrand et al. (2005)
uses TF-IDF to produce vector representations of
sentences. Then the cosine of the angle between
the sentence vectors is interpreted as the similar-

1Term Frequency - Inverse Document Frequency
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ity between the sentences. A similar approach
is given in Eck et al. (2005) where a weighting
scheme based on TF-IDF by means of unseen n-
grams and sentence length is applied and cosine is
also used as means of determining sentence sim-
ilarities. In contrast to these methods, we use
only the term frequency in computing our similar-
ity scores and we make no use of the cosine. In-
stead, we focus on the relative difference between
a term that appears in the general domain and in
the in-domain and simply multiply it by a weight-
ing scheme that has empirically proved to be ef-
fective. Our method is also related to the other
methods from the TF-IDF category with respect
to its simplicity.

To compare our results with other approaches
we apply the modified Moore-Lewis method
which is based on (Moore and Lewis, 2010): given
the source side of an in-domain corpus and a ran-
dom subsample of the source side of a general do-
main corpus, a language model (LM) is trained on
each one of them. The sentences from the general
domain are scored by the difference of the cross-
entropy of a sentence according to the in-domain
LM and the cross-entropy of the same sentence ac-
cording to the general domain LM. Axelrod et al.
(2011) modified the scoring by applying the same
procedure also to the target side of the corpora
and afterwards summing the scores. We refer to
this method as MML (modified Moore-Lewis) in
the rest of the paper.

3 Experiments

This section describes the experimental settings
including the corpora and the tools used, as well
as the data selection algorithm we developed.

3.1 Corpora

The general domain data consisted of a concate-
nation of the Commoncrawl2 corpora and the
Wikipedia (Wolk and Marasek, 2014) corpora for
English-Spanish and Spanish-English, Paracrawl3

and Wikipedia for English-Portuguese and
Portuguese-English and Paracrawl for English-
Romanian. For the in-domain, we used the EMEA
(Tiedemann, 2012) corpora for all language pairs
and the Scielo corpora (health and biological)
provided by the WMT 2016 Biomedical task
(Neves et al., 2016) for all language pairs except

2http://commoncrawl.org/
3https://paracrawl.eu/index.html

for English-Romanian where Scielo training data
was not available.

The development set for the English-Spanish
and Spanish-English experiments was a concate-
nation of the Khreshmoi development set from the
Medical Task of WMT 20144 and the ECDC cor-
pus made available by UFAL5. The motivation for
using a concatenation of two medical development
sets is that we aimed at diversity in the medical
data. Even though ECDC is a very small cor-
pus consisting of only 2357 sentence pairs (for
English-Spanish), combining it with Khreshmoi
(500 sentence pairs) would have resulted in a quite
big development set which would have made the
tuning of the SMT systems very time and memory
intensive. Therefore, we applied a cleaning step to
ECDC which meant limiting the size of the sen-
tences to a minimum of 20 words and a maximum
of 80 words. After applying this preprocessing
step, the ECDC set was down to 850 sentences,
resulting in a total development set of 1350 sen-
tences. For the experiments involving Portuguese,
a sample of 1000 sentences from the Scielo devel-
opment set from WMT 20166 was used for tuning
purposes. As for the Romanian experiments, also
a sample of 1000 sentences was used, but from the
ECDC corpus.

Statistics including the number of sentences af-
ter preprocessing for every corpus used for the
training of the MT systems is given in Table 1.

Track / Corpora EN-ES EN-PT EN-RO
Commoncrawl 1.8M - -
Paracrawl - 2.1M 2.4M
Wikipedia 1.6M 1.6M -
EMEA 678K 1.08M 994K
Scielo-gma 2016 166K 613K -

Table 1: Corpora used for DSTF

3.2 Tools
For text processing we used the nltk toolkit(Bird
et al., 2009), the WordNet (Fellbaum, 1998) lem-
matizer for English and the Snowball stemmer
(F. Porter, 2001) for Spanish, Portuguese and Ro-
manian.

The SMT systems were trained using the Moses
toolkit (Koehn et al., 2007) and the Experiment
Management System (Koehn, 2010). The pre-
processing of the data consisted in tokenization,

4http://www.statmt.org/wmt14/medical-task/
5http://ufal.mff.cuni.cz/ufal medical corpus
6http://www.statmt.org/wmt16/biomedical-translation-

task.html
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Algorithm 1 DSTF Filtering
procedure PREPROCESS CORPUS(C)

tokenize(C)
lowercase(C)
removeStopWords(C)
lemmatize(C) . or stem if unavailable
keepWords(C)
wordCount(C)

procedure FILTER(GENside, INside) . side refers to either source or target
Preprocess Corpus(GENside)
Preprocess Corpus(INside)
for each sentence s ∈ GENside do

for each word w ∈ s do
if count(w,GENside) = 0 then

weight = 0
else

weight = count(w, INside)/count(w,GENside)

scorew =
(
2·(count(w,INside)−count(w,GENside))
count(w,INside)+count(w,GENside)

)2
· weight

scores += scorew . all intermediate scores contribute to the final score

cleaning, lowercasing and normalizing punctua-
tion. Our language model (LM) was obtained by
interpolating (Schwenk and Koehn, 2008) the LM
estimated using the general domain data and the
LM estimated on the in-domain data. We used the
SRILM toolkit (Stolcke, 2002) and Kneser-Ney
discounting (Kneser and Ney, 1995) for estimat-
ing 5-grams LMs. All the experiments benefited
from the interpolated language model, including
the strong baseline and the MML experiment. As
for the chosen state-of-the-art method, MML, we
used the implementation available from Moses.

Tuning of the systems was done with MERT
(Och, 2003) and GIZA++ (Och and Ney, 2003)
using the default grow-diag-final-and alignment
symmetrization method for word alignment.

3.3 Data selection using Term Frequency
Using bag of words to represent sentences and
term frequency to compute similarity became un-
popular due to its limitations, namely no integra-
tion of semantic information and ignoring the con-
text of words (Le and Mikolov, 2014). However,
through the work presented here we aim at apply-
ing this straightforward method to data selection
for SMT with a new weighting scheme. Our scor-
ing algorithm builds a profile consisting of word
frequencies for each domain, for the source lan-
guage and the target language. To build the pro-
file for a corpus, all of its sentences undergo a

preprocessing step: tokenization, lowercasing, re-
moval of stop words and lemmatization or stem-
ming in the case a lemmatizer was not available
for a language (procedure Preprocess Corpus).
In the end, numbers or punctuation marks are ig-
nored and only words contribute to the scoring.
For word count occurrence we used the script
ngram− count from SRILM.

Algorithm 1 can be applied either on the source
or on the target sides of the corpora. For exam-
ple, when considering the source side, for every
sentence from the lemmatized (or stemmed) gen-
eral domain data, we iterate through all its words.
Given sentence s and the word w, we square the
relative difference between the term frequency of
w in the in-domain profile, count(w, INside), and
the term frequency of w in the general domain pro-
file, count(w,GENside). We use the same rela-
tive difference formula as in (Kešelj et al., 2003)
which uses character n-grams and profiles built us-
ing the most frequent character ngrams for author-
ship attribution. In contrast to this, we used all the
words appearing in the corpora and modified the
formula by introducing a weighting scheme. Note
that due to the squaring, the direction of the sub-
traction does not matter. The difference is mul-
tiplied by a weight and the arithmetic mean of
count(w, INside) and count(w,GENside). The
weight represents the impact that w made in the
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sentence and we empirically determined it. When
using only the formula from Kešelj et al. (2003)
adapted to our data selection task, the results are of
poor quality. Our contribution to the formula lies
in introducing the weighting scheme which gives
much better results than the original formula. To
profit from both the source and the target corpora,
summing up the scores for the source language
and the scores for the target language seems to be
an attractive solution. We refer to our method as
DSTF (Data Selection via Term Frequency).

The method has a very important advantage if
compared to state-of-the-art methods: scoring is
very fast for a general domain corpus (on average,
the scoring step took half an hour). The results are
satisfactory and will be presented in the following
section.

4 Results

We report the automatic evaluation results ob-
tained in the WMT task for five language pairs
and then we present further experiments for the
Spanish-English language pair. BLEU was used
as an evaluation metric by the WMT Biomedical
organizers and in addition to BLEU we also used
METEOR (Lavie and Agarwal, 2005) for further
evaluating the Spanish-English experiments.

4.1 WMT Biomedical Results

Each team was allowed to submit a maximum of
three runs. For every language pair that we used to
evaluate our method on, we submitted three runs
as follows: the first run only considers the scores
obtained using the English side of the training cor-
pora, the second run made use of only the non-
English side of the training corpora and for the
third run the scores for both the source and the tar-
get sides were summed up to form a single score.

The aim of data selection is to identify in the
general domain pool the top N most similar sen-
tences to an in-domain, where N is determined
empirically and is usually a small number or per-
centage. We experimented for this paper with
N = 10% since the maximum of runs allowed
was three and we had three variations of the
method, but we intend to conduct a range of ex-
periments with more percentage values in future
work. Table 2 presents the number of sentence
pairs that were subsampled along with the total
number of sentence pairs that were used in the
training of MT systems.

Language pair EN-ES EN-PT EN-RO
10% of Gen 350K 378K 245K
total training data 1.62M 2.07M 1.24M

Table 2: Corpora used for DSTF

The BLEU results obtained using DSTF are en-
couraging: a BLEU score of 41.84 for Portuguese-
English ranked our method on the third place out
of seven runs submitted by three institutions. For
English-Portuguese, our BLEU scores are close
to 34 for all runs. The Spanish-English auto-
matic evaluation achieved scores around 35-36
and for English-Spanish around 31. The small-
est BLEU scores were measured for English-
Romanian where we obtained scores close to 14.
This is not surprising considering the fact that
compared to the other language pairs there was
less biomedical training data available. In partic-
ular, no Scielo training corpus was available al-
though translating from English to a morpholog-
ically rich language like Romanian is considered
difficult. The BLEU scores for each run are given
in Table 3. We note that the differences between
each run, for every language pair, are insignifi-
cant except for one language pair, therefore we
conclude that either one of the algorithm varia-
tions can be successfully applied as a fast data
selection technique that yields good translations
(BLEU scores between 31 and 42 for four out of
five language pairs).

Language pair EN-ES ES-EN EN-PT PT-EN EN-RO
run 1 31.32 36.16 34.92 41.84 14.60
run 2 31.05 35.17 34.19 41.80 14.39
run 3 31.33 36.05 34.49 41.79 14.07

Table 3: BLEU scores reported by WMT

4.2 Spanish-English Additional Experiments

For Spanish-English, the best performing variant
of our method was run 1 - using only the English
side of the corpora in the algorithm. We evaluated
our DSTF-EN method against a strong baseline
(that uses an interpolated LM), a baseline trained
using only the in-domain data and the state-of-the-
art method MML for the Spanish-English language
pair7. Following recommendations from H. Clark
et al. (2011) and standard practices, we tuned the
systems three times and report in Table 4 the aver-
aged BLEU scores.

7Due to time limitations, we will evaluate further lan-
guage pairs against MML in the future work.
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Figure 1: Paired bootstrap resampling graphs using BLEU differences between DSTF-EN and MML (left
graph) and using F-measure differences (right graph)

System BS-strong BS-IN MML DSTF-EN
BLEU 34.96 32.44 34.62 35.40

METEOR 35.56 34.51 35.42 35.54

Table 4: averaged BLEU scores for Spanish-
English

According to the BLEU scores, our method
outperformed both baselines and gained almost 1
BLEU point over MML. The strong baseline is
very competitive with both data selection methods.
This can easily be explained, since the system re-
lies on the same interpolated language model as
DSTF-EN and MML. There is a 3 BLEU points
difference between our results and the baseline
trained only the in-domain data and almost half
a point BLEU score difference between the strong
baseline and our method. With respect to the ME-
TEOR scores, our method again outperforms the
state-of-the-art approach.

In order to determine whether our method
(DSTF-EN) outperforms the state-of-the-art
method (MML) from a statistical point of view,
we applied paired bootstrap resampling (Koehn,
2004). The MTCompar-Eval tool (Klejch et al.,
2015; Sudarikov et al., 2016) was used for this
purpose where the source, reference and one or
more system translations are used in the analysis.
For our analysis we selected the best translation
of each system according to their BLEU scores8.

Figure 1 depicts the paired bootstrap resampling
BLEU graph (left side) and the F-measure graph
(right side). The x-axis is represented by 1000 re-
samples of the test set and the y-axis represents the

8We tuned three times and averaged the BLEU scores

difference in BLEU (respectively F-measure) be-
tween DSTF-EN and MML for all resamples. The
p-value from the first graph in Figure 1 reports that
in 11 cases out of the 1000 resamples, the state-of-
the-art method performed better in terms of BLEU
than our method (marked with a small red area in
the graph). A similar behaviour can be oserved in
the right graph from Figure 1 where in 34 cases out
of 1000, MML outperformed DSTF-EN in terms
of F-measure. Therefore in 96.6% of the times
our method wins over the state-of-the-art when us-
ing the F-measure and in 98.9% of the cases, our
method is better than MML when evaluating with
BLEU (large green areas in the graphs). We con-
clude that our method has a statistical significant
performance in comparison with the state-of-the-
art method when selecting the 10% of the general
domain sentences that were most similar to the in-
domain.

5 Conclusions and Future Work

We introduced an unsophisticated data selection
method based on word frequencies which scores
general domain corpora in half an hour (on aver-
age when considering all general corpora for five
language pairs). Our method yields good results
in the WMT task, as well as in comparison with a
state-of-the-art method and a strong baseline (for
Spanish-English). Further analysis and experi-
ments will be carried out in future work to as-
sess whether the improvement of our method over
the state-of-the-art that we observed for Spanish-
English is also statistically significant for other
language pairs.
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Abstract

This paper describes the system of Fraunhofer
FOKUS for the WMT 2018 biomedical trans-
lation task. Our approach, described here,
was to automatically select the most promi-
sing translation from a set of candidates pro-
duced with NMT (Transformer) models. We
selected the highest fidelity translation of each
sentence by using a dictionary, stemming and
a set of heuristics. Our method is simple, can
use any machine translators, and requires no
further training in addition to that already em-
ployed to build the NMT models. The down-
side is that the score did not increase over the
best in ensemble, but was quite close to it (dif-
ference about 0.5 BLEU).

1 Introduction

As previously noted in (Sennrich et al., 2016;
Zhou et al., 2017), the neural machine translation
models tend to provide good fluency but some-
times at the expense of the fidelity – they may
struggle to cope with rare words, and can exhibit
poor coverage/fidelity by ignoring altogether parts
of the source.

By training even the same networks on differ-
ent data one obtains models that have different
strengths and weaknesses, sometimes one model
provides the better translation, sometimes another
one, even if on average they are of rather equal
performance.

Our approach, described here, was to automati-
cally select the best translation from a set of can-
didates produced by an ensemble of neural trans-
lators. As the fluency was generally good, as is
typically the case with NMT, our heuristic scor-
ing of the translation quality focused on the bi-
directional coverage, estimated by making use of a
dictionary aided by a set of heuristic rules for the
words not found in the dictionary. We aimed to

Name Description Pairs
MED medication accompany-

ing patient information
leaflets from the UFAL
Medical Corpus 1.0(ufa)
En-Ro(subset)

1048757

NEWS SE Times En-Ro + Eu-
roparl 2017 En-Ro

612422

Table 1: Datasets used to train and validate the neural
networks

select thus automatically the highest fidelity trans-
lation.

Combining translators is not new, the most in-
teresting result known to us is (Zhou et al., 2017),
where the authors report improvements of over 5
BLEU points in Chinese-to-English translation by
combining the outputs of SMT and NMT systems
using a neural network.

Our method is much simpler, has the additional
advantage of using the NMT models as black-
boxes, and requires no further training in addition
to that already employed to build the NMT mod-
els. The downside is that the BLEU score did not
increase over the best in the ensemble (was within
0.5 BLEU of it) on a non directly comparable task,
the biomedical field English-to-Romanian transla-
tion task of the WMT 2018 workshop.

2 Methods

The datasets listed in Table 1 have been used for
training and validation in various ways. We have
grouped the En-Ro parallel corpora available to us
in two groups, Medical (short: MED) and News+
EU Parliament debates (short: NEWS).
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Letter MED NEWS
Incorrect ş (unicode 351) 273258 289092
Incorrect ţ (unicode 355) 474633 323086
Correct s, (unicode 537) 28434 101095
Correct t, (unicode 539) 48896 109172

Table 2: Diacritics usage in the datasets used here –
number of lines containing a certain letter

2.1 Considerations specific to the Romanian
language concerning the character codes
used for diacritics

The Romanian language uses 5 letters with dia-
critics: ă, â, ı̂, s, , t,. Before a 2003 decision of
the Romanian Academy, other characters were in
wide use instead of s, (unicode 537) and t, (unicode
539): cedilla-based ş (unicode 351) and ţ (unicode
355). The history of decades of broken support in
various operating systems and character sets is re-
lated at http://kitblog.com/2008/10/
romanian_diacritic_marks.html. The
diacritics in Romanian are fairly redundant, auto-
matic restoration is possible, with less than 1% er-
rors (Grozea, 2012). The changes over the years,
starting with using no diacritics at all in the 1980s
and early 1990s, then using cedilla based ones,
then comma based ones led to heterogeneous cor-
pora used in NLP: some texts have no diacritics
at all, some have the wrong diacritics, some have
a mixture of wrong and correct diacritics. This
affects multiple NLP tasks, including translation.
Learning from examples to translate into Roma-
nian is more difficult than it should be when the
examples sampled from various corpora alternate
randomly the diacritics they use. The diacritics us-
age statistics for the datasets used here is given in
Table 2.

2.2 NMT models

We have used for our experiments the ten-
sor2tensor (T2T) implementation of the Trans-
former network (Vaswani et al., 2018). Several
training runs have been performed, described in
Table 3. The training has been interrupted man-
ually when the loss on the validation set started
to increase (early stop), as judged by the experi-
menter monitoring the evolution of the loss on ten-
sorboard. As such, small fluctuations of the loss
do not lead to a too early stop.

The external BPE preprocessing was performed
using scripts from the SMT system Moses (Koehn

et al., 2007).

2.3 Ensemble Aggregation by Translation
Selection

Each model has been used to translate all source
sentences from English to Romanian. The ag-
gregation of those outputs has been performed by
selecting automatically the translation having the
highest quality.

In order to assess the quality of the sentence
translations we have computed the percentage of
words in the source that have a correspondent in
the translation (coverage) and the percentage of
the words in the translation that have a correspon-
dent in the source. The minimum of those two
numbers between 0 and 1 is taken as the quality
of the translation. Once a correspondent is found,
it it removed from the next searches (in a greedy
fashion, as opposed to the alternative of maximiz-
ing the matching with dynamic programming). A
word matching is evaluated to 1, when the pair is
found in the dictionary, after stemming and the
normalization described below, that is applied to
the dictionary as well. A pair of words that be-
come identical after stemming and normalization
lead to a matching of value 0.3. If the words nor-
malized after stemming are not identical, not too
short (they are at least 4 characters) and one of
them is a prefix of the other, then the matching is
evaluated to 0.2. When computing the coverage
mentioned above, the sum of the word pair match-
ing quality is divided by the total number of words.

The preprocessing steps for text normalization,
applied both to the sentence pair (source and trans-
lation) and on the dictionary are:

• Diacritics removal;

• Replacing of ph with f, of y with i and of ff
with f.

The aim of the diacritics removal was to cope
with the heterogeneous codes for the letters with
diacritics and to cover also for the texts without di-
acritics. The aim of the substitution of the groups
of letters was to increase the chance to recognize
proper translation of medical terms originating in
Latin or Greek, by bringing them closer to a com-
mon phonetic notation.

3 Results

The results are shown in Table 4. The BLEU
scores have been computed after replacing the let-
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ID Epochs Subwords Train Validation Description
1 45000 32768 external BPE Med News early stop, when

validation error
started to increase

2 28000 32768 external BPE Med + News Med Train on NEWS as
well for better flu-
ency

3 35000 32768 external BPE Med + News Med 2 trained further
4 28000 16384 T2T subwords Med News repaired diacritics
5 37000 16384 T2T subwords Med News 4 trained further
6 48000 32768 T2T subwords Med News like 5, but with

larger subwords
dictionary

Table 3: Transformer models trained. Models 1-3 used an external Byte Pair Encoding, whereas models 4-6 used
the subwords in the tensor2tensor framework to achieve the capability of translating previously unseen words.

ID BLEU
un-
cased

BLEU
cased

Moses

1 20.84 20.54 20.38
2 14.83 14.56 14.38
3 14.10 13.82 13.63
4 22.48 22.16 21.99
5 21.45 21.10 20.90
6 22.12 21.88 21.75
Ensemble 22.05 21.73 21.54

Table 4: BLEU scores evaluated using t2t-bleu from
tensor2tensor and multi-bleu-detok from Moses

ters with cedilla-based diacritics both in the trans-
lation and in the reference translation with their
correct comma-based version.

We have submitted two translations, the one
produced by the model with ID=1 in Table 3
(cased BLEU=20.54) and the one produced by the
entire ensemble (cased BLEU=21.73).

The run with ID=4 performed best with respect
to the BLEU score. The output of the ensem-
ble performed slightly worse than it (by about 0.5
BLEU points), but otherwise being almost equal
to the second-best, ID=6.

4 Discussion and Conclusion

We chose to train on the MED corpora and test on
NEWS based on the intuition that one can learn
from medical texts how to generally translate ar-
bitrary texts, up to the point where excessive spe-
cialization on the medical field is detrimental to
the performance on the texts in other fields.

There are multiple ways to improve upon this
work. The quality of the heuristic depends on
the quality of the dictionary, so a straight-forward
way would be to use a larger dictionary. The dic-
tionary we have used had approx. 39000 word
pairs, but only approx. 17000 Romanian words
and approx. 20000 English words; there are multi-
ple pairs for the same source word, when multiple
translations exist. For comparison, the Explana-
tory Dictionary of the Romanian Language (DEX)
contains 65000 word definitions.

Another way to improve would be replacing
the manually engineered heuristic for evaluating
the quality of the translations with one evalua-
tion function learned with machine learning from
sentence-aligned parallel corpora. The pair in
the training set could then have the label 1 at-
tached to it (with the meaning “correct transla-
tion”), whereas variations obtained by eliminating,
inserting or changing in a random fashion words
from the translation have the label 0 (“incorrect
translation”) in the training set.

One reviewer suggested the models could have
been combined in the decoder, by combining the
word probabilities predictions – we did not try this
yet. Each of the 6 members of the ensemble had
its own decoder. The advantage in regarding the
individual translators as atomic black boxes is that
any type of translators can be used, including sta-
tistical and human translators. The obvious disad-
vantage is that in the ideal case the selected trans-
lation is the best among the translations to select
from, but cannot outperform it; here, it selected
reliably one of the best translations.
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Abstract

We present the LMU Munich machine transla-
tion systems for the English–German language
pair. We have built neural machine transla-
tion systems for both translation directions
(English→German and German→English)
and for two different domains (the biomedical
domain and the news domain). The systems
were used for our participation in the WMT18
biomedical translation task and in the shared
task on machine translation of news.1,2

The main focus of our recent system devel-
opment efforts has been on achieving im-
provements in the biomedical domain over last
year’s strong biomedical translation engine for
English→German (Huck et al., 2017a). Con-
siderable progress has been made in the latter
task, which we report on in this paper.

1 Introduction

Domain adaptation is one emphasis of the machine
translation research conducted at the Center for In-
formation and Language Processing at LMU Mu-
nich. Within the scope of our participation in the
EU-funded HimL project (Haddow et al., 2017),3

we were recently working on advancing the qual-
ity of machine translation for medical texts. The
types of medical texts that we consider range from
health information leaflets to professional biomed-
ical research articles.

Some of our latest research towards medical do-
main adapation of neural translation systems is
inspired by the “fine-tuning” approach in combi-
nation with high-quality in-domain data. Specifi-
cally, we conducted successive optimization runs
to domain-adapt a neural translation model. The

1http://www.statmt.org/wmt18/
biomedical-translation-task.html

2http://www.statmt.org/wmt18/
translation-task.html

3http://www.himl.eu

model was eventually deployed as the core com-
ponent of the final English→German HimL trans-
lation engine in year 3 of the project (Y3).

In this paper, we give a brief technical overview
of the HimL Y3 engine’s neural translation model
for English→German. We will show by how
much the translation quality of medical texts im-
proves compared to our previous year’s WMT17
biomedical task submission (Huck et al., 2017a).
We then proceed to compare with a Transformer
model (Vaswani et al., 2017) that we have trained
after the end of the HimL project. We find that
the Transformer model performs even better than
the HimL Y3 engine, which was based on Ne-
matus (Sennrich et al., 2017) with a single hid-
den layer. The good result encouraged us to try
out the Transformer in the other translation direc-
tion, German→English. We will also report the
German→English results.

In addition to the English–German biomedi-
cal task, LMU Munich has participated in the
WMT18 English–German news translation task
(Bojar et al., 2018) in both translation directions.
Our (supervised) news task systems are shortly de-
scribed towards the end of the paper.4

2 Domain Adaptation

Medical texts differ in their style and in their top-
ics from the typical content of many widely used
training corpora, such as the parallel Europarl cor-
pus (Koehn, 2005) or most of the large mono-
lingual corpora that are distributed for the WMT
shared task on machine translation of news (Bo-
jar et al., 2018, 2017a, 2016, 2015). Medical
documents also often contain a large amount of
domain-specific technical terms in their vocabu-
lary. Furthermore, sense shifts of words (away

4LMU’s unsupervised machine translation system for the
news task is described in a separate paper (Stojanovski et al.,
2018).
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from their respective meaning in out-of-domain
corpora) are common (Carpuat et al., 2013; Irvine
et al., 2013).

Domain adaptation of conventional phrase-
based machine translation systems is a well-
explored research area. Several different effec-
tive solutions which may be used in order to
domain-adapt a phrase-based system have been
proposed in the literature. (Inter alia, cf. Huck
et al. (2015) for a few interesting empirical re-
sults and a list of some major bibliographic refer-
ences.) Machine translation in academic research
labs and also in industry is however going through
a paradigm shift away from phrase-based tech-
nology and on towards artificial neural network
models. Neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014) is the new
state of the art for basically all medium- to high-
resource language pairs since around two to three
years. The paradigm shift poses new challenges in
domain adaptation, since most known techniques
are rather specific to the phrase-based translation
model and therefore cannot be readily applied to
neural systems.

Domain adaptation of neural translation sys-
tems is a fresh and active field of scientific in-
quiry. The most wide-spread practical solution at
present is referred to as “fine-tuning”. A base-
line model is pre-trained by optimizing the neural
model parameters on some large general corpus.
Subsequently, training is simply continued on an
in-domain corpus, usually with a smaller learning
rate—i.e., in this second optimization run the pa-
rameters are initialized with the trained model pa-
rameters from the previous optimization. A cru-
cial aspect is the availability of high-quality in-
domain training data, or alternatively, the collec-
tion thereof. If a general-domain or out-of-domain
neural model from a first optimization run already
exists, then fine-tuning allows for quick adjust-
ment of the model to a specific domain by means
of a short continued optimization on an in-domain
corpus, most often with less data than in the first
run.

3 Neural Network Architectures

3.1 GRU Encoder-Decoder

We utilize the Nematus implementation (Sen-
nrich et al., 2017) to build encoder-decoder NMT
systems with attention and gated recurrent units
(GRUs). Our architecture is flat, it has only one

single hidden layer. We configure dimensions of
500 for the embeddings and 1024 for the hidden
layer. We train with the Adam optimizer (Kingma
and Ba, 2015), a learning rate of 0.0001, batch size
of 50, and dropout with probability 0.2 applied to
the hidden layer, but not to source, target, and em-
beddings. We validate every 10 000 updates and
do early stopping when the validation cost has not
decreased over ten consecutive control points.

3.2 Transformer
We use the Sockeye implementation of the
Transformer (Hieber et al., 2017). For the
German→English translation direction we
train small Transformer models and for
English→German big models as outlined in
Vaswani et al. (2017). All models have six
encoder and decoder layers. The size of the layers
and the embeddings is 512 for the small models
and 1024 for the big ones. The dimensionality
of the feed-forward networks is 2048 (small) and
4096 (big). We use 8 attention heads for the small
and 16 for the big models. The models are trained
with the Adam optimizer with an initial learning
rate of 0.0002. The learning rate is reduced by a
factor of 0.7 if not improved for eight checkpoints.
We checkpoint the models each 3 000 updates and
do early stopping if perplexity has not improved
for 32 checkpoints. We apply dropout of 0.1 as
used by Vaswani et al. (2017). Additionally, we
use label smoothing with a value of 0.1. We also
tie the target and output embeddings. All models
are trained with a word-level batch size of 4096.

4 Preprocessing

A linguistically informed, cascaded word segmen-
tation technique is applied to the German side of
the training data (Huck et al., 2017b). With a
linguistically more sound word segmentation, we
expect advantages over plain BPE segmentation
in three important aspects: vocabulary reduction,
reduction of data sparsity, and open vocabulary
translation. The NMT system can learn linguis-
tic word formation processes from the segmented
data.

We cascade three different word splitting meth-
ods on the German side:

1. First we apply a suffix splitter that sepa-
rates common German morphological suf-
fixes from the word stems. Our suffix split-
ter is a modification of the German Snow-
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ball stemming algorithm that separtates suf-
fixes from the word stem, rather than strip-
ping them.

2. Next we apply the empirical compound split-
ter as described by Koehn and Knight (2003).

3. We finally apply the Byte Pair Encoding
(BPE) technique (Sennrich et al., 2016b) on
top of the suffix-split and compound-split
data in order to further reduce the vocabulary
size.

Special marker symbols allow us to revert the
segmentation in postprocessing when German is
the target language.

Our linguistically informed word segmentation
was already used on the target language side
for LMU’s participation in the WMT17 shared
task on machine translation of news (Huck et al.,
2017a). At WMT17, LMU’s primary submission
was ranked first in the human evaluation (Bojar
et al., 2017a). We presume that the high human
rating of LMU’s WMT17 submission can mostly
be attributed to our efforts toward better word seg-
mentation. We anticipate similar benefits in the
medical domain. Dedicated methods that tackle
rich target-side morphology have also shown good
results in phrase-based translation systems previ-
ously (Huck et al., 2017c). Future work on neu-
ral machine translation could for instance follow
a two-step prediction paradigm (Conforti et al.,
2018), or improve over our current version of lin-
guistically informed word segmentation by means
of a better linguistic analysis (Weissweiler and
Fraser, 2017).

In the present work, the linguistically informed
word segmentation is not only employed on the
target side for English→German machine transla-
tion, but in German→English systems also on the
source language side.

The English language side is always simply
BPE-segmented.

We learn the compound split model and the BPE
merge operations from Europarl and use this word
segmentation and vocabulary for all corpora.

5 Systems: Medical Translation

5.1 English→German HimL Y3 System

The English→German HimL Y3 engine is based
on a shallow GRU encoder-decoder model built
with Nematus (Section 3.1). We apply an incre-
mental training regime that is inspired by “fine-

tuning” (Section 2). First, we train a model on par-
allel corpora from the WMT news task. We then
successively refine the model and adapt it to the
medical domain. Consecutive optimization runs
are initialized with the respective previous model
parameters. For each refinement step, we replace
the training data, first with larger corpora, then
with corpora that better match the domain.

The HimL tuning sets are used for valida-
tion, and we test separately on the Cochrane and
NHS24 parts of the HimL devtest set.5 The
translation quality (in case-sensitive BLEU (Pa-
pineni et al., 2002)) of different system setups
after several development stages is presented in
the top section of Table 1. WMT_parallel de-
notes the Europarl, News Commentary, and Com-
mon Crawl parallel training data as provided for
WMT17 by the organizers of the news translation
shared task. WMT_backtranslated_news_crawl
denotes Edinburgh’s backtranslations of monolin-
gual WMT News Crawl corpora from WMT16.6

Y3_base_general_data is a large collection of
English–German bitext used in the HimL project.
Cochrane-selected and NHS24-selected denote
synthetic data mixes from HimL whose content
is automatically filtered to match the Cochrane or
NHS24 use cases. Corpus statistics of the HimL
training data and a more detailed description of
the data selection procedure are provided by Bo-
jar et al. (2017b) (Section 2.4 of HimL Deliverable
D1.1).

We vary the learning rate during system devel-
opment, as stated in the table. As a last step, we
apply n-best list reranking (n = 50) with a right-
to-left NMT model (“r2l reranking”). Ensembling
did not yield any clear gains, so we deployed sin-
gle models for English→German.

The bottom row of Table 1 contains the BLEU

scores of our last year’s primary system (Huck
et al., 2017a) for the WMT17 biomedical task
(Yepes et al., 2017). We improve over it by more
than three points.

5.2 English→German Transformer System
We build Transformer models (Section 3.2) in or-
der to evaluate whether they perform better than
our Nematus-based HimL Y3 system.

For the English→German Transformer model,
we train three separate models and ensemble them.

5http://www.himl.eu/test-sets
6http://data.statmt.org/rsennrich/

wmt16_backtranslations/en-de/
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English→German Cochrane NHS24
BLEU BLEU

WMT_parallel (lrate = 0.0001) 31.5 28.9
+ WMT_parallel, WMT_backtranslated_news_crawl (lrate = 0.0001) 29.8 27.6
+ UFAL_medical_shuffled_all (lrate = 0.0001) 35.1 28.9
+ Y3_base_general_data (lrate = 0.00001) 35.7 29.8
+ Cochrane-selected, NHS24-selected, 10 × UFAL_medical_indomain (lrate = 0.00001) 38.6 33.0
+ r2l reranking (= HimL Y3) 39.6 34.0
Transformer single 37.8 33.3
Transformer ensemble 39.0 34.1
+ r2l reranking 40.3 35.5
LMU WMT17 biomedical (Huck et al., 2017a) 35.8 30.3

Table 1: English→German medical translation results on HimL devtest sets (case-sensitive BLEU). Extensions are
applied incrementally. Particularly, in the top section of the table, which reports on HimL Y3 system engineering,
we conduct successive model refinement by consecutively optimizing on different corpora. The middle section
of the table reports on Transformer experiments. The row at the bottom provides the results of our WMT17
biomedical task system.

We also apply right-to-left reranking on these
models as well. Because of time constraints we
did not train a Transformer right-to-left model. In-
stead, we generated a 50-best list with the Trans-
former models and used the already trained Nema-
tus right-to-left models for the reranking.

No incremental training regime or fine-tuning
is applied to the Transformer system. We train
on the same set of corpora that is also used in
the last refinement step of the HimL Y3 sys-
tem (Cochrane-selected, NHS24-selected, 10 ×
UFAL_medical_indomain).

The translation results with the
English→German Transformer systems are
presented in the middle section of Table 1. The
Transformer outperforms our other systems.

We submitted three runs to the WMT18
biomedical translation shared task: the r2l-
reranked Transformer (run1, primary); a Trans-
former ensemble without reranking (run2, con-
trastive); and the HimL Y3 system (run3, con-
trastive).

5.3 German→English Transformer System

Our German→English Transformer model is an
ensemble of three separate models, like in the
English→German translation direction. We use
the same training corpus, but with source and tar-
get side switched. The preprocessing remains the
same. Since German is the source language in this
setup, our linguistically informed word segmenta-
tion technique is applied to the input side here.

The BLEU scores of the German→English
Transformer without ensembling (single model)

are 53.3 (Cochrane) and 41.7 (NHS24), respec-
tively. The ensemble is reaching BLEU scores of
54.5 (Cochrane) and 42.2 (NHS24), which is a de-
cent gain over the single model.

6 Systems: News Translation

6.1 English→German News Task System

For the shared task on machine translation of
news, we did not build any updated system, but
participated with our system from WMT17 (Bojar
et al., 2017a). The system was trained under “con-
strained” conditions, employing only permissible
resources as defined by the shared task organizers.
Huck et al. (2017a) provide a detailed description,
along with experimental results. In short, we con-
ducted the following steps in an incremental train-
ing regime (with consecutive optimizations, in a
similar manner as presented above for the HimL
Y3 system):

1. Optimize a Europarl baseline model.
2. Add News Commentary and Common Crawl.
3. Add synthetic training data (Ueffing et al.,

2007; Lambert et al., 2011; Huck et al., 2011;
Huck and Ney, 2012; Sennrich et al., 2016a).

4. Fine-tune towards the domain of news arti-
cles. For that purpose, several newstest
development sets are employed as a training
corpus. The learning rate is decreased.

5. Rerank n-best list with a right-to-left neural
model (Liu et al., 2016), which is trained for
reverse word order (Freitag et al., 2013).
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6.2 German→English News Task System

Finally, for the translation of news articles from
German into English, we also trained a basic
shallow GRU encoder-decoder system (cf. Sec-
tion 3.1). The training data is a concatenation
of Europarl, News Commentary, Common Crawl,
and some synthetic data in the form of backtrans-
lated English news texts. The German source side
is preprocessed with our linguistically informed
word segmentation (Section 4).

7 Conclusion

In this paper, we have described the steps we took
to build a strong neural system for the translation
of medical documents. Our English→German
translation system was deployed within the HimL
project. We used the system to participate in the
WMT18 biomedical translation shared task. On
HimL devtest sets, our WMT18 biomedical task
systems outperforms our WMT17 submission sys-
tem by more than three BLEU points.

Three aspects make our system effective in our
view. (1.) We have high-quality in-domain train-
ing data at hand. (2.) A reliable preprocessing
pipeline has been developed. (3.) A simple, but
well-working domain adaptation method is known
for neural machine translation.

The model architecture is also very important,
as our additional Transformer experiments show:
A less highly engineered Transformer model is on
par with our deployed HimL project system.

Additionally to the English→German medical
domain system, we have also briefly presented our
system for the German→English translation direc-
tion and our WMT18 news task submissions.
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Abstract

This paper describes the submission of Hunter
Neural Machine Translation (NMT) to the
WMT’18 Biomedical translation task from
English to French. The discrepancy between
training and test data distribution brings a chal-
lenge to translate text in new domains. Beyond
the previous work of combining in-domain
with out-of-domain models, we found accu-
racy and efficiency gain in combining differ-
ent in-domain models. We conduct extensive
experiments on NMT with transfer learning.
We train on different in-domain Biomedical
datasets one after another. That means pa-
rameters of the previous training serve as the
initialization of the next one. Together with
a pre-trained out-of-domain News model, we
enhanced translation quality with 3.73 BLEU
points over the baseline. Furthermore, we ap-
plied ensemble learning on training models of
intermediate epochs and achieved an improve-
ment of 4.02 BLEU points over the baseline.
Overall, our system is 11.29 BLEU points
above the best system of last year on the EDP
2017 test set.

1 Introduction

Data-driven machine translation models assume
the training data and test data have the same distri-
bution and feature space (Koehn, 2009), which is
rare in real-world applications (Olive et al., 2011).
In statistical machine translation, a standard solu-
tion is to apply domain adaptation (Xu et al., 2007;
Foster and Kuhn, 2007; Chu and Wang, 2018). For
example, interpolating phrase or word probabili-
ties in a sentence learned on in-domain and out-
of-domain data and then computing their product.
In NMT, we apply ensemble learning instead of

∗ Both authors have contributed equally to this work.
†The author was working as a visiting student at Hunter

College, CUNY

Training Bio’18 News’14 Bio’14
SR (M ) 2.8 41 19
SP (M ) 2.5 39 16
VR (B) 61M/69M 1.1/1.3 0.4/0.5
V (K) 67/82 64/74 44/44

Table 1: Raw and preprocessed data statistics for
the three datasets used in the experiments. SR is
the sentences in the raw data, SP is the sentences in
preprocessed data, VR is the running words and V is
the vocabulary size. Running words & Vocabulary are
for both source and target represented as source/target

interpolation. Moreover, we initialize neural net-
works with parameters trained with out-of-domain
data. Studies show that this approach results in
fast training and higher accuracy, such as in (Lu-
ong and Manning, 2015; Zoph et al., 2016; Freitag
and Al-Onaizan, 2016).

These methods focus on combining an in-
domain model with an out-of-domain model.
Nonetheless, often, the training data is a mixture
of multiple in-domain corpora and out-of-domain
corpora. If one concatenates all the in-domain cor-
pora to train a model, then training is more expen-
sive for the memory and time. Furthermore, the
distribution of one corpus may be closer than the
others to the test set. Thus, the statistics of the
closer corpus may vanish in the merged corpus.

The WMT’18 Biomedical translation task is a
typical scenario. There are two sets of in-domain
data: the Biomedical training set of WMT’18
(with 2.8M sentences) and WMT’14 (19 M), be-
sides an out-of-domain training set on News (41
M), see Table 1. To separately train on WMT’18
and WMT’14 Biomedical data, a new challenge
arises:

How to efficiently combine the training on dif-
ferent in-domain training sets?

To answer this question, this work presents an
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empirical study of efficient training on multiple
in-domain and out-of-domain datasets. We ap-
plied transfer learning by training NMT systems
with different datasets one after another carrying
on the previous parameters. More precisely, we
first initialize the NMT with the existing out-of-
domain model trained on the out-of-domain News
data. Then, we train the NMT with the in-domain
Biomedical dataset of 2018. Afterward, we take
the newly estimated parameters as the initializa-
tion and further train the NMT on the in-domain
Biomedical dataset of 2014. In this way, a pre-
vious model’s output initializes the parameters of
the next model, so that we train on every single
data set at a time instead all at once.

We further experimented with ensemble learn-
ing. We saved the model (checkpoint) after every
epoch during training. Once training finishes, we
performed checkpoint ensembling by picking var-
ious combinations of checkpoint outputs from the
training on the last dataset.

We conduct our experiments on Biomedical
translation task of WMT’18. We observe a signif-
icant accuracy improvement of 3.73 BLEU points
for single models and 4.02 BLEU points for en-
sembles over our baseline trained with one in-
domain dataset. While some of these improve-
ments are due to differences in training data, pre-
processing and hyper-parameters, most of the in-
crease is due to the use of different data sets for
initialization and subsequent training.

2 Related Work

In domain adaptation we aim at learning a model
from a source data distribution which performs
well on a different (but related) target data dis-
tribution. In machine translation domain adapta-
tion arises when there is a large amount of out-
of-domain data and a small amount of in-domain
data. One technique to solve this issue is to in-
crease the in-domain data size using different data
selection methods (Moore and Lewis, 2010; Axel-
rod et al., 2011, 2012; Duh et al., 2013). They use
in-domain language models to select in-domain
data based on cross-entropy for SMT systems. (Xu
et al., 2007; Foster and Kuhn, 2007) use a com-
bination of feature weights and language model
adaptation to build a domain-specific translation
system. (Daumé III and Jagarlamudi, 2011) mine
in-domain rare word translations using a compa-
rable corpora in order to minimize the Out-of-

Vocabulary (OOV) words. We aim to improve
NMT accuracy and training efficiency by training
on different corpora sequentially. Therefore, our
method does not focus on selecting, mining, or in-
terpolating in-domain data.

Transfer learning (Torrey and Shavlik, 2009;
Pan and Yang, 2010) is the process where the
model is trained by transferring the knowledge
learned from an existing model. Domain adap-
tation also falls under this method. (Zoph et al.,
2016) describe training a parent model in one lan-
guage pair (out-of-domain data) which then can
be used as an initialized child model for training
another language pair (in-domain data). However
in our work we train for the same language pair
throughout the experiment. Another difference is
that we apply transfer learning to train on two in-
domain datasets one after the other.

(Luong and Manning, 2015) adapts an already
existing NMT system to a new domain by further
training on the in-domain data only. (Freitag and
Al-Onaizan, 2016) in addition use checkpoint en-
sembling (Sennrich et al., 2016a; Koehn, 2017)
to balance the performance on the in-domain data
and out-of-domain data. In this paper, our goal
is not to adapt from out-of-domain to in-domain
data. We aim to empirically investigate train-
ing on multiple in-domain datasets to improve
in-domain performance, which has not been dis-
cussed in above previous work. We show that
during time-sensitive system development, train-
ing on in-domain datasets one after another has
its pragmatical use. It significantly improves the
translation accuracy over the training on a single
dataset, i.e. 3.73 BLEU points, and is also more
efficient than training on all in-domain datasets at
once.

3 Background

NMT is an approach to machine translation us-
ing a neural network which takes as an input a
source sentence (x1, .., xt, .., xI) and generates its
translation (y1, .., yt′ , .., yI′), where xt and yt′ are
source and target words respectively. The dom-
inant approach to NMT till recent times encodes
the input sequence and subsequently generates a
variable length translated sequence using recurrent
neural networks (RNN) (Bahdanau et al., 2014;
Sutskever et al., 2014; Cho et al., 2014).

We use the sequence to sequence learning ar-
chitecture by (Gehring et al., 2017), which uses
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convolutional neural networks (CNNs) instead of
RNNs. This model has three components, namely,
encoder, decoder and an attention mechanism.

The encoder combines a short sequence of
neighboring words into a single representation.
Convolutions are carried out consecutively in mul-
tiple layers to get the final representation of each
word. For each input word to the encoder, the
state at each convolutional layer is informed by
the corresponding state in the previous layer and
its neighbors determined by a fixed window. Even
with a few layers, the final representation of a
word generated by the encoder may only be in-
formed by partial sentence context.

There are significant computational advantages
to this paradigm. All words at one depth can
be processed in parallel, even combined into one
massive tensor operation that can be efficiently
parallelized on a GPU.

The decoder of the CNN based NMT model cal-
culates the decoder state conditioning on the se-
quence of the k most recent previous words. The
states of the decoder are computed in a sequence
of convolutional layers and depend only on the in-
put context, with no dependence on the previous
decoder state. The attention mechanism in CNN
based architecture is essentially unchanged from
the RNN based model.

4 Transfer Learning

A domain D consists of a feature space X and
a marginal probability distribution P (X) where
X ∈ X is a training sample. If two domains
are different then they must have different feature
spaces or different marginal probabilities. Trans-
fer learning is defined as follows:

Definition 1. Given a source domain DS and a
learning task TS , transfer learning aims to help im-
prove the learning of the target predictive function
fT (·) in DT using the knowledge in DS and TS ,
where DS 6= DT , or TS 6= TT .

In the above definition, a domain is a pair D =
{X , P (X)}. Thus the condition DS 6= DT im-
plies that either XS 6= XT or PS(X) 6= PT (X).
One category of transfer learning is transductive
transfer learning where the source and the target
tasks are the same but the domain is different. This
can be further categorized into two cases. For the
machine translation scenario, these are that either
the feature spaces between domains are different,
XS 6= XT (e.g., News and Biomedical), or their

marginal distributions are different, P (XS) 6=
P (XT ) (e.g., Biomedical’14 and Biomedical’18).

We apply transfer learning to learn the target
predictive function fT (·) in both the above cases.
We use the CNN based architecture described in
Section 3 to train the NMT model parameters.
First we train for the case when the the domain fea-
ture spaces are different, i.e., XS 6= XT . We con-
sider XS as News data and XT as Biomedical’18
data, since they represent two different domains.

For this training, we re-use a pre-trained system
(Gehring et al., 2017) on News corpus and con-
tinue training on Biomedical’18 corpus. We re-use
a pre-trained system because the training on News
corpus requires a large training time1. For training
the CNN based NMT, we only use the vocabulary
of Biomedical’18 for simplicity.

We then apply transfer learning for the second
case: when the marginal distributions of XS and
XT are different (P (XS) 6= P (XT )). Now we
can consider XS as Biomedical’18 data and XT

as Biomedical’14 data. This is because they are
in the same domain with different marginal distri-
butions. We continue training the model learned
on the Biomedical’18 data further with Biomedi-
cal’14 data. Again, we just use the vocabulary of
the latter data for training.

The use of transfer learning significantly in-
creases the translation quality (see Figure 1). The
BLEU score obtained using transfer learning from
News to Biomedical’18 data is shown in the mid-
dle part of the plot (Bio’18). The BLEU curve
reaches a peak of 30.97% in BLEU score in this
part of transfer learning.

Furthermore, upon using Biomedical’14 data,
we get additional improvement, as shown in the
right side of the plot (Bio’14). We get the highest
peak of 34.83% in BLEU score. The learned pa-
rameters from one set of data are transferred while
training on another set and enhance the translation
quality.

During training, we evaluate the performance of
the model after every epoch using a development
set from the Biomedical domain. Our system is
prone to over-fitting as the Biomedical (2014 and
2018) training data sets that we use are signifi-
cantly smaller (see Table 1) as compared to News.
Generally over-fitting means that the model per-
forms excellent on the training data, but worse on

137 days using 8 GPUs on WMT’ 18 EN-FR (Gehring
et al., 2017)
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Figure 1: BLEU[%] during transfer learning The results are calculated on EDP’17 test data. The x-axis shows
the epoch number during training.

Figure 2: Combining predictions from an ensemble of
models (Koehn, 2017)

any other unseen data. To overcome this problem,
we use ensemble learning.

More concretely, we save the models (check-
points) after every epoch of training. We use
the predictions of multiple checkpoints instead of
just one checkpoint. We perform this ensemble
of models for different epochs, called checkpoint
ensembling, as follows: Each model defined by
a checkpoint generates a probability distribution
over target vocabulary. We average these distri-
butions to obtain a combined probability distribu-
tion. Then we use the combined distribution to
predict the output word. See Figure 2 for an illus-
tration. Checkpoint ensembling is computation-
ally less expensive than multi-run ensembling, an-
other typical approach for ensembling NMT mod-
els. In multi-run ensembling, each system is built
in a completely different training run. In check-
point ensembling, we get all the checkpoints from
a single run.

5 Experiments

This section describes the datasets, tools, and set-
tings used for the Biomedical translation task.

Data Set Dev Data Test Data
Kh Kh+HIML EDP’17

SR 500 2011 500
SP 500 2011 499

VR (K) 11/13 37/46 13/15
V (K) 3/3 5/6 3/3
OOV 154/177 329/499 271/366

Table 2: Development and test data stats. Kh refers to
the Khresmoi development data. SR is the sentences in
the raw data, SP is the sentences in preprocessed data,
VR is the running words, V is the vocabulary size and
OOV is the unique Out-Of-Vocabulary words. Run-
ning words, Vocabulary & Out-Of-Vocabulary words
are represented as source/target.

5.1 Datasets

We used the WMT’18 Biomedical shared task
English-French (EN-FR) data for training. In this
paper, this data is the UFAL medical corpus2.
We also used WMT’14 Biomedical EN-FR data
(PatTR3 only) as additional in-domain data. For
out-of-domain training, we used WMT’14 News
EN-FR training data. We validated each train-
ing epoch on Khresmoi and HIML development
datasets. We use the WMT’17 EDP (Yepes et al.,
2017) as test data to evaluate. Statistics for the de-
velopment and test data sets is mentioned in Table
1 and Table 2.

5.2 Preprocessing

We tokenized and true-cased the training, devel-
opment and test data using the script provided
by Moses.4 We only used sentences no longer
than 80 words (for training data only). Then we
learned byte pair encoding (BPE) by combining

2https://ufal.mff.cuni.cz/ufal medical corpus
3http://www.cl.uni-heidelberg.de/statnlpgroup/pattr/
4https://github.com/moses-smt/mosesdecoder
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the WMT’18 Biomedical EN and FR training cor-
pus. We used a script from (Sennrich et al., 2016b)
with 89, 500 merge operations. This gave a dictio-
nary size of 63.6K for EN and 74.1K for FR. We
also applied BPE to WMT’14 Biomedical data re-
sulting in dictionary sizes 67K and 81.9K for EN
and FR respectively. Our best model uses the latter
dictionaries for translation.

5.3 Training Details

To train our systems we used the open source
toolkit Fairseq5 which provides an implementation
of the CNN based NMT model (Gehring et al.,
2017). We trained three different sets of mod-
els: (1) training on WMT’18 Biomedical data
only, (2) training on the WMT’14 News, fol-
lowed by training on WMT’18 Biomedical data,
and (3) training on the WMT’14 News, then train-
ing on WMT’18 Biomedical and then training on
WMT’14 Biomedical. Apart from this we also
trained using different development sets which in-
clude Khresmoi and Khresmoi+HIML.

For the training of all systems, we used a learn-
ing rate of 0.25 and dropout of 0.2. We fixed the
maximum batch size to be 4000 tokens. On a Tesla
V100 with 16 GB RAM, it took about 40 hours for
training on WMT’18 Biomedical till convergence
and 500 hours for training on WMT’14 Biomedi-
cal for 25 epochs.

Another possible experiment can be to combine
the two in-domain datasets and then train. This
experiment however takes 22 days for training of
25 epochs as compared to 1.7 days for completely
training on WMT’18 Biomedical data. There-
fore we trained on the WMT’18 Biomedical data
till convergence and subsequently trained on the
larger WMT’14 Biomedical data for some epochs.
Additionally we also saved on the training time
by using a pre-trained model on WMT’14 News
data to initialize the system parameters. Details
of training time (per epoch) for each dataset are
mentioned in Table 3. Combining datasets is also
memory intensive as compared to training on sep-
arate data.

5.4 Decoding Details

For translation, we used either the best epoch
(which gave the minimum loss on the development
data) or an ensemble of different epochs during the
training process. The Fairseq tool provides a sim-

5https://github.com/pytorch/fairseq

Data Set Training Time
per Epoch (hrs)

News’14 41
Bio’18 2.5
Bio’14 19

Bio’18 + Bio’14 21.5

Table 3: Training time for each dataset. Training
time is for a single epoch in hours.

ple method to use specific epoch(s) for translation.
We removed BPE before evaluation. We tuned the
decoding beam size and used a beam size of 12 for
all translations. The best model settings were then
used to translate the WMT’18 test datasets (EDP
& Medline).

6 Results

Table 4 shows BLEU scores for different ex-
periments with and without ensemble. The ar-
row shows the flow of training the translation
model, for example, “news14→ bio18→ bio14”
means the system was first trained on WMT’14
News data, then on WMT’18 Biomedical data
and finally on WMT’14 Biomedical data. The
single model results are obtained using the best
checkpoints (the best checkpoint is the one which
gave minimum loss on the development data) for
each experiment and the ensemble results are ob-
tained using the best ensemble of multiple check-
points. We evaluate the translations using the
multi-bleu.pl script from Moses.

For the baseline method (Exp 1) we trained only
using WMT’18 Biomedical data. The single best
model gave 31.10% in BLEU score. Ensemble
of different checkpoints did not improve the re-
sults, therefore it has the same BLEU score as sin-
gle model. In Exp 2 we used a pre-trained model
on the WMT’14 News and continued training on
WMT’18 Biomedical data. The single model gave
the BLEU score of 30.97% which is less than Exp
1, but ensembling improved the BLEU score to
31.18%. On further training on another in-domain
WMT’14 Biomedical data (Exp 3), the single best
model greatly improves the performance with a
BLEU score of 34.83%. Ensemble of different
checkpoints improves this further to 35.12%. This
is an improvement of 3.73 BLEU points for the
single model and 4.02 BLEU points from the base-
line experiment (Exp 1). The best model uses
checkpoints 2, 4 and 24.

The best system for WMT’17 (Exp a) on EN-
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No. Experiment BLEU [%]
Single Ensemble

a WMT’17 best system 27.04∗ –
1 bio18 (baseline) 31.10 31.10

2 news14→ bio18 30.97 31.18

3
news14→ bio18
→ bio14

34.83 35.12 , 38.33∗

Table 4: BLEU scores for different models on EDP’17 test data. Single is the single model which gave minimum
loss on the Khresmoi development set. Results with (*) are calculated using multi-eval tool. All other results are
calculated using multi-bleu tool.

No. Experiment Dev Set BLEU [%]

1
news14
→ bio18

Khresmoi 30.97

2
news14
→ bio18

Khresmoi
+HIML

29.23

Table 5: Results of different development sets for
tuning all the models. BLEU scores are calculated
on EDP’17 test data.

Checkpoint Number
BLEU[%]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

• • 30.38

• • • • 30.93

• • • 31.18
• • • • 30.98

• • • • • 30.86

• • • • • • 30.38

• • • • • • • 30.90

• • • • • • • • 31.05

Table 6: BLEU scores for different checkpoint en-
sembles for Exp 2 (Table 4). Cells with dots in each
row show checkpoints for ensemble. Checkpoint 12
gave the minimum loss on the development data.

FR EDP test data gave 27.04% in BLEU score us-
ing mteval-v13a.pl script from Moses. Us-
ing the same script our best model (Exp 3 in Table
4) gave 38.33% in BLEU score. This is an im-
provement of 11.29 BLEU points.

We also tested with using different development
sets for tuning the model. The results are in Table.
5. We get better results when using Khresmoi de-
velopment data as compared to a combined Khres-
moi and HIML development data.

Apart from this we also carried out ensemble
experiments to compare which checkpoint combi-
nation gives the best result. Only checkpoints for
Exp 2 in Table 4 are considered. Among the 14
checkpoints output during training process, check-
point 12 gave the minimum loss on the develop-
ment data. We tried a several checkpoint combi-
nations of these 14 checkpoints, some of these are
mentioned in Table 6. The best checkpoint combi-
nation is 5, 10 and 12.

7 Conclusion

We studied training on different in-domain
datasets and found significant improvement
by consecutively training on an out-of-domain
dataset (WMT’14 News) and multiple in-domain
datasets (WMT’18 Biomedical and then WMT’14
Biomedical). We successfully applied transfer
learning by initializing parameters of NMT with a
previous model. Together with ensemble learning,
we achieved 4.02 BLEU points enhancement over
our baseline. Overall, our system is 11.29 BLEU
points better than the best WMT’17 system.
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Abstract

This paper describes the machine translation
systems developed by the Universidade Fed-
eral do Rio Grande do Sul (UFRGS) team for
the biomedical translation shared task. Our
systems are based on statistical machine trans-
lation and neural machine translation, using
the Moses and OpenNMT toolkits, respec-
tively. We participated in four translation
directions for the English/Spanish and En-
glish/Portuguese language pairs. To create our
training data, we concatenated several paral-
lel corpora, both from in-domain and out-of-
domain sources, as well as terminological re-
sources from UMLS. Our systems achieved
the best BLEU scores according to the official
shared task evaluation.

1 Introduction

In this paper, we present the system developed
at the Universidade Federal do Rio Grande do
Sul (UFRGS) for the Biomedical Translation
shared task in the Third Conference on Machine
Translation (WMT18), which consists in trans-
lating scientific texts from the biological and
health domain. In this edition of the shared
task, six language pairs are considered: En-
glish/Chinese, English/French, English/German,
English/Portuguese, English/Romanian, and En-
glish/Spanish.

Our participation in this task considered the
English/Portuguese and English/Spanish language
pairs, with translations in both directions. For
that matter, we developed two machine translation
(MT) systems: one based on statistical machine
translation (SMT), using Moses (Koehn et al.,
2007), and one using neural machine translation
(NMT), using OpenNMT (Klein et al., 2017).

This paper is structured as follows: Section 3
details the language resources used to train our

translation models. Section 4 contains the de-
scription of the experimental settings of our SMT
and NMT models, including the pre-processing
step performed to comply with the shared task
guidelines. In Section 5 we present the results
and briefly discuss the main findings. Section 6
contains the conclusions and directions of future
works to improve our models.

2 Related Works

Most of related works in biomedical machine
translation used SMT models to perform auto-
matic translation. Aires et al. (2016) developed a
phrase-based SMT that differs significantly from
the usual Moses toolkit, especially by not analyz-
ing phrases at word level and adopting a trans-
lation score that is a tuned weighted average be-
tween the translation model and the language
model, instead of the traditional log-linear ap-
proach.

Costa-Jussà et al. (2016) employed Moses SMT
to perform automatic translation integrated with
a neural character-based recurrent neural network
for model re-ranking and bilingual word embed-
dings for out of vocabulary (OOV) resolution.
Given the 1000-best list of SMT translations, the
RNN performs a rescoring and selects the trans-
lation with the highest score. The OOV resolu-
tion module infers the word in the target language
based on the bilingual word embedding trained on
large monolingual corpora. Their reported results
show that both approaches can improve BLEU
scores, with the best results given by the combina-
tion of OOV resolution and RNN re-ranking. Sim-
ilarly, Ive et al. (2016) also used the n-best output
from Moses as input to a re-ranking model, which
is based on a neural network that can handle vo-
cabularies of arbitrary size.

In the last WMT biomedical translation chal-
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lenge (2017) (Yepes et al., 2017), the submission
that achieved the best BLEU scores for the FR/EN
language pair on the EDP dataset, in both direc-
tions, was based on NMT models developed in the
University of Kyoto (Cromieres, 2016). For the
other datasets, the submission from the University
of Edinburgh (Sennrich et al., 2017) achieved the
best BLEU scores with their NMT models based
on the Nematus implementation with BPE tok-
enization and the use of parallel and backtrans-
lated data.

3 Resources

In this section, we describe the language resources
used to train both models, which are from two
main types: corpora and terminological resources.

3.1 Corpora
We used both in-domain and general domain cor-
pora to train our systems. For general domain data,
we used the books corpus (Tiedemann, 2012),
which is available for several languages, included
the ones we explored in our systems, and the JRC-
Acquis (Tiedemann, 2012). As for in-domain data,
we included several different corpora:

• The corpus of full-text scientific articles from
Scielo (Soares et al., 2018a), which includes
articles from several scientific domains in
the desired language pairs, but predominantly
from biomedical and health areas.

• A subset of the UFAL medical corpus1, con-
taining the Medical Web Crawl data for the
English/Spanish language pair.

• The EMEA corpus (Tiedemann, 2012), con-
sisting of documents from the European
Medicines Agency.

• A corpus of theses and dissertations abstracts
(BDTD) (Soares et al., 2018b) from CAPES,
a Brazilian governmental agency respon-
sible for overseeing post-graduate courses.
This corpus contains data only for the En-
glish/Portuguese language pair.

• A corpus from Virtual Health Library2

(BVS), containing also parallel sentences for
the language pairs explored in our systems.

1https://ufal.mff.cuni.cz/ufal_
medical_corpus

2http://bvsalud.org/

Table 1 depicts the original number of paral-
lel segments according to each corpora source. In
Section 3.1, we detail the pre-processing steps per-
formed on the data to comply with the task evalu-
ation.

Corpus Sentences
EN/ES EN/PT

Books 93,471 -
UFAL 286,779 -
Full-text Scielo 425,631 2.86M
JRC-Acquis 805,757 1.64M
EMEA - 1.08M
CAPES-BDTD - 950,252
BVS 737,818 631,946
Total 2.37M 7.19M

Table 1: Original size of individual corpora used in
our experiments

3.2 Terminological Resources

Regarding terminological resources, we extracted
parallel terminologies from the Unified Medical
Language System3 (UMLS). For that matter, we
used the MetamorphoSys application provided by
U.S. National Library of Medicine (NLM) to sub-
set the language resources for our desired lan-
guage pairs. Our approach is similar to what
was proposed by Perez-de Viñaspre and Labaka
(2016).

Once the resource was available, we imported
the MRCONSO RRF file to an SQL database to
split the data in a parallel format in the two lan-
guage pairs. Table 2 shows the number of parallel
concepts for each pair.

Language Pair Concepts
EN/ES 14,399
EN/PT 26,194

Table 2: Number of concepts from UMLS for each
language pair

4 Experimental Settings

In this section, we detail the pre-processing steps
employed as well as the architecture of the SMT
and NMT systems.

3https://www.nlm.nih.gov/research/
umls/
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4.1 Pre-processing

As detailed in the description of the biomedical
translation task, the evaluation is based on texts
extracted from Medline. Since one of our corpora,
the one comprised of full-text articles from Scielo,
may contain a considerable overlap with Medline
data, we decided to employ a filtering step in order
to avoid including such data.

The first step in our filter was to down-
load metadata from Pubmed articles in Spanish
and Portuguese. For that matter, we used the
Ebot utility4 provided by NLM using the queries
POR[la] and ESP[la], retrieving all results avail-
able. Once downloaded, we imported them to an
SQL database which already contained the cor-
pora metadata. To perform the filtering, we used
the pii field from Pubmed to match the Scielo
unique identifiers or the title of the papers, which
would match documents not from Scielo.

Once the documents were matched, we re-
moved them from our database and partitioned the
data in training and validation sets. Table 3 con-
tains the final number of sentences for each lan-
guage pair and partition.

Language Train Dev
EN/ES 2.35M 22,670
EN/PT 7.17M 24,206

Table 3: Final corpora size for each language pair

4.2 SMT System

We used the popular Moses toolkit (Koehn et al.,
2007) to train our SMT system for the two lan-
guage pairs. As training parameters, we followed
the Moses baseline steps5 to train four MT systems
(i.e. one for each translation direction).

Regarding training, we used the Amazon AWS
spot virtual machines with 24 cores and 60GB of
RAM, and used parallelization as much as possi-
ble to reduce training time and the associated cost.

4.3 NMT System

As for the NMT system, we employed the Open-
NMT toolkit (Klein et al., 2017) to train four MT
systems, one for each translation direction. To-
kenization was performed by the supplied Open-

4https://www.ncbi.nlm.nih.gov/Class/
PowerTools/eutils/ebot/ebot.cgi

5http://www.statmt.org/moses/?n=moses.
baseline

NMT algorithm. Regarding network parametriza-
tion, the following settings were used, while all
other parameters were set as default:

• Encoder type: bidirectional recurrent neural
network
• Decoder type: Seq2Seq with attention (de-

fault)
• Word vector size: 600
• Layers (encoder and decoder): 4
• RNN size: 800
• Batch size: 64
• Vocabulary size: 50000

To train our system, we used the Azure virtual
machines with a single NVIDIA Tesla V100 GPU.
The models with the best perplexity value were
chosen as final models. During translation, OOV
words were replace by their original word in the
source language, all other OpenNMT options for
translation were kept as default.

5 Experimental Results

We now detail the results achieved by our SMT
and NMT systems on the official test data used in
the shared task. Table 4 shows the BLEU scores
(Papineni et al., 2002) for both systems and for the
submissions made by other teams.

Our submissions achieved the best results for
all translation directions we participated, with re-
markable BLEU scores for the ES/EN and PT/EN
pairs. When compared to the other teams, our
results presented similar behavior, with higher
scores when English was the target language,
which may be explained by the poor English mor-
phosyntactic system. For the English/Spanish pair,
the SMT system presented slightly better results
than the NMT one, probably due to the dictionary
size used in the NMT.

Regarding the superior results achieved, we ex-
pect that the large parallel corpora used in our ex-
periments played an essential role. Although we
did not use the provided Scielo abstracts corpus
(Neves et al., 2016), we used a newer parallel cor-
pus also from Scielo, but comprised of full-text ar-
ticles (Soares et al., 2018a), which overlaps with
the abstracts, but contains more data.

In addition to the biomedical and health cor-
pora, we employed two out-of-domain corpora
that we assumed to have a similar structure to
scientific texts: the books and the JRC-Acquis
(Tiedemann, 2012). We decided not to use the
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Team, Runs EN/ES EN/PT ES/EN PT/EN
UFRGS run1 (NMT) 39.62 39.43 43.31 42.58
UFRGS run2 (SMT) 39.77 39.43 43.41 42.58
TGF TALP UPC run1 - - 40.49 39.49
TGF TALP UPC run2 - - 39.06 38.54
UHH-DS run1 31.32 34.92 36.16 41.84
UHH-DS run2 31.05 34.19 35.17 41.80
UHH-DS run3 31.33 34.49 36.05 41.79

Table 4: Official BLEU scores for the English/Spanish and English/Portuguese language pairs in both translation
directions. Bold numbers indicate the best result for each direction.

large Europarl corpus (Koehn, 2005), since it is
comprised of speeches transcripts, which do not
follow the usual structure of scientific texts.

6 Conclusions

We presented the UFRGS machine translation sys-
tems for the biomedical translation shared task
in WMT18. For our submissions, we trained
SMT and NMT systems for all four transla-
tion directions for the English/Spanish and En-
glish/Portuguese language pairs.

For model building, we included several cor-
pora from biomedical and health domain, and
from out-of-domain data that we considered to
have similar textual structure, such as JRC-Acquis
and books. Prior training, we also pre-processed
our corpora to ensure, or at least minimize the
risk, of including Medline data in our training
set, which could produce biased models, since the
evaluation was carried out on texts extracted from
Medline.

Our systems achieved the best results in this
shared task for the translation directions we par-
ticipated, which we attribute to the high quality
corpora used and their size.

Regarding future work, we are planning on op-
timizing our systems by studying the following
methods:

• BPE tokenization: as stated by Sennrich et al.
(2016b), the use of byte pair encoding tok-
enization can help to tackle the issue of OOV
words by using subword units. We expect
that this approach can provide better results
for our NMT system on biomedical data,
since this domain contains terminologies that
are usually based on the use of affixes.

• Backtranslation: the use of synthetic data
from back-translation of monolingual proved

to be able to increase NMT performance
(Sennrich et al., 2016a) by providing addi-
tional training data.

• Multilingual training: a study from Google
(Johnson et al., 2017) showed that using mul-
tilingual data when training NMT systems
can improve translation performance, espe-
cially when using a many-to-one scheme (i.e.
several source languages and one target lan-
guage). We expect that systems trained us-
ing (ES+PT)→EN, for instance, may pro-
duce better results due to the similarity be-
tween Portuguese and Spanish.
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Abstract

The Transformer architecture has become the
state-of-the-art in Machine Translation. This
model, which relies on attention-based mech-
anisms, has outperformed previous neural ma-
chine translation architectures in several tasks.
In this system description paper, we report
details of training neural machine translation
with multi-source Romance languages with
the Transformer model and in the evaluation
frame of the biomedical WMT 2018 task.
Using multi-source languages from the same
family allows improvements of over 6 BLEU
points.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015) proved to be competitive with the
encoder-decoder architecture based on recurrent
neural networks and attention. After this archi-
tecture, new proposals based on convolutional
neural networks (Gehring et al., 2017) or only
attention-based mechanisms (Vaswani et al., 2017)
appeared. The latter architecture has achieved
great success in Machine Translation (MT) and it
has already been extended to other tasks such as
Parsing (Kaiser et al., 2017), Speech Recognition
1, Speech Translation (Cros et al., 2018), Chatbots
(Costa-jussà et al., 2018) among others.

However, training with low resources is still a
big drawback for neural architectures and NMT
is not an exception (Koehn and Knowles, 2017).
To face low resource scenarios, several techniques
have been proposed, like using multi-source (Zoph
and Knight, 2016), multiple languages (Johnson
et al., 2017) or unsupervised techniques (Lample
et al., 2018; Artetxe et al., 2018), among many oth-
ers.

1https://tensorflow.github.io/
tensor2tensor/tutorials\/asr$_$with$_
$transformer.html

In this paper, we use the Transformer enhanced
with the multi-source technique to participate in
the Biomedical WMT 2018 task, which can be
somehow considered a low-resourced task, given
the large quantity of data that it is required for
NMT. Our multi-source enhancement is done only
with Romance languages. The fact of using sim-
ilar languages in a multi-source system may be a
factor towards improving the final system which
ends up with over 6 BLEU points of improvement
over the single source system.

2 The Transformer architecture

The Transformer model is the first NMT model
relying entirely on self-attention to compute rep-
resentations of its input and output without using
recurrent neural networks (RNN) or convolutional
neural networks (CNN).

RNNs read one word at a time, having to per-
form multiple steps before generating an output
that depends on words that are far away. But
it has been demonstrated that the more steps re-
quired, the harder it is to the network to learn
how to make these decisions (Bahdanau et al.,
2015). In addition, given the sequential nature
of the RNNs, it is difficult to fully take advan-
tage of modern computing devices such as Tensor
Processing Units (TPUs) or Graphics Processing
Units (GPUs) which rely on parallel processing.
The Transformer is an encoder-decoder model that
was conceived to solve these problems.

The encoder is composed of three stages. In the
first stage input words are projected into an em-
bedded vector space. In order to capture the no-
tion of token position within the sequence, a po-
sitional encoding is added to the embedded input
vectors. Without positional encodings, the output
of the multi-head attention network would be the
same for the sentences “I love you more than her”
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and “I love her more than you”. The second stage
is a multi-head self-attention. Instead of comput-
ing a single attention, this stage computes multi-
ple attention blocks over the source, concatenates
them and projects them linearly back onto a space
with the initial dimensionality. The individual at-
tention blocks compute the scaled dot-product at-
tention with different linear projections. Finally
a position-wise fully connected feed-forward net-
work is used, which consists of two linear trans-
formations with a ReLU activation (Vinod Nair,
2010) in between.

Embedding 
& 

Positional Encoding 

Embedding 
& 

Positional Encoding 

Multi-Head 
Self-Attention 

Masked Multi-Head 
Self-Attention 

Feed Forward

Feed Forward

Multi-Head 
Attention 

Softmax

Inputs Targets

Output
Probabilities

Encoder Decoder

Figure 1: Simplified diagram of the Transformer model

The decoder operates similarly, but generates
one word at a time, from left to right. It is com-
posed of five stages. The first two are similar to
the encoder: embedding and positional encoding
and a masked multi-head self-attention, which un-
like in the encoder, forces to attend only to past
words. The third stage is a multi-head attention
that not only attends to these past words, but also
to the final representations generated by the en-
coder. The fourth stage is another position-wise
feed-forward network. Finally, a softmax layer al-
lows to map target word scores into target word
probabilities. For more specific details about the
architecture, refer to the original paper (Vaswani
et al., 2017).

3 Multi-Source translation

Multi-source translation consists in exploiting
multiple text inputs to improve NMT (Zoph and

Knight, 2016). In our case, we are using this ap-
proach in the Transformer architecture described
above and using only inputs from the same lan-
guage family.

4 Experiments

In this section we report details on the database,
training parameters and results.

4.1 Databases and Preprocessing

The experimental framework is the Biomedical
Translation Task (WMT18)2. The corpus used
to train the model are the one provided for the
task for the selected languages pairs: Spanish-
to-English (es2en), French-to-English (fr2en) and
Portuguese-to-English (pt2en). Sources are
mainly from Scielo and Medline and detailed in
Table 3.

Training Scielo Medline Total
es2en 713127 285358 998485
fr2en 9127 612645 621772
pt2en 634438 74267 708705
all2en 1356692 972270 2328962

Table 3: Corpus Statistics (number of segments).

Validation sets were taken from Khresmoi de-
velopment data3, as recommended in the task de-
scription. Each validation dataset contains 500
sentence pairs. Test sets were the ones provides
by the task for the previous year competition
(WMT174).

Preprocessing relied on three basic steps: tok-
enization, truecasing and limiting sentence length
to 80 words. Words were segmented by means of
Byte-Pair Encoding (BPE) (Sennrich et al., 2015).

4.2 Parameters

The system was implemented using OpenNMT in
PyTorch (Klein et al., 2017) with the hyperparam-
eters suggested in the website 5. Other parame-
ters used in training are defined in Table 4. Both
single-language systems and multi-source system

2http://www.statmt.org/wmt18/
biomedical-translation-task.html

3https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2122

4http://www.statmt.org/wmt17/
biomedical-translation-task.html

5http://opennmt.net/OpenNMT-py/FAQ.
html
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System es2en pt2en fr2en
WMT17 WMT18 WMT17 WMT18 WMT17 WMT18

Best performing system 37.49 43.31 43.88 42.58 - 25.78
Single-Language 39.35 39.06 44.31 38.54 31.75 19.42
Multi-Language 40.11 40.49 45.55 39.49 38.31 25.78

Table 1: Trained systems results for WMT17 and WMT18 official test sets.

Spanish Utilizando la base de datos Epistemonikos, la cual es mantenida mediante bsquedas realizadas en 30 bases de datos,
identificamos seis revisiones sistemticas que en conjunto incluyen 36 estudios aleatorizados pertinentes a la pregunta.

Single-Language Using the Epistemonikos database, which is maintained through searches in 30 databases, we identified six systematic
reviews including 36 randomized studies relevant to the question.

Multi-Language Using the Epistemonikos database, which is maintained through searches in 30 databases, we identified six systematic
reviews that altogether include 36 randomized studies relevant to the question.

Portuguese Os resultados dos modelos de regresso mostraram associao entre os fatores de correo estimados e os indicadores de adequao
propostos

Single-Language Regression models showed an association between estimated correction factors and the proposed adequacy indicators.

Multi-Language The results of the regression models showed an association between the estimated correction factors and the proposed
adequacy indicators.

French (Traduit par Docteur Serge Messier).

Single-Language [Doctor Serge Messier].

Multi-Language [(Translated by Doctor Serge Messier)].

Table 2: Spanish/Portuguese/French to English examples for WMT18

were trained with same architecture and parame-
ters.

Hparam Text-to-Text
Encoder layers 6
Decoder layers 6
Batch size 4096
Adam optimizer β1 = 0.9 β2 = 0.998

Attention heads 8

Table 4: Training parameters.

We trained three single-language systems, one
for each language pair. We required 14 epochs for
the Spanish-to-English system (7 hours of train-
ing), 16 epochs for the French-to-English sys-
tem (9 hours of training), and 17 epochs for the
Portuguese-to-English system (7 hours of train-
ing). For the multi-source system, which con-
catenated the three parallel corpus together, we
required 11 epochs (23 hours of training). We
stopped training when the validation accuracy did
not increase in two consecutive epochs.

4.3 Results

Best ranking systems from WMT17 and WMT18
are shown in Table 1, except for French-to-English

WMT17 since the references for this set are not
available. For this pair, we used 1000 sentences
from the Khresmoi development data. Table 1
shows BLEU results for the baseline systems, the
single-language and multi-source approaches.

The Transformer architecture outperforms
WMT17 best system. Results become even better
with the system is trained with the common
corpus of Romance languages, what we call the
multi-source approach. The latter is consistent
with the universal truth that more data equals
better results, even if the source language is not
the same.

Finally, Table 2 shows some examples of the
output translations.

5 Conclusions

The main conclusions of our experiments are that
the multi-source inputs of the same family applied
to the Transformer architecture can improve the
single input. Best improvements achieve an in-
crease of 6 BLEU points in translation quality.
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Abstract

This paper presents the results of the
WMT18 Metrics Shared Task. We
asked participants of this task to score
the outputs of the MT systems in-
volved in the WMT18 News Transla-
tion Task with automatic metrics. We
collected scores of 10 metrics and 8 re-
search groups. In addition to that, we
computed scores of 8 standard met-
rics (BLEU, SentBLEU, chrF, NIST,
WER, PER, TER and CDER) as base-
lines. The collected scores were eval-
uated in terms of system-level corre-
lation (how well each metric’s scores
correlate with WMT18 official man-
ual ranking of systems) and in terms
of segment-level correlation (how often
a metric agrees with humans in judging
the quality of a particular sentence rel-
ative to alternate outputs). This year,
we employ a single kind of manual eval-
uation: direct assessment (DA).

1 Introduction

Accurate machine translation (MT) evaluation
is important for measuring improvements in
system performance. Human evaluation can
be costly and time consuming, and it is not
always available for the language pair of in-
terest. Automatic metrics can be employed
as a substitute for human evaluation in such
cases, metrics that aim to measure improve-
ments to systems quickly and at no cost to
developers. In the usual set-up, an automatic
metric carries out a comparison of MT system
output translations and human-produced ref-
erence translations to produce a single overall

score for the system.1 Since there exists a large
number of possible approaches to producing
quality scores for translations, it is sensible to
carry out a meta-evaluation of metrics with
the aim to estimate their accuracy as a substi-
tute for human assessment of translation qual-
ity. The Metrics Shared Task2 of WMT annu-
ally evaluates the performance of automatic
machine translation metrics in their ability to
provide a substitute for human assessment of
translation quality.

Again, we keep the two main types of metric
evaluation unchanged from the previous years.
In system-level evaluation, each metric pro-
vides a quality score for the whole translated
test set (usually a set of documents, in fact).
In segment-level evaluation, a score is assigned
by a given metric to every individual sentence.

The underlying texts and MT systems come
from the News Translation Task (Bojar et al.,
2018, denoted as Findings 2018 in the follow-
ing). The texts were drawn from the news
domain and involve translations to/from Chi-
nese (zh), Czech (cs), German (de), Estonian
(et), Finnish (fi), Russian (ru), and Turkish
(tr), each paired with English, making a total
of 14 language pairs.

A single form of golden truth of translation
quality judgement is used this year:

• In Direct Assessment (DA) (Graham et
al., 2016), humans assess the quality of
a given MT output translation by com-
parison with a reference translation (as
opposed to the source and reference).
DA is the new standard used in WMT

1The availability of a reference translation is the key
difference between our task and MT quality estimation,
where no reference is assumed.

2http://www.statmt.org/wmt18/metrics-task.
html, starting with Koehn and Monz (2006) up to
Bojar et al. (2017)
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News Translation Task evaluation, requir-
ing only monolingual evaluators.

As in last year’s evaluation, the official
method of manual evaluation of MT outputs
is no longer “relative ranking” (RR, evaluat-
ing up to five system outputs on an annota-
tion screen relative to each other) as this was
changed in 2017 to DA. For system-level eval-
uation, we thus use the Pearson correlation
r of automatic metrics with DA scores. For
segment-level evaluation, we re-interpret DA
judgements as relative comparisons and use
Kendall’s τ as a substitute, see below for de-
tails and references.

Section 2 describes our datasets, i.e. the
sets of underlying sentences, system outputs,
human judgements of translation quality and
also participating metrics. Sections 3.1 and
3.2 then provide the results of system and
segment-level metric evaluation, respectively.
We discuss the results in Section 4.

2 Data
This year, we provided the task participants
with one test set along with reference trans-
lations and outputs of MT systems. Partici-
pants were free to choose which language pairs
they wanted to participate and whether they
reported system-level, segment-level scores or
both.

2.1 Test Sets
We use the following test set, i.e. a set of
source sentences and reference translations:

newstest2018 is the test set used in
WMT18 News Translation Task (see
Findings 2018), with approximately 3,000
sentences for each translation direction
(except Chinese and Estonian which have
3,981 and 2,000 sentences, resp.). new-
stest2018 includes a single reference trans-
lation for each direction.

2.2 Translation Systems
The results of the Metrics Task are likely af-
fected by the actual set of MT systems par-
ticipating in a given translation direction. For
instance, if all of the systems perform simi-
larly, it will be more difficult, even for hu-
mans, to distinguish between the quality of

translations. If the task includes a wide range
of systems of varying quality, however, or sys-
tems are quite different in nature, this could
in some way make the task easier for metrics,
with metrics that are more sensitive to certain
aspects of MT output performing better.

This year, the MT systems included in the
Metrics Task were:

News Task Systems are machine trans-
lation systems participating in the
WMT18 News Translation Task (see
Findings 2018).3

Hybrid Systems are created automatically
with the aim of providing a larger set
of systems against which to evaluate
metrics, as in Graham and Liu (2016).
Hybrid systems were created for new-
stest2018 by randomly selecting a pair of
MT systems from all systems taking part
in that language pair and producing a sin-
gle output document by randomly select-
ing sentences from either of the two sys-
tems. In short, we create 10K hybrid MT
systems for each language pair.

Excluding the hybrid systems, we ended up
with 149 systems across 14 language pairs.

2.3 Manual MT Quality Judgments
Direct Assessment (DA) was employed as the
“golden truth” to evaluate metrics again this
year. The details of this method of hu-
man evaluation is provided in two sections
for system-level evaluation (Section 2.3.1) and
segment-level evaluation (Section 2.3.2).

The DA manual judgements were provided
by MT researchers taking part in WMT tasks,
a number of in-house human evaluators at
Amazon and crowd-sourced workers on Ama-
zon Mechanical Turk.4 Only judgements
from workers who passed DA’s quality control
mechanism were included in the final datasets
used to compute system and segment-level
scores employed as a gold standard in the Met-
rics Task.

3One system for tr-en was unfortunately omitted
from the first run of human evaluation in the News
Translation Task and due to time constraints was sub-
sequently omitted from the Metrics Task evaluation,
Alibaba-Ensemble.

4https://www.mturk.com
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2.3.1 System-level Manual Quality
Judgments

In the system-level evaluation, the goal is to
assess the quality of translation of an MT sys-
tem for the whole test set. Our manual scoring
method, DA, nevertheless proceeds sentence
by sentence, aggregating the final score as de-
scribed below.

Direct Assessment (DA) This year the
translation task employed monolingual di-
rect assessment (DA) of translation adequacy
(Graham et al., 2013; Graham et al., 2014a;
Graham et al., 2016). Since sufficient levels
of agreement in human assessment of trans-
lation quality are difficult to achieve, the DA
setup simplifies the task of translation assess-
ment (conventionally a bilingual task) into
a simpler monolingual assessment. In addi-
tion, DA avoids bias that has been problem-
atic in previous evaluations introduced by as-
sessment of several alternate translations on a
single screen, where scores for translations had
been unfairly penalized if often compared to
high quality translations (Bojar et al., 2011).
DA therefore employs assessment of individual
translations in isolation from other outputs.

Translation adequacy is structured as a
monolingual assessment of similarity of mean-
ing where the target language reference trans-
lation and the MT output are displayed to
the human assessor. Assessors rate a given
translation by how adequately it expresses the
meaning of the reference translation on an
analogue scale corresponding to an underlying
0-100 rating scale.5

Large numbers of DA human assessments
of translations for all 14 language pairs in-
cluded in the News Translation Task were col-
lected from researchers and from workers on
Amazon’s Mechanical Turk, via sets of 100-
translation hits to ensure sufficient repeat as-
sessments per worker, before application of
strict quality control measures to filter out as-
sessments from poor performers.

In order to iron out differences in scoring
strategies attributed to distinct human as-
sessors, human assessment scores for transla-
tions were standardized according to an indi-

5The only numbering displayed on the rating scale
are extreme points 0 and 100%, and three ticks indicate
the levels of 25, 50 and 75 %.

vidual judge’s overall mean and standard de-
viation score. Final scores for MT systems
were computed by firstly taking the average
of scores for individual translations in the test
set (since some were assessed more than once),
before combining all scores for translations at-
tributed to a given MT system into its overall
adequacy score. The gold standard for system-
level DA evaluation is thus what is denoted
“Ave z” in Findings 2018 (Bojar et al., 2018).

Finally, although it was necessary to apply
a sentence length restriction in WMT human
evaluation prior to the introduction of DA, the
simplified DA setup does not require restric-
tion of the evaluation in this respect and no
sentence length restriction was applied in DA
WMT18.

2.3.2 Segment-level Manual Quality
Judgments

Segment-level metrics have been evaluated
against DA annotations for the newstest2018
test set. This year, a standard segment-level
DA evaluation of metrics, where each trans-
lation is assessed a minimum of 15 times,
was unfortunately not possible due to insuf-
ficient number of judgements collected. DA
judgements were therefore converted to rela-
tive ranking judgements (daRR) to produce
results. This is the same strategy as carried
out for some out-of-English language pairs in
last year’s evaluation.

daRR When we have at least two DA scores
for translations of the same source input, it is
possible to convert those DA scores into a rel-
ative ranking judgement, if the difference in
DA scores allows conclusion that one transla-
tion is better than the other. In the following,
we will denote these re-interpreted DA judge-
ments as “daRR”, to distinguish it clearly
from the “RR” golden truth used in the past
years.

Since the analogue rating scale employed by
DA is marked at the 0-25-50-75-100 points,
the difference in DA scores we employ to
distinguish translations that are better/worse
than one another is 25 points. Note that
we rely on judgements collected from known-
reliable volunteers and crowd-sourced workers
who passed DA’s quality control mechanism.
Any inconsistency that could arise from re-
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DA>1 Ave DA pairs daRR

cs-en 2,491 3.6 13,223 5,110
de-en 2,995 11.4 192,702 77,811
en-cs 1,586 4.9 15,311 5,413
en-de 2,150 5.3 47,041 19,711
en-et 1,035 13.6 90,755 32,202
en-fi 1,481 5.3 30,613 9,809
en-ru 2,954 6.2 54,260 22,181
en-tr 707 3.4 4,750 1,358
en-zh 3,915 6.5 86,286 28,602
et-en 2,000 11.2 118,066 56,721
fi-en 2,972 5.4 39,127 15,648
ru-en 2,916 4.9 31,361 10,404
tr-en 2,991 4.5 24,325 8,525
zh-en 3,952 7.2 97,474 33,357

Table 1: Number of judgements for DA con-
verted to daRR data; “DA>1” is the num-
ber of source input sentences in the manual
evaluation where at least two translations of
that same source input segment received a DA
judgement; “Ave” is the average number of
translations with at least one DA judgement
available for the same source input sentence;
“DA pairs” is the number of all possible pairs
of translations of the same source input result-
ing from “DA>1”; and “daRR” is the num-
ber of DA pairs with an absolute difference
in DA scores greater than the 25 percentage
point margin.

liance on DA judgements collected from low
quality crowd-sourcing, for example, is thus
prevented.

From the complete set of human assess-
ments collected for the News Translation Task,
all possible pairs of DA judgements attributed
to distinct translations of the same source were
converted into daRR better/worse judge-
ments. Distinct translations of the same
source input whose DA scores fell within 25
percentage points (which could have been
deemed equal quality) were omitted from the
evaluation of segment-level metrics. Conver-
sion of scores in this way produced a large set
of daRR judgements for all language pairs,
shown in Table 1 due to combinatorial ad-
vantage of extracting daRR judgements from
all possible pairs of translations of the same
source input.

Kendall’s Tau-like Formulation for
daRR We measure the quality of metrics’
segment-level scores against the daRR golden
truth using a Kendall’s Tau-like formulation,
which is an adaptation of the conventional
Kendall’s Tau coefficient. Since we do not
have a total order ranking of all translations
we use to evaluate metrics, it is not possible
to apply conventional Kendall’s Tau given
the current daRR human evaluation setup
(Graham et al., 2015). Vazquez-Alvarez and
Huckvale (2002) also note that a genuine
pairwise comparison is likely to lead to
more stable results for segment-level metric
evaluation.

Our Kendall’s Tau-like formulation, τ , is as
follows:

τ =
|Concordant| − |Discordant|
|Concordant| + |Discordant| (1)

where Concordant is the set of all human com-
parisons for which a given metric suggests the
same order and Discordant is the set of all
human comparisons for which a given metric
disagrees. The formula is not specific with re-
spect to ties, i.e. cases where the annotation
says that the two outputs are equally good.

The way in which ties (both in human and
metric judgement) were incorporated in com-
puting Kendall τ has changed across the years
of WMT Metrics Tasks. Here we adopt the
version used in the last years’ WMT17 daRR
evaluation (but not earlier). For a detailed
discussion on other options, see also Macháček
and Bojar (2014).

Whether or not a given comparison of a pair
of distinct translations of the same source in-
put, s1 and s2, is counted as a concordant
(Conc) or disconcordant (Disc) pair is defined
by the following matrix:

Metric
s1 < s2 s1 = s2 s1 > s2

H
um

an s1 < s2 Conc Disc Disc
s1 = s2 − − −
s1 > s2 Disc Disc Conc

In the notation of Macháček and Bojar
(2014), this corresponds to the setup used in
WMT12 (with a different underlying method
of manual judgements, RR):
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Metric
WMT12 < = >

H
um

an < 1 -1 -1
= X X X
> -1 -1 1

The key differences between the evaluation
used in WMT14–WMT16 and evaluation used
in WMT17 and WMT18 are (1) the move from
RR to daRR and (2) the treatment of ties.6 In
the years 2014-2016, ties in metrics scores were
not penalized. With the move to daRR, where
the quality of the two candidate translations
is deemed substantially different and no ties
in human judgements arise, it makes sense to
penalize ties in metrics’ predictions in order to
promote discerning metrics.

Note that the penalization of ties makes our
evaluation asymmetric, dependent on whether
the metric predicted the tie for a pair where
humans predicted < or >. It is now important
to interpret the meaning of the comparison
identically for humans and metrics. For error
metrics, we thus reverse the sign of the met-
ric score prior to the comparison with human
scores: higher scores have to indicate better
translation quality. In WMT18, we did this
for ITER and the original authors did this for
CharacTER.

To summarize, the WMT18 Metrics Task
for segment-level evaluation:

• excludes all human ties (this is already
implied by the construction of daRR
from DA judgements),

• counts metric’s ties as a Discordant pairs,

• ensures that error metrics are first con-
verted to the same orientation as the hu-
man judgements, i.e. higher score indi-
cating higher translation quality.

We employ bootstrap resampling (Koehn,
2004; Graham et al., 2014b) to estimate con-
fidence intervals for our Kendall’s Tau for-
mulation, and metrics with non-overlapping
95% confidence intervals are identified as hav-
ing statistically significant difference in perfor-
mance.

6Due to an error in the write-up for WMT17 (er-
rata to follow), this second change was not properly
reflected in the paper, only in the evaluation scripts.

2.4 Participants of the Metrics Shared
Task

Table 2 lists the participants of the WMT18
Shared Metrics Task, along with their metrics.
We have collected 10 metrics from a total of 8
research groups.

The following subsections provide a brief
summary of all the metrics that participated.
The list is concluded by our baseline metrics
in Section 2.4.9.

As in last year’s task, we asked participants
whose metrics are publicly available to pro-
vide links to where the code can be accessed.
Table 3 provides links for metrics that partic-
ipated in WMT18 that are publicly available
for download.

2.4.1 BEER
BEER (Stanojević and Sima’an, 2015) is a
trained evaluation metric with a linear model
that combines features sub-word feature indi-
cators (character n-grams) and global word or-
der features (skip bigrams) to get language ag-
nostic and fast to compute evaluation metric.
BEER has participated in previous years of
the evaluation task.

2.4.2 Blend
Blend incorporates existing metrics to form
an effective combined metric, employing SVM
regression for training and DA scores as the
gold standard. For to-English language pairs,
incorporated metrics include 25 lexical based
metrics and 4 other metrics. Since some lexi-
cal based metrics are simply different variants
of the same metric, there are only 9 kinds of
lexical based metrics, namely BLEU, NIST,
GTM, METEOR, ROUGE, Ol, WER, TER
and PER. 4 other metrics are CharacTER,
BEER, DPMF and ENTF.
Blend has participated in the Metrics Task

in WMT17. This year, Blend follows its
setup in WMT17, but enlarges the training
data since there are some data available in
WMT17. For to-English language pairs, there
are 9280 sentences as training data, while1620
sentences for English-Russian (en-ru). Experi-
ments show the performance of Blend can be
improved if the training data increases.
Blend is flexible to be applied to any lan-

guage pairs if incorporated metrics support the
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Metric Seg-level Sys-level Hybrids Participant
BEER • ⊘ ⊘ ILLC – University of Amsterdam (Stanojević and Sima’an, 2015)

BLEND • ⊘ ⊘ Tencent-MIG-AI Evaluation & Test Lab (Ma et al., 2017)
CharacTer • • • RWTH Aachen University (Wang et al., 2016a)

ITER • • ⋆ Jadavpur University (Panja and Naskar, 2018)
meteor++ • ⊘ ⊘ Peking University (Guo et al., 2018)

RUSE • ⊘ ⊘ Tokyo Metropolitan University (Shimanaka et al., 2018)
UHH_TSKM • ⊘ ⊘ (Duma and Menzel, 2017)

YiSi-* • ⊘ ⊘ NRC (Lo, 2018)

Table 2: Participants of WMT18 Metrics Shared Task. “•” denotes that the metric took part
in (some of the language pairs) of the segment- and/or system-level evaluation and whether
hybrid systems were also scored. “⊘” indicates that the system-level and hybrids are implied,
simply taking arithmetic average of segment-level scores. “⋆” indicates that the original ITER
system-level scores should be calculated as the micro-average of segment-level scores but we
calculate them as simple macro-averaged for the hybrid systems. See the ITER paper for more
details.

BEER https://github.com/stanojevic/beer
BLEND https://github.com/qingsongma/blend
CharacTer https://github.com/rwth-i6/CharacTER
RUSE https://github.com/Shi-ma/RUSE
YiSi-0, incl. -1 and -1_srl http://chikiu-jackie-lo.org/home/index.php/yisi

Baselines: http://github.com/moses-smt/mosesdecoder
BLEU, NIST scripts/generic/mteval-v13a.pl
CDER, PER, TER, WER mert/evaluator (“Moses scorer”)
sentBLEU mert/sentence-bleu

chrF, chrF+ https://github.com/m-popovic/chrF

Table 3: Metrics available for public download that participated in WMT18. Most of the
baseline metrics are available with Moses, relative paths are listed.

specific language pair and DA scores are avail-
able.

2.4.3 CharacTer
CharacTer (Wang et al., 2016b; Wang et
al., 2016a), identical to the 2016 setup, is
a character-level metric inspired by the com-
monly applied translation edit rate (TER). It
is defined as the minimum number of charac-
ter edits required to adjust a hypothesis, un-
til it completely matches the reference, nor-
malized by the length of the hypothesis sen-
tence. CharacTer calculates the character-
level edit distance while performing the shift
edit on word level. Unlike the strict match-
ing criterion in TER, a hypothesis word is
considered to match a reference word and
could be shifted, if the edit distance between
them is below a threshold value. The Lev-
enshtein distance between the reference and

the shifted hypothesis sequence is computed
on the character level. In addition, the lengths
of hypothesis sequences instead of reference
sequences are used for normalizing the edit
distance, which effectively counters the is-
sue that shorter translations normally achieve
lower TER.

Similarly to other character-level metrics,
CharacTer is applied to non-tokenized out-
puts and references, which also holds for this
year’s submission.

This year tokenization was carried out for
en-ru hypotheses and reference before calcu-
lating the scores, since this results in large im-
provements in terms of correlations. For other
language pairs a tokenizer was not used for
pre-processing. A python library was used for
calculating the Levenshtein distance, so that
the metric is now about 7 times faster than
before.
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2.4.4 ITER
ITER (Panja and Naskar, 2018) is an im-
proved Translation Edit/Error Rate (TER)
metric. In addition to the basic edit operations
in TER (insertion, deletion, substitution and
shift), ITER also allows stem matching and
uses optimizable edit costs and better normal-
ization.

Note that for segment-level evaluation, we
reverse the sign of the score, so that better
translations get higher scores. For system-
level confidence, we calculate the system-level
scores for hybrids systems slightly differently
than the original ITER definition would re-
quire. We use the unweighted arithmetic av-
erage of segment-level scores (macro-average)
whereas ITER would use the micro-average.

2.4.5 meteor++
meteor++ (Guo et al., 2018) is metric
based on Meteor (Denkowski and Lavie, 2014),
adding explicing treatment of “copy-words”,
i.e. words that are likely to be preserved across
all paraphrases of a sentence in a given lan-
guage.

2.4.6 RUSE
RUSE (Shimanaka et al., 2018) is a percep-
tron regressor based on three types of sentence
embeddings: Infersent, Quick-Thought and
Universal Sentence Encoder, designed with the
aim to utilize global sentence information that
cannot be captured by local features based on
character or word n-grams. The sentence em-
beddings come from pre-trained models and
the regression itself is trained on past manual
judgements in WMT shared tasks.

2.4.7 UHH_TSKM
UHH_TSKM (Duma and Menzel, 2017) is a
non-trained metric utilizing kernel functions,
i.e. methods for efficient calculation of over-
lap of substructures between the candidate
and the reference translations. The metric
uses both sequence kernels, applied on the to-
kenized input data, together with tree ker-
nels, that exploit the syntactic structure of
the sentences. Optionally, the match can also
be performed for the candidate and a pseudo-
reference (i.e. a translation by another MT
system) or for the source sentence and the

candidate back-translated into the source lan-
guage.

2.4.8 YiSi-0, YiSi-1 and YiSi-1_srl
The YiSi metrics (Lo, 2018) are recently pro-
posed semantic MT evaluation metrics in-
spired by MEANT_2.0 (?). Specifically,
YiSi-1 is identical to MEANT_2.0-nosrl
which featured in the WMT17 Metrics Task.
YiSi-1 also successfully served in the par-

allel corpus filtering task. Some details are
provided in the system description paper (?).
YiSi-1 measures the relative lexical seman-

tic similarity (weighted word embeddings co-
sine similarity aggregated into n-grams simi-
larity) of the candidate and reference trans-
lations, optionally taking the shallow seman-
tic structure (“srl”) into account. YiSi-0 is
a degenerate resource-free version using the
longest common character substring, instead
of word embeddings cosine similarity, to mea-
sure the word similarity of the candidate and
reference translations.

2.4.9 Baseline Metrics
As mentioned by Bojar et al. (2016), Metrics
Task occasionally suffers from “loss of knowl-
edge” when successful metrics participate only
in one year.

We attempt to avoid this by regularly eval-
uating also a range of “baseline metrics”:

• Mteval. The metrics BLEU (Pap-
ineni et al., 2002) and NIST (Dod-
dington, 2002) were computed using
the script mteval-v13a.pl7 that is
used in the OpenMT Evaluation Cam-
paign and includes its own tokeniza-
tion. We run mteval with the flag
--international-tokenization since
it performs slightly better (Macháček and
Bojar, 2013).

• Moses Scorer. The metrics TER
(Snover et al., 2006), WER, PER and
CDER (Leusch et al., 2006) were pro-
duced by the Moses scorer, which is used
in Moses model optimization. To tokenize
the sentences, we used the standard tok-
enizer script as available in Moses toolkit.
When tokenizing, we also convert all out-
puts to lowercase.

7http://www.itl.nist.gov/iad/mig/tools/
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Since Moses scorer is versioned on Github,
we strongly encourage authors of high-
performing metrics to add them to Moses
scorer, as this will ensure that their metric
can be easily included in future tasks.

• SentBLEU. The metric sentBLEU is
computed using the script sentence-bleu,
a part of the Moses toolkit. It is a
smoothed version of BLEU that corre-
lates better with human judgements for
segment-level. Standard Moses tokenizer
is used for tokenization.

• chrF The metrics chrF and chrF+
(Popović, 2015; Popović, 2017) are com-
puted using their original Python imple-
mentation.

We run chrF++.py with the parameters
-nw 0 -b 3 to obtain the chrF score and
with -nw 0 -b 1 to obtain the chrF+
score. Note that chrF intentionally re-
moves all spaces before matching the n-
grams, detokenizing the segments but also
concatenating words.

We originally planned to use the chrF
implementation which was recently made
available in Moses Scorer but it mishan-
dles Unicode characters for now.

The baselines serve in system and segment-
level evaluations as customary: BLEU, TER,
WER, PER and CDER for system-level only;
sentBLEU for segment-level only and chrF
for both.

Chinese word segmentation is unfortu-
nately not supported by the tokenization
scripts mentioned above. For scoring Chi-
nese with baseline metrics, we thus pre-
processed MT outputs and reference transla-
tions with the script tokenizeChinese.py8 by
Shujian Huang, which separates Chinese char-
acters from each other and also from non-
Chinese parts.

For computing system-level and segment-
level scores, the same scripts were employed
as in last year’s Metrics Task as well as for
generation of hybrid systems from the given
hybrid descriptions.

8http://hdl.handle.net/11346/WMT17-TVXH

3 Results

We discuss system-level results for news task
systems in Section 3.1. The segment-level re-
sults are in Section 3.2.

3.1 System-Level Results
As in previous years, we employ the Pearson
correlation (r) as the main evaluation measure
for system-level metrics. The Pearson correla-
tion is as follows:

r =

∑n
i=1(Hi − H)(Mi − M)√∑n

i=1(Hi − H)2
√∑n

i=1(Mi − M)2
(2)

where Hi are human assessment scores of all
systems in a given translation direction, Mi

are the corresponding scores as predicted by a
given metric. H and M are their means re-
spectively.

Since some metrics, such as BLEU, for ex-
ample, aim to achieve a strong positive cor-
relation with human assessment, while error
metrics, such as TER aim for a strong neg-
ative correlation, after computation of r for
metrics, we compare metrics via the absolute
value of a given metric’s correlation with hu-
man assessment.

Table 4 provides the system-level corre-
lations of metrics evaluating translation of
newstest2018 into English while Table 5 pro-
vides the same for out-of-English language
pairs. The underlying texts are part of
the WMT18 News Translation test set (new-
stest2018) and the underlying MT systems are
all MT systems participating in the WMT18
News Translation Task with the exception of a
single tr-en system not included in the initial
human evaluation run.

As recommended by Graham and Bald-
win (2014), we employ Williams significance
test (Williams, 1959) to identify differences
in correlation that are statistically significant.
Williams test is a test of significance of a dif-
ference in dependent correlations and there-
fore suitable for evaluation of metrics. Corre-
lations not significantly outperformed by any
other metric for the given language pair are
highlighted in bold in Tables 4 and 5.

Since pairwise comparisons of metrics may
be also of interest, e.g. to learn which metrics
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cs-en de-en et-en fi-en ru-en tr-en zh-en
n 5 16 14 9 8 5 14
Correlation |r| |r| |r| |r| |r| |r| |r|

BEER 0.958 0.994 0.985 0.991 0.982 0.870 0.976
BLEND 0.973 0.991 0.985 0.994 0.993 0.801 0.976
BLEU 0.970 0.971 0.986 0.973 0.979 0.657 0.978
CDER 0.972 0.980 0.990 0.984 0.980 0.664 0.982
CharacTER 0.970 0.993 0.979 0.989 0.991 0.782 0.950
ITER 0.975 0.990 0.975 0.996 0.937 0.861 0.980
meteor++ 0.945 0.991 0.978 0.971 0.995 0.864 0.962
NIST 0.954 0.984 0.983 0.975 0.973 0.970 0.968
PER 0.970 0.985 0.983 0.993 0.967 0.159 0.931
RUSE 0.981 0.997 0.990 0.991 0.988 0.853 0.981
TER 0.950 0.970 0.990 0.968 0.970 0.533 0.975
UHH_TSKM 0.952 0.980 0.989 0.982 0.980 0.547 0.981
WER 0.951 0.961 0.991 0.961 0.968 0.041 0.975
YiSi-0 0.956 0.994 0.975 0.978 0.988 0.954 0.957
YiSi-1 0.950 0.992 0.979 0.973 0.991 0.958 0.951
YiSi-1_srl 0.965 0.995 0.981 0.977 0.992 0.869 0.962

newstest2018

Table 4: Absolute Pearson correlation of to-English system-level metrics with DA human as-
sessment in newstest2018; correlations of metrics not significantly outperformed by any other
for that language pair are highlighted in bold; ensemble metrics are highlighted in gray.

en-cs en-de en-et en-fi en-ru en-tr en-zh
n 5 16 14 12 9 8 14
Correlation |r| |r| |r| |r| |r| |r| |r|

BEER 0.992 0.991 0.980 0.961 0.988 0.965 0.928
BLEND − − − − 0.988 − −
BLEU 0.995 0.981 0.975 0.962 0.983 0.826 0.947
CDER 0.997 0.986 0.984 0.964 0.984 0.861 0.961
CharacTER 0.993 0.989 0.956 0.974 0.983 0.833 0.983
ITER 0.915 0.984 0.981 0.973 0.975 0.865 −
NIST 0.999 0.986 0.983 0.949 0.990 0.902 0.950
PER 0.991 0.981 0.958 0.906 0.988 0.859 0.964
TER 0.997 0.988 0.981 0.942 0.987 0.867 0.963
WER 0.997 0.986 0.981 0.945 0.985 0.853 0.957
YiSi-0 0.973 0.985 0.968 0.944 0.990 0.990 0.957
YiSi-1 0.987 0.985 0.979 0.940 0.992 0.976 0.963
YiSi-1_srl − 0.990 − − − − 0.952

newstest2018

Table 5: Absolute Pearson correlation of out-of-English system-level metrics with DA human
assessment in newstest2018; correlations of metrics not significantly outperformed by any other
for that language pair are highlighted in bold; ensemble metrics are highlighted in gray.
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Figure 1: System-level metric significance test results for DA human assessment in newstest2018;
green cells denote a statistically significant increase in correlation with human assessment for
the metric in a given row over the metric in a given column according to Williams test.
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cs-en de-en et-en fi-en ru-en tr-en zh-en
n 10K 10K 10K 10K 10K 10K 10K
Correlation |r| |r| |r| |r| |r| |r| |r|

BEER 0.9497 0.9927 0.9831 0.9824 0.9755 0.7234 0.9677
BLEND 0.9646 0.9904 0.9820 0.9853 0.9865 0.7243 0.9686
BLEU 0.9557 0.9690 0.9812 0.9618 0.9719 0.5862 0.9684
CDER 0.9642 0.9797 0.9876 0.9764 0.9739 0.5767 0.9733
CharacTER 0.9595 0.9919 0.9754 0.9791 0.9841 0.6798 0.9424
ITER 0.9656 0.9904 0.9746 0.9885 0.9429 0.7420 0.9780
meteor++ 0.9367 0.9898 0.9753 0.9621 0.9892 0.7871 0.9541
NIST 0.9419 0.9816 0.9804 0.9655 0.9650 0.8622 0.9589
PER 0.9369 0.9820 0.9782 0.9834 0.9550 0.0433 0.9233
RUSE 0.9736 0.9959 0.9879 0.9829 0.9820 0.7796 0.9734
TER 0.9419 0.9699 0.9882 0.9599 0.9635 0.4495 0.9670
UHH_TSKM 0.9429 0.9794 0.9869 0.9738 0.9734 0.4433 0.9717
WER 0.9420 0.9612 0.9892 0.9534 0.9618 0.0720 0.9667
YiSi-0 0.9465 0.9925 0.9719 0.9694 0.9817 0.8629 0.9495
YiSi-1 0.9425 0.9909 0.9758 0.9641 0.9846 0.8810 0.9429
YiSi-1_srl 0.9565 0.9940 0.9783 0.9682 0.9860 0.7850 0.9540

newstest2018 Hybrids

Table 6: Absolute Pearson correlation of to-English system-level metrics with DA human assess-
ment for 10K hybrid super-sampled systems in newstest2018; ensemble metrics are highlighted
in gray.

en-cs en-de en-et en-fi en-ru en-tr en-zh
n 10K 10K 10K 10K 10K 10K 10K
Correlation |r| |r| |r| |r| |r| |r| |r|

BEER 0.9903 0.9891 0.9775 0.9587 0.9864 0.9327 0.9251
BLEND − − − − 0.9861 − −
BLEU 0.9931 0.9774 0.9706 0.9582 0.9767 0.7963 0.9414
CDER 0.9949 0.9842 0.9809 0.9605 0.9821 0.8322 0.9564
CharacTER 0.9902 0.9862 0.9495 0.9627 0.9814 0.7752 0.9784
ITER 0.8649 0.9778 0.9817 0.9664 0.9650 0.8724 −
NIST 0.9967 0.9839 0.9797 0.9436 0.9877 0.8703 0.9442
PER 0.9865 0.9787 0.9545 0.9044 0.9862 0.8289 0.9500
TER 0.9948 0.9861 0.9770 0.9391 0.9845 0.8373 0.9591
WER 0.9944 0.9842 0.9772 0.9418 0.9829 0.8239 0.9537
YiSi-0 0.9713 0.9829 0.9648 0.9422 0.9879 0.9530 0.9513
YiSi-1 0.9851 0.9826 0.9761 0.9384 0.9893 0.9418 0.9572
YiSi-1_srl − 0.9881 − − − − 0.9479

newstest2018 Hybrids

Table 7: Absolute Pearson correlation of out-of-English system-level metrics with DA human
assessment for 10K hybrid super-sampled systems in newstest2018; ensemble metrics are high-
lighted in gray.
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Figure 2: System-level metric significance test results for 10K hybrid systems (DA human eval-
uation) from newstest2018; green cells denote a statistically significant increase in correlation
with human assessment for the metric in a given row over the metric in a given column according
to Williams test.
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significantly outperform the most widely em-
ployed metric BLEU, we include significance
test results for every competing pair of metrics
including our baseline metrics in Figure 1.

The sample of systems we employ to evalu-
ate metrics is often small, as few as five MT
systems for cs-en, for example. This can lead
to inconclusive results, as identification of sig-
nificant differences in correlations of metrics
is unlikely at such a small sample size. Fur-
thermore, Williams test takes into account the
correlation between each pair of metrics, in ad-
dition to the correlation between the metric
scores themselves, and this latter correlation
increases the likelihood of a significant differ-
ence being identified.

To strenghten the conclusions of our evalu-
ation, we include significance test results for
large hybrid-super-samples of systems (Gra-
ham and Liu, 2016). 10K hybrid systems were
created per language pair, with correspond-
ing DA human assessment scores by sam-
pling pairs of systems from WMT18 News
Translation Task, creating hybrid systems by
randomly selecting each candidate translation
from one of the two selected systems. Sim-
ilar to last year, not all metrics participat-
ing in the system-level evaluation submitted
metric scores for the large set of hybrid sys-
tems. Fortunately, taking a simple average
of segment-level scores is the proper aggrega-
tion method for almost all metrics this year, so
where needed, we provided scores for hybrids
ourselves, see Table 2.

Correlations of metric scores with human as-
sessment of the large set of hybrid systems are
shown in Tables 6 and 7, where again metrics
not significantly outperformed by any other
are highlighted in bold. Figure 2 then pro-
vides significance test results for hybrid super-
sampled correlations for all pairs of competing
metrics for a given language pair.

3.2 Segment-Level Results
Segment-level evaluation relies on the manual
judgements collected in the News Translation
Task evaluation. This year, we were unable to
follow the methodology outlined in Graham
et al. (2015) for evaluation of segment-level
metrics because the sampling of sentences did
not provide sufficient number of assessments
of the same segment. We therefore convert

pairs of DA scores for competing translations
to daRR better/worse preferences and employ
a Kendall’s Tau formulation as described in
Section 2.3.2.

Results of the segment-level human evalua-
tion for translations sampled from the News
Translation Task are shown in Tables 8 and
9, where metric correlations not significantly
outperformed by any other metric are high-
lighted in bold. Head-to-head significance test
results for differences in metric performance
are included in Figure 3.

4 Discussion

4.1 Obtaining Human Judgements

Human data was collected in the usual way,
a portion via crowd-sourcing and the remain-
ing from researchers who mainly committed
their time contribution to the manual evalua-
tion as they had submitted a system in that
language pair. Evaluation of translations em-
ployed the DA set-up and it again successfully
acquired sufficient judgments to evaluate sys-
tems. As in the previous years, hybrid super-
sampling proved very effective and allowed to
obtain conclusive results of system-level evalu-
ation even for language pairs where as few as 5
MT systems participated. We should however
note that hybrid systems are constructed by
randomly mixing sentences coming from dif-
ferent MT systems. As soon as document-
level evaluation becomes relevant (which we
anticipate in the next evaluation campaign al-
ready), this style of hybridization is suscep-
tible to breaking cross-sentence references in
MT outputs and may no longer be applicable.

In the case of segment-level evaluation, the
optimal human evaluation data was unfor-
tunately not available due to resource con-
straints. Conversion of document-level data
held as a substitute for segment-level DA
scores. These scores are however not opti-
mal for evaluation of segment-level metrics
and we would like to return to DA’s stan-
dard segment-level evaluation in future, where
a minimum of 15 human judgments of transla-
tion quality are collected per translation and
combined to get highly accurate scores for
translations.
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cs-en de-en et-en fi-en ru-en tr-en zh-en
Human Evaluation daRR daRR daRR daRR daRR daRR daRR
n 5,110 77,811 56,721 15,648 10,404 8,525 33,357
Correlation τ τ τ τ τ τ τ

BEER 0.295 0.481 0.341 0.232 0.288 0.229 0.214
BLEND 0.322 0.492 0.354 0.226 0.290 0.232 0.217
CharacTER 0.256 0.450 0.286 0.185 0.244 0.172 0.202
ITER 0.198 0.396 0.235 0.128 0.139 −0.029 0.144
meteor++ 0.270 0.457 0.329 0.207 0.253 0.204 0.179
RUSE 0.347 0.498 0.368 0.273 0.311 0.259 0.218
sentBLEU 0.233 0.415 0.285 0.154 0.228 0.145 0.178
UHH_TSKM 0.274 0.436 0.300 0.168 0.235 0.154 0.151
YiSi-0 0.301 0.474 0.330 0.225 0.294 0.215 0.205
YiSi-1 0.319 0.488 0.351 0.231 0.300 0.234 0.211
YiSi-1_srl 0.317 0.483 0.345 0.237 0.306 0.233 0.209

newstest2018

Table 8: Segment-level metric results for to-English language pairs in newstest2018: absolute
Kendall’s Tau formulation of segment-level metric scores with DA scores; correlations of metrics
not significantly outperformed by any other for that language pair are highlighted in bold;
ensemble metrics are highlighted in gray.

en-cs en-de en-et en-fi en-ru en-tr en-zh
Human Evaluation daRR daRR daRR daRR daRR daRR daRR
n 5,413 19,711 32,202 9,809 22,181 1,358 28,602
Correlation τ τ τ τ τ τ τ

BEER 0.518 0.686 0.558 0.511 0.403 0.374 0.302
BLEND − − − − 0.394 − −
CharacTER 0.414 0.604 0.464 0.403 0.352 0.404 0.313
ITER 0.333 0.610 0.392 0.311 0.291 0.236 −
sentBLEU 0.389 0.620 0.414 0.355 0.330 0.261 0.311
YiSi-0 0.471 0.661 0.531 0.464 0.394 0.376 0.318
YiSi-1 0.496 0.691 0.546 0.504 0.407 0.418 0.323
YiSi-1_srl − 0.696 − − − − 0.310

newstest2018

Table 9: Segment-level metric results for out-of-English language pairs in newstest2018: absolute
Kendall’s Tau formulation of segment-level metric scores with DA scores; correlations of metrics
not significantly outperformed by any other for that language pair are highlighted in bold;
ensemble metrics are highlighted in gray.
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Figure 3: daRR segment-level metric significance test results for all language pairs (new-
stest2018): Green cells denote a significant win for the metric in a given row over the metric in
a given column according bootstrap resampling.
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4.2 Overall Metric Performance

As always, the observed performance of met-
rics depends on the underlying texts and sys-
tems that participate in the News Transla-
tion Task. Two new metrics, RUSE and YiSi
stand out as metrics that achieve highest cor-
relation in the system level evaluation in more
than one language pair according to the hybrid
evaluation, and perform great across all their
language pairs on average. ITER also per-
forms very well in en-et, en-fi, zh-en and sev-
eral other languages but fails for en-ru and en-
cs, which drags its overall performance down.

Both YiSi and RUSE are based on neural
networks (YiSi via word and phrase embed-
dings, RUSE via sentence embeddings). This
is a new trend compared to the last year evalu-
ation where the best performance was reached
by character-level (not deep) metrics BEER,
chrF (and its variants) and CharacTer.

It is however important to note that the re-
sults of performance agreggated over language
pairs are not particularly stable across years.
In the last year’s evaluation, NIST seemed
worse than TER. The overall results is the op-
posite this year and NIST even ranks slightly
better than RUSE in terms of average system-
level correlation across languages.

Overall, the reported figures confirm the ob-
servation from the past years that system-
level metrics can achieve correlations above
0.9 but even the best ones can fall to 0.7 or
0.8 for some language pairs. Kendall’s Tau
achieved by segment-level metrics are gener-
ally lower, in the range of 0.25–0.4. The
best metrics in their best language pairs can
reach up to 0.69 of segment-level correlations
with humans. This capping could be possibly
in part attributed to the sub-optimal human
evaluation data, DA judgements converted to
relative ranking.

Two metrics that stand out as performing
consistently well are RUSE for evaluation of
into-English translation and YiSi-1* for out-
of-English. Overall, YiSi*, BEER, Char-
acTER, RUSE, and BLEND (in this order)
outperform sentBLEU.

All of the “winners” in this years campaign
are publicly available, which is very good for
their prospective wider adoption. If partici-
pants could put the additional effort of adding

their code to Moses scorer, this would guar-
antee their long-term inclusion in the Metrics
Task.

5 Conclusion

This paper summarizes the results of WMT18
shared task in machine translation evaluation,
the Metrics Shared Task. Participating met-
rics were evaluated in terms of their correlation
with human judgment at the level of the whole
test set (system-level evaluation), as well as
at the level of individual sentences (segment-
level evaluation). For the former, best met-
rics reach over 0.95 Pearson correlation or bet-
ter across several language pairs. Correlations
varied more than usual between 0.2 and 0.7
in terms of segment-level metrics Kendall’s τ
results.
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Abstract

We report the results of the WMT18 shared
task on Quality Estimation, i.e. the task of
predicting the quality of the output of ma-
chine translation systems at various granular-
ity levels: word, phrase, sentence and doc-
ument. This year we include four language
pairs, three text domains, and translations pro-
duced by both statistical and neural machine
translation systems. Participating teams from
ten institutions submitted a variety of systems
to different task variants and language pairs.

1 Introduction

This shared task builds on its previous six edi-
tions to further examine automatic methods for es-
timating the quality of machine translation (MT)
output at run-time, without the use of reference
translations. It includes the (sub)tasks of word-
level, phrase-level, sentence-level and document-
level estimation. In addition to advancing the state
of the art at all prediction levels, our goals include:

• To study the performance of quality estima-
tion approaches on the output of neural MT
systems. We do so by providing datasets for
two language pairs where source segments
were translated by both statistical phrase-
based and neural MT systems.

• To study the predictability of missing words
in the MT output. To do so, for the first time
we provide data annotated for such errors at
training time.

• To study the predictability of source words
that lead to errors in the MT output. To do so,
for the first time we provide source segments
annotated for such errors at the word level.

• To study the effectiveness of manually as-
signed labels for phrases. For that we provide

a dataset where each phrase was annotated by
human translators.

• To investigate the utility of detailed informa-
tion logged during post-editing. We do so
by providing post-editing time, keystrokes, as
well as post-editor ID.

• To study quality prediction for documents
from errors annotated at word-level with
added severity judgements. This is done us-
ing a new corpus manually annotated with
a fine-grained error taxonomy, from which
document-level scores are derived.

This year’s shared task provides new training
and test datasets for all tasks, and allows partici-
pants to explore any additional data and resources
deemed relevant. Tasks make use of large datasets
produced either from post-editions or annotations
by professional translators, or from direct human
annotations. The following text domains are avail-
able for different languages and tasks: informa-
tion technology (IT), life sciences, and product ti-
tle and descriptions on sports and outdoor activ-
ities. In-house statistical and neural MT systems
were built to produce translations for the two first
domains, while an online system was used for the
third domain.

The four tasks are defined as follows: Task 1
aims at predicting post-editing effort at sentence
level (Section 5); Task 2 aims at predicting words
that need editing, as well as missing words and
incorrect source words (Section 6); Task 3 aims
at predicting phrases that need editing, as well as
missing phrases and incorrect source phrases (Sec-
tion 7); and Task 4 (Section 8) aims at predicting
a score for an entire document as a function of the
proportion of incorrect words in such a document,
weighted by the severity of the different errors.
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Five datasets and language pairs are used
for different tasks (Section 4): English-German
(Tasks 1, 2) and English-Czech (Tasks 1, 2) on
the IT domain, English-Latvian (Tasks 1, 2) and
German-English (Tasks 1, 2, 3), both on the life
sciences domain, English-French (Task 4) with
product titles and descriptions within the sports
and outdoor activities domain.

Participants are provided with a baseline set of
features for each task, and a software package to
extract these and other quality estimation features,
and perform model learning (Section 2). Partici-
pants (Section 3) could submit up to two systems
for each task and language pair. A discussion on
the main goals and findings from this year’s task
is given in Section 9.

2 Baseline systems

Sentence-level baseline system: For Task 1,
QUEST++1 (Specia et al., 2015) was used to ex-
tract 17 MT system-independent features from the
source and translation (target) files and parallel
corpora:

• Number of tokens in the source and target
sentences.
• Average source token length.
• Average number of occurrences of the target

word within the target sentence.
• Number of punctuation marks in source and

target sentences.
• Language model (LM) probability of source

and target sentences based on models built
using the source or target sides of the parallel
corpus used to train the SMT system.
• Average number of translations per source

word in the sentence as given by the IBM
model 1 extracted using the SMT parallel
corpus, and thresholded such that P (t|s) >
0.2 or P (t|s) > 0.01.
• Percentage of unigrams, bigrams and tri-

grams in frequency quartiles 1 (lower fre-
quency words) and 4 (higher frequency
words) in the source language extracted from
the source side of the SMT parallel corpus.
• Percentage of unigrams in the source sen-

tence seen in the source side of the SMT par-
allel corps.

These features were used to train a Support Vec-
tor Regression (SVR) algorithm using a Radial

1https://github.com/ghpaetzold/
questplusplus

Basis Function (RBF) kernel within the SCIKIT-
LEARN toolkit.2 The γ, ε and C parameters were
optimised via grid search with 5-fold cross valida-
tion on the training set, resulting in γ=0.01, ε =
0.0825, C = 20. This baseline system has been
consistently used as the baseline system for all
editions of the sentence-level task (Callison-Burch
et al., 2012; Bojar et al., 2013, 2014, 2015, 2016,
2017), and has proved strong enough for predict-
ing various forms of post-editing effort across a
range of language pairs and text domains for sta-
tistical MT systems. This year it is also bench-
marked on neural MT outputs.

Word-level baseline system: For Task 2, the
baseline features were extracted with the MAR-
MOT tool (Logacheva et al., 2016). These are 28
features that have been deemed the most informa-
tive in previous research on word-level QE, mostly
inspired by (Luong et al., 2014). This is the same
baseline system used in WMT17:

• Word count in the source and target sen-
tences, and source and target token count ra-
tio. Although these features are sentence-
level (i.e. their values will be the same for all
words in a sentence), the length of a sentence
might influence the probability of a word be-
ing wrong.
• Target token, its left and right contexts of one

word.
• Source word aligned to the target token, its

left and right contexts of one word. The
alignments were given by the SMT system
that produced the automatic translations.
• Boolean dictionary features: target token is

a stop word, a punctuation mark, a proper
noun, or a number.
• Target language model features:

– The order of the highest order ngram
which starts and end with the target to-
ken.

– The order of the highest order ngram
which starts and ends with the source to-
ken.

– The part-of-speech (POS) tags of the tar-
get and source tokens.

– Backoff behaviour of the ngrams
(ti−2, ti−1, ti), (ti−1, ti, ti+1),
(ti, ti+1, ti+2), where ti is the target

2http://scikit-learn.org/
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token (backoff behaviour is computed
as described by (2011)).

In addition to that, six new features were in-
cluded which contain combinations of other fea-
tures, and which proved useful in (Kreutzer et al.,
2015; Martins et al., 2016):

• Target word + left context.
• Target word + right context.
• Target word + aligned source word.
• POS of target word + POS of aligned source

word.
• Target word + left context + source word.
• Target word + right context + source word.

The baseline system models the task as a
sequence prediction problem using the Linear-
Chain Conditional Random Fields (CRF) algo-
rithm within the CRFSuite tool.3 The model was
trained using passive-aggressive optimisation al-
gorithm.

We note that this baseline system was only used
to predict OK/BAD classes for existing words in
the MT output. No baseline system was provided
for predicting missing words or erroneous source
words.

Phrase-level baseline system: The phrase-level
system is identical to the one used in last year’s
shared task. The phrase-level features were also
extracted with MARMOT, but they are different
from the word-level features. They are based on
the sentence-level features in QUEST++.4 These
are the so-called “black-box” features – features
that do not use the internal information from the
MT system. The baseline uses the following 72
features:

• Source phrase frequency features:

– average frequency of ngrams (unigrams,
bigrams, trigrams) in different quartiles
of frequency (the low and high fre-
quency ngrams) in the source side of the
SMT parallel corpus.

– percentage of distinct source ngrams
(unigrams, bigrams, trigrams) seen in
the source side of the SMT parallel cor-
pus.

3http://www.chokkan.org/software/
crfsuite/

4http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox

• Translation probability features:

– average number of translations per
source word in the phrase as given
by the IBM model 1 extracted using
the SMT parallel corpus (with different
translation probability thresholds: 0.01,
0.05, 0.1, 0.2, 0.5).

– average number of translations per
source word in the phrase as given
by the IBM model 1 extracted using
the SMT parallel corpus (with different
translation probability thresholds: 0.01,
0.05, 0.1, 0.2, 0.5) weighted by the fre-
quency of each word in the source side
of the parallel SMT corpus.

• Punctuation features:

– difference between numbers of various
punctuation marks (periods, commas,
colons, semicolons, question and excla-
mation marks) in the source and the tar-
get phrases.

– difference between numbers of various
punctuation marks normalised by the
length of the target phrase.

– percentage of punctuation marks in the
target or source phrases.

• Language model features:

– log probability of the source or target
phrases based on models built using the
source or target sides of the parallel cor-
pus used to train the SMT system.

– perplexity of the source and the target
phrases using the same models as above.

• Phrase statistics:

– lengths of the source or target phrases.
– ratio between the source and target

phrase lengths.
– average length of tokens in source or tar-

get phrases.
– average occurrence of target word

within the target phrase.

• Alignment features:

– number of unaligned target words, us-
ing the word alignment provided by the
SMT decoder.

– number of target words aligned to more
than one source word.
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– average number of alignments per word
in the target phrase.

• Part-of-speech features:

– percentage of content words in the
source or target phrases.

– percentage of words of a particular part
of speech tag (verb, noun, pronoun) in
the source or target phrases.

– ratio of numbers of words of a particu-
lar part of speech (verb, noun, pronoun)
between the source and target phrases.

– percentage of numbers and alphanu-
meric tokens in the source or target
phrases.

– ratio between the percentage of numbers
and alphanumeric tokens in the source
and target phrases.

Analogously to the baseline word-level system,
we treat phrase-level QE as a sequence labelling
task, and model it using CRF from the CRFSuite
toolkit and the passive-aggressive optimisation al-
gorithm.

Once more, this baseline system was only used
to predict OK/BAD classes for existing phrases in
the MT output. No baseline system was provided
for predicting missing phrases or erroneous source
phrases.

3 Participants

Table 1 lists all participating teams submitting sys-
tems to any of the tasks. Each team was allowed
up to two submissions for each task variant and
language pair. In the descriptions below, participa-
tion in specific tasks is denoted by a task identifier
(T1 = Task 1, T2 = Task 2, T3 = Task 3, T4 = Task
4).

CMU-LTI (T2):

The CMU-LTI team proposes a Contextual
Encoding model for QE. The model consists
in three major parts that encode the local
and global context information for each tar-
get word. The first part uses an embedding
layer to represent words and their POS tags
in both languages. The second part leverages
a one-dimensional convolution layer to inte-
grate local context information for each target
word. The third part applies a stack of feed-
forward and recurrent neural networks to fur-
ther encode the global context in the sentence

before making the predictions. Syntactic fea-
tures, such as ngrams, are then integrated
to the final feed-forward layer in the neu-
ral model. This model achieves competitive
results on the English-Czech and English-
Latvian word-level QE task.

JU-USAAR (T2):

JU-USAAR presents two approaches to
word-level QE: (i) a Bag-of-Words (BoW)
model, and (ii) a Paragraph Vector (Doc2Vec)
model (Le and Mikolov, 2014). In the
BoW model, bag-of-words are prepared from
source sentences for each target word appear-
ing in both the MT and PE output in the train-
ing data. For every target word appearing in
the MT output in the development set, the
cosine similarity between the corresponding
source sentence and the bag-of-words for the
same target word is computed. From this re-
sult, a threshold (for the target word) is de-
fined above which the word is retained (i.e.,
considered ‘OK’). In the Doc2Vec-based ap-
proach, for each target word appearing in
both MT and PE output in the training data,
two document vectors are prepared from (i)
the corresponding source sentences and (ii)
the bag-of-words (as in the BoW model) of
the target word. Next, the similarity between
these two document vectors for every target
word is computed. From the Doc2Vec sim-
ilarity score and the corresponding PE deci-
sion (i.e., whether or not the target word is
retained in the PE in the training dataset), a
system level threshold is defined. For the test
set sentences, if the Doc2Vec similarity score
for a target word exceeds this threshold value,
then the target word labelled as ‘OK’, other-
wise it is labelled as ‘BAD’.

MEQ (T1)

The Vicomtech team submitted two ap-
proaches. uMQE is an unsupervised mini-
malist approach based on two simple mea-
sures of accuracy and fluency, respectively.
Accuracy is computed via overlapping lexical
translation bags of words, with a set expan-
sion mechanism based on longest common
prefixes and surface-defined named entities.
Fluency is computed by taking the inverse of
cross-entropy, according to an in-domain lan-
guage model. Both measures are combined
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ID Participating team
CMU-LTI Carnegie Melon University, US (Hu et al., 2018)

JU-USAAR Jadavpur University, India & University of Saarland, Germany (Basu et al., 2018)
MQE Vicomtech, Spain (Etchegoyhen et al., 2018)

QEbrain Alibaba Group Inc, US (Wang et al., 2018)
RTM Referential Translation Machines, Turkey (Biçici, 2018)

SHEF University of Sheffield, UK (Ive et al., 2018b)
TSKQE University of Hamburg (Duma and Menzel, 2018)

UAlacant University of Alacant, Spain (Sánchez-Martı́ı́nez et al., 2018)
UNQE Jiangxi Normal University, China
UTartu University of Tartu, Estonia (Yankovskaya et al., 2018)

Table 1: Participants in the WMT18 Quality Estimation shared task.

via simple arithmetic means on rescaled val-
ues, i.e., no machine learning is used. Since
it is unsupervised, the method can only be
meaningfully evaluated on the ranking task.
sMQE uses the same two features as uMQE,
but with supervision. A Support Vector Re-
gressor based on these two features is trained
on the available data and used to predict QE
scores.

QEbrain (T1, T2):

QE brain uses a conditional target language
model as a robust feature extractor with a
novel bidirectional transformer which is pre-
trained on a large parallel corpus filtered to
contain “in-domain like” sentences. For QE
inference, the feature extraction model can
produce not only the high-level joint latent
semantic representation between the source
and the machine translation, but real-valued
measurements of possible erroneous tokens
based on the prior knowledge learned from
the parallel data. More specifically, it uses
the multi-head self-attention mechanism and
transformer neural networks (Vaswani et al.,
2017) to build the language model. It con-
tains one transformer encoder for the source
and a bidirectional transformer encoder for
the target. After the feature extraction model
is trained, the features are extracted and com-
bined with human-crafted features from the
QE baseline system and fed into a Bi-LSTM
predictive model for QE. A greedy ensemble
selection method is used to decrease the in-
dividual model errors and increase model di-
versity. The bi-LSTM QE model is trained
on the official QE data plus artificially gener-
ated data and fine-tuned with only the official
WMT18 QE data.

RTM (T1, T2, T3, T4):

These submissions build on the previ-
ous year’s Referential Translation Machine
(RTM) approach (Biçici, 2017). RTMs pre-
dict data translation between the instances in
the training set and the test set using inter-
pretants, data close to the task instances. In-
terpretants provide context for the prediction
task and are used during the derivation of the
features measuring the closeness of the test
sentences to the training data, the difficulty
of translating them, and to identify transla-
tion acts between any two data sets for build-
ing prediction models. Task-specific qual-
ity prediction RTM models are built using
the WMT News translation task corpora, tak-
ing MT models as a black-box and predict-
ing translation scores independently on the
MT model. Multiple machine learning tech-
niques are used and averaged based on their
training set performance for label prediction.
For sequence classification tasks (T2 and T3),
Global Linear Models with dynamic learning
(Bicici, 2013) are used.

SHEF (T1, T2, T3, T4):

SHEF submitted two systems per task vari-
ant: SHEF-PT and SHEF-bRNN. SHEF-
PT is based on a re-implementation of the
POSTECH system of (Kim et al., 2017),
SHEF-bRNN uses a bidirectional recurrent
neural network (bRNN) (Ive et al., 2018a).
PT systems are pre-trained using in-domain
corpora provided by the organisers. bRNN
systems uses two encoders to learn repre-
sentations of <source, MT> sentence pairs.
These representations are used directly to
make word-level predictions. A weighted
sum over word representations as defined
by an attention mechanism is used to make
sentence-level predictions. For phrase-level,
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a standard attention-based neural MT archi-
tecture is used. Different parts of the source
sentence are attended to produce MT word
vectors. Phrase-level predictions are based
on representations computed as the sum of
their word vectors. For predicting source
tags, the source and MT inputs to the mod-
els are swapped. The document-level ar-
chitecture wraps the sentence-level PT and
bRNN architectures. PT systems are pre-
trained using either additional in-domain or
out-of-domain Europarl data. For the multi-
task learning system (SHEF-mtl), weights
of sentence-level modules are pre-trained to
predict sentence MQM scores.

TSKQE (T1):

The TSKQE submissions represent an exten-
sion over the previous UHH-STK submis-
sions to the WMT17 QE shared task, which
combine the power of sequence and tree ker-
nels applied on source segments, candidate
translation and back-translations of the MT
output into the source language. In addi-
tion, in order to predict the HTER scores,
one of the current submissions also explores
pseudo-references, which were obtained by
translating the source sentences into the tar-
get language using an online MT system.
The sequence kernels were applied on the to-
kenised data, while tree kernels were applied
to dependency trees.

UAlacant (T1, T2):

The UAlacant submissions use phrase tables
from OPUS5 and a two hidden layer feed-
forward neural network for word-level MT
QE. Phrase tables are used to extract fea-
tures for each word and gap in the machine-
translated segment for which quality is esti-
mated. These features are then used together
with the baseline features for predicting the
need of a deletion or an insertion. The neural
network takes as input not only the features
for the word and the gap on which a deci-
sion is to be made, but also the features of
the surrounding gaps and words in a sliding-
window fashion within a context window of
size three. The predictions made at the word
level allow to obtain an approximate HTER

5http://opus.nlpl.eu/

score which is used for the submissions to the
sentence-level task.

UNQE (T1):

The UNQE submissions employ the uni-
fied neural network architecture (UNQE) for
sentence-level QE tasks (Li et al., 2018).
The approach combines a bidirectional RNN
encoder-decoder with attention mechanism
sub-network and an RNN into a single large
neural network, which extracts the quality
vectors of the translation outputs through
the bidirectional RNN encoder-decoder, and
predicts the HTER value of the transla-
tion output by RNN. The input text goes
through tokenisation, true casing and sub-
word unit segmentation. The models are pre-
trained with a large parallel bilingual cor-
pus and fine-tuned with the training data of
the sentence-level QE share task. The re-
sults submitted are averages of the predicted
HTER scores under different dimension set-
tings.

UTartu (T1):

UTartu proposes two methods for the
sentence-level task. The first method uses at-
tention weights of a neural MT system ap-
plied to each sentence pair to compute the
probability of the output sentence under the
model (forced-decoding). The confidence of
the model is computed via metrics of av-
erage entropy of the attention weights per
each input/output token. The second method
computes the bleu2vec metric, which ex-
tends BLEU with token or n-gram embed-
dings, but here the metric is made cross-
lingual by means of an unsupervised cross-
lingual mapping between the source and
target language embedding spaces. Three
versions of the resulting metric are used:
one based on 3-grams, one with tokens
(unigrams) and one with byte-pair encoded
sub-words (also unigrams). Both submis-
sions use the 17 standard black-box features
implemented in QuEst. QuEst+Attention
combines them with the first approach and
QuEst+Att+CrEmb3 combines QuEst and
both approaches together.
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4 Datasets

This year we further expand the datasets used in
WMT17 by adding: more instances (see Table 2),
more languages (four language pairs), more MT
architectures (neural and statistical MT), and dif-
ferent types of annotation (manual and extracted
from manual post-editing). In addition, new data
was collected and provided for Task 4, on a fifth
language pair and third text domain.

4.1 Tasks 1 and 2

The initial data was collected as part of the QT21
project6 and is fully described in (Specia et al.,
2017). However, for all language pairs and MT
system types, we filtered this data to remove most
cases with no edits performed. A skewed distri-
bution towards good quality translations has been
shown to be a problem in previous years, and is
even more critical with NMT outputs, where up to
about half of the MT sentences require no post-
editing at all. We kept only a small proportion of
HTER=0 sentences in training, development and
test sets.

The structure used for the data has been the
same since WMT15. Each data instance consists
of (i) a source sentence, (ii) its automatic trans-
lation into the target language, (iii) the manually
post-edited version of the automatic translation,
(iv) one or more post-editing effort scores as la-
bels. Professional post-edits are used to extract
labels for the two different levels of granularity
(word and sentence). Table 2 shows the various
resulting datasets for English-German (EN-DE),
German-English (DE-EN), English-Latvian (EN-
LV) and English-Czech (EN-CS), for both statisti-
cal (SMT) and neural (NMT) outputs.

English-German and English-Czech sentences
are from the IT domain and were translated by
an in-house phrase-based SMT system, and in ad-
dition by an in-house encoder-decoder attention-
based NMT system for English-German. We note
that the original dataset sizes for these languages
was 30,000 sentences in total for English-German
(per MT system type), and 45,000 for English-
Czech. The large reduction in the NMT version of
the English-German data indicates the high qual-
ity of the NMT system used to produce these sen-
tences: a large number of sentences was filtered
out for having undergone no edits by translators.

6http://www.qt21.eu/

German-English and English-Latvian sentences
are from the life sciences (pharmaceutical) do-
main and were translated by an in-house phrase-
based SMT system, and in addition by an in-house
encoder-decoder attention-based NMT system for
English-Latvian. The original sentence numbers
for these languages were 45,000 and 20,738, re-
spectively (per MT system type).

4.2 Task 3

This task uses a subset of the German-English
SMT data from Task 1 (5,921 sentences for train-
ing, 1,000 for development and 543 for test) where
each phrase (as produced by the SMT decoder)
has been annotated (as a phrase) by humans with
four labels (see Section 7). This subset was se-
lected after post-editing by filtering out transla-
tions with HTER=0 and with a HTER=0.30 and
above, and then randomly selecting a subset large
enough while fitting the annotation budget. The
latter criterion was used to rule out sentences with
too many errors, since these are generally too hard
or impossible to annotate for errors by humans.

We used BRAT7 to perform the phrase la-
belling. The annotator – a professional transla-
tor – was given the translations to annotate, along
with their respective source sentence. We pro-
vided them with a preset environment where all
translations were pre-labelled at phrase-level be-
forehand as OK. The annotator’s task was then to
change the labels of the incorrect phrases. The
labelling was done following a ‘pessimistic’ ap-
proach, where we requested the annotator to only
consider a phrase to be OK if all its words were
OK. This task has two variants, as we describe
later: Task3a, where a phrase annotation is prop-
agate to all of its words and the task is framed as
a word-level prediction task; and Task3b, where
prediction is done at the phrase level. Table 3
shows the statistics of the resulting datasets for
these variants of the task.

Since the data used for this task is a subset of
the dataset of that used for Task 1, we selected as
test sentences also a subset of the test set for Task
1.

4.3 Task 4

The document-level task data consists of short
product descriptions translated from English to
French, extracted from the Amazon Product Re-

7https://brat.nlplab.org/
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Train. Dev. Test
Language pair # Sentences # Words # Sentences # Words # Sentences # Words
DE-EN 25,963 493,010 1,000 18,817 1,254 23,522
EN-DE-SMT 26,273 442,074 1,000 16,565 1,926 32,151
EN-DE-NMT 13,442 234,725 1,000 17,669 1,023 17,649
EN-LV-SMT 11,251 225,347 1,000 20,588 1,315 26,661
EN-LV-NMT 12,936 258,125 1,000 19,791 1,448 28,945
EN-CS 40,254 728,815 1,000 18,315 1,920 34,606

Table 2: Statistics of the datasets used for Tasks 1 and 2: Total number of (source) sentences and words (after
tokenisation) for training, development and test for each language pair and MT system type.

Task3a # Sentences # Words # BAD

Train. 5,921 126,508 35,532
Dev. 1,000 28,710 6,153
Test 543 7,464 3,089
Task3b # Sentences # Phrases # BAD

Train. 5,921 50,834 10,451
Dev. 1,000 8,566 1,795
Test 543 4,391 868

Table 3: Statistics of the data used for Task 3. Num-
ber of sentences, phrases, words and BAD labels for
training, development and test.

# Documents # Sentences # Words
Train. 1,000 6,003 129,099
Dev. 200 1,301 28,071
Test 269 1,652 39,049

Table 4: Statistics of the data used for Task 4. Number
of documents, sentences and (target) words for train-
ing, development and test.

views dataset (McAuley et al., 2015; He and
McAuley, 2016).8 More specifically, the data is
a selection of Sports and Outdoors product titles
and descriptions in English which has been ma-
chine translated into French using a state of the
art online neural MT system. The most popular
products (those with more reviews) were chosen.
This data poses interesting challenges for machine
translation: titles and descriptions are often short
and not always a complete sentence. Spans cover-
ing one or more tokens were annotated with error
labels following fine-grained error taxonomy, as
described in more detail in Section 8. The dataset
statistics are presented in Table 4. This is the
largest ever released collection with word-level er-
rors manually annotated.

8http://jmcauley.ucsd.edu/data/amazon/
.

5 Task 1: Predicting sentence-level
quality

This task consists in scoring (and ranking) transla-
tion sentences according to the proportion of their
words that need to be fixed. HTER is used as
quality score, i.e. the minimum edit distance be-
tween the machine translation and its manually
post-edited version.

Labels Three labels were available: percentage
of edits need to be fixed (HTER) (primary label),
post-editing time in seconds, and counts of vari-
ous types of keystrokes. The PET tool (Aziz et al.,
2012)9 was used to collect various types of in-
formation during post-editing. HTER labels were
computed using the TERCOM tool10 with default
settings (tokenised, case insensitive, exact match-
ing only), with scores capped to 1.

Evaluation Evaluation was performed against
the true HTER label and/or ranking, using the fol-
lowing metrics:

• Scoring: Pearson’s r correlation score (pri-
mary metric, official score for ranking system
submissions), Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE).

• Ranking: Spearman’s ρ rank correlation.

Statistical significance on Pearson r was com-
puted using the William’s test.11

Results For Task 1, Tables 5, 6, 7 and 8 sum-
marise the results for English–German, German–
English, English–Latvian and English-Czech, re-
spectively, ranking participating systems best to
worst using Pearson’s r correlation as primary key.

9https://github.com/ghpaetzold/PET
10https://github.com/jhclark/tercom
11https://github.com/ygraham/mt-qe-eval
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Spearman’s ρ correlation scores should be used to
rank systems for the ranking variant of the evalua-
tion.

The top two systems for this task, the QEBrain
model and UNQE models, show a large perfor-
mance gap with respect to the rest of the sys-
tems, for both SMT and NMT data. It is inter-
esting to note that both systems outperform the
SHEF-PT system by a large margin. SHEF-PT is a
reimplementation of the POSTECH system, which
showed the top performance in 2017.

6 Task 2: Predicting word-level quality

This task evaluates the extent to which we can de-
tect word-level errors in MT output. Often the
overall quality of a translated segment is signifi-
cantly harmed by specific errors in a small num-
ber of words. As in previous years, each token
of the target sentence is labeled as OK/BAD based
on an available post-edited sentence. In addition to
this, this year we also took into consideration word
omission errors and the detection of words in the
source related to target side errors. These types of
errors become particularly relevant in the context
of NMT systems. The code to produce this new set
of tags from any prior WMT corpora is available
for download.12

Target word labels As in previous years, the
binary labels for each target token (OK and
BAD) were derived automatically by aligning each
machine translated sentence with its post-edited
counterpart sentence. The alignment at token-
level was performed using the TERCOM tool. De-
fault settings were used and shifts were disabled.
Target tokens originating from insertion or substi-
tution errors were labeled as BAD. All other to-
kens were labeled as OK.

Gap and source word labels To annotate dele-
tion errors, gap ‘tokens’ between each word and
at the beginning of each target sentence were in-
troduced. These gaps tokens were labeled as BAD
in the presence of one or more deletion errors and
OK otherwise. To annotate the source words re-
lated to insertion or substitution errors in the ma-
chine translated sentence, the IBM Model 2 align-
ments from fastalign (Dyer et al., 2013) were used.
Each token in the source sentence was aligned to
the post-edited sentence. For each token in the

12https://github.com/Unbabel/
word-level-qe-corpus-builder

post-edited sentence deleted or substituted in the
machine translated text, the corresponding aligned
source tokens were labeled as BAD. In this way,
deletion errors also result in BAD tokens in the
source, related to the missing words. All other
words were labeled as OK.

Evaluation Analogously to last year’s task, the
primary evaluation metric is the multiplication of
F1-scores for the OK and BAD classes, denoted
as F1-Mult. The same metric was applied to gap
and source token labels. We also report F1-scores
for individual classes for completeness. We test
the significance of the results using randomisa-
tion tests (Yeh, 2000) with Bonferroni correction
(Abdi, 2007).

Results The results for Task 2 are summarised
in Tables 9, 10, 11 and 12, ordered by the F1-mult
metric.

The number of submissions per language pair
was different, which limits any conclusions that
can be made with respect to general rankings
of systems. The English-German and German-
English tasks – Tables 9, 10 – had the most sys-
tems participating. As in previous years, results in
Task1 and Task2 are correlated. In this case the
same system, QEBrain, wins both tasks for these
language pairs. Since some of the other systems
for Task 1 where specific for sentence-level pre-
diction, the next system in the ranking is SHEF-
PT, which lags behind by a margin slightly smaller
than in Task 1. Another interesting result for this
year is the differences between SMT and NMT
datasets. For English-German, there is a clear drop
in performance from SMT to NMT. This can be
due to changes in the type of errors, or size of
training sets, as we discuss in Section 9.

Regarding the novel task variants of detection
of gaps and source words that lead to errors, only
a few teams submitted systems. The performance
for these tasks is lower, but correlated with the
performance of the main word-level task – predic-
tion of target word errors. It is worth noting that
the QEBrain system obtains notable performance
for gap error detection, almost doubling the per-
formance of other (few) participating systems for
SMT data.

The English-Latvian and English-Czech tasks
had a lower number of participants, potentially due
to the lower number of resources to pre-process
data and pre-train models. It is interesting to note
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Model Pearson r MAE RMSE Spearman ρ
SMT DATASET

• QEBrain DoubleBi w/ BPE+word-tok (ensemble) 0.74 0.09 0.14 0.75
QEBrain DoubleBi w/ BPE-tok 0.73 0.10 0.14 0.75
UNQE 0.70 0.10 0.14 0.72
TSKQE2 0.49 0.13 0.17 0.00
SHEF-PT 0.49 0.13 0.17 0.51
TSKQE1 0.48 0.13 0.17 0.00
UTartu/QuEst+Attention 0.43 0.14 0.17 0.42
UTartu/QuEst+Att+CrEmb3 0.42 0.14 0.17 0.42
sMQE 0.40 0.19 0.22 0.40
RTM MIX7 0.39 0.14 0.18 0.40
RTM MIX6 0.39 0.14 0.18 0.40
SHEF-bRNN 0.37 0.14 0.18 0.38
BASELINE 0.37 0.14 0.18 0.38
uMQE – – – 0.38
UAlacant** 0.39 0.18 0.23 0.39

NMT DATASET

• UNQE 0.51 0.11 0.17 0.61
• QEBrain DoubleBi w/ BPE+word-tok (ensemble) 0.50 0.11 0.17 0.60
• QEBrain DoubleBi w/ word-tok 0.50 0.11 0.17 0.60
TSKQE1 0.42 0.14 0.18 0.00
TSKQE2 0.41 0.14 0.18 0.00
SHEF-bRNN 0.38 0.13 0.18 0.48
SHEF-PT 0.38 0.13 0.18 0.47
UTartu/QuEst+Attention 0.37 0.13 0.18 0.44
sMQE 0.37 0.21 0.24 0.44
UTartu/QuEst+Att+CrEmb3 0.37 0.13 0.18 0.44
BASELINE 0.29 0.13 0.19 0.42
uMQE – – – 0.40
UAlacant** 0.23 0.21 0.26 0.24
RTM MIX5** 0.47 0.12 0.17 0.55

Table 5: Official results of the WMT18 Quality Estimation Task 1 for the English–German dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.

Model Pearson r MAE RMSE Spearman ρ
• UNQE 0.77 0.09 0.13 0.73
• QEBrain DoubleBi w/ BPE+word-tok (ensemble) 0.76 0.10 0.13 0.73
• QEBrain DoubleBi w/ word-tok 0.75 0.10 0.14 0.72
sMQE 0.65 0.12 0.15 0.60
UTartu/QuEst+Att+CrEmb3 0.57 0.14 0.18 0.47
SHEF-PT 0.55 0.13 0.17 0.50
UTartu/QuEst+Attention 0.55 0.14 0.17 0.47
SHEF-bRNN 0.48 0.14 0.19 0.44
BASELINE 0.33 0.15 0.19 0.32
UAlacant** 0.63 0.12 0.17 0.60
RTM MIX5** 0.54 0.13 0.17 0.49

Table 6: Official results of the WMT18 Quality Estimation Task 1 for the German–English dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.
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Model Pearson r MAE RMSE Spearman ρ
SMT DATASET

• UNQE 0.62 0.12 0.16 0.58
sMQE 0.46 0.13 0.18 0.41
UTartu/QuEst+Att+CrEmb3 0.40 0.16 0.20 0.32
UTartu/QuEst+Attention 0.40 0.15 0.19 0.32
SHEF-bRNN 0.40 0.14 0.19 0.33
SHEF-PT 0.38 0.14 0.19 0.33
BASELINE 0.35 0.16 0.19 0.35
uMQE – – – 0.40
UAlacant** 0.36 0.20 0.26 0.34
RTM MIX** 0.35 0.14 0.19 0.28

NMT DATASET

• UNQE 0.68 0.13 0.17 0.67
sMQE 0.58 0.15 0.19 0.57
UTartu/QuEst+Att+CrEmb3 0.54 0.16 0.20 0.50
UTartu/QuEst+Attention 0.53 0.16 0.20 0.49
SHEF-PT 0.46 0.17 0.22 0.45
BASELINE 0.44 0.16 0.22 0.46
SHEF-bRNN 0.42 0.17 0.22 0.41
uMQE – – – 0.54
UAlacant** 0.56 0.17 0.22 0.55
RTM MIX** 0.54 0.16 0.20 0.50

Table 7: Official results of the WMT18 Quality Estimation Task 1 for the English–Latvian dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.

Model Pearson r MAE RMSE Spearman ρ
• UNQE 0.69 0.12 0.17 0.71
SHEF-PT 0.53 0.15 0.19 0.54
SHEF-bRNN 0.50 0.16 0.20 0.51
UTartu/QuEst+Attention 0.45 0.16 0.20 0.46
UTartu/QuEst+Att+CrEmb3 0.41 0.17 0.21 0.40
BASELINE 0.39 0.17 0.21 0.41
sMQE 0.39 0.16 0.21 0.42
uMQE – – – 0.42
UAlacant** 0.44 0.18 0.23 0.46
RTM MIX** 0.52 0.15 0.20 0.53

Table 8: Official results of the WMT18 Quality Estimation Task 1 for the English–Czech dataset. The winning
submission is indicated by a •. Baseline systems are highlighted in grey, and ** indicates late submissions that
were not considered for the official ranking of participating systems.

the general low performance of systems on the
English-Latvian NMT data: all systems are tied
with the baseline in terms of F1-mult. The reim-
plementation of the POSTECH system shows poor
results on the NMT dataset, in this case it is unable
to outperform the baseline. Results for English-
Czech are very similar across systems.

7 Task 3: Predicting phrase-level quality

This level of granularity was first introduced in the
shared task at WMT16. The goal is to predict MT
quality at the level of phrases. In the 2016 edition,
the data annotation was done automatically based
on post-edits, as in Task 2, but this year humans
directly labelled each phrase in context.
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Labels We used the phrase segmentation pro-
duced by the SMT decoder which generated the
translations for the dataset. The phrases were
annotated for errors using four classes: ’OK’,
’BAD’ – the phrase contain one or more errors,
’BAD word order’ – the phrase is in an incorrect
position in the sentence, and ’BAD omission’ – a
word is missing before/after a phrase. This task
in further subdivided in two subtasks: word-level
prediction (Task3a), and phrase-level prediction
(Task3b).

The data for Task3a propagates the annotation
of each phrase to its words, and thus uses word-
level segmentation for both source and machine-
translated sentences, such that the task can be ad-
dressed as a word-level prediction task. In other
words, all tokens in the target sentence are labelled
according to the label of the phrase they belong
to. Therefore, if the phrase is annotated as either
’OK’, ’BAD’ or ’BAD word order’, all tokens
(and gap tokens) within that phrase are labelled as
either ’OK’, ’BAD’ or ’BAD word order’. To an-
notate omission errors, a gap token is inserted after
each token and at the start of the sentence.

The data for Task3b has phrase-level segmen-
tation with the labels assigned by the human an-
notator to each phrase. A gap token is inserted
after each phrase and at the start of the sen-
tence. The gap is labelled as follows: ’OK’ or
’BAD omission’, where the latter indicates that
one or more words are missing.

Evaluation Similarly to Task 2, our primary
metric for predictions at word-level (Task3a) is
the multiplication of the F1 scores of the OK and
BAD classes, F1-Mult, while for predictions at
phrase-level (Task3b), our primary metric is the
phrase-level version of F1-Mult. The same met-
rics were applied to gap and source token labels
for both sub-tasks, along with F1 scores for indi-
vidual classes for completeness. We also report
F1 score for BAD word order labels on the target
tokens for Task3b. We computed statistical sig-
nificance of the results using randomised test with
Bonferroni correction, as in Task 2.

Results The results of the phrase-level task are
given in Tables 13 (Task3a) and 14 (Task3b), or-
dered by the F1-Mult metric.

Comparing the results for Task3a with the re-
sults on German-English for Task 2 (Table 10), it
can be observed a general degradation of the F1

score on the BAD class, including for the base-
line system. We attribute this phenomenon to the
way the data for this task was created: for Task 2,
the token labels were produced from post-editing,
where each word was labelled independently from
each others; while for this task, the token labels
are deduced from a labelling at more coarse level
(phrase), i.e. where words were not considered
as individual tokens. Consequently, words that
would be considered as correct during post-editing
are here labelled as BAD, like to BAD phrase they
belong to. The only two official submissions to
this subtask (SHEF-PT and SHEF-bRNN) slightly
outperform the baseline system, nevertheless with-
out a statistically significant difference.

For the phrase-level predictions, the baseline
system remains ahead by a significant margin
of the only two official submissions, both from
the University of Sheffield (SHEF-ATT-SUM and
SHEF-PT). The overall performance in predicting
phrases that are in incorrect position in a sentence
(i.e. BAD word order) shows that this problem re-
mains a very challenging task, as none of the sub-
missions were able to obtain competitive F1 score.

8 Task 4: Predicting document-level QE

This task consists in estimating a document-level
quality score according to the amount of minor,
major, and critical errors present in the translation.
The predictions are compared to a ground-truth
obtained from annotations produced by crowd-
sourced human translators from Unbabel.13

Labels The data was annotated for errors at the
word level using a fine-grained error taxonomy –
Multidimensional Quality Metrics (MQM) (Lom-
mel et al., 2014) – similar to the one used in
(Sanchez-Torron and Koehn, 2016). MQM is
composed of three major branches: accuracy (the
translation does not accurately reflect the source
text), fluency (the translation affects the reading
of the text) and style (the translation has stylistic
problems, like the use of a wrong register). These
branches include more specific issues lower in the
hierarchy. Besides the identification of an error
and its classification according to this typology
(by applying a specific tag), the errors receive a
severity scale that reflects the impact of each er-
ror on the overall meaning, style, and fluency of
the translation. An error can be minor (if it does

13http://www.unbabel.com.
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not lead to a loss of meaning and it doesn’t con-
fuse or mislead the user), major (if it changes the
meaning) or critical (if it changes the meaning and
carry any type of implication, or could be seen as
offensive).

Document-level scores were then generated
from the word-level errors and their severity us-
ing the method described in Sanchez-Torron and
Koehn (2016, footnote 6). Namely, denoting by
n the number of words in the document, and by
nmin, nmaj, and ncri the number of annotated mi-
nor, major, and critical errors, the final quality
scores were computed as:

MQM Score = 1− nmin + 5nmaj + 10ncri
n

(1)

Note that MQM values can be negative if the total
severity exceeds the number of words.

Evaluation Submissions are evaluated as in
Task 1 (see Section 5), in terms of Pearson’s corre-
lation r between the true and predicted document-
level scores.

Results The results of the document-level task
are shown in Table 15. Due to the different nu-
meric range, only the Pearson correlation scores
are comparable to those of Task1. Comparing with
the results for Task 1, it can be observed that the
baseline system already obtains very high correla-
tion. The neural model SHEF-PT-indomain out-
performs the baseline by a modest margin, com-
pared to the results obtained in Task 1.

Model Pearson r MAE
• SHEF-PT-indomain 0.53 0.56
BASELINE 0.51 0.56
SHEF-mtl-bRNN 0.47 0.56
SHEF-mtl-PT-
indomain**

0.52 0.57

RTM MIX1** 0.11 0.58

Table 15: Official results of the WMT18 Quality Es-
timation Task 4 for the English–French dataset. The
winning submission is indicated by a •. Baseline sys-
tem is in grey, and ** indicates late submissions that
were not considered for the official ranking of partici-
pating systems.

9 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Performance of QE approaches on the out-
put of neural MT systems. As previously men-
tioned, some of the data used for Tasks 1 and
2 is translated by both an SMT and an NMT
system: the English-German and English-Latvian
data. In Task 1, for English-German, the numbers
of translations in the QE training data from the
two systems are very different (26, 273 for SMT
and 13, 442 for NMT) and thus no direct com-
parison can be made. This shows that the NMT
system was of much higher quality than the SMT
one, producing many more sentences that led to
HTER=0. Of the sentences that remained, the
average NMT quality in the training data is still
higher: HTER=0.154 versus 0.253 for SMT. From
the results, the top systems do considerably better
on the SMT data (r=0.74 for SMT vs r=0.51 for
NMT translations). This difference is also notice-
able for the baseline system (r=0.37 for SMT vs
r=0.29 for NMT translations). This could how-
ever be because of the difference in number of
samples and/or significant differences in distribu-
tions of HTER scores in the two datasets. It is
worth pointing out that the winning submissions
are the same for both SMT and NMT transla-
tion: QEBrain and UNQE. In fact, QE system are
ranked very similarly for the two types of transla-
tion.

For English-Latvian, the number of NMT and
SMT QE training sentences is similar (12, 936 for
NMT and 11, 251 for SMT). Their average HTER
scores is also more comparable: 0.278 for NMT
and 0.215 for SMT. The difference in QE sys-
tem performance for this language pair is not as
marked, but the trend is inverted when compared
to English-German: QE systems do better on
the NMT data (the top systems, UNQE, achieves
r=0.62 for SMT vs r=0.68 for NMT translations,
while the baseline achieves r=0.44 for SMT vs
r=0.35 for NMT translations), This could be be-
cause of the lower differences in the distribution of
HTER scores in both sets. The ranking of QE sys-
tems is exactly the same for both SMT and NMT
translations.

In both cases, it is important to note that even
though the initial datasets contained exactly the
same source sentences for SMT and NMT, the
sentences in the two final versions of the datasets
for each language are not all the same, i.e. some
NMT sentences may have gotten filtered for hav-
ing HTER=0 while their SMT counterparts did
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not, and vice-versa. The main finding is that
QE models seem to be robust to different types
of translation, since their rankings are the same
across datasets.

For Task 2, the trend is similar: QE sys-
tems for English-German also perform better on
SMT translations than on NMT translations (F1-
Mult=0.62 for SMT vs F1-Mult=0.44 for NMT),
and the inverse is observed for English-Latvian
(F1-Mult=0.36 for SMT vs F1-Mult=0.43 for
NMT). The ranking of QE systems for the two
types of translations differs more than for Task 1,
especially for English-Latvian.

Task 4 uses NMT output only and it is hard to
make any conclusions about whether the perfor-
mance of the systems is good enough because this
is the first time this task is organised. Generally
speaking, this task proved hard, with the baseline
system performing as well or better than the other
submissions.

Predictability of missing words in the MT out-
put. Only a subset of the systems that partici-
pated in Task 2 submitted results for missing word
detection. From the results obtained it seems clear
that while this task is more difficult than target
word error detection, high scores could be attained
for the SMT data. Due to the small number of sub-
mitted systems, it is unclear whether or not gap
detection is more difficult for NMT data.

Predictability of source words that lead to er-
rors in the MT output. Only a small set of
teams submitted predictions for source words.
From the submitted results, it can be observed that
prediction of source words related to errors is a
harder problem than detecting errors in the target
language. This may be due to the fact that there
may be more ambiguity with regards to which
words should be related to errors in the target. In
other words, in some cases a source word in a
given context leads to incorrect translations, while
in other cases the same source word in the same
context will not lead to errors.

Effectiveness of manually assigned labels for
phrases. With only one official (and one late)
submission to the phrase-level QE task this year,
it is hard to conclude whether having manual la-
bels makes the task harder (although the baseline
system performs as well as in the last edition), or
whether the reason lies in the design of the neural
models, which may not be suitable for this task.

Quality prediction for documents from errors
annotated at word-level with added severity
judgements. Since this is a new task and not
many systems were submitted. Results show how-
ever that it is possible to attain Pearson correlation
scores that are comparable with those of sentence-
level post-editing effort prediction. The perfor-
mance gap between the neural model and the SVM
baseline is smaller than in Task 1, which may be
an indication for further potential gains using new
deep learning architectures tailored for document-
level.

Utility of additional evidence To investigate
the utility of detailed information logged dur-
ing post-editing, we offered to participants
other sources of information: post-editing time,
keystrokes, and actual edits. Surprisingly, no par-
ticipating system requested these additional labels,
and therefore this remains an open question.

10 Conclusions

This year’s edition of the QE shared task was the
largest ever organised in many respects: number
of tasks, number of languages, variety of tasks
(three granularity levels), types of annotation (de-
rived from post-editing or manual, source or tar-
get), and number of samples annotated.

Over the years, we have attempted to find a
balance between keeping the shared task as close
as possible to previous editions – so as to make
some form of comparison across years possible –
and proposing new tasks and new interesting chal-
lenges – so as to keep up to date with new de-
velopments in the field, such as neural machine
translations. We believe the current set of tasks
covers a broad enough range of challenges that are
far from solved, such as improving performance
given smaller sets of instances, predicting source
words that lead to errors, predicting gaps, use of
additional evidence from post-editing, etc.

In order to allow for future benchmarking on
a ’blind’ basis without access to the gold stan-
dard labels, we have set up CodaLab competitions
that will remain open after this shared task. Any
team can register and submit any number of sys-
tems (limited to five submissions per day per task
and language pair) and get immediate feedback
through the official evaluation metrics, as well as
comparison to top submissions from other teams
(on the leaderboard). Each team’s best submis-
sion per task and language pair will feature on the
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leaderboard. The submission pages for each task
are as follows, where languages and task variants
are frames as ‘phases’:

• Sentence level: https://
competitions.codalab.org/
competitions/19316

• Word level: https://competitions.
codalab.org/competitions/19306

• Phrase level: https://competitions.
codalab.org/competitions/19308

• Document level: https://
competitions.codalab.org/
competitions/19309
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Montréal, Canada.

Melania Duma and Wolfgang Menzel. 2018. The bene-
fit of pseudo-reference translations in quality estima-
tion of mt output. In Proceedings of the Third Con-
ference on Machine Translation, Volume 2: Shared
Tasks Papers, Brussels, Belgium. Association for
Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

Thierry Etchegoyhen, Eva Martı́nez Garcia, and An-
doni Azpeitia. 2018. Supervised and unsupervised
minimalist quality estimators: Vicomtech’s partici-
pation in the wmt 2018 quality estimation task. In
Proceedings of the Third Conference on Machine
Translation, Volume 2: Shared Tasks Papers, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Ruining He and Julian McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In
proceedings of the 25th international conference
on world wide web, pages 507–517. International
World Wide Web Conferences Steering Committee.

Junjie Hu, Wei-Cheng Chang, Yuexin Wu, and Graham
Neubig. 2018. Contextual encoding for translation
quality estimation. In Proceedings of the Third Con-
ference on Machine Translation, Volume 2: Shared
Tasks Papers, Brussels, Belgium. Association for
Computational Linguistics.

Julia Ive, Frédéric Blain, and Lucia Specia. 2018a.
DeepQuest: a framework for neural-based qual-
ity estimation. In Proceedings of COLING 2018,
the 27th International Conference on Computational
Linguistics: Technical Papers, Santa Fe, New Mex-
ico.

Julia Ive, Carolina Scarton, Frédéric Blain, and Lucia
Specia. 2018b. Sheffield submissions for the wmt18
quality estimation shared task. In Proceedings of the
Third Conference on Machine Translation, Volume
2: Shared Tasks Papers, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-estimator using multilevel task
learning with stack propagation for neural quality
estimation. In Proceedings of the Second Confer-
ence on Machine Translation, Volume 2: Shared
Tasks Papers, pages 562–568, Copenhagen, Den-
mark. Association for Computational Linguistics.

Julia Kreutzer, Shigehiko Schamoni, and Stefan Rie-
zler. 2015. QUality Estimation from ScraTCH
(QUETCH): Deep Learning for Word-level Transla-
tion Quality Estimation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages
297–303, Lisboa, Portugal. Association for Compu-
tational Linguistics.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning, pages 1188–1196.

Maoxi Li, Qingyu Xiang, Zhiming Chen, and Ming-
weng Wang. 2018. A unified neural network for
quality estimation of machine translation. IEICE
Trans. Information and Systems, E101-D(9).

Varvara Logacheva, Chris Hokamp, and Lucia Specia.
2016. Marmot: A toolkit for translation quality es-
timation at the word level. In Tenth International
Conference on Language Resources and Evaluation,
LREC, pages 3671–3674, Portoroz, Slovenia.

Arle Richard Lommel, Aljoscha Burchardt, and Hans
Uszkoreit. 2014. Multidimensional quality metrics
(MQM): A framework for declaring and describing
translation quality metrics. Tradumàtica: tecnolo-
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Abstract

We present the results from the fourth
round of the WMT shared task on MT
Automatic Post-Editing. The task con-
sists in automatically correcting the out-
put of a “black-box” machine translation
system by learning from human correc-
tions. Keeping the same general evalua-
tion setting of the three previous rounds,
this year we focused on one language
pair (English-German) and on domain-
specific data (Information Technology),
with MT outputs produced by two dif-
ferent paradigms: phrase-based (PBSMT)
and neural (NMT). Five teams submit-
ted respectively 11 runs for the PBSMT
subtask and 10 runs for the NMT sub-
task. In the former subtask, characterized
by original translations of lower quality,
top results achieved impressive improve-
ments, up to -6.24 TER and +9.53 BLEU
points over the baseline “do-nothing” sys-
tem. The NMT subtask proved to be more
challenging due to the higher quality of
the original translations and the availabil-
ity of less training data. In this case, top
results show smaller improvements up to
-0.38 TER and +0.8 BLEU points.

1 Introduction

The WMT shared task on MT Automatic Post-
Editing (APE), this year at its fourth round, aims
to evaluate systems for the automatic correction of
errors in a machine-translated text. As pointed out
by (Chatterjee et al., 2015), from the application
point of view the task is motivated by its possible
uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-

forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

The 2018 round of the task proposed partici-
pants with the same evaluation setting of the three
previous editions (Bojar et al., 2015; Bojar et al.,
2016; Bojar et al., 2017), in which the output of an
unknown “black box” MT engine has to be auto-
matically corrected by learning from human revi-
sions of translations produced by the same engine.

This year, the task focused on one language
pair1 (English-German) and, in continuity with the
2016 and 2017 rounds, on data coming from the
Information Technology domain. The main nov-
elty was represented by the use of training/test data
including, for the same source sentences, transla-
tions produced by two different MT technologies:
phrase-based (in continuity with 2016 and 2017)
and neural (for the first time). On one side, keep-
ing language and domain unchanged was meant to
measure the technology progress over the past. On
the other side, extending the evaluation to NMT-
derived data was meant to explore the effective-
ness of APE techniques, which now migrated to
the neural paradigm, to correct data obtained with
the same paradigm.

In terms of participants and submitted runs, 5
teams produced respectively 11 runs for the PB-
SMT subtask and 10 runs for the NMT subtask.

1As opposed to the 2017 round, in which both English-
German and German-English data were considered.
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All submissions were produced by neural APE
systems. All the teams experimented with the
Transformer architecture (Vaswani et al., 2017),
either directly or by adapting it to the task (see
Section 2.1). The two synthetic corpora provided
as additional training material (see Section 2.1)
were also extensively used.

In terms of results, on PBSMT data, the last
year’s trend is confirmed: the migration to the
neural approach to APE yielded significant quality
gains to the output of phrase-based MT systems.
However, while in 2017 the largest improvements
with respect to the baseline were respectively -4.9
TER and +7.6 BLEU, this year the distance is even
larger: -6.24 TER and +9.53. On NMT data, the
gains are less evident, with the largest improve-
ments over the baseline of -0.38 TER and +0.8
BLEU.

The large difference in terms of quality gains
yield by APE can be explained in several ways.
One is the different amount of in-domain training
data available: in the PBSMT subtask, they com-
prise 28,000 instances while, in the NMT subtask,
they are less than 14,000.2 Another reason is the
different MT output quality in the two datasets. In-
deed, TER and BLEU scores for the PBSMT test
set are respectively 24.24 and 62.99 while, in the
NMT test set, they reach considerably better val-
ues of 16.84 and 74.73. Altogether, these differ-
ences contributed to make the NMT subtask more
challenging, participants’ scores concentrated in
small TER/BLEU ranges close to the baseline and
the overall results harder to interpret.

2 Task description

Similar to previous years, participants were pro-
vided with training and development data consist-
ing of (source, target, human post-edit) triplets,
and were asked to return automatic post-edits for
a test set of unseen (source, target) pairs.

2.1 Data
For this year’s round, the APE task focused on
one language pair, English-German, and on data
coming from the Information Technology
(IT) domain. As emerged from the previous eval-
uations, the selected target domain is specific and
repetitive enough to allow supervised systems to

2In addition to these small in-domain training sets, which
were released by the organizers over the years, participants
were also provided with large synthetic corpora described in
Section 2.1.

learn from the training set useful correction pat-
terns that are also re-applicable to the test set.

Training and development sets consist of
(source, target, human post-edit) triplets in which:

• The source (SRC) is a tokenized English sen-
tence with length between 3 and 30 tokens;

• The target (TGT) is a tokenized German
translation of the source, which is produced
by a black-box system unknown to partici-
pants. Translations were produced with two
different technologies, so to obtain two dif-
ferent subtasks and evaluation scenarios. The
first subtask, in continuity with the past, fo-
cused on handling translations produced by
a domain-adapted phrase-based system (PB-
SMT subtask).3 The second subtask (NMT
subtask) focused on handling translations
produced by a domain-adapted neural sys-
tem.4

• The human post-edit (PE) is a manually-
revised version of the target, which was pro-
duced by professional translators.

Test data consists of (source, target) pairs hav-
ing similar characteristics of those in the training
set. Human post-edits of the test target instances
are left apart to measure system performance.

For the PBSMT subtask, the training data
available include: i) all the 15,000 triplets (train-
ing, development and test) released for the 2016
round of the APE task and ii) the 13,000 training
and test triplets released for the 2017 round, for a
total of 28,000 instances. The test set consists of
2,000 newly-released instances.

For the NMT subtask, the training and de-
velopment set respectively consist of 13,442 and
1,000 triplets, while the test set comprises 1,023
instances.

3We used a phrase-based MT system trained with
generic and in-domain parallel training data, leveraging pre-
reordering techniques (Herrmann et al., 2013), and taking ad-
vantage of POS and word class-based language models.

4The NMT system was trained with generic and in-
domain parallel training data using the attentional encoder-
decoder architecture (Bahdanau et al., 2014) implemented in
the Nematus toolkit (Sennrich et al., 2017). We used byte-
pair encoding (Sennrich et al., 2016) for vocabulary reduc-
tion, mini-batches of 100, word embeddings of 500 dimen-
sions, and gated recurrent unit layers of 1,024 units. Opti-
mization was done using Adam and by re-shuffling the train-
ing set at each epoch.
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Instances
Corpus 2016 2017 2018

PBSMT
Train 12,000 11,000 -
Dev 1,000 - -
Test 2,000 2,000 2,000

NMT
Train - - 13,442
Dev - - 1,000
Test - - 1,023

Additional
Resources

Artificial 4.5M
eSCAPE-PBSMT - - 7,258,533
eSCAPE-NMT - - 7,258,533

Table 1: Data statistics.

APE15 APE16 APE17 APE17 APE18 APE18
Language En-Es En-De En-De De-En En-De En-De
Domain News IT IT Medical IT IT
MT type PBSMT PBSMT PBSMT PBSMT PBSMT NMT

Repetition Rate SRC 2.905 6.616 7.216 5.225 7.139 7.111
Repetition Rate TGT 3.312 8.845 9.531 6.841 9.471 9.441
Repetition Rate PE 3.085 8.245 8.946 6.293 8.934 8.941

TER (↓) 23.84 24.76 24.48 15.55 24.24 16.84
BLEU (↑) n/a 62.11 62.49 79.54 62.99 74.73

Table 2: Repetition Rate and translation quality (TER/BLEU of TGT) of the WMT15, WMT16, WMT17 and WMT18 APE
task data. Grey columns refer to data covering different language pairs and domains with respect to this year’s evaluation round.

Participants were also provided with additional
training material for both the subtasks. One
resource (called “Artificial” in Table 1) is the
corpus of 4.5 million artificially-generated post-
editing triplets used by the 2016 winning sys-
tem (Junczys-Dowmunt and Grundkiewicz, 2016).
This corpus was widely used by participants in the
2017 round of the APE task. The other resource is
the English-German section of the eSCAPE cor-
pus (Negri et al., 2018). It comprises 14.5 million
instances, which were artificially generated both
via phrase-based and neural translation (7.25 mil-
lions each) of the same source sentences.

Table 1 provides basic statistics about the data,
which was released by the European Project QT21
(Specia et al., 2017).

In addition, Table 2 provides a view of the data
from a task difficulty standpoint. For each dataset
released in the four rounds of the APE task, we
report the repetition rate of SRC, TGT and PE ele-
ments, as well as the TER (Snover et al., 2006) and
the BLEU score (Papineni et al., 2002) of the TGT
elements (i.e. the original target translations).

The repetition rate measures the repetitiveness
inside a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-

ing the geometric mean. Larger values indicate
a higher text repetitiveness and, as discussed in
(Bojar et al., 2016; Bojar et al., 2017), suggest
a higher chance of learning from the training set
correction patterns that are applicable also to the
test set. In the previous rounds of the task, we
considered the large differences in repetitiveness
across the datasets as a possible explanation for the
variable gains over the baseline obtained by par-
ticipants. In this perspective, the low system per-
formance observed in the APE15 task and in the
APE17 German-English subtask was in part as-
cribed to the low repetition rate in the data. In con-
trast, much higher repetition rates in the data likely
contributed to facilitate the problem in the APE16
task and in the APE17 English-German subtask,
in which most of the participants achieved signif-
icant gains over the baseline. For this year’s data,
values are in line with these two previous rounds.

The TER (↓) and BLEU (↑) scores reported in
Table 2 are computed using the human post-edits
as reference. As discussed in (Bojar et al., 2017),
numeric evidence of a higher quality of the origi-
nal translations can indicate a smaller room for im-
provement for APE systems (having, at the same
time, less to learn during training and less to cor-
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Figure 1: TER distribution in the PBSMT test set Figure 2: TER distribution in the NMT test set

rect at test stage). On one side, indeed, train-
ing on good (or near-perfect) automatic transla-
tions can drastically reduce the number of learned
correction patterns. On the other side, testing on
similarly good translations can drastically reduce
the number of corrections required and the appli-
cability of the learned patterns, thus making the
task more difficult. As observed in the previ-
ous APE evaluation rounds, there is a noticeable
correlation between translation quality and sys-
tems’ performance. In 2016 and 2017, on English-
German data featuring a similar level of quality
(24.76/24.48 TER, 62.11/62.49 BLEU), the top
neural systems achieved significant improvements
over the baseline (-3.24 TER and +5.54 BLEU
in 2016, -4.88 TER and +7.58 BLEU in 2017).
In 2017, on higher quality German-English data
(15.55 TER, 79.54 BLEU), the observed gains
were much smaller (-0.26 TER, +0.28 BLEU).
These numbers are not directly comparable since
the higher quality 2017 data cover a different lan-
guage pair and belong to a different domain. Nev-
ertheless, as discussed in Section 4, this year’s re-
sults confirm the correlation between the quality
of the initial translations and the actual potential
of APE.

Further indications about the difficulty of the
two subtasks are provided by Figures 1 and 2,
which plot the TER distribution for the items in
the two test sets. As can be seen, the PBSMT
test data are more distributed in terms of quality,
with 50% of the items in the first five TER bins.
Similar to last year, what makes a big difference
between the two test sets is the proportion of “per-
fect” test instances having TER=0 (i.e. items that
should not be modified by the APE systems). For
the PBSMT subtask they are 15.0% of the total, a
value similar to the APE17 English-German task
in which participants achieved large baseline im-

provements. For the NMT subtask, they are 25.2%
of the total: much less than the proportion of the
challenging APE17 German-English data (45.0%)
but still a considerably higher value compared to
the PBSMT subtask. For these test items, any cor-
rection made by the APE systems will be treated
as unnecessary and penalized by automatic evalu-
ation metrics. This problem calls for conservative
and precise systems able to properly fix errors only
in the remaining test items, leaving the “perfect”
ones unmodified.

2.2 Evaluation metrics

System performance was evaluated both by means
of automatic metrics and manually. Automatic
metrics were used to compute the distance be-
tween automatic and human post-edits of the
machine-translated sentences present in the test
sets (i.e. for each of the target sentences in the
PBSMT and NMT test sets). To this aim, TER
and BLEU (case-sensitive) were respectively used
as primary and secondary evaluation metrics. Sys-
tems were ranked based on the average TER cal-
culated on the test set by using the TERcom5

software: lower average TER scores correspond
to higher ranks. BLEU was computed using the
multi-bleu.perl package6 available in MOSES.

Manual evaluation was conducted via direct hu-
man assessment (Graham et al., 2016) performed
by professional translators and proficient transla-
tion students, as discussed in Section 6.

2.3 Baseline

In continuity with the previous rounds, the official
baseline results were the TER and BLEU scores

5http://www.cs.umd.edu/˜snover/tercom/
6https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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ID Participating team
DFKI-MLT German Research Center for Artificial Intelligence, Germany (Pylypenko and Rubino, 2018)
FBK Fondazione Bruno Kessler, Italy (Tebbifakhr et al., 2018)
MS UEdin Microsoft, USA & University of Edinburgh, Poland (Junczys-Dowmunt and Grundkiewicz, 2018)
POSTECH Pohang University of Science and Technology, South Korea (Shin and Lee, 2018)
USAAR DFKI Saarland University & German Research Center for Artificial Intelligence, Germany (Pal et al., 2018)

Table 3: Participants in the WMT18 Automatic Post-Editing task.

calculated by comparing the raw MT output with
the human post-edits. In practice, the baseline
APE system is a “do-nothing” system that leaves
all the test targets unmodified. Baseline results,
the same shown in Table 2, are also reported in
Tables 4 and 5 for comparison with participants’
submissions.7

For each submitted run, the statistical signif-
icance of performance differences with respect
to the baseline was calculated with the bootstrap
test (Koehn, 2004).

3 Participants

Five participating teams submitted a total of 11
runs for the PBSMT subtask and 10 runs for the
NMT subtask. Participants are listed in Table 3,
and a short description of their systems is provided
in the following.

German Research Center for Artificial Intelli-
gence - MLT group. The DFKI-MLT’s partic-
ipation is based on a single APE model that is
jointly trained to handle PBNMT and NMT out-
puts. This was achieved by adding, at the begin-
ning of every MT segment to be corrected, a spe-
cific token indicating which type of MT system
was used to produce it and from which training
corpus the segment pair was extracted. (i.e. the
WMT training data, the artificial training data pre-
sented in (Junczys-Dowmunt and Grundkiewicz,
2016), or the eSCAPE corpus (Negri et al., 2018)).
The submitted runs were obtained with two neu-
ral architectures. One (“LSTM”) is an attentional
RNN with gated units based on (Bahdanau et al.,
2014) and implemented in OpenNMT (Klein et al.,
2017). The other is the multi-head attention-only
network (Vaswani et al., 2017) implemented in

7In addition to the do-nothing baseline, in previous
rounds we also compared systems’ performance with a re-
implementation of the phrase-based approach firstly pro-
posed by Simard et al. (2007), which represented the common
backbone of APE systems before the spread of neural solu-
tions. As shown in (Bojar et al., 2016; Bojar et al., 2017),
the steady progress of neural APE technology has made the
phrase-based solution not competitive with current methods
reducing the importance of having it as an additional term of
comparison.

the Marian NMT toolkit (Junczys-Dowmunt et al.,
2018). For the attention-only approach, two mod-
els (i.e. “Transf.base” and “Transf.large”) were
trained with different configurations in terms of
parallel attention layers (4 and 8 respectively).

Fondazione Bruno Kessler. FBK’s system im-
proves the multi-source neural approach adopted
in (Chatterjee et al., 2017). The improvements
target lower complexity of the architecture and,
in turn, higher efficiency without loss in perfor-
mance. To this aim, the proposed solution relies
on the Transformer architecture (Vaswani et al.,
2017), which was modified to incorporate multi-
ple encoders, thereby leveraging information also
from the source sentences. In addition, similar to
(Hokamp, 2017), the system exploits minimum-
risk training for fine-tuning (Shen et al., 2016) to
avoid exposure bias and to be consistent with the
automatic evaluation metrics used for the task. Fi-
nally, in order to reduce the vocabulary size, the
system applies ad hoc pre-processing for the Ger-
man language by re-implementing the pipeline de-
veloped by the best system at the WMT‘17 Trans-
lation task (Huck et al., 2017). In addition to
the data released for the task, training is per-
formed by taking advantage of both the artificial
data provided by (Junczys-Dowmunt and Grund-
kiewicz, 2016) and the eSCAPE corpus (Negri et
al., 2018). The submitted runs, which rely on the
same multi-source architecture and pre-processing
step, differ in the loss function used, which is ei-
ther minimum-risk training alone (“MRT”), or its
linear combination with maximum likelihood esti-
mation (“MRT+MLE”).

Microsoft & University of Edinburgh.
MS UEdin’s neural APE system is based on
the dual-source Transformer models available in
Marian (Junczys-Dowmunt et al., 2018). The
models are trained with tied embeddings across
all embeddings matrices and shared parameters
for all the encoders. The dual-source Transformer
model is implemented by stacking an additional
target-source multi-head component on the previ-
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ous multi-head component, one for each encoder.
Each multi-head attention block is followed by
a skip connection from the previous input and
layer normalization. Each encoder corresponds
exactly to the implementation from (Vaswani et
al., 2017), but with common parameters. The
decoder consists of a self-attention block, a target-
to-source attention block, another target-to-source
attention block and a feed-forward network. Apart
from this modification, the system follows the
transformer-base configuration from (Vaswani
et al., 2017). The synthetic data provided by
Junczys-Dowmunt and Grundkiewicz (2016)
and the eSCAPE corpus (Negri et al., 2018)
were both used during training, the latter being
splitted into subsets by means of domain selection
algorithms aimed to isolate useful portions for the
APE target domain (IT). Final submissions were
produced with an ensemble of models trained on
the different subsets.

Pohang University of Science and Technology.
POSTECH’s system is a multi-encoder model that
extends the Transformer implementation in the
Tensor2tensor library in order to model the rela-
tion between the original translation produced by
the MT system and the ideal translation produced
by the human. System training was performed
by taking advantage of the synthetic data released
by Junczys-Dowmunt and Grundkiewicz (2016),
which were divided into a smaller (526,368 in-
stances) and a larger sub-portion (4,391,180) and
used in a training process based on step-wise data
reductions. The final submissions were obtained
from the best single models (top-1), as well as
their combination with different ensembling tech-
niques (“fix5” – the top-5 models in a fixed check-
point frequency and “var5” – five top-1 models for
various checkpoint frequencies).

Saarland University & German Research Cen-
ter for Artificial Intelligence. USAAR DFKI’s
APE system extends the transformer-based NMT
architecture by using two encoders, a joint en-
coder, and a single decoder. The presented model
concatenates two separate self-attention-based en-
coders (encsrc and encmt) and passes this se-
quence through another self-attended joint en-
coder (encsrc,mt) to ensure capturing dependen-
cies between src and mt. Finally, this joint en-
coder is fed to the decoder which follows a similar
architecture as described in (Vaswani et al., 2017).

A comparison between this multi-source architec-
ture (i.e, {src,mt} → pe), a monolingual trans-
former model (i.e., mt → pe) and an ensemble
of the multi-source {src,mt} → pe and single-
source mt → pe models showed better results
from the ensemble model (both in the PBSMT and
the NMT subtasks), which was hence used for the
final submission.

4 Results

Participants’ results are shown in Tables 4 (PB-
SMT subtask) and 5 (NMT subtask). The sub-
mitted runs are ranked based on the average TER
(case-sensitive) computed using human post-edits
of the MT segments as reference, which is the
APE task primary evaluation metric (“TER (pe)”).
The two tables also report the BLEU score com-
puted using human post-edits (“BLEU (pe)” col-
umn), which represents our secondary evaluation
metric. These results are commented in Section
4.1.

The last four columns of both tables report
the TER/BLEU scores computed using external
references (“TER (ref)” and “BLEU (ref)”) and
the multi-reference TER/BLEU scores computed
using human post-edits and external references
(“TER (pe+ref)” and “BLEU (pe+ref)”). These re-
sults are commented in Section 4.2.

As a general remark about the two subtasks, we
observe that in the NMT subtask, with all the met-
rics considered, the performance differences be-
tween the submitted runs are smaller (and more of-
ten not significant) compared to the PBSMT sub-
task. As discussed in the next sections, this makes
it difficult to draw firm conclusions from the anal-
ysis of Table 5.

4.1 Automatic metrics computed using
human post-edits

In terms of systems’ ranking, the primary (“TER
(pe)”) and secondary evaluation metric (“BLEU
(pe)”) produce similar results.8 On both the sub-
tasks, the small differences in the TER-based and
BLEU-based ranking concern a different ordering
of the runs submitted by specific teams: one for
the PBSMT subtask (in which FBK’s primary sub-
mission is slightly better than the contrastive one
in terms of BLEU) and two for the NMT sub-
task (in which POSTECH’s and DFKI-MLT’s best

8The correlation between the ranks obtained by the two
metrics is 0.99 for the PBSMT subtask and 0.97 for the NMT
subtask.
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TER BLEU TER BLEU TER BLEU
ID (pe) (pe) (ref) (ref) (pe+ref) (pe+ref)
MS UEdin Primary 18.0 72.52 42.66 42.93 17.03 76.7
FBK Contrastive (MRT+MLE) 18.62 71.04 43.29 41.99 17.79 75.19
FBK Primary (MRT) 18.94 71.22 43.74 41.67 18.18 74.96
POSTECH Contrastive (fix5) 19.63 69.87 43.91 41.46 18.82 74.02
POSTECH Primary 19.72 69.8 43.95 41.45 18.9 73.94
POSTECH Contrastive (var5) 19.74 69.7 43.98 41.35 18.9 73.93
USAAR DFKI Primary 22.69 66.16 46.08 39.26 21.98 69.73
USAAR DFKI* 22.88 66.05 46.09 39.27 22.13 69.68
DFKI-MLT Primary (Transf.large) 24.19† 63.4 47.98 36.81 23.68† 66.66
Baseline 24.24 62.99 48.33 36.42 23.76 66.21
DFKI-MLT Contrastive (Transf.base) 24.5† 62.78† 48.27† 36.61† 24.04† 66.11†
DFKI-MLT Contrastive (LSTM) 25.3 62.1 48.55† 36.19† 24.74 65.33

Table 4: Results for the WMT18 APE PBSMT subtask – average TER (↓), BLEU score (↑). The symbol “†” indicates
a difference from the MT baseline that is not statistically significant. The symbol “*” indicates a late submission by the
USAAR DFKI team.

TER BLEU TER BLEU TER BLEU
ID (pe) (pe) (ref) (ref) (pe+ref) (pe+ref)
FBK Primary (MRT) 16.46 75.53 42.26† 44.3† 16.03 77.36
MS UEdin Primary 16.5 75.44 42.15† 44.46† 16.05 77.49
FBK Contrastive (MRT+MLE) 16.55 75.38 42.15† 44.37† 16.09 77.28
POSTECH Contrastive (top1) 16.7† 75.14 42.16† 44.29† 16.23 77.16
POSTECH Primary (fix5) 16.71† 75.13 42.2† 44.21† 16.23 77.12
POSTECH Contrastive (var5) 16.71† 75.2 42.19† 44.27† 16.23 77.15
Baseline 16.84 74.73 42.24 44.22 16.27 76.83
USAAR DFKI Primary 17.23 74.22 42.51† 43.93 16.81 76.14
DFKI-MLT Contrastive (Transf.base) 18.84 70.87 43.74 41.53 18.37 72.93
DFKI-MLT Primary (Transf.large) 18.86 70.98 43.79 41.53 18.41 72.95
DFKI-MLT Contrastive (LSTM) 19.88 69.35 44.28 40.91 19.43 71.36

Table 5: Results for the WMT18 APE NMT subtask – average TER (↓), BLEU score (↑). The symbol “†” indicates a
difference from the MT baseline that is not statistically significant.

runs in terms of BLEU are different from those
produced by the TER-based ranking). In both
subtasks, however, the performance differences
between the submitted runs are in general quite
small: in a TER interval of less than one point we
have the three top submissions to the PBSMT sub-
task and up to six submissions to the NMT sub-
task. In this situation, slightly different rankings
produced by the two metrics are not surprising.

PBSMT subtask. This subtask has similar char-
acteristics to the previous APE rounds. As shown
by the results of the do-nothing baseline (24.24
TER, 62.99 BLEU), the original translations in
the test set have a similar quality to those of the
APE16 and APE17 En-De test sets (see Table 2).
In spite of this, we observe further improvements
compared to last year, in which the winning sys-
tem was able to beat the baseline by -4.9 TER

and +7.6 BLEU points. Also this year, all par-
ticipants managed to beat the MT baseline at least
with their primary submission but the top-ranked
submission (MS UEdin Primary) achieved larger
improvements up to -6.24 TER and +9.53 BLEU
points. Moreover, three submissions out of eleven
outperformed the baseline by at least -5.0 TER and
+8.0 BLEU points, which suggests a positive trend
in terms of technology advancements. This can
also be due to the availability of new additional
training data (the eSCAPE corpus). However, ver-
ifying this hypothesis would require additional ab-
lation tests since only one team (POSTECH) did
not use all the available resources.

NMT subtask. In this subtask, the situation is
rather different and the higher difficulty of cor-
recting translations of better quality (16.84 TER,
74.73 BLEU) by learning from a smaller train-
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ing set (less than half of the PBSMT subtask
data) is confirmed. Results, even in the best case
(FBK Primary), improve the baseline with a much
smaller margin compared to the PBSMT subtask
(-0.38 TER and +0.8 BLEU). Although they are
obtained with the same neural technology success-
fully deployed for the PBSMT subtask, the ma-
jority of the scores fall in a range of less than
one TER/BLEU point improvement over the base-
line. Although not directly comparable, these re-
sults are in line with those of the APE17 evalu-
ation, which was carried out on German-English
phrase-based translations featuring a similar level
of quality (15.55 TER, 79.54 BLEU, see Table 2).
The fact that current neural APE technology per-
forms similarly on phrase-based and neural out-
puts of comparable quality suggests that the qual-
ity of the machine-translated text to be corrected
plays a more important role than the MT paradigm
itself.

4.2 Automatic metrics computed using
external references

By learning from (SRC, TGT, PE) triplets, APE
systems’ goal is to perform a “monolingual trans-
lation” from raw MT output into its correct ver-
sion. In this translation process, the same sentence
can be corrected in many possible ways that make
the space of possible valid outputs potentially very
large. Ideally, from this space, APE systems
should select solutions that reflect as much as pos-
sible the post-editing style of the training data (in
real-use settings, this can be the style/lexicon of
specific users, companies, etc.). However, noth-
ing prevents to end up with outputs that partially
satisfy this constraint. In light of these consid-
erations, TER and BLEU scores computed using
human post-edits as reference represent a reliable
measure of quality but:

1. They provide us with partial information on
how systems’ output reflects the post-editing
style of the training data;

2. They are not informative at all about the
amount of valid corrections that are not
present in the human post-edits.

4.2.1 Output style
To gain further insights on point 1., the “TER
(ref)” and “BLEU (ref)” columns in Tables 4 and 5
show the TER and BLEU scores computed against
independent reference translations. The rational

behind their computation is that differences in
“TER/BLEU (pe)” and “TER/BLEU (ref)” can be
used as indicators of the “direction” taken by the
trained models (i.e. either towards humans’ post-
editing style or towards a generic improvement
of the MT output). Since independent references
are usually very different from conservative hu-
man post-edits of the same TGT sentences, all
the TER/BLEU scores measured using indepen-
dent references are expected to be worse. How-
ever, if our hypothesis holds true, visible differ-
ences in the baseline improvements measured with
“TER/BLEU (pe)” and “TER/BLEU (ref)” should
indicate system’s ability to model the post-editing
style of the training data. In particular, larger gains
measured with “TER/BLEU (pe)” will be associ-
ated to this desired ability.

PBSMT subtask. As can be seen in Table 4,
the PBSMT subtask results show this tendency.
Looking at the improvements over the baseline,
those measured by computing TER and BLEU
scores against human post-edits are often larger
than those computed against independent refer-
ences. In terms of TER, this holds true for the
top six submitted runs, with the best system that
shows a difference of 0.57 TER points in the gains
over the baseline computed with “TER (pe)” (-
6.24) and those computed with “TER (ref)” (-
5.67). In terms of BLEU, the differences are more
visible. For the top nine submissions, the base-
line improvements are larger when computed with
“BLEU (pe)”. The best system improves over the
baseline by 9.53 points with “BLEU (pe)” and 6.51
points with “BLEU (ref)”, with a difference of 3.02
points that can be explained by its tendency to re-
flect the post-editing style of the training data.

NMT subtask. Similar considerations could be
drawn for the NMT subtask but the small differ-
ences in the results reported in Table 5 (many of
which are not statistically significant) do not al-
low to draw firm conclusions. For the top six sub-
missions, TER and BLEU differences with respect
to the baseline are larger when the two metrics
are computed against post-edits. For the best sub-
mission, the improvements over the baseline are
respectively 0.38 and 0.02 with “TER (pe)” and
“TER (ref)”. In terms of BLEU, they are 0.8 with
“BLEU (pe)” and 0.08 with “BLEU (ref)”.
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4.2.2 Over-corrections
To shed light on point 2., the “TER (pe+ref)”
and “BLEU (pe+ref)” columns in Tables 4 and 5
show the multi-reference TER and BLEU scores
computed against post-edits and independent ref-
erences. The rational behind their computa-
tion is that differences in “TER/BLEU (pe)” and
“TER/BLEU (pe+ref)” can be used to analyze
the quality of the unnecessary corrections per-
formed by the systems (or, in other words, to study
the impact of systems’ tendency towards “over-
correction”). APE corrections of a given MT out-
put can indeed be of different types, namely: i)
correct edits of a wrong passage, ii) wrong edits
of a wrong passage, iii) correct edits of a correct
passage and iv) wrong edits of a correct passage.
TER/BLEU scores computed against human post-
edits work reasonably well in capturing cases i)-
ii) by matching APE systems’ output with human
post-edits: for wrong MT output passages (i.e.
those changed by the post-editor), they inform us
about the general quality of automatic corrections
(i.e. how close they are to the post-editor’s ac-
tions). Cases iii)-iv), in contrast, are more prob-
lematic since any change performed by the sys-
tem to a correct passage (i.e. those that were not
changed by the post-editor) will always be penal-
ized by automatic comparisons with human post-
edits. Although discriminating between the two
types of unnecessary corrections is hard, we hy-
pothesize that a comparison between “TER/BLEU
(pe)” and “TER/BLEU (pe+ref)” can be used as
a proxy to quantify those belonging to type iii).
In general, due to the possibility to match more
and longer n-grams in a multi-reference setting,
“TER/BLEU (pe+ref)” scores are expected to be
higher than “TER/BLEU (pe)” scores. However, if
our hypothesis holds true, visible differences in the
increase observed for the baseline and for the sys-
tems should indicate system’s tendency to produce
acceptable over-corrections (type iii)). In particu-
lar, larger gains observed for the APE systems will
be associated to their over-correction tendency to-
wards potentially acceptable edits that should not
be penalized by automatic evaluation metrics.

PBSMT subtask. As can be seen in Table
4, the multi-reference results computed with
“TER/BLEU (pe+ref)” are unsurprisingly better
than those computed with “TER/BLEU (pe)”. The
variations of the do-nothing baseline are 0.48 TER
points (from 24.24 with “TER (pe)” to 23.76 with

“TER (pe+ref)”) and 3.22 BLEU points (from
62.99 to 66.21). Interestingly, except for one sys-
tem, all the results show larger variations when
computed with “BLEU (pe+ref)”, with a differ-
ence of 0.97 TER points (from 18.0 to 17.3) and
4.18 BLEU points (from 72.52 to 76.7) for the best
system. Such variations are about 0.5 TER and 1.0
BLEU points larger than those measured for the
baseline. This difference suggests that, though pe-
nalized by the comparison with human post-edits,
a good amount of corrections made by the sys-
tem still represent acceptable modifications of the
original translations. Further analysis, which we
leave for future work, should focus on understand-
ing whether these corrections represent a problem
(i.e. an unwanted deviation from the desired target
style) or acceptable paraphrases of the input.

NMT subtask. Also in this case, as shown in Ta-
ble 5, the multi-reference results computed with
“TER/BLEU (pe+ref)” are better than those com-
puted with “TER/BLEU (pe)”. Apart from this,
however, the performance variations for the base-
line and the systems are not systematic nor partic-
ularly informative.

5 System/performance analysis

As a complement to global TER/BLEU scores,
also this year we performed a more fine-grained
analysis of the changes made by each system to
the test instances.

5.1 Macro indicators: modified, improved
and deteriorated sentences

Tables 6 and 7 show the number of modified, im-
proved and deteriorated sentences, respectively for
the PBSMT and the NMT subtasks. It’s worth not-
ing that, as in the previous rounds and in both the
settings, the number of sentences modified by each
system is higher than the sum of the improved and
the deteriorated ones. This difference is repre-
sented by modified sentences for which the cor-
rections do not yield TER variations. This grey
area, for which quality improvement/degradation
can not be automatically assessed, contributes to
motivate the human evaluation discussed in Sec-
tion 6.

PBSMT subtask. As can be seen in Table 6,
the runs submitted to the PBSMT subtask reveal a
quite homogeneous behaviour in terms of systems’
aggressiveness. On average, the 11 submitted sys-
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Systems Modified Improved Deteriorated
MS UEdin Primary 1,641 (82.05%) 1,111 (67.70%) 331 (20.17%)
FBK Contrastive (MRT+MLE) 1,581 (79.05%) 1,039 (65.72%) 319 (20.18%)
FBK Primary (MRT) 1,573 (78.65%) 1,025 (65.16%) 323 (20.53%)
POSTECH Contrastive (fix5) 1,577 (78.85%) 1,001 (63.47%) 342 (21.69%)
POSTECH Primary 1,566 (78.30%) 992 (63.35%) 338 (21.58%)
POSTECH Contrastive (var5) 1,565 (78.25%) 987 (63.07%) 341 (21.79%)
USAAR DFKI Primary 1,435 (71.75%) 751 (52.33%) 469 (32.68%)
USAAR DFKI* 1,595 (79.75%) 812 (50.91%) 548 (34.36%)
DFKI-MLT Primary (Transf.large) 1,221 (61.05%) 469 (38.41%) 457 (37.43%)
DFKI-MLT Contrastive (Transf.base) 1,157 (57.85%) 414 (35.78%) 445 (38.46%)
DFKI-MLT Contrastive (LSTM) 1,573 (78.65%) 567 (36.05%) 659 (41.89%)

Table 6: Number of test sentences modified, improved and deteriorated by each run submitted to the PBSMT subtask.

Systems Modified Improved Deteriorated
FBK Primary (MRT) 276 (26.98%) 131 (47.46%) 77 (27.90%)
MS UEdin Primary 316 (30.89%) 150 (47.47%) 107 (33.86%)
FBK Contrastive (MRT+MLE) 298 (29.13%) 134 (44.97%) 88 (29.53%)
POSTECH Contrastive (top1) 230 (22.48%) 105 (45.65%) 87 (37.83%)
POSTECH Primary (fix5) 224 (21.90%) 103 (45.98%) 85 (37.95%)
POSTECH Contrastive (var5) 220 (21.51%) 101 (45.91%) 85 (38.64%)
USAAR DFKI Primary 304 (29.72%) 99 (32.57%) 138 (45.39%)
DFKI-MLT Contrastive (Transf.base) 468 (45.75%) 60 (12.82%) 351 (75.00%)
DFKI-MLT Primary (Transf.large) 448 (43.79%) 50 (11.16%) 342 (76.34%)
DFKI-MLT Contrastive (LSTM) 565 (55.23%) 51 (9.03%) 430 (76.11%)

Table 7: Number of test sentences modified, improved and deteriorated by each run submitted to the NMT subtask.

tems modified about 75.0% of the sentences, with
values ranging from 57.85% to 82.05%. In line
with last year’s round, the top-performing ones
are more aggressive (the best systems peaks at
82.05% modified sentences) than those in lower-
ranked positions. Since about 15.0% (i.e. 300) of
the test instances are to be considered as “perfect”
(see Figure1), the percentage of modifications is
not too far to the expected value (85%). However,
in terms of precision (i.e. the proportion of im-
proved sentences out of the total amount of modi-
fied test items), the average is only 54.7%. While
the three top submissions are able to improve more
than 65.0% of the test items (with the best sys-
tem peaking at 67.7%), the lower-ranked ones do
not exceed 53.0%. The deteriorated sentences are
on average 28.2%, with only three systems that
are able to limit this proportion to about 20.0%.
These results indicate that, although systems are
able to change the expected number of sentences
in the test set (with overall MT quality improve-
ments, as shown in Table 4), their precision is still
crucial. From this point of view, the room for im-
provement (more than 30 points in precision for

the top submissions) remains large and advocates
for solutions to drive APE technology towards the
appropriate corrections (Chatterjee et al., 2018).

NMT subtask. In this subtask, the participat-
ing systems show a less aggressive behaviour
and a tendency to preserve the higher quality of
NMT translations. On average, the 10 submitted
runs modified 32.7% of the sentences, with val-
ues ranging from 21.51% to 55.23%. However,
though desirable, this behaviour is too conserva-
tive. Considering that about 25.2% (i.e. 257) of
the test instances are to be considered as “perfect”
(see Figure2), the reported numbers are far below
the target percentage of modifications (74.8%).
Also in terms of precision, the values are lower
than in the PBSMT subtask. The average is 34.3%
and even the top submissions have a percentage of
improved sentences of less than 50.0%. The same
holds for the percentage of deteriorated sentences
(the average is 47.85%), for which all systems
have larger values when dealing with neural out-
puts. Overall, the analysis confirms that correcting
high-quality translations still remains a hard task,
especially when dealing with NMT outputs. On
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Figure 3: System behaviour (primary submissions)
for the PBSMT subtask – TER(MT, APE)

Figure 4: System behaviour (primary submissions)
for the NMT subtask – TER(MT, APE)

one side, as we observed in the PBSMT subtask,
systems’ low precision is an evident limitation. On
the other side, and in addition to that, neural trans-
lations might be particularly difficult to improve,
even for neural APE models. Since NMT is known
to produce considerably less reordering errors than
PBSMT (Bentivogli et al., 2016), one possible ex-
planation is that the margins of improvement to
the input sentences are reduced to types of errors
(e.g. lexical) on which APE systems are less reli-
able. The analysis proposed in Section 5.2 aims to
explore also this aspect.

5.2 Micro indicators: edit operations
We now turn to analyze the possible differences in
the way systems corrected the test set instances.
To this aim, we looked at the distribution of the
edit operations done by each system (insertions,
deletions, substitutions and shifts) by computing
the TER between the original MT output and the
output of each system taken as reference (only for
the primary submissions). The outcomes of this
analysis are shown in Figures 3 (PBSMT subtask)
and 4 (NMT subtask).

PBSMT subtask. As it is evident from Figure 3,
little can be said about the small differences in sys-
tem’s behaviour. Indeed, the plot does not show
noticeable differences between neural-based sub-
missions that, in most of the cases, implement sim-
ilar solutions (multi-source, Transformer-based
models trained with the same in-domain and ar-
tificial corpora). All of them are characterized by
a rather homogeneous distribution of the types of
correction patterns applied, with a large number

of substitutions (average 39.8% of the total) and
a slight dominance of deletions (average 28.2%)
over the others (average insertions and shifts are
respectively 21.6% and 10.4% of the total).

NMT subtask. Also in this case, most of the
submissions are characterized by a similar be-
haviour, probably induced by the slightly differ-
ent solutions adopted by participants. The dis-
tribution of edit operations, however, is less ho-
mogeneous than in the PBSMT subtask. Substi-
tutions still represent the majority of the correc-
tions but with a larger percentage (average 53.5%),
which is followed by insertions (18.7%), deletions
(18.5%) and shifts (9.2%). Average values, how-
ever, are influenced by one submission (DFKI-
MLT), which shows a skewed distribution towards
shift operations (36.15%) that are close in percent-
age to substitutions (36.88%). In terms of raw
percentages, the role of shift operations can ex-
plain the lower performance of this outlier system,
which was probably penalized by a large number
of unnecessary reordering actions. As a more gen-
eral observation, comparing Figures 3 and 4, we
observe that reordering plays a quite different role
in the two subtasks. Systems trained and evalu-
ated on PBSMT data learn and apply more sub-
stitutions than those built for the NMT scenario.
This can be explained by the higher fluency of
neural translations which, among the four types
of corrections, reduces the necessity of reordering
operations. If this hypothesis holds true, the im-
provements of NMT outputs will mostly depend
on other aspects like lexical choice, as suggested
by the larger amount of substitutions compared to
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Figure 5: Screenshot of the direct assessment user interface.

the PBSMT subtask.

6 Human evaluation

In order to complement the automatic evaluation
of APE submissions, a manual evaluation of the
primary systems submitted (five in total) was con-
ducted. Similarly to the manual evaluation con-
ducted for last year APE shared task, it was car-
ried out following the direct assessment (DA) ap-
proach (Graham et al., 2013; Graham et al., 2016).
In this Section, we present the evaluation proce-
dure as well as the results obtained.

6.1 Evaluation procedure

The manual evaluation carried out this year in-
volved 12 native German speakers with full pro-
fessional proficiency in English in the IT domain,
with a third of the evaluators being students in
translation technologies from Saarland University
and the remaining ones researchers and engineers
from DFKI. Each evaluator was introduced to the
evaluation task through a set of slides and a test-
ing phase of the evaluation platform in order to be
familiar with the user interface and its functional-
ities. A screenshot of the evaluation interface is
presented in Figure 5.

A single assessment consists in assigning a
score to a German sentence indicating how much
of the meaning from a source sentence in English
is expressed. In other words, the adequacy of a
translation is directly evaluated on a scale from
0 to 100 given the source. The evaluators are
free to conduct as many assessments as they want
and free to schedule their own evaluation sessions.
In addition, there was no requirement regarding a
minimum amount of assessments to perform. The
evaluation took place over a period of a month and

Subtask PBSMT NMT
# Systems 7 7
# Source segs 2,000 1,023
# Total Pairs 14,000 7,161
# Unique Pairs 8,749 2,916
Reduction 37.5% 59.3%

Table 8: Data statistics per subtask with the total number of
assessments prior to and after combination of identical target
segments for each source.

was conducted in two sessions: a first one focus-
ing on the PBSMT subtask and a second one on
the NMT subtask.

For each subtask, the submitted post-edited test
sets from the participants were presented to the
evaluators one sentence at a time along with the
corresponding source sentence. In order to de-
fine a baseline and an upperbound for this man-
ual evaluation, the baseline (no post-edits) and the
human post-edited MT output were added to the
pool of submissions to evaluate, leading to a total
of 14, 000 and 7, 161 pairs of segments to evaluate
for the PBSMT and NMT subtasks respectively.
However, it was possible to take advantage of the
fact that multiple systems can produce identical
outputs, allowing us to combine them and reduce
the total number of source–target pairs to evalu-
ate. Table 8 contains the statistics relative to the
numbers of translations in total for all systems, as
well as savings in terms of assessment effort that
was gained by combining identical system outputs
prior to running the evaluation.

Based on the direct assessment scores provided
by the evaluators, two scores were computed for
each system. A first score is the average of the
segments direct assessment scores (noted ”Avg
%”). For the second score (noted ”Avg z”), human
assessments for translations were first standard-
ized according to each individual human asses-
sor’s overall mean and standard deviation score.
Average standardized scores for individual seg-
ments belonging to a given system are then com-
puted, before the final overall DA score for that
system is computed as the average of its segment
scores.

6.2 Human Evaluation results

The twelve human evaluators spent a total of 64
hours on the DA task with an average of 17.2 and
17.5 seconds per assessment for the NMT and PB-
SMT subtasks respectively. More details about the
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# Assessments Avg. Duration (sec.)
ID PBSMT NMT PBSMT NMT

1 672 660 19.87 16.52
2 420 93 19.56 24.79
3 2,000 0 19.69 -
4 1,153 228 20.57 23.38
5 751 20 23.62 27.71
6 1,500 200 16.58 15.60
7 60 0 24.66 -
8 2,401 300 10.90 5.59
9 276 660 23.92 19.43

10 0 668 - 20.67
11 0 1,020 - 13.73
12 0 100 - 30.27

Table 9: Direct assessments statistics indicating the number
of assessments carried out per subtask and the average dura-
tion in seconds per assessment for the twelve evaluators in-
volved in the manual evaluation.

# Systems Avg % Ave z

Human post-edit 95.87 0.50
1 MS UEdin 93.27 0.41
2 FBK 90.80 0.33

POSTECH 89.96 0.29
4 USAAR DFKI 86.14 0.15
5 DFKI-MLT 77.78 -0.15

Baseline 75.92 -0.22
Table 10: DA Human evaluation results for the PBSMT sub-
task in terms of average raw DA (Ave %) and average stan-
dardized scores (Ave z). Dashed lines between systems in-
dicate clusters according to Wilcoxon signed-rank test at p-
level p ≤ 0.05.

assessments done per evaluator, as well as the av-
erage duration per assessment, are presented in Ta-
ble 9.

PBSMT Subtask. The results of DA for the
PBSMT subtask are presented in Table 10. Six
clusters are defined, grouping systems together
according to which systems significantly outper-
form all others in lower ranking clusters based on
the Wilcoxon signed-rank test. The human post-
edited MT output reaches an averaged DA score of
95.87%, followed by the first system (MS UEdin),
single in a cluster and significantly better than
the other systems, with an averaged DA score
of 93.27%. A second cluster contains two sys-
tems which are non significantly different reach-
ing 90.9% and 89.96% averaged DA scores.

All submitted systems are ranked significantly
higher than the baseline (MT output without post-
editing) but the top system remains below the hu-

# Systems Ave % Ave z

Human post-edit 96.13 0.43
1 MS UEdin 91.11 0.24

POSTECH 90.41 0.22
FBK 90.41 0.20
Baseline 90.18 0.20
USAAR DFKI 89.97 0.19
DFKI-MLT 89.53 0.18

Table 11: DA Human evaluation results for the NMT sub-
task in terms of average raw DA (Ave %) and average stan-
dardized scores (Ave z). Dashed lines between systems in-
dicate clusters according to Wilcoxon signed-rank test at p-
level p ≤ 0.05.

man post-edits with a difference of 2.6%. The
ranking of primary submissions for the PBSMT
subtask is similar to the one obtained with the
automatic metrics evaluation, where all primary
systems were ranked above the baseline. For
the DFKI-MLT system, TER indicates a non-
significant difference with the baseline while DA
scores leads to this system being significantly
higher than the baseline.

NMT Subtask. The results of DA for the NMT
subtask are presented in Table 11. Similarly to the
results obtained with automatic metrics, the base-
line is ranked above two and below three primary
submissions. However, none of the submissions
are ranked significantly higher or lower than the
baseline according to DA scores and all five sub-
missions are placed in the same cluster. The hu-
man post-edited MT output reaches an averaged
DA score of 96.13%, ranked above the first sys-
tem (MS UEdin) with an averaged DA score of
91.11%.

The range of averaged DA scores for the NMT
subtask is smaller ([89.53; 96.13]) compared to
the PBSMT subtask ([75.92; 95.87]), which is ob-
served in the results obtained with automatic met-
rics as well. This indicates a higher translation
adequacy for the NMT subtask and is supported
by the averaged DA score obtained by the base-
line system (no post-edits). In addition, the hu-
man post-edited MT output reaches a higher aver-
aged DA score for the NMT compared to the PB-
SMT subtask (similarly to automatic metrics re-
sults), which could indicate a higher overall trans-
lation quality of the final translation after manually
post-editing the baseline NMT output compared to
a baseline PBSMT output. However, more exper-
iments involving larger test sets and a larger pool
of evaluators are necessary to validate this obser-
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vation.

7 Conclusion

We presented the results from the fourth shared
task on Automatic Post-Editing. This year, we
proposed two subtasks in which the MT output
to be corrected was respectively generated by a
phrase system (PBSMT subtask) and by a neural
system (NMT subtask). Both the subtasks dealt
with English-German data drawn from the infor-
mation technology domain. This evaluation round
attracted submissions from five groups, who sub-
mitted eleven runs for the PBSMT subtask and
ten runs for the NMT one. Participants’ systems
have a lot in common: they are all neural mod-
els based on the Transformer architecture, some
of them are based on multi-source methods and
they all took advantage of the synthetic corpora
released as additional training material. Evalua-
tion results reflect such similarities and the effec-
tiveness of the proposed solutions: top submis-
sions have very close performance which, on both
subtasks, shows significant improvements over the
baseline.

In short, the main findings of this year’s round
are the following:

• Besides the amount of training data (the train-
ing corpora for the two subtasks have differ-
ent size), the task difficulty is proportional to
the quality of the initial translations. In line
with previous years, learning from (and test-
ing on) lower quality data leaves more room
for improvement.

• The output of PBSMT systems is easier to
improve (gains are up to -6.24 TER and +9.53
BLEU points). Such gains reflect a tendency
to model the post-editors’ style learned from
training data.

• The output of NMT systems is harder to
improve by current neural APE technology
(gains are up to -0.38 TER and +0.8 BLEU
points). A general explanations is that NMT
translations are of higher quality. More
specifically, looking the corrections done by
the systems, the small number of reordering
issues calls for effective methods to handle
other types of errors (e.g. lexical choice) on
which current APE technology can still be
improved.

• Synthetic data help in improving perfor-
mance. In the PBSMT subtask, similar to the
APE17 English-German task from a task dif-
ficulty standpoint, the synthetic data provided
as additional training material contributed to
further improvements over the baseline.
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Abstract

We posed the shared task of assigning sen-
tence-level quality scores for a very noisy cor-
pus of sentence pairs crawled from the web,
with the goal of sub-selecting 1% and 10%
of high-quality data to be used to train ma-
chine translation systems. Seventeen partici-
pants from companies, national research labs,
and universities participated in this task.

1 Introduction

Training corpora for machine translation come
in varying degrees of quality. On the one ex-
treme end they are carefully professionally trans-
lated specifically for this purpose which may have
done under the instruction to provide fairly lit-
eral translations and adherence to sentence-by-
sentence correspondences. The other extreme are
sentence pairs extracted with fully automatic pro-
cesses from indiscriminate crawling of the World
Wide Web.

The Shared Task on Parallel Corpus Filtering
targets the second extreme, although the methods
developed for this data condition should also carry
over to less noisy parallel corpora. In setting this
task, we were motivated by our ongoing efforts
to create large publicly available parallel corpora
from web sources and the recognition that noisy
parallel data is especially a concern for neural ma-
chine translation (Khayrallah and Koehn, 2018).

This paper gives an overview of the task,
presents its results and provides some analysis.

2 Related Work

Although the idea of crawling the web indiscrimi-
nately for parallel data goes back to the 20th cen-
tury (Resnik, 1999), work in the academic com-

munity on extraction of parallel corpora from the
web has so far mostly focused on large stashes
of multilingual content in homogeneous form,
such as the Canadian Hansards, Europarl (Koehn,
2005), the United Nations (Rafalovitch and Dale,
2009; Ziemski et al., 2015), or European Patents
(Täger, 2011). A nice collection of the products of
these efforts is the OPUS web site1 (Skadiņš et al.,
2014).

We are currently engaged in a large-scale effort
to crawl text from the web. This work has been
funded by Google Faculty Awards and is also cur-
rently funded by the European Union via the Con-
necting Europe Facility.2 In 2016, we organized a
shared task on document alignment as part of this
effort (Buck and Koehn, 2016).

Acquiring parallel corpora from the web typi-
cally goes through the stages of identifying web
sites with parallel text, downloading the pages of
the web site, aligning document pairs, and align-
ing sentence pairs. A final stage of the processing
pipeline filters out bad sentence pairs. These exist
either because the original web site did not have
any actual parallel data (garbage in, garbage out),
or due to failures of earlier processing steps.

In 2016, a shared task on sentence pair filter-
ing3 was organized, albeit in the context of clean-
ing translation memories which tend to be cleaner
that the data at the end of a pipeline that starts with
web crawls.

There is a robust body of work on filtering out
noise in parallel data. For example: Taghipour
et al. (2011) use an outlier detection algorithm

1http://opus.lingfil.uu.se/
2http://www.paracrawl.eu/
3NLP4TM 2016: Shared task

http://rgcl.wlv.ac.uk/nlp4tm2016/shared-task/
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to filter a parallel corpus; Xu and Koehn (2017)
generate synthetic noisy data (inadequate and non-
fluent translations) and use this data to train a clas-
sifier to identify good sentence pairs from a noisy
corpus; and Cui et al. (2013) use a graph-based
random walk algorithm and extract phrase pair
scores to weight the phrase translation probabili-
ties to bias towards more trustworthy ones.

Most of this work was done in the context of sta-
tistical machine translation, but more recent work
targets neural models. Carpuat et al. (2017) fo-
cus on identifying semantic differences in trans-
lation pairs using cross-lingual textual entailment
and additional length-based features, and demon-
strates that removing such sentences improves
neural machine translation performance.

As Rarrick et al. (2011) point out, one type of
noise in parallel corpora extracted from the web
are translations that have been created by machine
translation. Venugopal et al. (2011) propose a
method to watermark the output of machine trans-
lation systems to aid this distinction. Antonova
and Misyurev (2011) report that rule-based ma-
chine translation output can be detected due to cer-
tain word choices, and statistical machine transla-
tion output can be detected due to lack of reorder-
ing.

Belinkov and Bisk (2017) investigate the impact
of noise on neural machine translation. They focus
on creating systems that can translate the kinds of
orthographic errors (typos, misspellings, etc.) that
humans can comprehend. In contrast, Khayrallah
and Koehn (2018) address noisy training data and
focus on types of noise occurring in web-crawled
corpora. They carried out a study how noise that
occurs in crawled parallel text impacts statistical
and neural machine translation.

There is a rich literature on data selection which
aims at sub-sampling parallel data relevant for a
task-specific machine translation system (Axelrod
et al., 2011). van der Wees et al. (2017) find that
the existing data selection methods developed for
statistical machine translation are less effective for
neural machine translation. This is different from
our goals of handling noise since those methods
tend to discard perfectly fine sentence pairs (say,
about cooking recipes) that are just not relevant for
the targeted domain (say, software manuals). Our
task is focused on data quality that is relevant for
all domains.

3 Task

The shared task tackled the problem of filtering
parallel corpora. Given a noisy parallel corpus
(crawled from the web), participants developed
methods to filter it to a smaller size of high quality
sentence pairs.

Specifically, we provided a very noisy 1 bil-
lion word (English token count) German–English
corpus crawled from the web by the Paracrawl
project. We asked participants to subselect sen-
tence pairs that amount to (a) 10 million words,
and (b) 100 million words, counted on the En-
glish side. The quality of the resulting subsets
was determined by the quality of a statistical ma-
chine translation (Moses, phrase-based) and a neu-
ral machine translation system (Marian) trained on
this data. The quality of the machine translation
system was measured by BLEU score on the (a)
official WMT 2018 news translation test set and
(b) other undisclosed test sets.

Note that the task addressed the challenge of
data quality and not domain-relatedness of the data
for a particular use case. Hence, we discouraged
participants from subsampling the corpus for rel-
evance to the news domain. Thus, we place more
emphasis on the undisclosed test sets, although we
report both scores.

Participants in the shared task submitted a file
with quality scores, one per line, corresponding to
the sentence pairs. The scores do not have to be
meaningful, except that higher scores indicate bet-
ter quality. The scores were uploaded to a Google
Drive folder which remains publicly accessible.4

Evaluation of the quality scores was done by
subsampling 10 million and 100 million word cor-
pora based on these scores, training statistical and
neural machine translation systems with the sub-
sampled corpora, and evaluation translation qual-
ity on blind test sets using the BLEU score.

For development purposes, we released config-
uration files and scripts that mirror the official test-
ing procedure with a development test set. The de-
velopment pack consists of
• a script to subsample corpora based on qual-

ity scores
• a Moses configuration file to train and test a

statistical machine translation system
• Marian scripts to train and test a neural ma-

chine translation system
4https://drive.google.com/drive/folders/

1zZNPlAThm-Rnvxsy8rXzChC49bc0 TGO
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Type of Noise Count
Okay 23%
Misaligned sentences 41%
Third language 3%
Both English 10%
Both German 10%
Untranslated sentences 4%
Short segments (≤2 tokens) 1%
Short segments (3–5 tokens) 5%
Non-linguistic characters 2%

Table 1: Noise in the raw Paracrawl corpus.

• the test set from the WMT 2016 Shared Task
on Machine Translation of News as develop-
ment set
• the test set from the WMT 2017 Shared Task

on Machine Translation of News as develop-
ment test set

The web site for the shared task5 provided de-
tailed instructions on how to use these tools to
replicate the official testing environment.

4 Data

4.1 Training Data
The provided raw parallel corpus is the outcome
of a processing pipeline that aimed at high recall at
the cost of precision, so it is very noisy. It exhibits
noise of all kinds (wrong language in source and
target, sentence pairs that are not translations of
each other, bad language, incomplete of bad trans-
lations, etc.).

A cursory inspection of the corpus is given in
Table 1. According to analysis by Khayrallah and
Koehn (2018), only about 23% of the data is okay,
but even that fraction may be flawed in some way.
Consider the following sentence pairs that we did
count as okay even though they contain mostly un-
translated names and numbers.

DE: Anonym 2 24.03.2010 um 20:55 314 Kom-
mentare
EN: Anonymous 2 2010-03-24 at 20:55 314
Comments
DE: << erste < zurück Seite 3 mehr letzte >>
EN: << first < prev. page 3 next last >>

It is an open question if such data is also harm-
ful, merely irrelevant, or maybe even beneficial.

5http://www.statmt.org/wmt18/parallel-corpus
-filtering.html

The raw corpus consists of a billion words of
English, paired with German on the sentence level.
It was deduplicated from a subset of the raw
Paracrawl Release 1.

4.2 Provided Meta Information

The provided corpus file contains three items per
line, separated by a TAB character:

• English sentence
• German sentence
• Hunalign score

The Hunalign scores were obtained from the
sentence aligner (Varga et al., 2005). They may
be a useful feature for sentence filtering, but they
do not by themselves correlate strongly with sen-
tence pair quality. None of the participants gener-
ally used this score.

Participant’s systems may take the source of the
data into account, e.g., by discounting sentence
pairs that come from a web domain with gener-
ally low quality scores. To this end, we released
the URL sources for each sentence pair as addi-
tional data set. Note that due to de-duplication a
single sentence pair may have several URL pairs
associated it, since it may appear on multiple web
pages.

Participants were also allowed to use existing
tools and external training data to build their fil-
tering methods. Specifically, they were permitted
to use the WMT 2018 news translation task data
for German-English (without the Paracrawl paral-
lel corpus) to train components of their method.

4.3 Test Sets

The goal of the task is to filter down to high-
quality sentence pairs, but not to sentence pairs
that are most fitting to a specific domain. Dur-
ing the submission period of the task, we only an-
nounced that we will use the official new transla-
tion test set from the WMT 2018 Shared Task of
Machine Translation of News,6 which was not re-
leased at that time yet.

In total, we used six test sets. For statistics see
Table 2. Two of them were taken from existing
evaluation campaigns, four were created for this
shared task.

NEWSTEST2018 The test set from the WMT
2018 Shared Task of Machine Translation of

6http://www.statmt.org/wmt18/translation-task.html
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News. It contains news stories that were ei-
ther translated from German to English or
from English to German.

IWSLT2017 The test set from the IWSLT 2017
evaluation campaign. It consists of tran-
scripts of talks given at the TED conference.
They cover generally accessible topics in the
area of technology, entertainment, and de-
sign.

ACQUIS This test set was extracted from the Ac-
quis Communtaire corpus, which is avail-
able on OPUS7 (Tiedemann, 2012) (which
was the source to create the subsequent 3
test sets). The test set consists of laws of
the European Union that have to be incorpo-
rated into the national laws of the EU mem-
ber countries. We only used sentences with
15 to 80 words, and removed any duplicate
sentence pairs.

EMEA This test set was extracted from documents
European Medicines Agency, which consist
of public health announcements and descrip-
tions of medications. We only used sentences
with 20 to 80 words, and removed any dupli-
cate sentence pairs.

GLOBALVOICES This test set was extracted from
news stories posted and translated on Global
Voices, an international and multilingual
community of bloggers, journalists, transla-
tors, academics, and human rights activists.
We selected several complete stories from
this corpus.

KDE This test set was extracted from KDE4 local-
ization files, which is open source software
for Linux. We only used sentences with 15
to 80 words, and removed any duplicate sen-
tence pairs.

For all the test sets, we checked for overlap with
the training data, to prevent the possibility of hav-
ing the test set being contained in the released
noisy parallel data. We originally considered a test
set based on the PHP documentation but removed
it because that was contained in Paracrawl.

The official scoring of machine translation sys-
tems generated from the subsampled data sources
is the average of the individual BLEU scores for
each test set.

7http://opus.nlpl.eu/

Test set Sentences English Words
NEWSTEST2018 2998 58,628
IWSLT2017 1138 18,162
ACQUIS 2862 98,624
EMEA 3000 93,071
GLOBALVOICES 3000 54,930
KDE 3000 109,716

Table 2: Statistics for the test sets used to evalu-
ate the machine translation systems trained on the
subsampled data sets. Word counts are obtained
with wc on untokenized text.

5 Evaluation Protocol

The testing setup mirrors the development envi-
ronment that we provided to the participants.

5.1 Particpants
We received submissions from 17 different orga-
nizations. See Table 3 for the complete list of
participants. The participant’s organizations are
quite diverse, with 3 participants from Spain, 3
participants from the United States, 2 participants
from Germany, 1 participant each from Canada,
Greece, China, Japan, France, Latvia, Estonia,
United Kingdom, and Brazil. 9 of the participants
are companies, 3 are national research organiza-
tions, and 5 were universities.

Each participant submitted up to 5 different sets
of scores, resulting in a total of 44 different sub-
missions that we scored.

5.2 Subset Selection
We provided to the participants a file containing
one sentence pair per line. A submission to the
shared task consists of a file with the same number
of lines, with one score per line corresponding to
the quality of the corresponding sentence pair.

Using the score file, we selected subsets of a
pre-defined size, defined by the number of English
words. We chose the number of English words
instead of German words, since the latter would
allow selection of sentence pairs with very few
German words and many English words which are
beneficial for language model training but do not
count much towards the German word total.

Subselecting sentence pairs is done by finding a
threshold score, so that the sentence pairs that will
be included in the subset have a quality score at
and above this threshold. In some cases, a submis-
sion assigned this threshold score to a large num-
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Acronym Participant and System Description Citation
AFRL Air Force Research Lab, USA (Erdmann and Gwinnup, 2018)
Alibaba Machine Intelligence Technology Lab, Alibaba Group, China (Lu et al., 2018)
ARC Inst. for Language and Speech Proc./Athena RC, Greece (Papavassiliou et al., 2018)
U Tartu University of Tartu, Estonia (Barbu and Barbu Mititelu, 2018)
JHU Johns Hopkins University, USA (Khayrallah et al., 2018)
LMU Ludwig Maximilian University of Munich, Germany (Hangya and Fraser, 2018)
MAJE WebInterpret, Spain (Fomicheva and González-Rubio, 2018)
Microsoft Microsoft Corp., USA (Junczys-Dowmunt, 2018)
NICT National Inst. of Information and Communications Tech., Japan (Wang et al., 2018)
NRC National Research Council, Canada (Littell et al., 2018; Lo et al., 2018)
Prompsit Prompsit, Spain (Sánchez-Cartagena et al., 2018)
RWTH Rheinland-Westphälische Technical University, Germany (Rossenbach et al., 2018)
Speechmatics Speechmatics, United Kingdom (Ash et al., 2018)
Systran Systran, France (Pham et al., 2018)
Tilde Tilde, Latvia (Pinnis, 2018)
UTFPR Federal University of Technology, Paranà, Brazil (Paetzold, 2018)
Vicomtech Vicomtech, Spain (Azpeitia et al., 2018)

Table 3: Participants in the shared task.

ber of sentence pairs. Including all of them would
yield a too large subset, excluding them yields a
too small subset. Hence, we randomly included
some of the sentence pairs to get the desired size
in this case.

5.3 System Training

Given a selected subset of given size for a system
submission, we built statistical (SMT) and neu-
ral machine translation (NMT) systems to evaluate
the quality of the selected sentence pairs.

SMT For statistical machine translation, we
used Moses (Koehn et al., 2007) with fairly ba-
sic settings, such as Good-Turing smoothing of
phrase table probabilities, maximum phrase length
of 5, maximum sentence length of 80, lexical-
ized reordering (hier-mslr-bidirectional-fe), fast-
align for word alignment with grow-diag-final-and
symmetrization, tuning with batch-MIRA, no op-
eration sequence model, 5-gram language model
trained on the English side of the subset with no
additional data, and decoder beam size of 5,000.

NMT For neural machine translation, we used
Marian (Junczys-Dowmunt et al., 2018). It uses
the default settings of version 1.5, with 50,000
BPE operations, maximum sentence length of
100, layer normalization, dropout of 0.2 for RNN
states, 0.1 for source embeddings and 0.1 for tar-
get embeddings, exponential smoothing, and de-

coding with beam size 12 and length normaliza-
tion (1). Training a system for the 10 million word
subset was limited to 20 epochs and took about 10
hours. Training a system for the 100 million word
subset was limited to 10 epochs and took about 2
days.

Scores on the test sets were computed with
multi-bleu-detok.perl included in Moses.
We report case-insensitive scores.

6 Results

6.1 Core Results
The official results are reported in Table 4. The
table contains the average BLEU score over all the
6 test sets for the 4 different setups

• statistical machine translation for 10 million
word corpus

• statistical machine translation for 100 million
word corpus

• neural machine translation for 10 million
word corpus

• neural machine translation for 100 million
word corpus

In the table, we highlight cells for the best
scores for each of these settings, as well as scores
that are close to it.

One striking observation is that the scores differ
much more for the 10 million word subset than for
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Participant System SMT SMT NMT NMT
10M 100M 10M 100M

AFRL afrl-cvg-large 21.9 25.2 13.8 30.2
AFRL afrl-cvg-mix-meteor 23.4 25.3 27.1 30.3
AFRL afrl-cvg-mix 22.5 25.2 19.8 30.1
AFRL afrl-cvg-small 21.9 22.9 13.5 21.1
AFRL afrl-cyn-mix 22.4 25.0 25.1 29.6
Alibaba alibaba-div 24.1 26.4 27.6 31.9
Alibaba alibaba 24.1 26.4 27.6 31.9
ARC arc-11 22.7 26.1 19.8 31.3
ARC arc-13 22.4 26.1 25.8 31.3
ARC arc-9 21.9 26.0 24.0 31.3
U Tartu tartu-hybrid-pipeline 22.3 25.7 25.2 30.6
JHU zipporah-10000 22.6 25.8 25.3 30.2
JHU zipporah 22.6 25.8 25.4 29.8
LMU lmu-ds-lm-si 23.1 25.4 22.1 29.0
LMU lmu-ds-lm 23.3 25.6 23.6 29.5
LMU lmu-ds 23.3 25.5 23.6 29.5
LMU lmu 21.5 25.6 23.0 30.5
MAJE webinterpet 22.5 26.1 24.8 31.2
Microsoft microsoft 24.4 26.5 28.6 32.1
NICT nict 23.5 26.0 25.9 30.0
NRC nrc-mono-bicov 21.0 26.2 23.1 31.6
NRC nrc-mono 19.8 26.0 20.7 31.2
NRC nrc-seve-bicov 22.1 26.2 25.3 31.7
NRC nrc-yisi-bicov 23.9 26.4 27.4 31.9
NRC nrc-yisi 23.5 26.4 26.5 31.8
Prompsit prompsit-al 22.8 26.4 25.6 31.7
Prompsit prompsit-lm 21.3 26.3 19.4 31.8
Prompsit prompsit-lm-nota 20.1 26.2 19.3 31.7
Prompsit prompsit-sat 22.9 26.3 26.1 31.7
RWTH rwth-count 23.9 25.9 26.6 31.1
RWTH rwth-nn 24.5 26.2 28.0 31.2
RWTH rwth-nn-redundant 24.6 26.2 28.0 31.3
Speechmatics balanced-scoring 23.8 25.8 27.9 31.0
Speechmatics prime-neural 23.9 25.9 28.0 30.8
Speechmatics purely-neural 18.1 25.8 18.0 30.0
Systran systran 21.8 25.4 24.3 29.9
Tilde tilde-max-rescored 23.0 26.0 26.6 31.2
Tilde tilde-max 21.4 26.2 23.6 31.2
Tilde tilde-isolated 21.0 25.9 22.6 30.8
UTFPR utfpr-tree 17.6 20.7 11.4 11.9
UTFPR uftpr-regression 20.8 22.4 21.8 22.2
UTFPR utfpr-forest 13.2 17.0 6.6 6.2
Vicomtech vicomtech 23.2 25.9 26.4 30.4
Vicomtech vicomtech-ngsat 23.3 25.8 25.6 24.9

Table 4: Main results. BLEU scores (case-insensitive) are reported on the average of 6 test sets. Best
performance on a test set is reported in bright green, scores within 0.5 BLEU points off the best in light
green, and scores within 1 BLEU point off the best in light yellow.
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the 100 million word subset. Scores also differ
more for neural machine translation systems than
for statistical machine translation systems.

For the 10 million word subset, there are only
2 submissions within 0.5 BLEU of the best sys-
tem for statistical machine translation, and 0 for
neural machine translation. For the 100 million
word subset, there are 15 submissions within 0.5
BLEU of the best system for statistical machine
translation, and 9 submissions within 0.5 for neu-
ral machine translation. Note that many of these
submissions come from the same participants.

For both data sets, scores for neural machine
translation are significantly higher. For the 10 mil-
lion word subsets, the best NMT score is 28.6,
while the best SMT score is 24.6. For the 100
million word subsets, the best NMT score is 32.1,
while the best SMT score is 26.5. To be fair, statis-
tical machine translation is typically trained with
large monolingual corpora for language modelling
that are essential for good performance.

6.2 Results by Test Set
Table 5 and 6 break out the results by each of
the test sets, for statistical machine translation and
neural machine translation, respectively.

The use of multiple test sets was motivated by
the objective to discourage participants to filter
sentence pairs for a specific domain, instead of fil-
tering for general quality. Some participants used
domain-specific data for training some elements of
their filtering systems, such as monolingual news
data sets to train language models but argued that
these are broad domains that do not lead to domain
over-fitting.

The results do not evoke the impression that
some systems are doing better on some domains
than others, at least not more than random vari-
ance would lead to expect. The closest test sets to
the development sets are NEWSTEST2018, GLOB-
ALVOICES, and maybe IWSLT2018. Only the 10
million word submissions rwth-nn and rwth-nn-
redundant seem to do much better on these sets
than others, relative to other submissions.

6.3 Additional Subset Sizes
Since we were interested in the shape of the
curve of how different corpus sizes impact ma-
chine translation performance, we subselected ad-
ditional subset size. Specifically, in addition to the
10 and 100 million word corpora, we also subse-
lected 20, 30, 50, 80, 150, and 200 million words.

See Figure 1 for results for neural machine
translation systems (also broken down by each in-
dividual test set) and Figure 2 for statistical ma-
chine translation systems. We only computed re-
sults for six systems due to the computational cost
involved.

The scoring on additional subset sizes was not
announced before the submission deadline for the
shared task, so none of the participants optimized
for these. In fact, some participants assigned the
same low value for almost all sentence pairs that
would be ignored when subselecting the 100 mil-
lion word corpus. So, when subsampling larger
corpora (150 and 200 million words, as we have
done), the resulting system scores collapse.

The curves for neural machine translation sys-
tem scores peak almost always at 100 million
words, although also occasionally at 80 or 150
million words. Since we did not plot these curves
when setting up the shared task, we cannot say if
100 million words is just a optimal value for this
corpus or if participants overfitted their system to
this value, although we would guess the first.

The performance between the submissions are
quite similar on the different test sets. None of
the submissions we show in the figures has overly
optimized on the news test set.

7 Methods used by Participants

Not surprising due to the large number of submis-
sions, many different approaches were explored
for this task. However, most participants used a
system using three components: (1) pre-filtering
rules, (2) scoring functions for sentence pairs, and
(3) a classifier that learned weights for feature
functions.

Pre-filtering rules. Some of the training data
can be discarded based on simple deterministic fil-
tering rules. These may include rules to remove

• too short or too long sentences

• sentences that have too few words (tokens
with letters instead of just special characters),
either absolute or relative to the total number
of tokens

• sentences whose average token length is too
short or too long

• sentence pairs with mismatched lengths in
terms of number of tokens
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AFRL afrl-cvg-large 21.9 26.1 18.9 18.3 26.0 20.0 22.1 25.2 29.9 22.2 21.5 29.7 22.6 25.5
AFRL afrl-cvg-mix-meteor 23.4 27.7 20.0 20.6 26.8 21.1 24.0 25.3 29.9 22.3 21.5 29.9 22.7 25.6
AFRL afrl-cvg-mix 22.5 26.5 19.4 20.2 25.5 20.4 22.8 25.2 29.8 22.3 21.5 29.7 22.6 25.4
AFRL afrl-cvg-small 21.9 26.2 18.9 18.3 26.0 20.1 22.1 22.9 27.1 20.0 20.9 25.8 21.2 22.4
AFRL afrl-cyn-mix 22.4 26.6 19.5 19.7 25.7 20.3 22.8 25.0 29.4 22.2 21.3 29.5 22.4 25.3
Alibaba alibaba-div 24.1 29.1 22.2 20.6 26.7 22.0 24.2 26.4 31.2 22.9 22.4 31.2 24.0 26.8
Alibaba alibaba 24.1 28.9 22.1 20.5 26.8 22.0 24.2 26.4 31.1 23.0 22.5 31.2 24.0 26.8
ARC arc-11 22.7 26.9 18.9 19.3 27.2 20.4 23.3 26.1 30.8 22.7 22.4 30.9 23.5 26.6
ARC arc-13 22.4 26.3 18.8 18.7 26.5 20.2 23.8 26.1 30.6 22.8 22.3 30.9 23.4 26.7
ARC arc-9 21.9 26.0 18.1 18.5 25.8 20.0 23.2 26.0 30.7 22.7 22.1 30.9 23.4 26.3
U Tartu tartu-hybrid-pipeline 22.3 26.8 19.5 18.7 24.8 20.6 23.5 25.7 30.4 22.3 21.9 30.5 23.1 26.1
JHU zipporah-10000 22.6 26.3 20.2 19.9 24.7 20.3 24.3 25.8 30.2 22.6 22.1 29.9 23.4 26.4
JHU zipporah 22.6 26.3 20.4 19.3 24.8 20.4 24.3 25.8 30.4 22.6 22.1 30.1 23.3 26.5
LMU lmu-ds-lm-si 23.1 27.6 20.8 17.7 26.6 21.5 24.4 25.4 30.0 22.3 21.4 29.9 23.1 26.0
LMU lmu-ds-lm 23.3 28.0 20.6 18.0 26.9 21.4 24.7 25.6 30.1 22.4 21.5 30.1 23.1 26.2
LMU lmu-ds 23.3 28.0 20.6 18.0 27.0 21.5 24.6 25.5 30.0 22.3 21.2 30.2 23.2 26.1
LMU lmu 21.5 25.4 19.7 15.3 25.3 20.0 23.1 25.6 30.3 22.4 21.0 30.4 23.3 26.2
MAJE webinterpet 22.5 27.2 21.3 19.1 24.5 21.2 22.0 26.1 30.7 22.9 22.4 30.6 23.7 26.2
Microsoft microsoft 24.4 29.5 21.6 19.7 28.7 22.5 24.7 26.5 31.4 23.2 22.3 31.4 23.9 26.9
NICT nict 23.5 27.8 20.9 19.3 25.9 21.4 25.5 26.0 30.8 22.8 22.0 30.4 23.4 26.6
NRC nrc-mono-bicov 21.0 25.1 17.9 16.6 24.2 20.0 22.1 26.2 31.1 22.8 22.4 31.1 23.8 26.2
NRC nrc-mono 19.8 23.5 16.6 15.5 23.1 18.6 21.4 26.0 30.6 22.7 22.1 30.7 23.7 26.2
NRC nrc-seve-bicov 22.1 26.0 18.6 18.8 27.9 20.1 21.4 26.2 31.1 22.8 22.2 31.2 23.7 26.5
NRC nrc-yisi-bicov 23.9 28.7 21.3 19.7 26.4 22.1 25.2 26.4 31.4 22.8 22.4 31.1 23.8 26.9
NRC nrc-yisi 23.5 28.0 21.1 19.3 26.0 21.8 25.0 26.4 31.0 23.2 22.5 30.8 23.9 26.8
Prompsit prompsit-al 22.8 26.0 19.9 19.1 27.0 20.1 24.3 26.4 31.2 22.8 22.5 31.3 23.8 26.9
Prompsit prompsit-lm 21.3 25.4 19.5 16.9 23.2 19.3 23.3 26.3 31.1 22.8 22.5 31.0 23.6 26.6
Prompsit prompsit-lm-nota 20.1 24.9 19.4 15.9 19.7 18.6 21.9 26.2 31.0 22.9 22.2 30.9 23.5 26.5
Prompsit prompsit-sat 22.9 27.0 19.0 19.0 27.4 20.6 24.6 26.3 31.0 22.8 22.5 31.1 23.6 26.9
RWTH rwth-count 23.9 28.6 21.8 21.0 26.8 22.0 22.8 25.9 30.7 22.9 22.0 30.2 23.5 26.3
RWTH rwth-nn 24.5 29.6 21.8 21.4 28.0 22.7 23.8 26.2 30.8 23.2 22.2 30.9 23.4 26.6
RWTH rwth-nn-redundant 24.6 29.6 21.8 21.4 28.1 22.6 23.9 26.2 30.8 23.1 22.1 30.9 23.6 26.8
Speechmatics balanced-scoring 23.8 28.2 21.0 19.7 27.6 21.5 24.7 25.8 30.3 22.6 22.0 30.5 23.3 26.3
Speechmatics prime-neural 23.9 28.2 20.5 19.6 28.3 21.4 25.3 25.9 30.4 22.5 21.9 30.7 23.3 26.4
Speechmatics purely-neural 18.1 20.4 15.1 13.6 22.2 16.3 21.0 25.8 30.3 22.5 21.9 30.6 23.2 26.2
Systran systran 21.8 25.4 19.4 16.7 25.7 19.9 23.9 25.4 30.0 22.3 21.5 30.1 22.7 26.1
Tilde tilde-max-rescored 23.0 27.3 19.8 18.3 27.7 21.0 24.1 26.0 30.6 22.8 21.9 30.9 23.4 26.2
Tilde tilde-max 21.4 25.0 18.2 16.6 25.6 19.7 23.6 26.2 30.8 22.8 22.1 31.1 23.6 26.6
Tilde tilde-isolated 21.0 24.3 17.4 16.2 25.1 19.4 23.5 25.9 30.6 22.5 22.0 30.8 23.2 26.5
UTFPR utfpr-tree 17.6 20.5 14.7 14.0 21.0 16.1 19.0 20.7 23.7 18.2 17.1 23.9 18.9 22.3
UTFPR uftpr-regression 20.8 25.1 18.6 16.2 23.7 19.1 22.2 22.4 26.5 20.2 17.4 26.0 20.5 23.5
UTFPR utfpr-forest 13.2 14.9 9.9 10.6 16.8 12.1 15.0 17.0 18.7 14.4 13.9 20.4 15.2 19.2
Vicomtech vicomtech 23.2 27.5 20.4 19.3 26.5 21.2 24.6 25.9 30.5 22.5 22.2 30.3 23.4 26.6
Vicomtech vicomtech-ngsat 23.3 27.5 19.8 19.3 26.8 21.1 25.1 25.8 30.2 22.4 22.1 30.0 23.4 26.7

Table 5: Detailed results for SMT performance. BLEU scores (case-insensitive) are reported on all the 6
test sets. The best performance on a test set is reported in bright green, scores within 0.5 BLEU points
off the best in light green, and scores within 1 BLEU point off the best in light yellow.
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AFRL afrl-cvg-large 13.8 11.2 6.1 15.5 23.8 8.9 17.4 30.2 37.0 26.3 26.5 35.1 28.0 28.2
AFRL afrl-cvg-mix-meteor 27.1 33.4 23.3 25.6 29.9 25.4 25.0 30.3 37.4 26.0 26.6 35.2 28.1 28.4
AFRL afrl-cvg-mix 19.8 19.7 10.9 23.9 26.9 14.8 22.7 30.1 37.4 26.1 26.4 34.8 28.1 28.1
AFRL afrl-cvg-small 13.5 10.9 5.6 15.3 23.7 8.5 16.9 21.1 23.3 16.8 22.9 26.2 19.0 18.1
AFRL afrl-cyn-mix 25.1 29.2 21.4 24.2 29.0 22.7 24.0 29.6 36.2 25.1 26.2 35.0 27.4 27.7
Alibaba alibaba-div 27.6 35.0 25.2 24.1 29.8 25.8 25.7 31.9 39.5 27.1 28.4 36.7 29.1 30.7
Alibaba alibaba 27.6 35.2 25.6 24.2 29.4 25.6 25.5 31.9 39.7 27.3 28.4 36.4 29.1 30.6
ARC arc-11 19.8 20.3 11.4 21.1 27.4 14.7 23.7 31.3 39.0 26.6 27.8 35.9 28.3 30.4
ARC arc-13 25.8 31.3 21.2 22.9 30.2 23.4 25.7 31.3 39.0 26.6 27.6 36.0 28.2 30.6
ARC arc-9 24.0 30.4 20.2 21.5 28.8 22.9 20.0 31.3 39.0 26.5 27.6 35.8 28.3 30.7
U Tartu tartu-hybrid-pipeline 25.2 31.6 21.8 21.8 28.1 24.0 23.6 30.6 38.2 26.2 27.5 35.8 28.1 27.8
JHU zipporah-10000 25.3 31.4 23.1 22.8 26.3 24.0 24.3 30.2 36.8 24.2 27.6 35.4 27.7 29.3
JHU zipporah 25.4 31.3 23.1 22.5 26.6 24.4 24.5 29.8 36.4 23.2 27.3 35.1 27.3 29.2
LMU lmu-ds-lm-si 22.1 31.2 22.0 16.8 24.0 23.8 14.7 29.0 36.2 25.7 24.4 33.2 27.5 27.1
LMU lmu-ds-lm 23.6 31.9 22.4 18.5 27.0 24.6 17.5 29.5 37.0 25.5 25.2 33.5 27.5 28.2
LMU lmu-ds 23.6 31.8 22.1 18.4 27.1 24.5 17.9 29.5 36.7 25.5 25.2 34.1 27.7 27.9
LMU lmu 23.0 28.8 21.1 16.0 27.0 23.3 21.6 30.5 37.8 25.9 25.8 35.6 28.5 29.6
MAJE webinterpet 24.8 32.4 24.8 22.6 24.6 24.3 20.2 31.2 38.7 26.9 27.9 35.6 28.9 29.2
Microsoft microsoft 28.6 35.7 25.1 23.7 32.7 26.7 27.8 32.1 39.9 27.4 28.3 36.7 29.3 30.8
NICT nict 25.9 32.9 23.7 21.7 27.6 25.1 24.6 30.0 37.3 25.8 26.1 34.1 27.6 29.2
NRC nrc-mono-bicov 23.1 27.9 19.3 19.0 26.4 22.0 23.7 31.6 38.9 27.1 28.1 36.0 28.9 30.4
NRC nrc-mono 20.7 25.0 17.2 16.6 23.8 19.8 21.9 31.2 38.4 26.8 27.9 35.7 28.0 30.3
NRC nrc-seve-bicov 25.3 30.3 21.5 22.6 31.7 23.1 22.9 31.7 39.4 27.1 28.3 36.3 28.9 30.1
NRC nrc-yisi-bicov 27.4 33.9 24.4 23.2 29.8 25.4 27.8 31.9 39.6 26.9 28.4 36.6 29.1 30.7
NRC nrc-yisi 26.5 32.7 23.9 22.2 28.6 24.8 26.8 31.8 39.3 27.1 27.9 36.3 29.0 30.9
Prompsit prompsit-al 25.6 31.1 22.4 21.8 30.0 23.2 24.9 31.7 39.4 27.0 28.1 36.6 28.6 30.6
Prompsit prompsit-lm 19.4 26.5 20.2 18.9 17.4 19.5 14.2 31.8 39.5 27.3 28.4 36.6 28.9 30.4
Prompsit prompsit-lm-nota 19.3 26.1 20.0 18.8 17.3 19.8 14.0 31.7 39.8 26.7 28.3 36.4 29.1 30.0
Prompsit prompsit-sat 26.1 31.6 20.8 22.1 31.2 23.7 26.8 31.7 39.2 26.7 28.2 36.4 28.7 30.8
RWTH rwth-count 26.6 34.8 25.0 24.4 27.7 25.9 22.1 31.1 38.6 26.9 27.5 35.4 29.0 28.9
RWTH rwth-nn 28.0 36.0 25.2 25.2 31.1 26.7 23.7 31.2 38.8 26.7 27.7 36.1 28.7 29.3
RWTH rwth-nn-redundant 28.0 36.0 25.2 25.3 31.1 26.6 23.9 31.3 39.2 26.5 27.4 36.3 28.7 29.6
Speechmatics balanced-scoring 27.9 34.0 24.6 24.7 30.9 25.0 28.0 31.0 37.8 26.5 27.9 35.4 28.2 30.1
Speechmatics prime-neural 28.0 34.7 24.1 24.4 31.4 24.9 28.2 30.8 37.4 26.5 27.8 35.1 28.2 30.1
Speechmatics purely-neural 18.0 21.8 15.6 13.1 21.3 17.6 18.4 30.0 35.2 25.8 26.9 35.1 27.4 29.8
Systran systran 24.3 29.6 21.3 19.1 28.3 23.0 24.6 29.9 36.3 25.1 26.2 35.1 26.9 29.8
Tilde tilde-max-rescored 26.6 32.4 22.1 22.1 31.3 24.4 27.1 31.2 38.6 26.8 27.5 36.6 28.2 29.6
Tilde tilde-max 23.6 28.0 19.5 17.9 28.5 22.3 25.1 31.2 38.6 26.4 27.3 36.3 28.6 30.3
Tilde tilde-isolated 22.6 26.6 18.9 16.8 27.4 21.8 24.2 30.8 38.0 25.8 26.7 35.7 27.9 30.4
UTFPR utfpr-tree 11.4 13.2 7.8 10.4 17.5 9.9 9.8 11.9 10.5 6.8 11.7 18.2 10.1 13.9
UTFPR uftpr-regression 21.8 27.2 18.5 18.6 24.9 19.2 22.1 22.2 25.0 16.7 19.1 28.8 19.7 24.1
UTFPR utfpr-forest 6.6 6.5 2.9 4.2 11.5 5.9 8.3 6.2 4.7 2.1 3.5 12.3 5.0 9.3
Vicomtech vicomtech 26.4 32.3 22.6 22.6 29.0 24.3 27.4 30.4 37.1 26.4 26.8 34.5 27.7 29.9
Vicomtech vicomtech-ngsat 25.6 31.2 21.8 20.7 29.1 23.5 27.6 24.9 27.2 22.4 23.1 26.9 22.9 26.8

Table 6: Detailed results for NMT performance. BLEU scores (case-insensitive) are reported on all the 6
test sets. The best performance on a test set is reported in bright green, scores within 0.5 BLEU points
off the best in light green, and scores within 1 BLEU point off the best in light yellow.
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Figure 1: Additional corpus sizes, with breakdown by individual test set for some high-performing sub-
missions. The charts plot BLEU scores against the size of the subselected corpus (in millions of words).
The curves peak around 100 million words.
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Figure 2: Version of Figure 1 for statistical machine translation systems built from the subselected data.
Note that the curves are flatter, and the several systems score in a narrow band of 1 BLEU point across a
wide range of corpus sizes (30-200 million words), indicated in grey.

• sentence pairs where names, numbers, email
addresses, URLs do not match between both
sides

• sentence pairs that are too similar, indicating
simple copying instead of translating

• sentences where language identifier do not
detect the required language

Scoring functions. Sentence pairs that pass the
pre-filtering stage are assessed with scoring func-
tions which provide scores that hopefully correlate
with quality of sentence pairs. Participants used a
variety of such scoring functions, including

• n-gram or neural language models on clean
data

• language models trained on the provided raw
data as contrast

• neural translation models

• bag-of-words lexical translation probabilities

Note that the raw scores provided by these mod-
els may be also refined in several ways. For in-
stance, we may desire that the language model per-
plexities of a German sentence and its paired En-
glish sentence are similar. Or, we may contrast
the translation model score for a sentence and its
given paired sentence with the translation model

score for the sentence and its best translation ac-
cording to the model.

Learning weights for scoring functions. Given
a large number of scoring functions, simply av-
eraging their resulting scores may be inadequate.
Learning weights to optimize machine translation
system quality is computationally intractable due
to the high cost of training these systems to eval-
uate different weight settings. A few participants
used instead a classifier that learns how to distin-
guish between good and bad sentence pairs. Good
sentence pairs are selected from existing high-
quality parallel corpora, while bad sentence pairs
are either synthesized by scrambling good sen-
tence pairs or by using the raw crawled data.

Some participants made a distinction between
unsupervised methods that did not use existing
parallel corpora to train parts of the system, and
supervise methods that did. Unsupervised meth-
ods have the advantage that they can be readily
deployed for language pairs for which no seed par-
allel corpora exist.
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Abstract

In machine translation evaluation, a good can-
didate translation can be regarded as a para-
phrase of the reference. We notice that some
words are always copied during paraphrasing,
which we call copy knowledge. Considering
the stability of such knowledge, a good candi-
date translation should contain all these words
appeared in the reference sentence. There-
fore, in this participation of the WMT’2018
metrics shared task we introduce a simple sta-
tistical method for copy knowledge extrac-
tion, and incorporate it into Meteor metric, re-
sulting in a new machine translation metric
Meteor++. Our experiments show that Me-
teor++ can nicely integrate copy knowledge
and improve the performance significantly on
WMT17 and WMT15 evaluation sets.

1 Introduction

Automatic Metrics for machine translation (MT)
evaluation have received significant attention in
the past few years. MT evaluation measures how
close machine-generated translations are to pro-
fessional human translations, which can be treated
as paraphrase evaluation except when the candi-
dates are identical to references. The main differ-
ence is that MT evaluation only takes the correct-
ness into consideration while paraphrase evalua-
tion also focuses on diversity.

According to some previous studies on para-
phrasing, we find that paraphrasing knowledge
can be divided into two categories: copy knowl-
edge and paraphrasable knowledge. The former
reflects stable information which tends to keep in-
tact during paraphrasing, while the latter can be
paraphrased in various ways. There are some pre-
vious researches taking account of copy mecha-
nism (Vinyals et al., 2015; Gu et al., 2016; See
et al., 2017; Li et al., 2017) in text generation. And

in this paper, we extend the idea of copy from gen-
eration to MT evaluation.

Firstly, we give an introduction to copy knowl-
edge extraction on paraphrase corpus, and then
propose Meteor++ incorporated with it based on
Meteor. Our experiment results show that Me-
teor++ has higher Pearson Correlation with human
score than Meteor on WMT evaluation sets and
demonstrate the efficacy of copy knowledge.

2 Background

Various metrics for MT evaluation have been pro-
posed and the widely used metrics are BLEU (Pap-
ineni et al., 2002) and Meteor (Banerjee and Lavie,
2005; Denkowski and Lavie, 2011, 2014). The
main principle behind BLEU is the measurement
of n-gram overlapping between the words pro-
duced by the machine and the human translation
references at the corpus level. BLEU emphasizes
precision and not take recall into account directly
while Meteor not only combines the two but also
gives a higher weight to recall in general. We
choose Meteor in this paper because recall is ex-
tremely important for assessing the quality of MT
output, as it reflects to what degree the translation
covers the entire content of the source sentence.

The Meteor metric has been shown to have
high correlation with human judgments in eval-
uation such as the 2010 ACL Workshop on Sta-
tistical Machine Translation and NIST Metrics
MATR (Callison-Burch et al., 2010). It is based
on general concept of flexible unigram matching,
unigram precision and unigram recall, including
the match of words that are simple morphological
variants of each other by the identical stem and
words that are synonyms of each other. Meteor
firstly conduct an alignment include several stages
(exact, stem, synonym and paraphrase) with dif-
ferent weight between two sentences. Then cal-
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word c / p word c / p word c / p word c / p
instagram 877/.950 meth 378/.923 dandruff 20/1.0 communism 21/1.0

gmail 725/.905 python 393/.908 edmonton 104/1.0 algebra 24/1.0
traffic 628/.936 shotguns 549/.961 auckland 104/1.0 airprint 97/1.0

youtube 621/.944 linux 173/.913 vinegar 31/1.0 chess 62/1.0
java 476/.901 earthquake 277/.981 cellulite 29/1.0 officejet 97/1.0

kerala 352/.989 hacker 267/.902 hamsters 75/1.0 hamsters 75/1.0
macbook 333/.931 kvpy 258/1.0 bermuda 63/1.0 monday 24/1.0

sahara 306/.935 yahoo 207/.913 salman 23/1.0 forex 36/1.0

Table 1: Quora “copy-words” examples, c means raw count and p means co-occurrence probability, totally we
extract 427 “ copy-words ” with 20 as the c threshold and 0.85 as the p threshold. Note that all the words are in
their lower cases.

word c / p word c / p word c / p word c / p
president 37/.833 10 27/.815 2016 13/1.0 hamas 4/1.0

police 36/.889 women 23/.913 hepatitis 3/1.0 romania 4/1.0
world 35/.886 economy 22/.867 john 3/1.0 washington 3/1.0
russia 34/.824 government 22/.818 kingfisher 5/1.0 hundreds 7/1.0

million 32/.813 clinton 22/.910 garland 9/1.0 victim 3/1.0
trump 31/.968 thursday 20/1.0 local 14/1.0 facebook 11/1.0
putin 18/1.0 week 17/.941 ukraine 9/1.0 french 7/1.0

Table 2: WMT “copy-words” examples, c means raw count and p means co-occurrence probability, we select the
candidates with the human scores greater or equal to 0.7 and combine them with their references as paraphrase
pairs. Finally, we filter out 1088 paraphrase pairs with a vocabulary of 4619 words. Totally we extract 268 “copy-
words” with 2 as c threshold and 0.8 as the p threshold. Note that all the words are in their lower cases.

culate weighted precision P and recall R. For
each matcher (mi), it counts the number of con-
tent and function words covered by matches of ith
type in the candidate (mi(hc), mi(hf )) and ref-
erence (mi(rc), mi(rf )), |hf | and |rf | mean the
total number of function words in candidate and
reference, |hc| and |rc| mean the total number of
content words in candidate and reference.

P =

∑
iwi · (δ ·mi(hc) + (1− δ) ·mi(hf ))

δ · |hc|+ (1− δ) · |hf |
(1)

R =

∑
iwi · (δ ·mi(rc) + (1− δ) ·mi(rf ))

δ · |rc|+ (1− δ) · |rf |
(2)

The parameterized harmonic mean of precision
P and recall R then calculated:

Fmean =
P ·R

α · P + (1− α) ·R (3)

To account for gaps and differences in word
order, a fragmentation penalty is calculated us-
ing the total number of matched words (m, aver-
aged over hypothesis and reference) and number

of chunks(ch):

Pen = γ · (ch
m

)β (4)

The Meteor score is then calculated:

Score = (1− Pen) · Fmean (5)

The parameters α, β, γ, δ and wi...wn are tuned
to maximize correlation with human judgments.

3 Proposed Method

3.1 Copy Knowledge Extraction

According to our observation of paraphrasing
corpus, we discover copy knowledge in which
the words always have a high possibility of co-
occurrence in paraphrase pairs. In this section, we
will introduce a simple statistical method of copy
knowledge extraction and present a word list de-
noted as “copy-words”. From this it can be con-
cluded that if there is a missing “copy-word” in
the candidate, it discards some important informa-
tion; on the other hand, if the candidate contains
any other extra “copy-words”, the two sentences
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categories examples c / p

Named Entity

LOC
Sahara, Edmonton, Auckland, Russia,

Romania, Washington
62/8.9%

ORG WTO, OLA, PTE, MIT, HAI 23/3.3%
PER Bob, Trump, Salman, Putin, John, Clinton 123/17.7%

MISC
Instagram, Gmail, communism, algebra, IQ,

Monday, French, hundreds, million, 10,
Linux, Python, Macbook, Yahoo, XBOX

253/36.4%

OTHERS traffic, hacker, government, victim, economy 234/33.7%

Table 3: Copy knowledge classification, we combine the copy knowledge of Quora and WMT, and get 695 “copy-
words” totally, c is the raw count and p is the proportion of each type.

are not semantically equivalent. Therefore the re-
call and precision of copy knowledge play a key
role in the quality of translations.

In light of this, we propose a method for copy
knowledge extraction in formula (6), pw means the
co-occurrence probability, C(w) means the raw
appearance count of word and C(cow) means co-
occurrence count. We select the words whose raw
counts and co-occurrence probabilities in high-
quality candidates and references exceed certain
thresholds (F , P ) as “copy-words”.

“copy words” = {w |C(w) ≥ F ∧ pw ≥ P}
(6)

where

pw =
C(cow)

C(w)
(7)

Here we test the method described above on
the Quora1 and the WMT datasets. The Quora
dataset consists of over 400, 000 lines of potential
question duplicate pairs. Each question pair has a
binary value that indicates whether the line truly
contains a duplicate pair. Here we only use the
duplicate question pairs, including 142, 963 para-
phrase pairs and a vocabulary of 32, 582 words.
The WMT dataset consists of WMT15-17 (Bojar
et al., 2017, 2016; Stanojević et al., 2015). We
select the candidates with high human scores and
combine them with their references as paraphrase
pairs. There are 9287 pairs with human scores and
only about one thousand pairs are useful. We re-
gard the pairs which have human scores exceed the
threshold as useful pairs (here we set the thresh-
old as 0.8). Since the amount of available texts
with high human score is quite small, it is still not
possible to conclude which words belong to copy
knowledge.

1https://www.kaggle.com/quora/question-pairs-dataset

Table 1 and Table 2 show part of the copy
knowledge extraction results of the Quora and the
WMT.

In Table 3, we divide the copy knowledge into
several categories, and find that it is mainly com-
posed of locations, persons, organizations, miscel-
laneousness and some others. We label these 695
(427 + 268) “copy-words” manually and see that
about 67% of them are named entities. In general,
named entity occupies a large proportion.

3.2 Model
Inspired by the observation of copy knowledge,
we propose Meteor++ based on Meteor. In
Meteor++, we incorporate copy knowledge into
precision P and recall R indirectly. Specifically,
we give penalties to the following two conditions
from the perspective of recall and precision:

• Recall : there exist some “copy-words” only
in references but not in candidates.

• Precision : there exist some “copy-words”
only in candidates but not in references.

The candidates suffer the first condition may
discard some important information, and the sec-
ond may add some other extra information. We
propose to correct the formulation of precision P
and recall R in Meteor as following:

P̃ = P · X +
∑

imi(hp)

X + |hp|
(8)

R̃ = R · X +
∑

imi(rp)

X + |rp|
(9)

In formula (8), for each matcher (mi) , which
counts the number of “copy-word” covered by
matches of i-th type in the candidate (mi(hp)) and

742



lang-pair de-en fi-en ru-en ro-en cs-en tr-en lv-en zh-en
WMT17 2.102 1.776 2.251 - 1.892 2.201 2.232 2.772
WMT16 1.833 1.988 2.065 2.148 1.499 2.357 - -
WMT15 1.621 1.816 1.876 - 1.492 - - -

Table 4: NE density of each language pair on WMT15-17, NE density means the average count of NE per sentence
on each language pair.

lang-pair de-en fi-en ru-en ro-en cs-en tr-en lv-en zh-en avg
WMT2017 Meteor .535 .719 .618 - .550 .628 .550 .638 .589
( X = 14 ) Meteor++ .538 .720 .627 - .552 .626 .563 .646 .593
WMT2015 Meteor .612 .628 .622 - .582 - - - .600
( X = 6 ) Meteor++ .626 .649 .622 - .591 - - - .609

Table 5: Segment-level Pearson correlation of Meteor and Meteor++ for to-English pairs on WMT15 and WMT17,
where avg denotes the average Pearson correlation of all language pairs. The parameter X in Meteor++ sets 14 on
WMT17 and 8 on WMT15, other parameters are consist of the Meteor Universal.

the reference (mi(rp)), |hp| and |rp| respectively
mean the total number of “copy-words” in the can-
didate and the reference. X is a hyper-parameter
used to smooth the results as following:

For Smoothing : In formula (1) and (2), we
have already punished the unmatched words, here
we only give an appropriate extra penalty to the
“copy-words” missing.

Compensation For The Gap : In section 3.1,
we only propose a simple statistical method to ex-
tract copy knowledge and it still has a long dis-
tance from the real copy knowledge.

Likewise, we have the modified recall formula
as (9). After that correction, the P̃ and R̃ will sub-
stitute for the original P and R in the following
calculation.

This two formulas can be regarded as using the
precision and the recall of the “copy-words” to
punish the entire sentence. If the “copy-words” are
not identical in the candidate-reference pair, P and
R will be discounted by the formula (8) and (9).
We need to obtain a sufficiently high recall and
precision of “copy-word” to guarantee the quality
of the candidates since the copy knowledge is of
greater importance.

4 Experiment Results

4.1 Settings
We evaluate our model on WMT15 and WMT17
metric task evaluation sets by calculating the cor-
relation with the real human scores. The official
human judgments of translation quality are col-
lected using direct assessment(DA) (Graham et al.,
2013). The direct assessment evaluation protocol

give the annotators the reference and one MT out-
put only and ask them to evaluate the translation
adequacy of the MT output on an absolute scale.

The WMT datasets totally have 9287 pairs with
human scores and after filtering out the lower hu-
man score pairs, only about one thousand pairs
can be regarded as the paraphrase pairs. As we
described in section 3.1, named entity is an im-
portant part of copy knowledge and accounts for
67%, here we take named entity as the copy
knowledge because of the absence of reference-
candidate pairs with high human scores on WMT
datasets. And we use NLTK (Loper and Bird,
2002; Bird and Loper, 2004) toolkit to recog-
nize named entities as our “copy-words” in exper-
iments.

Table 4 shows the NE density of each language
pair on WMT15-17 datasets and we select the
WMT16 evaluation sets as our development sets.
Our development experiments show that the pa-
rameter X has positive correlation with the NE
density. We can see that WMT17 evaluation sets
have higher NE density and WMT15 evaluation
sets have lower NE density. In the experiments of
Table 5, we set X = 14 on WMT17 and X = 8
on WMT15.

4.2 Results

Table 5 shows the Pearson correlation with the
WMT15 and WMT17 direct assessment of trans-
lation adequacy at segment-level. We can see that
Meteor++ has higher average segment-level Pear-
son correlation with DA human scores than Me-
teor on all WMT datasets.
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5 Conclusion

In this paper, we describe the submissions of our
metric Meteor++ for WMT18 Metrics task in de-
tail. According to the observation of paraphrasing
corpus, we discover copy knowledge in which the
words keep intact after paraphrasing. We propose
a simple statistical method to extract copy knowl-
edge based on the given parallel monolingual para-
phrases. Then, we present Meteor++ to exam-
ine the method of integrating copy knowledge into
MT evaluation based on Meteor. Because words
in copy knowledge always have a high possibil-
ity to be found in both candidates and references
in machine translation, the Meteor++ could pro-
cess better than Meteor. The experiment results
on WMT datasets for each language pair show that
Meteor++ has higher average segment-level Pear-
son correlation with DA human scores than Me-
teor and demonstrate the efficacy of copy knowl-
edge.

6 Future Work

In this paper, we give a simple statistical method
to extract copy knowledge, and propose the Me-
teor++ incorporate with it. Although it has already
demonstrated great promise, we are still in the pro-
cess of enhancing the metric in the following di-
rections:

Copy Knowledge Extraction: We only pro-
pose a simple statistical method to extract copy
knowledge which select the words with a high
co-occurrence probability in paraphrase pairs.
Here we just use bag-of-words to represent sen-
tences and regard the intersection of them as co-
occurrence. Therefore the copy knowledge we ex-
tract has a long way to go compared to the real
copy knowledge. Furthermore, we are considering
about constructing an alignment on the large-scale
parallel monolingual corpus and then extracting
universal copy knowledge based on it for broad
use.

Training the hyper-parameter X on Data:
The hyper-parameter X was designed to smooth
the results and compensate for the gap between
the copy knowledge we extract and the real copy
knowledge. As our copy knowledge is getting
more and more closer to the real copy knowledge,
we plan to optimize the formulas by training on
a separate data set, and choosing the X formula
with the best correlations with human assessment
on the training data.
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Abstract 

The paper presents our participation in the 

WMT 2018 Metrics Shared Task. We 

propose an improved version of 

Translation Edit/Error Rate (TER). In 

addition to including the basic edit 

operations in TER, namely - insertion, 

deletion, substitution and shift, our metric 

also allows stem matching, optimizable 

edit costs and better normalization so as to 

correlate better with human judgement 

scores. The proposed metric shows much 

higher correlation with human judgments 

than TER. 

1 Introduction 

There has been several efforts to introduce better 

automatic evaluation metrics that can help 

towards the growth of machine translation (MT) 

systems. Human evaluation is slow and expensive 

and thereby efficient automatic MT evaluation 

metrics are required which are faster and correlate 

strongly with human judgements. Over the years a 

number of automatic MT evaluation metrics have 

been proposed like BLEU (Papineni et al., 

2002), METEOR (Banerjee and Lavie, 2005), 

Translation Edit Rate (Snover et al., 2002), NIST 

(Doddington, 2002), etc., which are widely used 

in the MT research and development community. 

However, due to its due to its simplicity and 

easier interpretability, Translation Edit Rate, or 

Translation Error Rate  (TER), is one of the most 

commonly used MT evaluation metrics and often 

it is used as a baseline evaluation metric by MT 

researchers. In this work, we propose a new MT 

                                                           
Work done while at Jadavpur University. 

evaluation metric which provides improvements 

over TER and achieves better correlation with 

human judgement scores on the segment-level for 

various language pairs. 

2 Related Work 

The proposed metric is based on and an 

extension of TER (Snover et al., 2006), one of the 

most popular MT evaluation metrics. TER is an 

edit distance style error metric and it provides an 

edit ratio (often referred to as edit rate or error 

rate) in terms of how much editing is required to 

transform the MT output (also known as 

hypothesis) into a human translation (reference 

translation) with respect to the average length of 

the references. The term average is defined in 

case of multiple references, where normalization 

is done over the closest reference. The required 

editing is measured in terms of four edit 

operations - insertion, deletion, substitution and 

shifting. 

Other related work relevant to our metric 

includes word error rate (WER) (Zechner and 

Waibel, 2000) and CharacTER (Wang et al., 

2016). WER is the basis of TER and, unlike TER, 

it does not include the ‘shift’ operation. Both 

WER and TER consider word level edit 

operations. CharacTER is character level TER 

which calculates the edit distance at character 

level while performing the shift operations at 

word level. 

Our work is different from CharacTER since 

we allow edit operations at character level only 

for those words in the hypothesis which find a 

stem match in the reference. Although TER 

outperforms WER, the normalization of the WER 

metric is the basis of our metric, i.e., 

ITER: Improving Translation Edit Rate through Optimizable Edit Costs 
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normalization in our metric is a modified version 

of the normalization technique in WER. 

3 Improvements over TER 

Our metric includes all the edit operations carried 

out by TER, namely, insertion, deletion, 

substitution and shift. Apart from these 

operations, we improve over the TER metric by 

inclusion of stem matching, better normalization 

technique and optimal edit operation costs so as to 

improve the correlation of the new metric with 

human judgement score. We call our metric ITER, 

(Improved TER). 

3.1 Stemming cost 

Stemming is a very standard technique widely 

used in many natural language processing tasks. 

Whenever a hypothesis word and a reference 

word are different while having the same stem, 

instead of substituting the entire word as in TER, 

we allow character level edit operations as 

follows: 

 

Figure 1: Character level edit operations for 

tokens having the same stem. Here, nop refers to 

no-operation (i.e., character match), del(x) refers 

to deletion of character ‘x’, ins(x) refers to 

insertion of character ‘x’ and sub(x, y) refers to 

substitution of character ‘x’ by character ‘y’. 

 

In Figure 1, two substitutions and one insertion 

operation have to be made at character level in 

order to convert “played” into “playing”. ITER 

uses Porter Stemmer available in the nltk 

package. Assuming that all edit operations have 

uniform cost of 1, we obtain the minimum edit 

cost of 3 for this string pair. The normalizing 

factor here is the number of the ‘Edit operations:’ 

(cf. Figure 1) which includes the number of 

matched (corresponding to nop) characters plus 

the number of actual edit operations made. The 

motivation behind such normalization is to 

constrain the stemming cost to less than one. This 

is different from characTER and TER as their 

normalizing factors consider only characters and 

tokens of the reference respectively, and therefore 

exceeding their metric score over 1 (i.e., 100%) in 

case of number of insertions exceeding the 

hypothesis length. 

 

Stemming cost =
min 𝑒𝑑𝑖𝑡 𝑐𝑜𝑠𝑡

#𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑+min 𝑒𝑑𝑖𝑡 𝑐𝑜𝑠𝑡
 

3.2 Improved Normalization 

Normalization at segment level is performed 

similar to the normalization for stem match. The 

minimum edit cost comprises of shifting cost, 

insertion cost, deletion cost, substitution cost and 

stemming cost (cf. Section 3.1). The 

normalization factor includes the total number of 

tokens (or words) in the hypothesis plus the 

number of tokens matched at the stem level and 

minimum edit cost.  

        ITER = 
min 𝑒𝑑𝑖𝑡 𝑐𝑜𝑠𝑡

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟
 

where normalizing factor = #tokens of hypothesis 

+ #tokens stemmed + min edit cost. 

The first term (i.e. tokens of hypothesis) in 

the normalization factor represents that in the 

worst case, all tokens might need to be shifted. 

Considering the reference to be a different 

permutation (or alignment) of the tokens of the 

hypothesis with no added (or extra) tokens, we 

might go with shifting all the tokens of 

hypothesis. The shifted tokens could further be 

stemmed or edited thereby justifying the second 

and third component respectively in the 

normalization factor. In case stemming is not 

taken into consideration (as in the case of out-of-

English translations, cf. Section 4.1), stemming 

cost is not be considered in min edit cost. 

Similarly, in the normalizing factor, there would 

not be any tokens stemmed, instead the concerned 

tokens will be substituted and will contribute to 

the min edit cost. Next we hypothesize that all 

edit costs lie between 0 and 1, therefore, in order 

to keep ITER in the [0, 1] range, we formulate our 

normalization in this way.   

3.3 Optimal edit operation cost 

TER considers equal cost for all the edit 

operations. The key motivation behind having 

optimal edit costs, or for that matter different edit 

costs for different edit operations, is that different 

edit operations take different time and effort 

during actual human post-editing. On the other 

hand, human   judgement   scores are   direct 

Hypothesis: p   l   a   y   e   d 

Reference:   p   l   a   y   i   n   g 

 

Edit operations: nop(p), nop(l),  nop(a), 

nop(y),  sub(e, i), sub(d,n), ins(g) 

 

F 
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reflection of how much time and effort is required 

to correct the translations; they are inversely 

related. Prior to justifying the term ‘optimal edit 

operation cost’, Figure 2 explains the change in 

edit operations when the edit costs are changed. In 

order to find the optimal costs for the different 

edit operations, we trained our metric by varying 

each edit cost in the range [0.1, 1] with a 

difference of 0.1. Since we consider 4 different 

edit operations, this resulted in 10,000 (i.e., 104) 

combinations for the edit costs. The set which 

gives the best correlation with human judgement 

scores is selected as the optimal set of edit costs. 

4 Setup 

ITER gives both segment level as well as system 

level score. Like TER, ITER is essentially a 

segment level metric and the system level scores 

are obtained by the weighted average of segment 

level scores. For optimizing the segment level 

scores, we trained our metric on the WMT15 

datasets and tested on the WMT16 datasets for 

out-of-English and to-English translations. 

4.1 Segment level score 

Training data from WMT15 were used to tune our 

metric. All the edit operation costs were varied 

from 0 to 1 so as to find the optimal set of edit 

costs that   results in highest   correlation   with 

 

human judgement scores.  

For out-of-English translations, we skipped 

stemming since we could not avail reliable 

stemmers for the target languages and considered 

the basic operations at word level similar to TER. 

The normalizing factor of ITER have zero tokens 

to be stemmed in this case. Table 1 gives the 

optimal set of edit costs after training our metric 

on the WMT15 datasets. 

4.2 System level score 

The system level score is the weighted arithmetic 

average of segment level scores. Let us consider a 

test set having  m segments. We assume the 

ITERs to be 𝑥1, 𝑥2 , 𝑥3, … . . , 𝑥𝑚for m segments 

respectively where 𝑥𝑖  = 𝑒𝑖 𝑛𝑖⁄ . The term ‘𝑒𝑖’ 

represents minimum edit cost for the ith segment 

whereas ‘𝑛𝑖’ represents the normalizing factor for 

the ith segment. The system level score is defined 

as follows. 

 

ITERSystem = 
𝑒1 + 𝑒2+ 𝑒3+ ……….  + 𝑒𝑚

𝑛1 + 𝑛2+ 𝑛3+ ……….  + 𝑛𝑚
 

5 Experiments and Results 

We tuned our metric on the training datasets of 

the WMT15 and obtained the following optimal 

sets of edit costs presented in Table 1. 

 

Original Ref: Hearts set for SFA battle over Neilson comments 

Original Hyp: Hearts will fight SFA over comments against Neilson 

 

At cost 1:2 shifts + 3 substitution 

Hyp After Shift: Hearts will fight SFA against over Neilson comments    2 shifts: [over, 1], 

[comments, 2] 

Edit operations after shift: nop(Hearts), sub(will, set), sub(fight, for), nop(SFA), sub(against, 

battle), nop(over Nielson comments)   

 

At cost 2:1 shift + 1 insertion + 1 deletion + 2 substitution 

Hyp After Shift: Hearts will fight SFA over Neilson comments against    1 shift: [Nielson, -2]  

Edit operations after shift: nop(Hearts), sub(will, set), sub(fight, for), nop(SFA), ins(battle), 

nop(over Nielson comments), del(against) 

 

 
Figure 2: Here, cost 1 and cost 2 represent two different cases of edit costs reflecting the change in 

edit operations. Although in both cases, there are 5 edit operations involved but the total edit cost 

will vary depending on the cost of each edit operation. The term [Nielson, -2] represents that 

‘Nielson’ is shifted two places back. Similarly, [over, 1] represents that ‘over’ is shifted one place 

forward. For ‘nop’, ‘ins’, ‘del’ and ‘sub’, refer to section 3.1. 
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Lang_pair D_cost I_cost Sh_cost Sub_cost 

cs-en 0.5 0.7  0.3 0.9 

de-en 0.7 0.4 0.5 1 

fi-en 0.4 0.2 0.1 0.7 

ru-en 0.5 0.3 0.1 0.6 

en-ru 1 0.2 1 1 

Table 1: Optimal sets of edit costs obtained after 

training ITER on WMT15 datasets (DAseg-wmt-

newstest2015). Here, D_cost, I_cost, Sh_cost and 

Sub_cost refer to the cost of deletion, insertion, 

shifting and substitution, respectively. 

 

We carried out the evaluation of our metric on the 

WMT16 (DAseg-wmt-newstest2016) dataset 

using the corresponding optimal sets of edit costs 

(cf. Table 1) tuned on the WMT15  datasets and 

computed the segment level correlation with 

human judgement scores in terms of Pearson 

correlation coefficient (Pearson, 1895). For a 

comparative evaluation, we compared our metric 

with TER on the same dataset and the results are 

shown in Table 2.  

       As can be seen from Table 2, the proposed 

metric provides much higher correlation (9.62% −  

32.50%) for every language pair and target 

language than TER. The fact that even for the en-

ru language direction, the metric shows 

significant improvement in correlation without 

the stem matching component, indicates that most 

of the improvements are due to the optimal edit 

costs. Apart from TER, we compared our results 

with the top performers of WMT16 segment level 

metrics (cf. Table 2) like sentBLEU (Bojar et al., 

2016), MPEDA (Zhang et al., 2016) and 

METRICSF (Bojar et al., 2016). sentBLEU is the 

segment level version of BLEU, MPEDA was 

developed on the basis of METEOR and 

METRICSF is a combination of three metrics, 

namely, BLEU, METEOR and UPF-COBALT 

(Fomicheva et al., 2016). It can be inferred from 

Table 2 that ITER performs significantly better 

than TER and it is among the top few performers. 

Specifically for ru-en, ITER provides the best 

result and surpasses all other metrics. 

 We participated in the WMT 2018 Metrics 

Shared Task and submitted results for the “no 

hybrids” (newstest2018+testsuites) test set. Due 

to resource constraints, we could not evaluate the 

“hybrids” test set which contain artificially 

created 10K+ system outputs per language pair 

and test set. To establish better confidence 

intervals for system-level evaluation, the WMT18 

metric task organizers computed system level 

scores for 10K hybrid super-sampled systems 

from our non-hybrid segment level scores using 

simple arithmetic average. The results of our 

participation in the WMT 2018 Metrics Shared 

Task are reported in (Ma et al., 2018). 

6 Conclusions 

This paper presents ITER, a TER style MT 

evaluation metric, which shows way better 

correlation than TER. The key idea behind ITER 

is optimizable edit costs. On the other hand, ITER 

gives the user the flexibility to choose their own 

set of edit operation costs and choose the one that 

suits the most. Since error rate higher than 100% 

does not make any sense, we improved the 

normalization in ITER. ITER also considers stem 

matching and character level edit operations. 
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Lang_pair ITER TER MPEDA METRICSF sentBLEU DPMFCOMB COBALTF BEER 

cs-en 0.652 0.576 0.644 0.696 0.557 0.713 0.671 0.661 

de-en 0.534 0.444 0.538 0.601 0.448 0.584 0.591 0.462 

fi-en 0.524 0.478 0.513 0.557 0.484 0.598 0.554 0.471 

ru-en 0.625 0.525 0.545 0.615 0.502 0.618 0.618 0.533 

en-ru 0.591 0.446 0.645 - 0.550 - - 0.666 

Table 2: Segment-level correlations of automatic evaluation metrics on the WMT16 test set. Blank 

spaces indicate scores are not available. We calculated the ITER and TER scores and cited the 

other scores from the Bojar et al. (2016). 
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Abstract

We introduce the RUSE1 metric for the
WMT18 metrics shared task. Sentence em-
beddings can capture global information that
cannot be captured by local features based on
character or word N-grams. Although train-
ing sentence embeddings using small-scale
translation datasets with manual evaluation is
difficult, sentence embeddings trained from
large-scale data in other tasks can improve
the automatic evaluation of machine transla-
tion. We use a multi-layer perceptron re-
gressor based on three types of sentence em-
beddings. The experimental results of the
WMT16 and WMT17 datasets show that the
RUSE metric achieves a state-of-the-art per-
formance in both segment- and system-level
metrics tasks with embedding features only.

1 Introduction

This study describes a segment-level metric for
automatic machine translation evaluation (MTE).
The MTE metrics with a high correlation with hu-
man evaluation enable the continuous integration
and deployment of a machine translation (MT)
system. Various MTE metrics have been proposed
in the metrics task of the Workshops on Statistical
Machine Translation (WMT) that was started in
2008. However, most MTE metrics are obtained
by computing the similarity between an MT hy-
pothesis and a reference based on the character or
word N-grams, such as SentBLEU (Lin and Och,
2004), which is a smoothed version of BLEU (Pa-
pineni et al., 2002), Blend (Ma et al., 2017),
MEANT 2.0 (Lo, 2017), and chrF++ (Popović,
2017). Therefore, they can exploit only limited
information for the segment-level MTE. In other
words, the MTE metrics based on character or
word N-grams cannot make full use of sentence
embeddings. They only check for word matches.

1https://github.com/Shi-ma/RUSE

Figure 1: Outline of the RUSE metric.

We extend our previous work (Shimanaka et al.,
2018) and propose a segment-level MTE met-
ric using universal sentence embeddings capa-
ble of capturing global information that cannot
be captured by local features based on character
or word N-grams. The experimental results in
both segment- and system-level metrics tasks con-
ducted using the datasets for to-English language
pairs on WMT16 and WMT17 indicated that the
proposed regression model using sentence embed-
dings, RUSE, achieves the best performance.

The main contributions of the study are summa-
rized below:

• We propose a novel supervised regression
model for the segment-level MTE based on
universal sentence embeddings.

• We achieved a state-of-the-art performance
in segment- and system-level metrics tasks
on the WNT16 and WMT17 datasets for
to-English language pairs without using any
complex features.
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Figure 2: Outline of InferSent. Figure 3: Outline of Quick-Thought.

2 Related Work

DPMFcomb (Yu et al., 2015a) achieved the best
performance in the WMT16 metrics task (Bo-
jar et al., 2016). It incorporates 55 default
metrics provided by the Asiya MT evaluation
toolkit2 (Giménez and Màrquez, 2010), as well
as three other metrics, namely DPMF (Yu et al.,
2015b), REDp (Yu et al., 2015a), and ENTFp (Yu
et al., 2015a), using ranking SVM to train parame-
ters of each metric score. DPMF evaluates the syn-
tactic similarity between an MT hypothesis and a
reference translation. REDp evaluates an MT hy-
pothesis based on the dependency tree of the ref-
erence translation that comprises both lexical and
syntactic information. ENTFp (Yu et al., 2015a)
evaluates the fluency of an MT hypothesis.

After the success of DPMFcomb, Blend3 (Ma
et al., 2017) achieved the best performance in the
WMT17 metrics task (Bojar et al., 2017). Sim-
ilar to DPMFcomb, Blend is essentially an SVR
model with RBF kernel that uses the scores of var-
ious metrics as features. It incorporates 25 lex-
ical metrics provided by the Asiya MT evalua-
tion toolkit, as well as four other metrics, namely
BEER (Stanojević and Sima’an, 2015), Charac-
TER (Wang et al., 2016), DPMF, and ENTFp.
BEER is a linear model based on character N-
grams and replacement trees. CharacTER eval-
uates an MT hypothesis based on character-level
edit distance.

DPMFcomb is trained through relative ranking
(RR) of human evaluation data in terms of relative

2http://asiya.lsi.upc.edu/
3http://github.com/qingsongma/blend

ranking (RR). The quality of five MT hypotheses
of the same source segment is ranked from 1 to
5 via a comparison with the reference translation.
In contrast, Blend is trained through direct assess-
ment (DA) of human evaluation data. DA pro-
vides the absolute quality scores of hypotheses by
measuring to what extent a hypothesis adequately
expresses the meaning of the reference transla-
tion. The experiment results in the segment-level
MTE conducted using the datasets for to-English
language pairs on WMT16 showed that Blend
achieved a performance better than DPMFcomb. In
this study, as with Blend, we propose a regression
model trained using DA human evaluation data.

Instead of using local and lexical features,
ReVal4 (Gupta et al., 2015a,b) proposes using
sentence-level features. It is a metric using Tree-
LSTM (Tai et al., 2015) for training and captur-
ing the holistic information of sentences. It is
trained using datasets of pseudo similarity scores
generated by translating RR data and out-domain
datasets of similarity scores of SICK5. How-
ever, the training dataset used in this metric con-
sists of approximately 21,000 sentences; thus, the
learning of Tree-LSTM is unstable, and accurate
learning is difficult. We use sentence embeddings
trained using various RNN and Transformer as
sentence information. Furthermore, we apply uni-
versal sentence embeddings to this task. These
embeddings were trained using large-scale data
obtained in other tasks. Therefore, the proposed
approach avoids the problem of using a small
dataset for training sentence embeddings.

4https://github.com/rohitguptacs/ReVal
5http://clic.cimec.unitn.it/composes/sick.html
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cs-en de-en fi-en lv-en ro-en ru-en tr-en zh-en

WMT15 500 500 500 - - 500 - -
WMT16 560 560 560 - 560 560 560 -
WMT17 560 560 560 560 - 560 560 560

Table 1: Number of segment-level DA human evaluation datasets for to-English language pairs10 in
WMT15 (Stanojević et al., 2015), WMT16 (Bojar et al., 2016), and WMT17 (Bojar et al., 2017).

cs-en de-en fi-en lv-en ro-en ru-en tr-en zh-en

WMT16
systems 6 10 9 - 7 10 8 -

sentences 2,999 2,999 3,000 - 2,998 1,999 3,000 -

WMT17
systems 4 11 6 9 - 9 10 16

sentences 3,005 3,004 3,002 2,001 - 3,001 2,017 2,001

Table 2: Number of MT systems and system-level DA human evaluation datasets for to-English language pairs in
WMT16 (Bojar et al., 2016) and WMT17 (Bojar et al., 2017).

3 RUSE: Regressor Using Sentence
Enbeddings

The proposed metric evaluates the MT hypothesis
with universal sentence embeddings trained using
large-scale data obtained in other tasks. First, we
describe three types of sentence embeddings used
in the proposed metric in Section 3.1. We then
explain the proposed regression model and feature
extraction for MTE in Section 3.2.

3.1 Universal Sentence Embeddings
Several approaches have been proposed to learn
sentence embeddings. These sentence embed-
dings are learned through large-scale data such
that they constitute potentially useful features for
MTE. These have been proven effective in various
NLP tasks, such as document classification and
measurement of semantic textual similarity, and
we call them universal sentence embeddings.

First, InferSent6 (Conneau et al., 2017) con-
structs a supervised model computing universal
sentence embeddings trained using Stanford Nat-
ural Language Inference (SNLI) datasets7 (Bow-
man et al., 2015). The Natural Language In-
ference task is a classification task of sentence
pairs with three labels, namely entailment, con-
tradiction, and neutral; thus, InferSent can train
sentence embeddings that are sensitive to differ-
ences in meaning. This model encodes a sen-
tence pair u and v and generates features by sen-
tence embeddings u⃗ and v⃗ with a bi-directional

6https://github.com/facebookresearch/InferSent
7https://nlp.stanford.edu/projects/snli/

LSTM architecture with max pooling (Figure 2).
InferSent demonstrates high performance across
various document classification and semantic tex-
tual similarity tasks.

Second, Quick-Thought8 (Logeswaran and Lee,
2018) builds an unsupervised model of univer-
sal sentence embeddings trained using some con-
secutive sentences. Given an input sentence and
its context, a classifier distinguishes context sen-
tences from other contrastive sentences based on
their embeddings (Figure 3). For a given sentence
s, its embeddings are the concatenation of the out-
puts of the two encoders [f(s); g(s)]. As a re-
sult of the training, this encoder can produce sen-
tence embedding. Quick-Thought demonstrates
high performance, especially when applied to doc-
ument classification tasks.

Finally, Universal Sentence Encoder9 (Cer
et al., 2018) is trained using multitask learn-
ing, whereby a single encoding model is used
to feed multiple downstream tasks. Universal
Sentence Encoder supports a task to estimate the
neighboring sentences for unsupervised learning
and tasks conversational input–response and nat-
ural language inference for supervised learning.
The unsupervised learning model trained on data
drawn from a variety of web sources, such as
Wikipedia, web news, web question-answer pages
and discussion forums, is augmented with training

8https://github.com/lajanugen/S2V
9https://www.tensorflow.org/hub/modules/google/universal-

sentence-encoder-large/2
10en: English, cs: Czech, de: German, fi: Finnish, ro: Ro-

manian, ru: Russian, tr: Turkish, lv: Latvian, zh: Chinese
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cs-en de-en fi-en ro-en ru-en tr-en avg.

SentBLEU (Bojar et al., 2016) 0.557 0.448 0.484 0.499 0.502 0.532 0.504
COBALT-F (Bojar et al., 2016) 0.671 0.591 0.554 0.639 0.618 0.627 0.617
METRICS-F (Bojar et al., 2016) 0.696 0.601 0.557 0.662 0.618 0.649 0.631
DPMFcomb (Bojar et al., 2016) 0.713 0.584 0.598 0.627 0.615 0.663 0.633
RUSE (MLP) with IS+QT+USE 0.717 0.661 0.682 0.725 0.663 0.661 0.685
RUSE (SVR) with IS+QT+USE 0.720 0.632 0.678 0.708 0.670 0.675 0.681

Table 3: Segment-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT16. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

SentBLEU (Bojar et al., 2017) 0.435 0.432 0.571 0.393 0.484 0.538 0.512 0.481
chrF++ (Bojar et al., 2017) 0.523 0.534 0.678 0.520 0.588 0.614 0.593 0.579
MEANT 2.0 (Bojar et al., 2017) 0.578 0.565 0.687 0.586 0.607 0.596 0.639 0.608
Blend (Bojar et al., 2017) 0.594 0.571 0.733 0.577 0.622 0.671 0.661 0.633
RUSE (MLP) with IS+QT+USE 0.614 0.637 0.756 0.705 0.680 0.704 0.677 0.682
RUSE (SVR) with IS+QT+USE 0.624 0.644 0.750 0.697 0.673 0.716 0.691 0.685

Table 4: Segment-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT17. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

on supervised data from the SNLI corpus. Univer-
sal Sentence Encoder demonstrates a higher per-
formance across various document classification
and semantic textual similarity tasks compared to
InferSent.

3.2 Regression Model for MTE
This study proposes a segment-level MTE met-
ric for to-English language pairs. This problem
can be treated as a regression problem that esti-
mates the translation quality as a real number from
an MT hypothesis t and a reference translation r.
Once d-dimensional sentence vectors t⃗ and r⃗ are
generated, the proposed model applies the follow-
ing three matching methods to extract the relations
between t and r (Figure 1).

• Concatenation: (⃗t, r⃗)

• Element-wise product: t⃗ ∗ r⃗

• Absolute element-wise difference: |⃗t − r⃗|

Thus, we perform regression using 4d-
dimensional features of t⃗, r⃗, t⃗ ∗ r⃗ and |⃗t − r⃗|.

4 Experiments

We performed experiments using the evaluation
datasets of the WMT metrics task to verify the per-
formance of the proposed metric.

4.1 Setup

Datasets. We used segment-level datasets for to-
English language pairs from the WMT15 (Stano-
jević et al., 2015), WMT16 (Bojar et al., 2016),
and WMT17 (Bojar et al., 2017) metrics tasks
as summarized in Table 1. For testing, we also
used system-level datasets from the WMT16 and
WMT17 metrics tasks as summarized in Table 2.

Training. We divided the dataset for training
and development at a 9:1 ratio. First, for testing
in WMT16, we divided the segment-level dataset
of WMT15 into 1800 instances for training and
200 instances for development. Next, for testing
in WMT17, we divided the segment-level datasets
of WMT15 and WMT16 into 4824 instances for
training and 536 instances for development. Fi-
nally, for submission to WMT18, we divided the
segment-level dataset of WMT15, WMT16, and
WMT17 into 8352 instances for training and 928
instances for development.

Testing. We scored each sentence using our
metric for to-English language pairs in both seg-
ment and system levels. For testing on the system-
level metrics task, we calculated the average score
for each system as a system-level score. We eval-
uated our metric using the Pearson correlation co-
efficient between the metric scores and the DA hu-
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cs-en de-en fi-en ro-en ru-en tr-en avg.

BLEU (Bojar et al., 2016) 0.989 0.808 0.864 0.840 0.837 0.895 0.872
BEER (Bojar et al., 2016) 0.990 0.879 0.972 0.852 0.901 0.982 0.929
MPEDA (Bojar et al., 2016) 0.993 0.937 0.976 0.932 0.929 0.982 0.958
ReVal (Bojar et al., 2016) 0.986 0.985 0.970 0.957 0.976 0.958 0.972
RUSE (MLP) with IS+QT+USE 0.990 0.968 0.977 0.962 0.953 0.991 0.974
RUSE (SVR) with IS+QT+USE 0.990 0.954 0.976 0.940 0.944 0.984 0.965

Table 5: System-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT16. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

BLEU (Bojar et al., 2017) 0.971 0.923 0.903 0.979 0.912 0.976 0.864 0.933
UHH TSKM (Bojar et al., 2017) 0.996 0.937 0.921 0.990 0.914 0.987 0.902 0.950
BEER (Bojar et al., 2017) 0.972 0.960 0.955 0.978 0.936 0.972 0.902 0.954
Blend (Bojar et al., 2017) 0.968 0.976 0.958 0.979 0.964 0.984 0.894 0.960
RUSE (MLP) with IS+QT+USE 0.995 0.964 0.985 0.996 0.956 0.993 0.937 0.975
RUSE (SVR) with IS+QT+USE 0.996 0.964 0.983 0.988 0.951 0.993 0.930 0.972

Table 6: System-level Pearson correlation of metric scores and DA human evaluation scores for to-English lan-
guage pairs in WMT17. IS: InferSent; QT: Quick-Thought; and USE: Universal Sentence Encoder.

man scores.

Features. Publicly available pre-trained sen-
tence embeddings, such as InferSent6, Quick-
Thought8, and Universal Sentence Encoder9, were
used as the features mentioned in Section 3. In-
ferSent is a collection of 4096-dimensional sen-
tence embeddings trained on both 560,000 sen-
tences of the SNLI dataset (Bowman et al.,
2015) and 433,000 sentences of the MultiNLI
dataset (Williams et al., 2018). Quick-Thought
is a collection of 4800-dimensional sentence em-
beddings trained on both 45 million sentences of
the BookCorpus dataset (Zhu et al., 2015) and
129 million sentences of the UMBC corpus (Han
et al., 2013). Universal Sentence Encoder is a
collection of 512-dimensional sentence embed-
dings trained on many sentences from a variety of
web Sources, such as Wikipedia, web news, web
question-answer pages, and discussion forums.

Model. Our regression model used a multi-layer
perceptron (MLP) from Chainer11 and Support
Vector Regression (SVR) from sckit-learn12 with
the features mentioned in Section 3.2.

MLP regressor. Hyper-parameters were de-
termined through grid search in the following pa-

11https://chainer.org/
12http://scikit-learn.org/

rameters using the development data. We used
ReLU as an activation function in all layers.

• Number of layers ∈ {1, 2, 3}

• Number of units ∈ {512, 1024, 2048, 4096}

• Batch size ∈ {64, 128, 256, 512, 1024}

• Dropout rate ∈ {0.1, 0.3, 0.5}

• Optimizer ∈ {Adam}

SVR. We used an SVR model with the RBF
kernel. The hyper-parameters were determined
through a 10-fold cross validation in the follow-
ing parameters using the training and development
data.

• C ∈ {0.1, 1.0, 10}

• ϵ ∈ {0.01, 0.1, 1.0}

• γ ∈ {0.001, 0.01, 0.1}

Baseline Metrics. We compared the proposed
metric with the four baseline metrics for each
dataset. One is BLEU, which is the de facto stan-
dard metric for machine translation evaluation.
The others are the top three metrics in each task.
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cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

Blend (Bojar et al., 2017) 0.594 0.571 0.733 0.577 0.622 0.671 0.661 0.633
RUSE (MLP) with IS+QT+USE 0.614 0.637 0.756 0.705 0.680 0.704 0.677 0.682
RUSE (MLP) with IS 0.556 0.568 0.706 0.650 0.626 0.649 0.634 0.627
RUSE (MLP) with QT 0.601 0.587 0.737 0.685 0.661 0.692 0.647 0.658
RUSE (MLP) with USE 0.592 0.596 0.681 0.621 0.598 0.645 0.620 0.622

Table 7: Ablation analysis on the segment-level dataset in WMT17.

cs-en de-en fi-en lv-en ru-en tr-en zh-en avg.

Blend (Bojar et al., 2017) 0.968 0.976 0.958 0.979 0.964 0.984 0.894 0.960
RUSE (MLP) with IS+QT+USE 0.995 0.964 0.985 0.996 0.956 0.993 0.937 0.975
RUSE (MLP) with IS 0.984 0.972 0.963 0.969 0.955 0.982 0.881 0.958
RUSE (MLP) with QT 0.997 0.952 0.997 0.998 0.945 0.992 0.936 0.974
RUSE (MLP) with USE 0.999 0.947 0.982 0.975 0.958 0.960 0.932 0.965

Table 8: Ablation analysis on the system-level dataset in WMT17.

4.2 Result

Segment-level metrics task. Tables 3 and 4
show the experimental results on the segment
level. Our proposed metrics achieved the best per-
formance in all to-English language pairs. For the
segment-level tasks, both MLP and SVR regres-
sors outperformed the state-of-the-art metrics.

System-level metrics task. Tables 5 and 6
present the experimental results on the system
level. Our proposed metric based on the MLP re-
gressor achieved the best performance in several
to-English language pairs and outperformed the
state-of-the-art metrics on average.

4.3 Discussion

These results indicated that adopting universal
sentence embeddings in MTE is possible by train-
ing a regression model using DA human evalu-
ation data. Blend is an ensemble method using
combinations of various MTE metrics as features;
hence, our results showed that universal sentence
embeddings can more accurately consider the sim-
ilarity between the MT hypothesis and the refer-
ence than a complex model.

MLP vs. SVR in the RUSE metric. These ex-
perimental results showed that in the RUSE met-
ric, MLP performed better than SVR in many
cases. In addition, MLP can be trained and in-
ferred faster than SVR by making effective use of
GPU. Therefore, we submitted a model of RUSE
(MLP) with IS+QT+USE trained on the whole

dataset to WMT18.

Ablation analysis. Tables 7 and 8 show that
our metric with Quick-Thought feature only out-
performed the state-of-the-art metrics in both
segment- and system-level metrics tasks. Quick-
Thought is an unsupervised model of universal
sentence embeddings trained using some consec-
utive sentences. Therefore, Quick-Thought can be
trained in corpora of languages other than English.
Our method is effective if there are universal sen-
tence embeddings and DA human evaluation data.
Thus, our method with Quick-Thought may be ef-
fective in MTE for other than to-English language
pairs.

5 Conclusions

In this study, we applied universal sentence em-
beddings to MTE based on the DA of human eval-
uation data. Our segment-level MTE metric RUSE
achieved the best performance in both segment-
and system-level metrics tasks on the WMT16 and
WMT17 datasets. We conclude that:

• Universal sentence embeddings can more
comprehensively consider information than
an ensemble metric using combinations of
various MTE metrics based on the features
of character or word N-grams.

• Universal sentence embeddings trained on a
large-scale dataset are more effective than
sentence embeddings trained on a small or
limited in-domain dataset.
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Open Toolkit for Automatic Machine Translation
(Meta-) Evaluation. The Prague Bulletin of Math-
ematical Linguistics, (94):77–86.

Rohit Gupta, Constantin Orasan, and Josef van Gen-
abith. 2015a. ReVal: A Simple and Effective Ma-
chine Translation Evaluation Metric Based on Re-
current Neural Networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1066–1072.

Rohit Gupta, Constantin Orasan, and Josef van Gen-
abith. 2015b. Machine Translation Evaluation using
Recurrent Neural Networks. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 380–384.

Lushan Han, Abhay L. Kashyap, Tim Finin,
James Mayfield, and Jonathan Weese. 2013.
UMBC EBIQUITY-CORE: Semantic Textual
Similarity Systems. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 1: Proceedings of the Main Conference and
the Shared Task: Semantic Textual Similarity, pages
44–52. Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. OR-
ANGE: a Method for Evaluating Automatic Evalu-
ation Metrics for Machine Translation. In Proceed-
ings of the 20th International Conference on Com-
putational Linguistics, pages 501–507.

Chi-Kiu Lo. 2017. MEANT 2.0: Accurate Seman-
tic MT Evaluation for Any Output Language. In
Proceedings of the Second Conference on Machine
Translation, pages 589–597.

Lajanugen Logeswaran and Honglak Lee. 2018. An
Efficient Framework for Learning Sentence Repre-
sentations. In International Conference on Learning
Representations.

Qingsong Ma, Yvette Graham, Shugen Wang, and Qun
Liu. 2017. Blend: a Novel Combined MT Metric
Based on Direct Assessment ―CASICT-DCU sub-
mission to WMT17 Metrics Task. In Proceedings
of the Second Conference on Machine Translation,
pages 598–603.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318.
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Abstract

The paper presents our participation in the
WMT 2018 shared task on word level quality
estimation (QE) of machine translated (MT)
text, i.e., to predict whether a word in MT
output for a given source context is correctly
translated and hence should be retained in the
post-edited translation (PE), or not. To per-
form the QE task, we measure the similar-
ity of the source context of the target MT
word with the context for which the word is
retained in PE in the training data. This is
achieved in two different ways, using Bag-of-
Words (BoW) model and Document-to-Vector
(Doc2Vec) model. In the BoW model, we com-
pute the cosine similarity while in the Doc2Vec
model we consider the Doc2Vec similarity. By
applying the Kneedle algorithm on the F1-
mult vs. similarity score plot, we derive the
threshold based on which OK/BAD decisions
are taken for the MT words. Experimental
results revealed that the Doc2Vec model per-
forms better than the BoW model on the word
level QE task.

1 Introduction

Evaluating and estimating quality of a machine
translation (MT) system without referring the ac-
tual translation is now one of the key research ar-
eas in MT domain (Blatz et al., 2004; Specia et al.,
2009). In a machine translated document quality
estimation can be performed at various granulari-
ties like word level, phrase level or sentence level
(Specia et al., 2010, 2013). Scarton et al. (2016)
produced their task in WMT16 in document level
quality estimation with winning result in two dif-
ferent models (Bojar et al., 2016). One model used
discourse features and SVR and another model
employed word embedding feature and Gaussian
Process for quality estimation. (Biçici, 2017)
predicted translation performance with referential
translation machines at word level, sentence level

and at phrase level. (Blain et al., 2017) submit-
ted task on bi-lexical word embedding in WMT17
QE shared task, which produced promising results
in sentence level Quality Estimation. Some stud-
ies (Fiederer and OBrien, 2009; Koehn, 2009; De-
Palma and Kelly, 2011; Zampieri and Vela, 2014)
show that the quality of MT output along with PE
can produce better result than human editor in cer-
tain situations.

In our work we mainly focus on word level
quality estimation. The distributional structure
of words was first described by (Harris, 1954).
(Turian et al., 2010) illustrated representations
of words in semi-supervised learning. Bengio
et al. (2003) proposed neural probabilistic lan-
guage model by using a distributed representa-
tion of words. Collobert and Weston (2008), de-
scribed how a convolutional neural network archi-
tecture could be used to make different language
processing predictions, such as semantically sim-
ilar words, etc. Mnih and Hinton (2008) pro-
posed a fast hierarchical language model along
with a feature based algorithm which automati-
cally builds word trees from data. Mikolov et al.
(2013b) proposed vector representation of words
with the help of negative sampling (instead of
softmax function) that improves both word vec-
tor quality and training speed. Their work showed
prediction of a word from a context by adding two
word vectors from the same context. (Mikolov
et al., 2013a) proposed a novel approach to repre-
sent words as fixed length vectors, widely known
as word2vec model and they reported state-of-the-
art performance on word similarity task. (Le and
Mikolov, 2014) extend their model to vector rep-
resentation of a document known as Paragraph
Vector model or commonly Document-to-Vector
(Doc2Vec) model.

This paper reports our submission in the WMT
2018 Shared Task on Word-Level Quality Estima-
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tion (QE task-2) on English–German (IT domain)
SMT data. The proposed model has been devel-
oped in two ways - one using the standard Bag-
of-Words model and another using the Doc2Vec
model. The motivation behind the use of Doc2Vec
model is to achieve more accurate semantic simi-
larity compared to the simple cosine similarity on
Bag-of-Words model. The Doc2Vec model cap-
tures semantic similarity which the Bag-of-Words
model can not. Our word level error estimation
is mainly based on Translation Error Rate (Snover
et al., 2006) between MT and PE.

2 Proposed Approach

Our system highlights the retention of a word
in MT translation and thus it helps human post-
editors to increase their productivity with less ef-
fort. Our QE system is built over the Translation
Error Rate (TER) (Snover et al., 2006) alignment
between MT output and the corresponding PE out-
put in the training data. TER alignment shows
whether words from MT data (hypothesis in TER)
will be continued, deleted or substituted with re-
spect to the PE data (reference in TER). Based
on the TER alignment, we build binary classifi-
cation models that suggests OK for continuation
and BAD for deletion or substitution.

Our QE system follows two models: Bag-
of-Words Model and Document-to-Vector based
model as described in the following subsections.

2.1 Bag-of-Words Model

MT words that are retained in PE are identified
through TER alignment. In the Bag-of-words
(BoW) model, for each word (wi) in MT that is
retained in PE in the training set, we find the cor-
responding source texts (src∗wi

). A BoW (Bwi) is
then formed from the src∗wi

for each such wi that
are present in both MT and the corresponding PE
in the training set. Algorithm 1 presents the BoW
creation method. Bwi contains more repetition of
the source words which actually bear the meaning
of wi.

On the development set, we also establish TER
alignment between the MT text (MTdev) and the
PE text (PEdev). For each word (say, wj) ap-
pearing in each sentence in MTdev, we consider
the corresponding src as the source context (say,
srcwj ) and keep track of the post-editing operation
required on the word (through TER alignment),
i.e., whether the word is retained (OK) in PE or

Input: src–mt–pe parallel training data and TER
alignments between mt and pe

Output: source BoW (Bdict) for each target word
begin

Vlist ← NULL
Bdict ← NULL
foreach sentence mti ∈mt do

foreach Ti,j ∈mti do
if Ti,j is retained in pei then

if Ti,j /∈ Vlist then
Vlist.add(Ti,j)

end
Blist ← NULL
forall Si,k ∈ srci do

Blist.add(Si,k)
end
Bdict[Ti,j ].add(Blist)

end
end

end
return Bdict

end
Algorithm 1: Creation of source BoW; Ti,j is the
jth word of the ith mt sentence and Si,k is the kth

word of ith src sentence.

not (BAD). Then we compute the cosine similar-
ity between srcwj and Bwj .

The similarity scores range between 0 and 1
with varying distribution. We aim to arrive at
a threshold on the similarity score above which
the system takes the OK decision, otherwise the
BAD decision. This threshold is trained on the
development set. However, the datasets, both
training and development, are highly imbalanced;
85.66% and 83% of the mt tokens are retained
(i.e., OK) in pe in the training set and the devel-
opment set respectively, and the rest are discarded
or changed (i.e., BAD), which indicates that the
mt data was generated by a strong MT system.
Such imbalance in the dataset proves to be a major
hurdle in automatic QE or post-editing. The im-
balance in the dataset leads to the fact that a very
simple baseline of setting the threshold to 0 results
in 85% F1-score on the development set (we con-
sider only the non-stop words), which is very dif-
ficult to defeat.

The similarity scores obtained for the develop-
ment set MT words are divided into a number of
segments (or ranges) for equal distribution such
that there are roughly equal number of instances
in each range (cf. Table 3). The upper bound of
each segment corresponds to a threshold.

We compute F1-mult1 for each of the segments

1F1-mult is the multiplication of F1 scores for the OK
and BAD classes, and is the official evaluation metric for the
WMT QE shared task.
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and produce the F1-mult curve. Figure 1 shows
the F1-mult curve on the development set which
does not lead to any peak or intermediate thresh-
old. We use the Kneedle algorithm (Satopaa et al.,
2011) to find a knee point on the F1-mult curve
which serves as the threshold for our model and
based on this threshold we take the OK/BAD de-
cision.

For each test set MT word (say wk), we gen-
erate the similarity score between Bwk

and the
current source srcwk

. If the score is above the
threshold, the word is predicted as OK, otherwise
BAD.

Figure 1: Segment vs. F1-mult plot on the develop-
ment set for the BoW model. Red Mark denotes the
(segment, F1-mult) co-ordinate value for knee point
and green Mark describes segment starting position.

2.2 Document-to-Vector based Model

In the Document-to-Vector (Doc2Vec) model for
QE, for an MT word wi, we also compute similar-
ity between srcwi and Bwi . However, here instead
of the considering them as BoW, we treat them
as documents and measure their Doc2Vec similar-
ity score (SimD2V ). For this, we prepare docu-
ment vector for each srcwi and Bwi using gen-
sim (Rehurek and Sojka, 2010). Gensim has its
own implementation of document embedding via
distributed memory or distributed Bag-of-Words
model. In its model each document is represented
as a fixed length vector. It is a generalization of
and derived from the word2vec model. The QE
decision is taken based on whether the SimD2V

for the word is above or below the threshold which
is trained on the development set, as in the case
of the BoW model. To train our Doc2Vec model
we remove all stop words from the training data.
For obtaining the threshold, the Doc2Vec similar-

ity scores are divided into a number of segments of
equal distribution. Like the BoW model, we gen-
erate the F1-mult curve on those similarity scores
and use the Kneedle algorithm to find the thresh-
old.

3 Experiments

We used the WMT-2018 English–German (EN–
DE) word level QE dataset for our experiments.
Table 3 presents the statistics of the training, de-
velopment and test sets. Stop words generally oc-
cur very frequently and their number of occur-
rences across BoW could easily mislead word-
level QE. Therefore we process the training data
by removing stop words for both German2 and En-
glish from all the data sets, i.e., neither we con-
sider them while building our context bags, nor we
consider their QE.

Senten-
ces

Tokens
src mt pe

Train 26,299 389,070 393,000 400,058
Dev 1000 14,600 14,773 14,970
Test 1926 28,312 28,785 -

Table 1: Statistics of the the WMT-2018 Word Level
QE Shared Task Data Set.

We considered 9 thresholds for the BoW model.
Table 3 shows the segments and the corresponding
thresholds.

Seg. No Threshold
1 0.075
2 0.15
3 0.2
4 0.25
5 0.31
6 0.38
7 0.47
8 0.58
9 1

Table 2: Segment versus Threshold values for the BOW
model

Table 3 shows word specific assignment of bi-
nary scores to each threshold. For a word with QE
decision OK, a word–threshold cell is assigned to
1 if the similarity score for the corresponding word
is higher than the corresponding threshold, and

2https://www.ranks.nl/stopwords/german
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Token PE Decision Score
Threshold

0.075 0.15 0.2 0.25 0.31 0.38 0.47 0.58 1
hinzugefgt OK 0.32 1 1 1 1 1 0 0 0 0
verhalten OK 0.26 1 1 1 1 0 0 0 0 0
zustzliche BAD 0.23 0 0 0 1 1 1 1 1 1
verknpfen OK 0.23 1 1 1 0 0 0 0 0 0

wird OK 0.32 1 1 1 1 1 0 0 0 0
verborgene OK 0.37 1 1 1 1 1 0 0 0 0

enthlt BAD 0.03 0 1 1 1 1 1 1 1 1
balken OK 0.21 1 1 1 0 0 0 0 0 0
fenster OK 0.17 1 1 0 0 0 0 0 0 0

sol BAD 0.5 0 0 0 0 0 0 0 0 1

Table 3: A snapshot of the intermediate table showing word–threshold pair assignment

Seg No Th. Value
1 0.001
2 0.12
3 0.21
4 0.4
5 0.1

Table 4: Segment vs. threshold values for the Doc2Vec
model

0 otherwise. For words with PE decision BAD,
scores are assigned the other way round. It is to be
noted that our model can only predict the QE deci-
sion for words that are already seen in the training
set. Words that are not present in the training set
(including stop words) are simply retained.

Kneedle algorithm on the Segments vs. F1-
mult plot on the development set (cf. Figure 1)
leads to the segment 4 as the knee point and the
corresponding similarity score of 0.25 (cf. Table
3) serves as the threshold, which produces the op-
timal F1-mult for the BoW model.

For the Doc2Vec based experiment, gensim
creates models using distributed Bag-of-Words.
Doc2Vec similarity is measured between the vec-
tor representation of the Bag-of-Words and the
source context for each target word from training
data. The scores were distributed among 5 seg-
ments (cf. Table 3). Figure 2 shows the Segments
vs. F1-mult plot for the Doc2Vec model. From
the plot we take the knee value of the graph, i.e.
segment 3 and the corresponding similarity score
0.21 (cf. Table 3) is considered as the threshold
for the Doc2Vec model.

According to the WMT18 published results for
the word level quality estimation task (Task 2), the

Figure 2: Segments versus F1-mult plot on training set
of Doc2Vec model. Red Mark denotes the (segment,
F1-mult) co-ordinate value for knee point and green
Mark describes segment starting position.

results of our two models along with baseline are
shown in Table 3. The evaluation results suggest
that the Doc2Vec based word level QE model per-
forms better than the Bag-of-Words based model
for both the OK class and the BAD class on the
WMT18 testset.

The expected results could have been better if
we could use larger dataset as Doc2Vec model per-
forms better for bigger data sources (Azunre et al.,
2018). For Bag-of-Words based model we have
removed stop words from those Bag-of-Words for
the target German word of MT which itself is not
a stop word. We also removed all stop words from
test data. Removal of stop words from training
data and test data leads to not-up-to-the-mark per-
formance.
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Participant Model F1-BAD F1-OK F1-mult

fblain BASELINE 0.4115 0.8821 0.3630
basuprasen Doc2Vec 0.2889 0.7547 0.2180
basuprasen BagOfWords 0.2784 0.7335 0.2042

Table 5: Evaluation Results on the WMT18 Word level Quality Estimation (Task 2)

4 Conclusions and Future Work

The paper reports our participation in the WMT
2018 shared task on word level quality estimation
(QE task2) on English–German SMT data. The
task of word level QE is treated as a binary clas-
sification problem — i.e., decision is taken about
whether a word under consideration is to be re-
tained or not. The prediction is performed by mea-
suring the similarity of the source context of the
target word with the context for which the word
is retained. This is achieved in two ways, us-
ing BoW model and Doc2Vec. Experimental re-
sults suggest that the Doc2Vec model can model
this much more effectively than the Bag-of-Words
model. An obvious extension of this work would
be to extend our model to phrase-level QE and
determining missing words and source words that
lead to errors.
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Abstract

With improved prediction combination using
weights based on their training performance
and stacking and multilayer perceptrons to
build deeper prediction models, RTMs become
the 3rd system in general at the sentence-level
prediction of translation scores and achieve
the lowest RMSE in English to German NMT
QET results. For the document-level task, we
compare document-level RTM models with
sentence-level RTM models obtained with the
concatenation of document sentences and ob-
tain similar results.

1 Introduction

Quality estimation task in WMT18 (Specia et al.,
2018) (QET18) address machine translation per-
formance prediction (MTPP), where translation
quality is predicted without using reference trans-
lations, at the sentence- (Task 1), word- (Task 2),
phrase-level (Task 3), and document-levels (Task
4). The tasks contain subtasks involving English-
German phrase-based machine translation (SMT)
and neural network-based SMT (NMT), German-
English SMT, English-Latvian SMT and NMT,
English-Czech SMT, and English-French SMT.
Task 1 is about predicting HTER (human-targeted
translation edit rate) scores (Snover et al., 2006),
Task 2 is about binary classification of words, Task
3 is about binary classification of phrases, and
Task 4 is about predicting multi-dimensional qual-
ity metrics (MQM) (Lommel, 2015).

We use referential translation machine
(RTM) (Biçici, 2017) models for building our
prediction models. RTMs predict data translation
between the instances in the training set and the
test set using interpretants, data close to the task
instances. Interpretants provide context for the
prediction task and are used during the derivation
of the features measuring the closeness of the

RTM interpretants
Task Train Test Training LM
Task 1 (en-cs, SMT) 41254 1000

0.225M 5M

Task 1 (en-de, SMT) 27273 1000
Task 1 (en-de, NMT) 14442 1000
Task 1 (de-en, SMT) 26963 1000
Task 1 (en-lv, SMT) 12251 1000
Task 1 (en-lv, NMT) 13936 1000
Task 1 (en-lv, NMT) 13936 1000
Task 3 (de-en, NMT) 6021 543
Task 4 (en-fr, NMT) 1200 269

Table 1: Number of instances and interpretants used.

test sentences to the training data, the difficulty
of translating them, and to identify translation
acts between any two data sets for building
prediction models. With the enlarging parallel and
monolingual corpora made available by WMT, the
capability of the interpretant datasets selected by
RTM models to provide context for the training
and test sets improve.

Figure 1 depicts RTMs and explains the
model building process. RTMs use parfda
(Bicici, 2018) for instance selection and ma-
chine translation performance prediction system
(MTPPS) (Biçici and Way, 2015) for generating
features. The total number of features vary de-
pending on the order of n-grams used (e.g. a log
of probability score from the language model for
each n-gram is used).

We use ridge regression, kernel ridge regres-
sion, k-nearest neighors, support vector regres-
sion, AdaBoost (Freund and Schapire, 1997),
gradient tree boosting, extremely randomized
trees (Geurts et al., 2006), and multi-layer percep-
tron (Bishop, 2006) as learning models in combi-
nation with feature selection (FS) (Guyon et al.,
2002) and partial least squares (PLS) (Wold et al.,
1984) where most of these models can be found
in scikit-learn. 1 Evaluation metrics listed

1http://scikit-learn.org/
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Figure 1: RTM depiction: ParFDA selects interpretants close to the training and test data using parallel cor-
pus in bilingual settings and monolingual corpus in the target language or just the monolingual target corpus in
monolingual settings; an MTPPS use interpretants and training data to generate training features and another use
interpretants and test data to generate test features in the same feature space; learning and prediction takes place
taking these features as input.

Figure 2: Document-level RTM model with separate
MTPPS run for each training and test document to ob-
tain corresponding feature representations, which are
filtered and processed before learning and prediction.

are Pearson’s correlation (r), mean absolute error
(MAE), and root mean squared error (RMSE).

We use Global Linear Models (GLM) (Collins,
2002) with dynamic learning (GLMd) (Biçici,
2017) for word- and phrase-level translation per-
formance prediction. GLMd uses weights in a
range [a, b] to update the learning rate dynamically
according to the error rate.

2 Mixture of Experts Models

We use prediction averaging (Biçici, 2017) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain
weighted average of the top k predictions, ŷ with
evaluation metrics indexed by j ∈ J and weights

Figure 3: Stacking training data, X, from m predictors.

with w:

wj,i =

{
1

evalj,i
if j is minimized

evalj,i if j is maximized
ŷ̂ŷyµk = 1

k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1 wj,i

∑k
i=1wj,i ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |
∑

j∈J ŷ̂ŷyj,wj
k

MIX
(1)

where weights are inverted to decrease error. We
only use the MIX prediction if we obtain better
results on the training set. We select the best
model using r and mix the results using r, RAE,
MRAER, and MAER. The set of evaluation met-
rics used for mixing also affects the results. Since
we try to obtain results with relative evaluation
metric scores less than 1, we filter out those re-
sults with higher than 1 relative evaluation metric
scores.

In our experiments, we found that assuming in-
dependent predictions and using pi/(1 − pi) for
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Task 4 model setting rP MAE RAE MAER MRAER
en-fr SMT doc stack -0.1725 43.0687 0.9857 0.8123 0.805
en-fr SMT doc mix -0.1812 43.5726 0.9973 0.8347 0.8256
en-fr SMT doc FS RR -0.177 44.058 1.0084 0.8509 0.8413
en-fr SMT sent stack 0.2109 42.5196 0.9732 0.8464 0.8372
en-fr SMT sent mix -0.2299 43.2402 0.9897 0.8197 0.8116
en-fr SMT sent FS KR -0.1844 43.2891 0.9908 0.8255 0.8167

Table 2: Training results on Task 4 with stacking and prediction averaging. FS RR is the top single model for doc
and FS KR for sent where RR is ridge regression and KR is kernel ridge regression.

Task 1 rP MAE RAE MAER MRAER
en-de SMT 0.4336 0.1365 0.8654 0.7951 0.798
en-de NMT 0.459 0.1138 0.8282 0.84 0.7771
de-en SMT 0.5634 0.1364 0.7953 0.7637 0.7573
en-cs SMT 0.5381 0.151 0.8109 0.7423 0.7679
en-lv SMT 0.3805 0.1362 0.9055 0.8755 0.8041
en-lv NMT 0.5714 0.1466 0.7971 0.753 0.7595

Table 3: Training results on Task 1 with prediction av-
eraging.

weights where pi represents the accuracy of the
independent classifier i in a weighted majority en-
semble (Kuncheva and Rodrı́guez, 2014) obtained
slightly better results (Equation (2)).

wj,i =
wj,i

1− wj,i
(2)

We also use stacking to build higher level mod-
els using predictions from base prediction models
where they can also use the probability associated
with the predictions (Ting and Witten, 1999). The
stacking models use the predictions from predic-
tors as features and build second level predictors
(Figure 3).

3 Document-level MTPP Model
Comparisons

We evaluate the effect of two different RTM
data modeling techniques for the document-level
task. Our first approach involves running separate
MTPPS instances for each training (green in Fig-
ure 2) or test (salmon colored) document to obtain
specific features for each document. Then, only
the document-level features and the min, max,
and average of the sentence-level features are used
to obtain an RTM representation vector instance
from each document. Our second approach con-
catenates the sentences from each document to ob-
tain a single sentence representing each and runs
an RTM model. Features from word alignment are
included in both and they share the interpretants.
The first approach use 1359 features and the sec-
ond use 383 features.

Task Model % error

Task 2

word

en-de SMT 0.080
en-de NMT 0.032
de-en SMT 0.066
en-cs SMT 0.116
en-lv SMT 0.027
en-lv NMT 0.058

gap

en-de SMT
en-de NMT 0.017
de-en SMT 0.040
en-cs SMT
en-lv SMT 0.030
en-lv NMT 0.017

Task 3

word

de-en SMT

0.020
phrase 0.015
word gap 0.030
phrase gap 0.011

Table 4: RTM Task 2 training error for some of the
models where GLMd is parallelized over splits. All
GLMd models use [0.5, 2] as weights. % error are twice
the overall error found based on all tags (2N+1).

Training results are in Table 2 where we com-
pare them and the first approach is denoted as doc
and the second as sent. The first approach obtained
the top results in QET16 (Bicici, 2016). doc ob-
tains better MAER (mean absolute error relative)
and MRAER (mean relative absolute error rela-
tive) (Biçici and Way, 2015). We obtain 3rd best
RMSE while we note that both MAE and RMSE
results are close to each other in all four submis-
sions on the test set.

4 Results

Table 1 lists the number of sentences in the train-
ing and test sets for each task and the number of
instances used as interpretants in the RTM mod-
els (M for million). We tokenize and truecase
all of the corpora using Moses’ (Koehn et al.,
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Task 4 model setting rP MAE RMSE
top 0.5337 56.2264 85.2319

RTM

en-fr SMT doc stack 0.0580 (4) 58.5680 (4) 87.8321 (4)
en-fr SMT doc mix -0.1210 (4) 57.5613 (4) 86.2219 (4)
en-fr SMT sent stack 0.0183 (4) 57.6245 (4) 86.4831 (4)
en-fr SMT sent mix -0.0812 (4) 57.7922 (4) 86.8650 (4)

Table 5: Task 4 test RTM results and the top result in the task.

Task 1 rP rS MAE RMSE

en-de SMT top 0.7397 0.7543 0.0937 0.1362
RTM 0.4166 (6) 0.4254 (4) 0.1353 (5) 0.1731 (6)

en-de NMT top 0.5129 0.6052 0.1114 0.1719
RTM 0.4704 (3) 0.5461 (3) 0.1192 (3) 0.1727 (1)

de-en SMT top 0.7667 0.7318 0.0945 0.1315
RTM 0.5772 (6) 0.5167 (5) 0.1311 (6) 0.1679 (4)

en-cs SMT top 0.6918 0.7105 0.1223 0.1693
RTM 0.5295 (3) 0.5348 (3) 0.1519 (3) 0.1952 (3)

en-lv SMT top 0.6188 0.5766 0.1202 0.1602
RTM 0.3521 (8) 0.2861 (7) 0.1430 (4) 0.1869 (3)

en-lv NMT top 0.6819 0.6665 0.1308 0.1747
RTM 0.5487 (4) 0.5017 (4) 0.1540 (3) 0.2006 (3)

Table 6: Test results of RTM in Task 1 where numbers
in parentheses show the rank and corresponding top re-
sults. RTM achieves the lowest RMSE in en-de NMT
and becomes the 3rd system in general. rP is Pearson’s
correlation and rS is Spearman’s correlation.

2007) processing tools. 2 LMs are built using
kenlm (Heafield et al., 2013). The comparison of
results on the training set are in Table 3 for Task 1
and in Table 2 for Task 4.

The results on the test set (Tables 5 and 6) shows
that RTM can become the 1st in en-de NMT and
3rd in general. Test results are taken from the com-
petition’s result submission websites at:

• sentence level https://competitions.

codalab.org/competitions/19316

• word level https://competitions.

codalab.org/competitions/19306

• phrase level https://competitions.

codalab.org/competitions/19308

• document level https://competitions.

codalab.org/competitions/19309

The references for the test sets are not released yet.
For Task 2 and Task 3, we model words or

phrases and gaps separately and then combine
their results. The error % on the training sets are
in Table 4 and the results on the test set are in Ta-
ble 7.

2https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

Model task F1 BAD F1 OK wF1

w
or

d

en-de
word 0.3300 (7) 0.8813 (3) 0.2908 (6)

SMT
gap 0.2547 (3) 0.9764 (1) 0.2487 (3)
src 0.1650 (2) 0.8591 (1) 0.1418 (2)

en-de
word 0.0927 (6) 0.9235 (1) 0.0856 (6)

NMT
gap 0.1360 (1) 0.9878 (1) 0.1343 (1)
src 0.0337 (2) 0.9209 (1) 0.0310 (2)

de-en
word 0.3790 (6) 0.8979 (3) 0.3403 (6)

SMT
gap 0.1463 (3) 0.9804 (1) 0.1435 (3)
src 0.1211 (2) 0.8946 (1) 0.1083 (2)

en-lv
word 0.3681 (3) 0.9044 (1) 0.3329 (3)

SMT
gap 0.1298 (3) 0.9853 (1) 0.1279 (3)
src 0.1195 (2) 0.8917 (1) 0.1066 (2)

en-lv
word 0.4280 (4) 0.8530 (1) 0.3651 (3)

NMT
gap 0.0829 (3) 0.9819 (1) 0.0814 (3)
src 0.1977 (2) 0.8418 (1) 0.1664 (2)

en-cs
word 0.5280 (4) 0.8257 (2) 0.4360 (4)

SMT
gap 0.1059 (3) 0.9810 (1) 0.1039 (3)
src 0.3229 (2) 0.7962 (2) 0.2571 (2)

ph
ra

se de-en

phrase 0.2651 (3) 0.9168 (1) 0.2431 (2)

SMT

gap 0.0518 (2) 0.9811 (1) 0.0508 (2)
src 0.0956 (1) 0.8994 (1) 0.0860 (1)
word 0.1648 (3) 0.9004 (2) 0.1484 (3)
gap 0.1029 (2) 0.9373 (1) 0.0964 (2)
src 0.0973 (2) 0.8376 (1) 0.0815 (2)

Table 7: RTM Task 2 and Task 3 results on the test set.
wF1 is average weighted F1 score (F1 multi).

5 Conclusion

Referential translation machines can achieve top
performance in automatic, accurate, and language
independent prediction of translation scores and
achieve to become the 1st system according to
RMSE for MTPP from English to German in
QET18. RTMs pioneer a language independent
approach and remove the need to access any task
or domain specific information or resource.
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768



out contribution to the content nor responsibility
thereof. We also thank the reviewers’ comments
and Fred Blain from The University of Sheffield.

References
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Abstract

A huge amount of valuable resources is avail-
able on the web in English, which are of-
ten translated into local languages to facilitate
knowledge sharing among local people who
are not much familiar with English. How-
ever, translating such content manually is very
tedious, costly, and time-consuming process.
To this end, machine translation is an effi-
cient approach to translate text without any hu-
man involvement. Neural machine translation
(NMT) is one of the most recent and effective
translation technique amongst all existing ma-
chine translation systems. In this paper, we
apply NMT for English-Tamil language pair.
We propose a novel neural machine translation
technique using word-embedding along with
Byte-Pair-Encoding (BPE) to develop an ef-
ficient translation system that overcomes the
OOV (Out Of Vocabulary) problem for lan-
guages which do not have much translations
available online. We use the BLEU score
for evaluating the system performance. Ex-
perimental results confirm that our proposed
MIDAS translator (8.33 BLEU score) outper-
forms Google translator (3.75 BLEU score).

1 Introduction

Big countries such as India and China have several
languages which change by regions. For instance,
India has 23 constitutionally recognized official
languages (e.g., Hindi, Tamil, and Panjabi) and
several hundreds unofficial local languages. De-
spite Indian population is approximately 1.3 bil-
lion, only approximately 10% of them English
speak English. Some studies say that out of these
10% English speakers only 2% can speak, write,
and read English well, and rest 8% can merely un-
derstand simple English and speak broken English
with an amazing variety of accents (sta). Consid-
ering a significant amount of valuable resources is
available on the web in English and most people in

India can not understand it well, it is essential to
translate such content in to local languages to fa-
cilitate people. Sharing information between peo-
ple is necessary not only for business purposes but
also for sharing their feelings, opinions, and acts.
To this end, translation plays an important role in
minimizing the communication gap between dif-
ferent people. Considering the vast amount of in-
formation, it is not feasible to translate the content
manually. Hence, it is essential to translate text
from one language (say, English) to another lan-
guage (say, Tamil) automatically. This process is
also known as machine translation.

There are many challenges in machine transla-
tion for Indian languages. For instance, (i) the size
of parallel corpora and (ii) differences amongst
languages, mainly the morphological richness and
word order differences due to syntactical diver-
gence are two of the major challenges. Indian lan-
guages (IL) suffer both of these problems, espe-
cially when they are being translated from English.
There are only a few parallel corpora for English
and Indian languages. Moreover, Indian languages
such as Tamil differ from English in word order as
well as in morphological complexity. For instance,
English has Subject-Verb-Object (SVO) whereas
Tamil has Subject-Object-Verb (SOV). Moreover,
English is a fusional whereas Tamil is agglutina-
tive languages. While syntactic differences con-
tribute to difficulties of translation models, mor-
phological differences contribute to data sparsity.
We attempt to address both issues in this paper.

Though much work is being done on machine
translation for foreign and Indian languages but
apart from foreign languages most of works on
Indian languages are limited to conventional ma-
chine translation techniques. We observe that the
techniques like word-embedding and Byte-pair-
encoding (BPE) are not applied on many Indian
languages which have shown a great improvement
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in natural language processing. Thus, in this pa-
per, we apply a neural machine translation tech-
nique (torch implementation) with word embed-
ding and BPE. Especially, we work on English-
Tamil language pair as it is one of the most dif-
ficult language pair (ZdenekŽabokrtskỳ, 2012) to
translate due to morphologically richness of Tamil
language. We obtain the data from EnTamv2.0
and Opus, and evaluate our result using widely
used evaluation matric BLEU. Experimental re-
sults confirm that we got much better results than
conventional machine translation techniques on
Tamil language. We believe that our work can also
be applied to other Indian language pairs too.

Main contributions of our work are as follows:

• This is the first work to apply BPE with word
embedding on Indian language pair (English-
Tamil) with NMT technique.

• We achieve comparable accuracy with a sim-
pler model in less training time rather then
training on deep and complex neural network
which requires much time to train.

• We have shown how and why data prepro-
cessing is a crucial step in neural machine
translation.

• Our model outperforms Google translator
with margin of 4.58 BLEU score.

The rest of the paper is organized as follows.
Sections 2 and 3 describe related work and the
methodology of our MIDAS translator, respec-
tively. Evaluation is presented in Section 4. Fi-
nally, Section 5 concludes the paper.

2 Literature Survey

Several works have been reported on machine
translation (MT) in last a few decades, earliest
one in 1950s (Booth, 1955). There are various
approaches adopted by researchers such as rule-
based MT (Ghosh et al., 2014; Wong et al., 2006),
corpus-based MT (Wong et al., 2006), and hybrid-
based MT (Salunkhe et al., 2016). Each of these
approaches has its own pros and cons. Rule-based
machine translation systems traverse the source
text to produce an intermediate representation of
the text, and depending on the representation this
approach is further classified into transfer-based

approach (TBA)(Shilon, 2011) and inter-lingua
based approach (IBA).1

Corpus-based approach uses a large sized paral-
lel corpora in the form of raw data. This raw data
contains text with their respective translations.
These corpora are used to acquire knowledge for
translation. A corpus-based approach divides it-
self into two sub types: (i) statistical machine
translation (SMT) and (ii) example-based machine
translation (EBMT) (Somers, 2003). SMT2 gener-
ates its translation on the basis of statistical mod-
els. It depends on the combination of language
model as well as translation model with a decod-
ing algorithm. EBMT on the other hand uses the
existing translation examples for generating a new
translation. This is done by finding out the ex-
amples matching with the input. Then alignment
is performed to find out the parts of translation
that can be reused. Hybrid-base machine trans-
lation is a combination of transfer approach and
any corpus-based approaches in order to overcome
their limitations.

Recent research (Khan et al., 2017) suggest that
the machine translation performance of Indian lan-
guage pairs (e.g., Hindi, Bengali, Tamil, Punjabi,
Gujarati, and Urdu) is of an average of 10% accu-
racy. This necessitates the need of building better
machine translation systems for Indian languages.

NMT is novel and emerging technique for
various languages and shown remarkable results
(Hans and Milton, 2016). In this paper phrase-
based hierarchical models trained after morpho-
logical preprocessing using NMT. Patel et al. (Pa-
tel et al., 2017) trained their model after suffix sep-
aration and compound splitting. Different mod-
els were also tried for the same task and achieved
a good result on their respective dataset (Pathak
and Pakray). We analyze that morphological pre-
processing, suffix separation, and compound split-
ting can be overpass by using Byte-Pair-Encoding
and produced similar or better translation without
making the model complex.

3 Methodology

In this study, we present a neural machine transla-
tion technique using word-embedding along with
Byte-Pair-Encoding (BPE) to develop an efficient
translation system, called MIDAS translator that

1https://en.wikipedia.org/wiki/
Interlingual_machine_translation

2https://books.google.ch/books?id=4v_
Cx1wIMLkC
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overcomes the OOV (Out Of Vocabulary) prob-
lem for languages which do not have much trans-
lations available online. Thus, first, we provide
an overview of neural machine translation, atten-
tion model, word embedding, and Byte Pair En-
coding. Next, we present the framework of our
MIDAS translator.

3.1 Neural Machine Translation Overview

Neural Machine translation is a technique that
is based on neural networks and the conditional
probability of translated sentence from the source
language to target sentences (Revanuru et al.,
2017). In the following sub-sections we will pro-
vide an overview of sequence to sequence archi-
tecture and attention model that are used in our
proposed MIDAS translator.

Sequence to Sequence Architecture Sequence
to sequence architecture is basically used for re-
sponse generation whereas in machine translation
models it is used to find the relationship between
two different language pairs. It consists of two
parts, an encoder and a decoder. The encoder takes
the input from source and the decoder generates
the output based on encoding vector and previ-
ously generated words. Assume A be the source
sentence and B be a target sentence. The encoder
converts the source sentence a1, a2, a3..., an into
vector of fixed dimensions and the decoder out-
puts word by word using conditional probability.
Here, A1, A2, ..., AM in the equation are the fixed
size encoded vectors. Using chain rule, the Eq. 1
is converted to the Eq. 2.

P (B/A) = P (B|A1, A2, A3, ..., AM ) (1)

P (B|A) = P (bi|b0, b1, b2, ..., bi−1;

a1, a2, a3, ..., am
(2)

While decoding, next word is predicted using pre-
viously predicted word vectors and source sen-
tence vectors in Eq. 1. Each term in the distri-
bution is represented with a softmax over all the
words in the vocabulary.

Attention Model In a basic encoder-decoder
architecture, encoder reads the whole sentence,
memorizes it and store it in the final activation
layer, then the decoder network generates the tar-
get translation. This architecture works quite well

Figure 1: Seq2Seq architecture for English-Tamil

for short sentences, so we might achieve a rela-
tively high BLEU score, but for very long sen-
tences, maybe longer than 30 or 40 words, the
performance degrades. Using attention3 mech-
anism with a basic encoder-decoder architecture
is a solution for that. It translates similar to
humans by looking at part of the sentence at a
time. The mechanism decides how much atten-
tion should be paid to a particular word while
translating the sentence. The mechanism is
shown in Fig. 2. The Encoder generates the at-
tention vectors h1, h2, h3......ht from the inputs
A1, A2, A3At. Then, context vector Ci is calcu-
lated using concatenation of these vector for each
output time step. Then Using the context vector
Ci hidden state Si and previously predicted words,
decoder generates the softmax output Bi.

Figure 2: Attention model

Word Embedding Word embedding is a way of
representing words on a vector space where the
words having same meaning have similar vector
representations. Each word from vocabulary is
represented in hundreds of dimensions. Normally

3https://hackernoon.com/
attention-mechanism
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pre-trained word embeddings are used and with
the help of transfer learning words from vocab-
ulary are converted to vector (Cho et al., 2014).
In our model, we used FastText word vectors4 to
convert English and Tamil vocabulary into a 300-
dimensional vector. Training the model with same
layers, optimization method, attention, and regu-
larization we got a BLEU score of Point 6.74.

Byte Pair Encoding BPE (Gage, 1994) is a sim-
ple data compression technique. It replaces most
frequent pair bytes in a sequence with single un-
used byte. We use this algorithm for word seg-
mentation. By merging frequent pairs of bytes
we merge charters or character sequences (Sen-
nrich et al., 2015). NMT symbols interpretative
as sub-words units and networks can translate and
make the new word on the basis of sub-words. We
learned the independent encodings on our source
and target training data with 10,000 and 25,000
words and then apply it on train test and valida-
tion data for both source and target. BPE helped
in compound splitting and suffix, prefix separation
which is used for creating new words of Tamil lan-
guage. we used BPE along with word embeddings
and tried different models.

3.2 MIDAS Translator

We tried various models to get a better intu-
ition on how parameter tuning along with differ-
ent techniques affects on Indian language pair.
Our first model architecture consists of 2 layer
Bi-directional LSTM encoder and 2 layers LSTM
decoder of 500 dimensions each with the vocab-
ulary size of 50,004 words for both source and
target. First we tried SGD optimization method,
Luong attention with a dropout (regularization)
of 0.3, and learning rate 1.0. Secondly, we
changed the optimization method to Adam and
attention to Bahdanau with the learning rate of
0.001. We got our best results with a BPE vocab-
ulary size of 25,000 with 2 Layer Bi-directional
encoder-decoder, Adam optimization with a learn-
ing rate of 0.001, Bahdanau attention, and word-
embedding with the dimension of 500. We used
GPU (Nvidia GeForce GTX 1080) for the training
of different models which increase the computa-
tion speed. We achieved our result after 5 hours of
training on this GPU.

4https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

4 Evaluation

4.1 Evaluation Metric

The BLEU score or bilingual evaluation under
study is a method to measure the difference be-
tween machine and human translations (Papineni
et al., 2002). The approach works by counting
and matching n-grams in result translation to n-
grams in the reference text, where unigram would
be each token and a bigram comparison would be
each word pair and so on. The comparison is made
regardless of word order. This method is a modifi-
cation of a simple precision method.

4.2 Dataset

We used the datasets obtained from EnTam V2.05

and Opus.6 The sentences are taken from various
domains like news, bible, cinema, movie subtitles
and combined to build our final parallel dataset.
After preprocessing and splitting it to train, test,
and validation, our final dataset contains 1,83,451
training corpus, 1,000 validation and 2,000 test
corpus from English to Tamil. The data used is
encoded in UTF-8 format.

4.3 Data Pre-processing

Research works (Hans and Milton, 2016; Ramesh
and Sankaranarayanan, 2018) suggest that they
have used EnTamV2.0 in their experiments. How-
ever, we find that in both well-known parallel cor-
pus for English-Tamil datasets (i.e., EnTam V2.0
and Opus) have many repeated sentences, which
outcomes the wrong results (may be high or low)
after dividing into train, test, and validation sets,
as some of the sentences occur both in train and
test sets. Thus, it is essential to clean, analyses,
and correct before using for experiment. We ob-
served the following four main problems in the on-
line available corpus for English-Tamil dataset.

• Repetition of sentences with same source and
same target .

• Sentences with same source and different
translation.

• Sentences with different source and same
translation.

• Tokenization of Indian languages.
5http://ufal.mff.cuni.cz/˜ramasamy/

parallel/html/
6http://opus.nlpl.eu/
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To overcome the first problem we took unique
pairs from all sentences and removed repeating
ones. We completely removed those sentences
which are repeated more than once because in the
second case we cannot identify that which trans-
lated sentence is correct for the same source and
which source is correct for the same translation in
the third case. We observed that there are some
sentences which are repeating even more than 10
times in Opus dataset. This confuses the model to
learn and identify different new features, overfits
the model, and led to the wrong results. This pre-
processing is required as it may be possible that
train and test contain the same sentences which let
to the better prediction for test set but wrong pre-
dictions for new sentences.

The second important thing which we observed
that there are many tools available for tokeniza-
tion of English language (e.g., Perl tokenizer) but
does not work well for the Tamil language, be-
cause there are different morphological symbols
which used in word formation of Tamil language
which are removed by these tokenization tools in
Indian languages (Tamil in our case). Without to-
kenization model consider word, word, and word!
as three different words in the vocabulary of Tamil.
We tokenize the Tamil language sentences using
our own code before training. This problem can
also be overcome by Byte-pair-Encoding.

Finally after working on all these small but
effective preprocessing such as removing sen-
tences with the length greater than 50, remov-
ing non translated words in target sentences, re-
moving noisy translations and unwanted punctu-
ations, we got our final dataset7 of 1,86,451 par-
allel sentences which was cleared from 2,23,685
sentences. It is divided into training (1,83,451
sentences) testing (2,000 sentences) and validation
(1,000 sentences) respectively after shuffling.

4.4 Result

We used Google translate API in python to trans-
late the English sentences and compared Google
results with our various models. It is also observed
that the translations below are handy enough to use
in day to day life as well as official works. From
test results, we can also deduce that our model
overcomes the OOV (Out of Vocabulary) problem
in some cases.

7https://github.com/himanshudce/
MIDAS-NMT-English-Tamil

Figure 3: Different model comparison with Google
Translator Table1.

Model BLEU
Google Translator 3.75
Bi-L+S+Lu 6.10
Bi-L+A+B 6.18
Bi-L+A+B+E 6.74
Bi-L(4-Layer)+A+B +BPE(10000)+E 7.78
Bi-L+A+B +BPE(10000)+E 8.14
Bi-L+A+B+BPE(25000)+E 8.33

Table 1: BLEU Score of English-Tamil translated
system. Symbols have the following meanings:
Bi-L= Bi-LSTM, S= SGD(Wu et al., 2016), L=
LSTM, A=Adam(Vaswani et al., 2017), B= Bah-
danau (Bahdanau et al., 2014), E=Word Embed-
ding, Lu=Luong(Luong et al., 2015))

4.5 Analysis

We conducted an anonymous survey of ten ran-
dom sentences from test data and accumulated re-
views of Tamil speaking people on that. After
comparing accumulated reviews of Google trans-
lator and MIDAS translator, it was discovered that
translations from our MIDAS translator are se-
lected as better translations in 71.66% cases than
translations of Google translator. Moreover, two
out of ten translations from MIDAS translator are
unanimously selected by respondents in compared
to only one translation by Google translator.

5 Conclusion & Future Work

In this paper, we applied NMT to one of the
most difficult language pairs (English-Tamil). We
showed that NMT with pre-trained word em-
bedding and Byte Pair Encoding performs better
than complex translation techniques on Indian lan-
guages. Our model outperformed Google transla-
tor with a margin of 4.58 BLEU points. Since We
achieved fairly good accuracy so our model can
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be used for creating English-Tamil translation ap-
plications that will be useful in domains such as
tourism and education. Moreover, We can explore
the possibility of using above techniques for var-
ious English Indian language translation. In fu-
ture, we would also like to employ machine trans-
lation in detecting offensive languages from code-
switched languages too (Mathur et al., 2018).
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danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal, 12(2):23–38.

Siddhartha Ghosh, Sujata Thamke, et al. 2014.
Translation of telugu-marathi and vice-versa us-
ing rule based machine translation. arXiv preprint
arXiv:1406.3969.

Krupakar Hans and RS Milton. 2016. Improving the
performance of neural machine translation involv-
ing morphologically rich languages. arXiv preprint
arXiv:1612.02482.

Nadeem Jadoon Khan, Waqas Anwar, and Nadir
Durrani. 2017. Machine translation approaches
and survey for indian languages. arXiv preprint
arXiv:1701.04290.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the International Workshop on Natural Lan-
guage Processing for Social Media, pages 18–26.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Raj Nath Patel, Prakash B Pimpale, et al. 2017. Mtil17:
English to indian langauge statistical machine trans-
lation. arXiv preprint arXiv:1708.07950.

Amarnath Pathak and Partha Pakray. Neural machine
translation for indian languages. Journal of Intelli-
gent Systems.

Sree Harsha Ramesh and Krishna Prasad Sankara-
narayanan. 2018. Neural machine translation for
low resource languages using bilingual lexicon in-
duced from comparable corpora. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Student Research Workshop, pages 112–119.

Karthik Revanuru, Kaushik Turlapaty, and Shrisha
Rao. 2017. Neural machine translation of indian
languages. In Proceedings of the 10th Annual ACM
India Compute Conference on ZZZ, pages 11–20.
ACM.

Pramod Salunkhe, Aniket D Kadam, Shashank Joshi,
Shuhas Patil, Devendrasingh Thakore, and Shrikant
Jadhav. 2016. Hybrid machine translation for en-
glish to marathi: A research evaluation in machine
translation:(hybrid translator). In Electrical, Elec-
tronics, and Optimization Techniques (ICEEOT), In-
ternational Conference on, pages 924–931. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Reshef Shilon. 2011. Transfer-based Machine Trans-
lation between morphologically-rich and resource-
poor languages: The case of Hebrew and Arabic.
Ph.D. thesis, Citeseer.

Harold Somers. 2003. An overview of ebmt. In Re-
cent advances in example-bas ed machine transla-
tion, pages 3–57. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Fai Wong, Mingchui Dong, and Dongcheng Hu.
2006. Machine translation using constraint-based
synchronous grammar. Tsinghua Science and Tech-
nology, 11(3):295–306.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

LoganathanRamasamy OndrejBojar
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Abstract
In this paper, a novel approach to Quality
Estimation is introduced, which extends the
method in (Duma and Menzel, 2017) by also
considering pseudo-reference translations as
data sources to the tree and sequence kernels
used before. Two variants of the system were
submitted to the sentence level WMT18 Qual-
ity Estimation Task for the English-German
language pair. They have been ranked 4th and
6th out of 13 systems in the SMT track, while
in the NMT track ranks 4 and 5 out of 11 sub-
missions have been reached.

1 Introduction

The purpose of Quality Estimation (QE), as a sub-
field of Machine Translation (MT), is to allow the
evaluation of MT output without the necessity of
providing a reference translation. This would be
extremely beneficial in the development cycle of a
MT system, as it would permit fast and cost effi-
cient evaluation phases. In the case of the previ-
ous Quality Estimation Shared Task (Bojar et al.,
2017) together with the current campaign (Spe-
cia et al., 2018a), the purpose for the sentence
level track was to predict the effort required in
order to post-edit a candidate translation as mea-
sured by the Human-mediated Translation Edit
Rate (HTER) (Snover et al., 2006) score.

In this paper an extension of the QE method
introduced in (Duma and Menzel, 2017) is pre-
sented. Our earlier version of the metric was
based on learning HTER scores using tree and se-
quence kernels. The kernel functions were applied
not only on the source segments and the candi-
date translations, but also on the back-translations
of the MT output into the source language. The
back-translations were obtained using an online
MT system.

The extension proposed in this paper uses the
same input data. In addition, however, the ker-

nel functions are defined to also consider pseudo-
references as an additional source of evidence.
The pseudo-references represent translations of
the source segments into the target language and
were obtained using the same online MT sys-
tem as for the back-translation. By applying both
the sequence and the tree kernels on the pseudo-
references, we wanted to determine if an addi-
tional data source, even if artificially generated,
would have a positive impact on our previous QE
method. Throughout the rest of the paper we will
refer to both the newly developed QE method as
well as to its earlier version as Tree and Sequence
Kernel Quality Estimation (TSKQE), but the vari-
ant under consideration will be marked through
the use of subscripts together with superscripts.

This paper is organized as follows. In Section
2 related work is presented, focusing on kernel
based QE methods. In the next section the imple-
mentation details for TSKQE are presented. This
is followed by the evaluation setup and a discus-
sion of the results. The paper concludes with fu-
ture work ideas and final remarks.

2 Related work

The benefit of kernel functions has already been
investigated in the context of Quality Estimation.
In the work presented by (Hardmeier, 2011) and
further expanded in (Hardmeier et al., 2012), tree
kernel functions in addition to feature vectors are
used to predict MT output quality. Both con-
stituency and dependency parse trees were consid-
ered, with the Subset Tree Kernels (Collins and
Duffy, 2001) being applied to the former and the
Partial Tree Kernel (Moschitti, 2006a)(Moschitti,
2006b) to the latter. The evaluation results re-
vealed that the integration of tree kernels can prove
beneficial when compared to the strictly feature
based QE systems.
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Tree kernels have also been applied in the work
of (Kaljahi et al., 2014) and (Kaljahi, 2015), where
a QE system is built based on Subset Tree Kernels
applied for the constituency and dependency parse
trees corresponding to the source and candidate
translation. The kernels were also combined with
a series of manually designed features, while SVM
regression was used, in order to predict different
automatic MT evaluation methods, like for exam-
ple BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) and METEOR (Denkowski and Lavie,
2014) scores.

The QE method introduced in (Duma and Men-
zel, 2017), TSKQE, is based on a linear combi-
nation between tree and sequence kernels. As a
tree kernel the Partial Tree Kernel (PTK) is used,
while for the sequence kernel, the Subsequence
Kernel (SK) (Bunescu and Mooney, 2005) was
chosen. Similarly to the previously mentioned QE
methods, the kernels are applied to the source and
candidate translations, but in addition also on a
back-translation. The work presented in this pa-
per builds on this method, by additionally using
kernel functions for pseudo-references. Pseudo-
references have been utilized before in the con-
text of QE, but as a support for the generation of
features, like for example in the work of (Sori-
cut et al., 2012), (Shah et al., 2013) or (Scarton
and Specia, 2014). In (Scarton and Specia, 2014)
BLEU and TER were applied to the candidate
translation and pseudo-references and their scores
were used as additional features in the context of
document level QE.

3 Method details

Different variants of TSKQE were defined in
(Duma and Menzel, 2017) depending on the level
where the kernel functions are applied (source
segment, candidate translation or back-translation)
and the type of kernel function (SK or PTK).

To indicate these distinctions we will use a no-
tation system, where the level will be marked as
a subscript attached to the TSKQE method name,
with the possible values being source in case of
the source segments, basic corresponding to both
source segments and candidate translations, back
for back-translations and pseudo corresponding to
the newly introduced pseudo-references. In the
case of the type, this will be marked as a super-
script, with only two possible values, sk for the
Sequence Kernel and ptk for the Partial Tree Ker-

nel. For the variants where both kernel functions
are used, the superscript will be left unfilled. Ex-
amples for this notation can be found in Tables 1
and 2.

TSKQE requires parsed input data, which was
generated by means of the MATE parser (Bohnet,
2010), using English and German pre-trained
models for tokenization, lemmatization, tagging
and parsing itself 1. The resulting dependency
tree was further processed in order to remove
the arc labels and encode all the syntactic in-
formation as tree nodes. For this, a variant of
the Lexical-Centered-Tree (LCT) (Croce et al.,
2011) method was applied, so that the depen-
dency relation becomes the rightmost child of
the dependency heads. For the generation of
the pseudo-references and back-translations, the
Google Translator Toolkit 2 was used.

The actual TSKQE models were built with
the help of the Kernel-based Learning Platform
(KeLP) library (Filice et al., 2015b) (Filice et al.,
2015a), where various kernel functions and learn-
ing algorithms are integrated. For our exper-
iments, we used the Support Vector Machine
epsilon-Regression algorithm to learn the HTER
scores, together with the PTK and SK implemen-
tations.

4 Evaluation

The evaluation was performed measuring the cor-
relation between the TSKQE scores and the HTER
gold standards. This was achieved by computing
the Pearson correlation coefficient, which results
in a number between -1 and 1. A score of 1 indi-
cates that there is a perfect agreement between the
two sets of scores, while a score of -1 would sug-
gest a negative agreement. In addition to the Pear-
son coefficient, the Mean Absolute Error (MAE)
and the Root Mean Squared Error (RMSE) were
also calculated. For both these evaluation meth-
ods, the closer their score is to 0, the better the QE
system should be considered.

The significance testing of the results was per-
formed using the methodology presented in (Gra-
ham, 2015), which is based on pairwise testing us-
ing the Williams test (Williams, 1959). 3

1All these models can be found at
https://code.google.com/archive/p/matetools/downloads

2https://translate.google.com/toolkit
3The script used for computing the significance testing

can be found at https://github.com/ygraham/mt-qe-eval.
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SMT NMT

System Pearson MAE RMSE Pearson MAE RMSE

TSKQEsk
source 0.468 0.141 0.183 0.341 0.138 0.185

TSKQEsk
basic 0.517 0.136 0.176 0.387 0.136 0.181

TSKQEsk
basic+back 0.522 0.135 0.176 0.391 0.136 0.180

TSKQEsk
basic+pseudo 0.512 0.135 0.177 0.407 0.135 0.179

TSKQEsk
basic+back+pseudo 0.523 0.135 0.176 0.409 0.135 0.178

TSKQEptk
source 0.440 0.142 0.186 0.361 0.133 0.181

TSKQEptk
basic+back 0.517 0.136 0.176 0.376 0.136 0.181

TSKQEptk
basic+pseudo 0.507 0.136 0.178 0.391 0.135 0.180

TSKQEptk
basic+back+pseudo 0.517 0.135 0.176 0.392 0.135 0.180

TSKQEtest
basic 0.532 0.134 0.175 0.395 0.135 0.180

TSKQEtest
basic+back 0.537 0.133 0.174 0.400 0.136 0.180

TSKQEtest
basic+pseudo* 0.523 0.134 0.176 0.414 0.134 0.178

TSKQEtest
basic+back+pseudo* 0.534 0.133 0.174 0.417 0.135 0.178

Baseline WMT test
test 0.359 0.147 0.195 0.264 0.129 0.184

Baseline TSKQEptk
basic 0.509 0.135 0.177 0.371 0.135 0.181

Table 1: The results of the evaluation for the different TSKQE models.

In terms of the data sets, TSKQE was evalu-
ated on the English-German datasets (Specia et al.,
2018b) provided by the WMT18 Quality Estima-
tion sentence level task. In contrast to the years
before, the campaign offered two tracks for this
language pair: in addition to the traditional one
focused on SMT systems, another one considered
the evaluation of an NMT system. Both tracks
used translations from the IT domain, with the
data consisting of tuples made up of the source
segment, the candidate translation, the reference
translation and the HTER score associated to
that candidate translation. For the NMT system,
13,442 tuples were made available for the train-
ing, with an additional 1,000 tuples provided for
development purposes. In the case of the SMT
system, the training set was larger, consisting of
26,273 instances, with the same number of 1000
tuples made available for evaluation.

We compared the performance of TSKQE with
a weak but also with a strong baseline. The for-
mer is represented by the QE system trained only
on the 17 baseline features offered by the WMT18

QE campaign organizers. The features 4 have been
regularly used over the past campaigns and in-
clude, for example, the number of tokens in the
source sentence or the LM probability of the tar-
get sentence. We used these baseline features not
only to build the baseline system, but also inte-
grated them into TSKQE by means of a Radial
Basis Function (RBF) kernel. For this purpose,
we applied a Z-score standardization to rescale the
feature values.

For the strong baseline, we considered a variant
of one of the QE systems introduced by (Hard-
meier et al., 2012), based on Partial Tree Ker-
nels applied to the source segments and candidate
translations. In our notation, this would corre-
spond to the TSKQEptk

basic notation.
The results of the evaluation for both the NMT

and the SMT tracks are presented in Table 1. We
highlighted in bold the highest Pearson values.
Furthermore, we marked using an asterisk the two
variants which we have chosen as our submissions

4A list of the baseline features can be found at
https://www.quest.dcs.shef.ac.uk/quest files/features
blackbox baseline 17
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NMT Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - - - - - - - - - - - - - - 0.002
2 0 - - 0.072 0.119 0.22 - - - - - - - - 0
3 0 0.257 - 0.051 0.079 0.133 - - - - 0.478 - - - 0
4 0.082 - - - - - - - - - - - - - 0
5 0.031 - - 0.215 - - - - - - - - - - 0
6 0.019 - - 0.141 0.229 - - - - - - - - - 0
7 0 0.06 0.32 0.021 0.015 0.059 - - - - 0.357 0.394 - - 0
8 0 0.063 0.054 0.013 0.01 0.014 0.231 - - - 0.238 0.241 - - 0
9 0 0.003 0.041 0.006 0.007 0.02 0.066 0.227 - - 0.104 0.13 - - 0

10 0 0.004 0.002 0.005 0.005 0.01 0.053 0.095 0.331 - 0.082 0.088 - - 0
11 0.002 0.408 - 0.022 0.01 0.066 - - - - - - - - 0
12 0.002 0.388 0.497 0.024 0.021 0.015 - - - - 0.437 - - - 0
13 0 0.002 0.014 0.001 0 0.002 0.005 0.058 0.085 0.25 0.009 0.021 - - 0
14 0 0.002 0.001 0.001 0 0 0.006 0.004 0.1 0.086 0.009 0.006 0.326 - 0
15 - - - - - - - - - - - - - - -

SMT Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - - - 0.034 - - - - - - - - - - 0
2 0 - - 0 0.29 0.489 - - 0.278 - 0.253 0.499 - - 0
3 0 0.218 - 0 0.183 0.336 - - 0.156 - 0.158 0.349 - - 0
4 - - - - - - - - - - - - - - 0
5 0.007 - - 0 - - - - - - 0.404 - - - 0
6 0.003 - - 0 0.152 - - - 0.388 - 0.174 - - - 0
7 0 0.006 0.128 0 0.012 0.089 - - 0.015 0.178 0.014 0.105 0.118 - 0
8 0 0.013 0.007 0 0.009 0.023 0.252 - 0.012 0.049 0.009 0.035 0.079 0.338 0
9 0.001 - - 0 0.418 - - - - - 0.354 - - - 0
10 0 0.265 0.475 0 0.182 0.33 - - 0.038 - 0.128 0.323 - - 0
11 0.01 - - 0 - - - - - - - - - - 0
12 0.002 - - 0 0.203 0.478 - - 0.366 - 0.065 - - - 0
13 0 0.262 0.472 0 0.126 0.307 - - 0.028 0.482 0.051 0.282 - - 0
14 0 0.057 0.098 0 0.027 0.067 0.427 - 0.003 0.025 0.007 0.036 0.032 - 0
15 - - - - - - - - - - - - - - -

1 = TSKQEsk
source 2 = TSKQEsk

basic 3 = TSKQEsk
basic+back

4 = TSKQEptk
source 5 = TSKQEptk

basic 6 = TSKQEptk
basic+back

7 = TSKQEbasic 8 = TSKQEbasic+back 9 = TSKQEsk
basic+pseudo

10 = TSKQEsk
basic+back+pseudo 11 = TSKQEptk

basic+pseudo 12 = TSKQEptk
basic+back+pseudo

13 = TSKQEbasic+pseudo 14 = TSKQEbasic+back+pseudo 15 = weak baseline

Table 2: Significance Williams test results.

to the WMT18 QE sentence level task. The results
of the significance tests for two sets of TSKQE
models are displayed in Table 2. Here, each table
can be read as a matrix, where both the rows and
columns correspond to the different TSKQE sys-
tems. The significance testing was performed only
for the pairs of systems where the column model
achieved a higher Pearson correlation than the row
model. Otherwise, the cell was marked with a hy-
phen sign.

4.1 Discussion of the results

The results presented in Table 1 show that all
the TSKQE variants outperform the weak baseline
systems in terms of Pearson correlation. The same
applies in the case of the strong baseline, with a
few exceptions like the exclusively source based
models. This result is not surprising, since the
source based QE systems have access to no other

input data except the source segments. The only
information they receive about the candidate trans-
lation is the one contained in the baseline features.

Comparing the TSKQE variants based on
pseudo-references with the other models, a notice-
able improvement of the Pearson coefficients can
be observed for the NMT system, while in the
case of the SMT system the use of the pseudo-
references brings no change or actually leads to a
small drop in performance, which can be observed
for example when comparing the basic+pseudo
models to the basic+back ones. The significance
tests reveal that the improvements, in the case
of the NMT system, are statistically significant
for the basic+back+pseudo models over the ba-
sic+back ones at a level of 0.05. In the case
of the SMT system the differences between the
basic+back+pseudo models and the basic+back
ones are not statistically significant. In terms of
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(b) SMT strong baseline model
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(c) SMT TSKQE model scores

Figure 1: Plots of the TSKQE and baseline model scores compared to the golden standards.

the best performing model, taking into account
both MT systems, TSKQEbasic+back+pseudo, the
SK and PTK based TSKQE variant which uses
all the possible data sources, including the pseudo
references, achieved on average the best correla-
tion. These results suggest that the incorporation
of the pseudo-references can be advantageous for
building a high quality TSKQE system.

A further analysis of the results highlights the
high quality of the SK based models. This is an
important aspect to note, as it shows that even in
the case of lower resourced language pairs, which
might lack syntactic analysis tools, the SK based
variants can still predict HTER scores with a com-
parable accuracy to the ones generated by the SK
and PTK combination based models.

We also studied the degree of correlation be-
tween the predicted and the gold standard scores.
Figure 1 shows the plots for the weak and
the strong baseline models as well as for the
TSKQEbasic+back+pseudo model, all applied to the
SMT data. 5. Obviously, the weak baseline sys-
tem encounters difficulties in predicting the HTER
score as there is very little correlation between the
two sets of scores. In case of the strong base-
line, the predicted scores start to display a posi-
tive correlation with the gold ones, with this trend
becoming even more evident in the case of the
TSKQEbasic+back+pseudo model.

5 Conclusions and future work

In this paper, we examined an extension of
TSKQE, the sentence level QE method introduced

5The plots were obtained using the R language (R Core
Team, 2014) and its packages

in (Duma and Menzel, 2017). The evaluation re-
sults have not only confirmed the high quality
of TSKQE, but they also showed that the use of
pseudo-references as additional data sources for
the kernel functions can be beneficial for the per-
formance of TSKQE. Furthermore, the results in-
dicate that TSKQE is robust against the choice of
a particular MT paradigm producing comparably
good results for both SMT and NMT systems.

In future work, we would like to extend the eval-
uation to include additional language pairs and do-
mains. Another interesting line of research would
be the use of constituency trees in addition to the
dependency trees already explored to determine if
these additional syntactic structures would be ad-
vantageous to the performance of TSKQE.
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Abstract
We describe Vicomtech’s participation in the
WMT 2018 shared task on quality estimation,
for which we submitted minimalist quality es-
timators. The core of our approach is based on
two simple features: lexical translation over-
laps and language model cross-entropy scores.
These features are exploited in two system
variants: uMQE is an unsupervised system,
where the final quality score is obtained by av-
eraging individual feature scores; sMQE is a
supervised variant, where the final score is es-
timated by a Support Vector Regressor trained
on the available annotated datasets. The main
goal of our minimalist approach to quality es-
timation is to provide reliable estimators that
require minimal deployment effort, few re-
sources, and, in the case of uMQE, do not de-
pend on costly data annotation or post-editing.
Our approach was applied to all language pairs
in sentence quality estimation, obtaining com-
petitive results across the board.

1 Introduction

Quality Estimation (QE) refers to the task of es-
timating the quality of machine translation out-
put without access to reference translations (Blatz
et al., 2004), which are not always available for a
given domain or language pair, and are costly to
produce.

Typical approaches are based on supervised ma-
chine learning models using a large array of fea-
tures, as exemplified by the standard QUEST base-
line (Specia et al., 2013), whose base version em-
ploys 17 features that include n-gram language
model perplexity scores, lexical translation prob-
abilities, number of source tokens and average
number of translations per source word, among
others. In recent years, QE models based on neural
network approaches have significantly improved
the state of the art, as shown for instance by the re-
sults obtained in the WMT 2016 and WMT 2017

shared tasks (Kim and Lee, 2016; Kim et al., 2017;
Martins et al., 2017).

Despite recent progress, the vast number of po-
tential domains and language pairs is a challeng-
ing aspect for a practical use of quality estima-
tion systems. First, most approaches to QE rely
on annotated data, typically based on human post-
editing, which are costly to produce. Additionally,
the best performing approaches based on neural
networks (e.g., Kim et al., 2017) require large vol-
umes of parallel training corpora, a resource which
is only available for a small number of language
pairs nowadays.

To tackle these challenges, we designed a mini-
malist approach to quality estimation, to which we
will refer as MQE, based on two features: a lexical
translation overlap measure to model translation
accuracy1 and a measure based on cross-entropy
scores according to a target language model. No
external tools or large computational resources are
needed in this approach, which can be used in the
two variants described below.

uMQE is an unsupervised variant, where the fi-
nal quality score is obtained by averaging indi-
vidual feature scores. The system was designed
to provide reliable estimators in the numerous use
cases where no training data are available to train
supervised QE models. To our knowledge, little
attention has been paid to this type of approaches,
with two main published approaches: Moreau and
Vogel (2012) estimate the quality of machine-
translated output against external sets of n-grams
and evaluate several variants of n-gram similar-
ity, whereas Popovic (2012) proposes an unsuper-
vised method based on the arithmetic combination
of scores provided by language models and IBM1
models, trained on morphemes as well as part-of-
speech tags. On the WMT 2012 datasets, neither

1Also referred to as adequacy.
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approach performed better than the QUEST base-
line. In this paper, we show that our own unsu-
pervised approach can outperform the supervised
baselines, without the use of additional resources
such as part-of-speech taggers or morphological
analysers.

sMQE is a supervised variant, where the final
score is estimated by a Support Vector Regres-
sor trained on the available machine translation
output annotated with HTER scores. The goal
of this approach is to enable a fast deployment
of supervised quality estimators that outperform
other supervised approaches with more complex
setups, such as the QUEST baselines with 17 fea-
tures, while using minimal resources. Contrary to
uMQE, for which only rank correlation is mean-
ingful, the supervised variant can be evaluated on
both ranking and scoring tasks.

The paper is organised as follows: Section 2 de-
scribes the core MQE approach and the computa-
tion of the supervised and unsupervised variants;
Section 3 describes the experimental setup for the
WMT 2018 shared task on sentence quality esti-
mation; Section 4 presents our results on the test
sets in all four language pairs and domains; finally,
Section 5 draws conclusions from this work.

2 MQE

Minimally, quality estimation involves determin-
ing the accuracy (or adequacy) of a translation, i.e.
how much of the source information is represented
in the translation, and its fluency, i.e. the correct-
ness of the generated sentence as a target language
sequence. MQE directly models these two aspects,
to the exclusion of any other property of the source
and target sentence pairs. We describe our mea-
sures of accuracy and fluency in turn in the next
sections.

2.1 Accuracy

To measure accuracy, we adapted the approach
in (Etchegoyhen and Azpeitia, 2016), which has
proved highly successful in identifying parallel
sentences in large sets of comparable corpora
(Azpeitia et al., 2017, 2018). Their method is
based on Jaccard similarity (Jaccard, 1901) over
lexical sets, with additional set expansion opera-
tions to address named entities and morphological
variation. We describe their core methodology be-
low and our adaptations for the quality estimation
task.

Let si and sj be two tokenised and truecased
sentences in languages l1 and l2, respectively, Si
and Sj the multisets2 of tokens in si and sj , re-
spectively, Tij the multiset of lexical translations
into l2 for all tokens in Si, and Tji the multiset of
lexical translations into l1 for all tokens in Sj .

Lexical translations are computed from sen-
tences si and sj by retaining the k-best transla-
tions for each word, as determined by the ranking
obtained from the translation probabilities given
by symmetrised IBM2 word alignment models
(Brown et al., 1993).3 The multisets Tij and Tji
that comprise these k-best lexical translations are
then expanded by means of the following opera-
tions:4

1. For each element x in the set difference T ′ij =
Tij − Sj (respectively T ′ji = Tji − Si), and
each element y in Sj (respectively Si), if x
and y share a common prefix of more than
n characters, the prefix is added to both Tij
and Sj (respectively Tji and Si). Longest
common prefix matching is meant to capture
morphological variation via minimal compu-
tation.

2. Numbers and capitalised truecased tokens
not found in the lexical translation tables
are added to the expanded translation mul-
tisets Tij and Tji. This operation addresses
named entities, which are likely to be miss-
ing from translation tables trained on differ-
ent domains.

3. The NULL token is added to the source and
target token multisets, in order to address
words that have covert translations, as indi-
cated by the presence of the NULL element
among their k-best translation options.

With source and target sets as defined above, we
compute translation accuracy between sentence si
and translation sj as in Equation 1:

2We employ multisets instead of sets as in the original
approach, to account for multiple token occurrences, as the
quality estimation task is more likely to be sensitive to miss-
ing occurrences than the alignment task. Multiset intersection
and union are based on positive minimums and maximums,
respectively.

3The actual probabilities are not used beyond determining
the ranking, as in the original approach. We depart from their
implementation by using IBM2 models instead of IBM4, a
change motivated by the similar results we obtained with both
types of models and the faster training of the former.

4The first two are based on the original approach, while
the third was added by us for the experiments reported here.
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acc(si, sj) =
1

2

(
|Tij ∩ Sj |
|Sj |

+
|Tji ∩ Si|
|Si|

)
(1)

Accuracy is thus defined as the mean of the
overlap similarity coefficients obtained between
sentence token sets and expanded lexical transla-
tion sets in both directions.5 Apart from the use
of multisets and the introduction of the NULL el-
ement, the main change to the original metric is
using overlap instead of Jaccard similarity, as the
former provided better results in preliminary ex-
periments.

Although originally meant to identify parallel
sentences in comparable corpora, this simple met-
ric applies naturally to any task involving lexical
translations and provides an efficient method to
model accuracy.

2.2 Fluency
The standard approach to measuring the fluency of
word sequences in a given language is by means
of language models. Although n-gram modelling
has been the dominant approach in the last two
decades, continuous space language models have
become a new standard and have been notably
used for the quality estimation task, providing
improvements in supervised feature-based frame-
works (Shah et al., 2015b). For the experiments
presented here, we nonetheless used n-gram lan-
guage modelling as a first approach, as they pro-
vided the best results overall in preliminary exper-
iments and require comparatively fewer computa-
tional resources to be trained.

As a measure of fluency, we take the inverse
of the per word cross-entropy for each machine-
translated sentence. The fluency score is thus com-
puted according to Equation 2, where P (wi) is
short for P (wi|wi−(k−1), . . . , wi−1), i.e. the con-
ditional probability of the i-th word given its k pre-
ceding words in sentence sj of length n.

flc(sj) =
1

− 1
n

n∑
i=1

logP (wi)
(2)

Thus, the higher the cross-entropy, the lower the
fluency score. Although simple, measures com-
puted via n-gram language models, such as cross-
entropy or the monotonically-related perplexity,

5Note that the denominator in a set-based overlap measure
is the smallest of the two sets being compared, which in our
case is always the token set.

have been shown to be reliable indicators of trans-
lation quality estimation (Shah et al., 2015a).

2.3 MQE Variants
For the unsupervised uMQE variant, we assume
that task-related annotated data are not available to
optimise feature weighting,6 and thus simply take
the arithmetic mean of the two scores as our final
quality estimation score. Since the two scores are
not in similar ranges, we perform min/max fea-
ture rescaling on all scores prior to combining the
features. The final quality estimation score for
a source si and translation sj is computed as in
Equation 3, with rescaled features accr and flcr.

uMQE(si, sj) =
accr(si, sj) + flcr(sj)

2
(3)

For the supervised variant, sMQE, we used the
annotated datasets provided for the WMT 2018
QE task and trained a Support Vector Regressor
(SVR) with a Radial Basis Function kernel on the
two features, using the default parameters pro-
vided by the scikit-learn toolkit7 (C=1.0, ε=0.1,
and γ=0.5 for 2 features):

sMQE(si, sj) = SVR([acc(si, sj), f lc(sj)]) (4)

3 Experimental Setup

We submitted results from our two system variants
in all language pairs for sentence-level QE, using
the same models for both variants in each case.
To train the IBM2 and language models, we se-
lected corpora available for the WMT shared tasks
for each specific domain and language pair. For
English-German, in the IT domain, we used the
training data from the WMT 2016 IT translation
task, the WMT 2017 QE task and the WMT 2018
PE task; given the low amounts of data in each in-
dividual corpus, we also merged the data from the
technical manuals of OpenOffice and KDE4 avail-
able in the OPUS repository (Tiedemann, 2012).
For German-English, in the biomedical domain,
we used the UFAL medical corpus8, combined
with the training data from the WMT 2018 QE

6Such datasets were available for the WMT 2018 shared
task, but we opted to ignore them in order to test the uMQE
variant under its intended unsupervised conditions of use.

7http://scikit-learn.org/
8https://ufal.mff.cuni.cz/ufal_

medical_corpus
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LANG DOMAIN MT SYSTEM SPEARMAN RKρ PEARSON RKr MAE RMSE
EN-DE IT SMT UMQE 0.3787 12/15
EN-DE IT SMT UMQE* 0.4042 7/15
EN-DE IT SMT SMQE 0.3993 7/15 0.3969 9/14 0.1855 0.2248
EN-DE IT NMT UMQE 0.3999 10/13
EN-DE IT NMT UMQE* 0.4542 6/13
EN-DE IT NMT SMQE 0.4439 6/13 0.3716 9/12 0.2063 0.2421
DE-EN BIOMED SMT UMQE 0.5694 5/11
DE-EN BIOMED SMT SMQE 0.6003 4/11 0.6521 4/10 0.1182 0.1547
EN-LV BIOMED SMT UMQE 0.3979 3/8
EN-LV BIOMED SMT SMQE 0.4061 2/8 0.4612 2/7 0.1318 0.1767
EN-LV BIOMED NMT UMQE 0.5403 3/7
EN-LV BIOMED NMT SMQE 0.5686 2/7 0.5787 2/6 0.1461 0.1938
EN-CS IT SMT UMQE 0.4196 6/9
EN-CS IT SMT SMQE 0.4219 5/9 0.3904 7/8 0.1638 0.2122

Table 1: Results on the WMT 2018 test sets

task. For English-Latvian, also in the biomed-
ical domain, we used the available EMEA cor-
pus along with the training data from the WMT
2018 QE task and the additional data provided
for this language pair in this year’s QE task. Fi-
nally, for English-Czech in the IT domain, we
used the train-techdoc section of the CzEng17
dataset available for the WMT 2018 translation
task, along with the QE training data and the addi-
tional data provided for the WMT 2018 QE task.

Sentences were tokenised and truecased with
the scripts available in the Moses toolkit (Koehn
et al., 2007), with truecasing models trained on
the data described above. For English-Czech, we
experimented with BPE segmentation (Sennrich
et al., 2016) to overcome data sparseness issues,
training BPE models with a maximum of 30.000
merge operations and segmenting all corpora ac-
cordingly for this language pair.

All IBM2 models were trained with the FASTAL-
IGN toolkit (Dyer et al., 2013), and all language
models are of order 5 trained with the KENLM

toolkit (Heafield, 2011) on the target language
data. For the accuracy metric, minimal prefix
length was set to 4 and k-best translation lists lim-
ited to 4 candidates.

4 Results

The results on the WMT 2018 test sets are shown
in Table 1.9 Overall the results were satisfac-

9In the table, RKρ and RKr indicate the ranking of the sys-
tem among all participants in terms of Spearman and Pearson
correlation, respectively. Note that the official uMQE results
for English-German are based on erroneous submissions and
we submitted the correct version after the deadline via CO-
DALAB to obtain the expected scores. The correct version,
using the same models as for sMQE, is denoted by uMQE*
and we refer to the results of this submission in the discussion
relative to this language pair.

tory for both variants of such a simple minimal-
ist approach. For English-Latvian for instance,
sMQE and uMQE ranked in second and third
place, respectively; for German-English, the two
variants ranked fourth and fifth, respectively. Our
worst results were obtained for English-Czech and
English-German, although for the latter our sys-
tem still ranked in the top half among compet-
ing systems on the ranking task, and, except for
the scoring task in EN-CS, both variants outper-
formed the baselines across the board. The rel-
atively worse results obtained for these two lan-
guage pairs can be tied to data sparseness issues
affecting our simple fluency feature based on n-
gram cross-entropy.

The results obtained by uMQE were overall
slightly lower than those obtained by the super-
vised sMQE variant, although the small number
of features available to train the SVR for the latter
was not expected to lead to major improvements.
Our unsupervised approach gave satisfactory re-
sults, performing significantly better in most cases
than the supervised baseline with 17 features. We
view this as an important result, considering the
vast number of domains and language pairs where
no training data are available to opt for a super-
vised approach.

Even in cases where task-related data exist, the
amount of available parallel corpora in a given lan-
guage pair might not be sufficient to train sophisti-
cated neural quality estimators. In such cases, the
sMQE variant can also provide a reliable alterna-
tive to perform quality estimation under minimal
resources.

The approach is also fairly simple to implement
and deploy, and does not require external tagging
or parsing tools which may not be available for
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many languages. It is thus a highly portable alter-
native which may be the simplest and most effi-
cient option in a significant number of scenarios,
with results that outperform the standard super-
vised baseline across the board.

5 Conclusions

We have described our participation in the WMT
2018 shared task on quality estimation, which in-
cluded both supervised and unsupervised variants
of a minimalist approach to the task. Both vari-
ants are based on two simple measures of accu-
racy, computed from lexical translation overlap,
and fluency, computed from inverse cross-entropy
scores of an n-gram language model.

Our main goal was to evaluate systems that can
be efficiently deployed for the large number of lan-
guage pairs and domains where there are either no
annotated data at all to train a supervised system,
or insufficient amounts of parallel corpora to ade-
quately train the currently best performing neural
quality estimators. Additionally, our approach re-
quires no external tools such as part-of-speech tag-
gers or syntactic parsers, unlike other competing
approaches, and is thus both simpler to deploy and
readily available for languages where such tools
are not available at all.

We view the obtained results as satisfactory,
with both variants outperforming the supervised
baselines overall and being placed among the five
best systems in two of the four language pairs. In
future work, we will evaluate the use of continuous
space language models to address data sparseness
issues in the two language pairs where more com-
plex morphology limits the contribution of an n-
gram-based fluency feature. We will also explore
variants of the accuracy measure and evaluate in
more details the aspects that can be better mod-
elled under the proposed minimalist approach to
quality estimation.
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Abstract

The task of word-level quality estimation
(QE) consists of taking a source sentence and
machine-generated translation, and predicting
which words in the output are correct and
which are wrong. In this paper, propose a
method to effectively encode the local and
global contextual information for each target
word using a three-part neural network ap-
proach. The first part uses an embedding layer
to represent words and their part-of-speech
tags in both languages. The second part lever-
ages a one-dimensional convolution layer to
integrate local context information for each
target word. The third part applies a stack of
feed-forward and recurrent neural networks to
further encode the global context in the sen-
tence before making the predictions. This
model was submitted as the CMU entry to the
WMT2018 shared task on QE, and achieves
strong results, ranking first in three of the six
tracks.1

1 Introduction

Quality estimation (QE) refers to the task of mea-
suring the quality of machine translation (MT)
system outputs without reference to the gold trans-
lations (Blatz et al., 2004; Specia et al., 2013). QE
research has grown increasingly popular due to
the improved quality of MT systems, and poten-
tial for reductions in post-editing time and the cor-
responding savings in labor costs (Specia, 2011;
Turchi et al., 2014). QE can be performed on mul-
tiple granularities, including at word level, sen-
tence level, or document level. In this paper, we
focus on quality estimation at word level, which
is framed as the task of performing binary clas-
sification of translated tokens, assigning “OK” or
“BAD” labels.

1Our software is available at https://github.com/
junjiehu/CEQE.

Early work on this problem mainly focused
on hand-crafted features with simple regres-
sion/classification models (Ueffing and Ney, 2007;
Biçici, 2013). Recent papers have demonstrated
that utilizing recurrent neural networks (RNN) can
result in large gains in QE performance (Martins
et al., 2017). However, these approaches encode
the context of the target word by merely concate-
nating its left and right context words, giving them
limited ability to control the interaction between
the local context and the target word.

In this paper, we propose a neural architecture,
Context Encoding Quality Estimation (CEQE),
for better encoding of context in word-level QE.
Specifically, we leverage the power of both (1)
convolution modules that automatically learn lo-
cal patterns of surrounding words, and (2) hand-
crafted features that allow the model to make more
robust predictions in the face of a paucity of la-
beled data. Moreover, we further utilize stacked
recurrent neural networks to capture the long-term
dependencies and global context information from
the whole sentence.

We tested our model on the official bench-
mark of the WMT18 word-level QE task. On
this task, it achieved highly competitive results,
with the best performance over other competitors
on English-Czech, English-Latvian (NMT) and
English-Latvian (SMT) word-level QE task, and
ranking second place on English-German (NMT)
and German-English word-level QE task.

2 Model

The QE module receives as input a tuple 〈s, t,A〉,
where s = s1, . . . , sM is the source sentence,
t = t1, . . . , tN is the translated sentence, andA ⊆
{(m,n)|1 ≤ m ≤ M, 1 ≤ n ≤ N} is a set of
word alignments. It predicts as output a sequence
ŷ = y1, . . . , yN , with each yi ∈ {BAD,OK}. The
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overall architecture is shown in Figure 1
CEQE consists of three major components: (1)

embedding layers for words and part-of-speech
(POS) tags in both languages, (2) convolution en-
coding of the local context for each target word,
and (3) encoding the global context by the recur-
rent neural network.

2.1 Embedding Layer

Inspired by (Martins et al., 2017), the first em-
bedding layer is a vector representing each tar-
get word tj obtained by concatenating the embed-
ding of that word with those of the aligned words
sA(:,tj) in the source. If a target word is aligned to
multiple source words, we average the embedding
of all the source words, and concatenate the target
word embedding with its average source embed-
ding. The immediate left and right contexts for
source and target words are also concatenated, en-
riching the local context information of the em-
bedding of target word tj . Thus, the embedding
of target word tj , denoted as xj , is a 6d dimen-
sional vector, where d is the dimension of the word
embeddings. The source and target words use the
same embedding parameters, and thus identical
words in both languages, such as digits and proper
nouns, have the same embedding vectors. This al-
lows the model to easily identify identical words
in both languages. Similarly, the POS tags in both
languages share the same embedding parameters.
Table 1 shows the statistics of the set of POS tags
over all language pairs.

Language Pairs Source Target
En-De (SMT) 50 57
En-De (NMT) 49 58
De-En 58 50
En-Lv (SMT) 140 38
En-Lv (NMT) 167 43
En-Cz 440 57

Table 1: Statistics of POS tags over all language pairs

2.2 One-dimensional Convolution Layer

The main difference between the our work and the
neural model of Martins et al. (2017) is the one-
dimensional convolution layer. Convolutions pro-
vide a powerful way to extract local context fea-
tures, analogous to implicitly learning n-gram fea-
tures. We now describe this integral part of our
model.

After embedding each word in the target sen-
tence {t1, . . . , tj , . . . , tN}, we obtain a matrix of
embeddings for the target sequence,

x1:N = x1 ⊕ x2 . . .⊕ xN ,

where ⊕ is the column-wise concatenation oper-
ator. We then apply one-dimensional convolution
(Kim, 2014; Liu et al., 2017) on x1:N along the
target sequence to extract the local context of each
target word. Specifically, a one-dimensional con-
volution involves a filter w ∈ Rhk, which is ap-
plied to a window of h words in target sequence to
produce new features.

ci = f(w · xi:i+h−1 + b),

where b ∈ R is a bias term and f is some func-
tions. This filter is applied to each possible win-
dow of words in the embedding of target sen-
tence {x1:h,x2:h+1, . . . ,xN−h+1:N} to produce
features

c = [c1, c2, . . . , cN−h+1].

By the padding proportionally to the filter size h
at the beginning and the end of target sentence,
we can obtain new features cpad ∈ RN of target
sequence with output size equals to input sentence
length N . To capture various granularities of local
context, we consider filters with multiple window
sizes H = {1, 3, 5, 7}, and multiple filters nf =
64 are learned for each window size.

The output of the one-dimensional convolution
layer, C ∈ RN×|H|·nf , is then concatenated with
the embedding of POS tags of the target words, as
well as its aligned source words, to provide a more
direct signal to the following recurrent layers.

2.3 RNN-based Encoding
After we obtain the representation of the source-
target word pair by the convolution layer, we fol-
low a similar architecture as (Martins et al., 2017)
to refine the representation of the word pairs using
feed-forward and recurrent networks.

1. Two feed-forward layers of size 400 with rec-
tified linear units (ReLU; Nair and Hinton
(2010));

2. One bi-directional gated recurrent unit (Bi-
GRU; Cho et al. (2014)) layer with hidden
size 200, where the forward and backward
hidden states are concatenated and further
normalized by layer normalization (Ba et al.,
2016).
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Figure 1: The architecture of our model, with the convolutional encoder on the left, and stacked RNN on the right.

Category Description
Binary target word is a stopword
Binary target word is a punctuation mark
Binary target word is a proper noun
Binary target word is a digit

Float backoff behavior of ngram wi−2 wi−1 wi

(wi is the target word)
Float backoff behavior of ngram wi−1 wi wi+1

Float backoff behavior of ngram wi wi+1 wi+2

One-hot highest order of ngram that includes
target word and its left context

One-hot highest order of ngram that includes
target word and its right context

One-hot highest order of ngram that includes
source word and its left context

One-hot highest order of ngram that includes
source word and its right context

Table 2: Baseline Features

3. Two feed-forward layers of hidden size 200
with rectified linear units;

4. One BiGRU layer with hidden size 100 us-
ing the same configuration of the previous Bi-
GRU layer;

5. Two feed-forward layers of size 100 and 50
respectively with ReLU activation.

We concatenate the 31 baseline features extracted
by the Marmot2 toolkit with the last 50 feed-
forward hidden features. The baseline features are
listed in Table 2. We then apply a softmax layer on
the combined features to predict the binary labels.

2https://github.com/qe-team/marmot

3 Training

We minimize the binary cross-entropy loss be-
tween the predicted outputs and the targets. We
train our neural model with mini-batch size 8 us-
ing Adam (Kingma and Ba, 2015) with learning
rate 0.001 and decay the learning rate by multiply-
ing 0.75 if the F1-Multi score on the validation set
decreases during the validation. Gradient norms
are clipped within 5 to prevent gradient explosion
for feed-forward networks or recurrent neural net-
works. Since the training corpus is rather small,
we use dropout (Srivastava et al., 2014) with prob-
ability 0.3 to prevent overfitting.

4 Experiment

We evaluate our CEQE model on the WMT2018
Quality Estimation Shared Task3 for word-
level English-German, German-English, English-
Czech, and English-Latvian QE. Words in all lan-
guages are lowercased. The evaluation metric is
the multiplication of F1-scores for the “OK” and
“BAD” classes against the true labels. F1-score is
the harmonic mean of precision and recall. In Ta-
ble 3, our model achieves the best performance on
three out of six test sets in the WMT 2018 word-
level QE shared task.

4.1 Ablation Analysis

In Table 4, we show the ablation study of the
features used in our model on English-German,
German-English, and English-Czech. For each

3http://statmt.org/wmt18/quality-estimation-task.html
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Language Pairs F1-BAD F1-OK F1-Multi Rank
En-De (SMT) 0.5075 0.8394 0.4260 3
En-De (NMT) 0.3565 0.8827 0.3147 2
De-En 0.4906 0.8640 0.4239 2
En-Lv (SMT) 0.4211 0.8592 0.3618 1
En-Lv (NMT) 0.5192 0.8268 0.4293 1
En-Cz 0.5882 0.8061 0.4741 1

Table 3: Best performance of our model on six datasets
in the WMT2018 word-level QE shared task on the
leader board (updated on July 27th 2018)

language pair, we show the performance of CEQE
without adding the corresponding components
specified in the second column respectively. The
last row shows the performance of the complete
CEQE with all the components. As the base-
line features released in the WMT2018 QE Shared
Task for English-Latvian are incomplete, we train
our CEQE model without using such features. We
can glean several observations from this data:

1. Because the number of “OK” tags is much
larger than the number of “BAD” tags, the
model is easily biased towards predicting the
“OK” tag for each target word. The F1-OK
scores are higher than the F1-BAD scores
across all the language pairs.

2. For German-English, English Czech, and
English-German (SMT), adding the baseline
features can significantly improve the F1-
BAD scores.

3. For English-Czech, English-German (SMT),
and English-German (NMT), removing POS
tags makes the model more biased towards
predicting “OK” tags, which leads to higher
F1-OK scores and lower F1-BAD scores.

4. Adding the convolution layer helps to boost
the performance of F1-Multi, especially on
English-Czech and English-Germen (SMT)
tasks. Comparing the F1-OK scores of
the model with and without the convolution
layer, we find that adding the convolution
layer help to boost the F1-OK scores when
translating from English to other languages,
i.e., English-Czech, English-German (SMT
and NMT). We conjecture that the convo-
lution layer can capture the local informa-
tion more effectively from the aligned source
words in English.

1000 2000 3000 4000
Iteration

0

0.3

0.4

0.5

0.6

0.7

F1
-M

ul
ti

Train-0.7
Train-0.3
Train-0.1
Valid-0.7
Valid-0.3
Valid-0.1

Figure 2: Effect of the dropout rate during training.

5 Case Study

Table 5 shows two examples of quality prediction
on the validation data of WMT2018 QE task for
English-Czech. In the first example, the model
without POS tags and baseline features is biased
towards predicting “OK” tags, while the model
with full features can detect the reordering error.
In the second example, the target word “panelu” is
a variant of the reference word “panel”. The target
word “znaky” is the plural noun of the reference
“znak”. Thus, their POS tags have some subtle
differences. Note the target word “zmnit” and its
aligned source word “change” are both verbs. We
can observe that POS tags can help the model cap-
ture such syntactic variants.

5.1 Sensitivity Analysis

During training, we find that the model can easily
overfit the training data, which yields poor perfor-
mance on the test and validation sets. To make
the model more stable on the unseen data, we ap-
ply dropout to the word embeddings, POS embed-
dings, vectors after the convolutional layers and
the stacked recurrent layers. In Figure 2, we exam-
ine the accuracies dropout rates in [0.1, 0.3, 0.7].
We find that adding dropout alleviates overfitting
issues on the training set. If we reduce the dropout
rate to 0.1, which means randomly setting some
values to zero with probability 0.1, the training F1-
Multi increases rapidly and the validation F1-multi
score is the lowest among all the settings. Prelim-
inary results proved best for a dropout rate of 0.3,
so we use this in all the experiments.
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Language Pairs Method F1-BAD F1-OK F1-Multi

De-En

- (Convolution + POS + features) 0.4774 0.8680 0.4144
- (POS + features) 0.4948 0.8474 0.4193
- features 0.5095 0.8735 0.4450
- POS 0.4906 0.8640 0.4239
CEQE 0.5233 0.8721 0.4564

En-Cz

- (Convolution + POS + features) 0.5748 0.7622 0.4381
- (POS + features) 0.5628 0.8000 0.4502
- features 0.5777 0.7997 0.4620
- POS 0.5192 0.8268 0.4293
CEQE 0.5884 0.7991 0.4702

En-De (SMT)

- (Convolution + POS + features) 0.4677 0.8038 0.3759
- (POS + features) 0.4768 0.8166 0.3894
- features 0.4902 0.8230 0.4034
- POS 0.5047 0.8431 0.4255
CEQE 0.5075 0.8394 0.4260

En-De (NMT)

- (Convolution + POS + features) 0.3545 0.8396 0.2976
- (POS + features) 0.3404 0.8752 0.2979
- features 0.3565 0.8827 0.3147
- POS 0.3476 0.8948 0.3111
CEQE 0.3481 0.8835 0.3075

Table 4: Ablation study on the WMT18 Test Set

6 Conclusion

In this paper, we propose a deep neural architec-
ture for word-level QE. Our framework leverages a
one-dimensional convolution on the concatenated
word embeddings of target and its aligned source
words to extract salient local feature maps. In
additions, bidirectional RNNs are applied to cap-
ture temporal dependencies for better sequence
prediction. We conduct thorough experiments on
four language pairs in the WMT2018 shared task.
The proposed framework achieves highly compet-
itive results, outperforms all other participants on
English-Czech and English-Latvian word-level,
and is second place on English-German, and
German-English language pairs.
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Abstract

In this paper we present the University of
Sheffield submissions for the WMT18 Qual-
ity Estimation shared task. We discuss our
submissions to all four sub-tasks, where ours
is the only team to participate in all language
pairs and variations (37 combinations). Our
systems show competitive results and outper-
form the baseline in nearly all cases.

1 Introduction

Quality Estimation (QE) predicts the quality of
Machine Translation (MT) when automatic eval-
uation or human assessment is not possible (typi-
cally at system run-time). QE is mainly addressed
as a supervised Machine Learning problem with
QE models trained using labelled data. These la-
bels differ for different tasks, for example, binary
labels for fine-grained predictions (e.g. OK/BAD
for words or phrases) and continuous measure-
ments of quality for coarse-grained levels (e.g.
HTER (Snover et al., 2006) for sentences).

For this year’s shared task, post-edited (PE) and
manually annotated data were provided. They
cover four levels of predictions: sentence-level
(task 1), word-level (task 2), phrase-level (task 3)
and document-level (task 4), over five language
pairs: English into German, Latvian, Czech and
French, as well as German-English. For the first
time, these data contain translations produced by
neural MT (NMT) systems. Such translations are
known to be more fluent but less adequate (Toral
and Sánchez-Cartagena, 2017).

For tasks 2 and 3, this year’s edition introduces
a new task variant of predicting missing words in
the translations. Thus two additional prediction
types are required: (i) binary labels for gaps in
the translation to indicate whether one or more to-
kens are missing from a certain position, and (ii)

binary labels for words in source sentences to indi-
cate which of these words lead to incorrect words
in the translations.

We participated with two different systems,
both available in the DeepQuest1 toolkit (Ive et al.,
2018):
• SHEF-PT: an in-house re-implementation of

the POSTECH system (Kim et al., 2017b),
and
• SHEF-bRNN: a bidirectional recurrent neu-

ral network (bRNN) system.
We participated in all sub-tasks and submitted a

total of 74 predictions (37 per system).

2 Systems Description

Our light-weight neural QE approach is based
on simple encoders and requires no pre-training
(bRNN). We compare its performance to the per-
formance of our re-implementation of the state-of-
the-art neural QE approach of Kim et al. (2017a,b)
(POSTECH), which uses a complex architecture
and requires resource-intensive pre-training.

2.1 Architecture

Following current best practices in neural
sequence-to-sequence modelling (Sutskever
et al., 2014; Bahdanau et al., 2015), our bRNN
approach employs encoders using recurrent neural
networks (RNNs). Encoders encode input into an
internal representation used to make classification
decisions. bRNN representations at a given level
rely on representations from more fine-grained
levels (i.e. sentences for document, and words for
phrase and sentence).
bRNN uses two bi-directional RNNs to learn the

representation of the<source, MT> sentence pair.
Source and MT RNNs are trained independently.

1https://sheffieldnlp.github.io/
deepQuest
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The two representations are then combined via
concatenation. For word-level QE, those represen-
tations (sequences of hidden states hj associated
with words) can be used directly to make classifi-
cation decisions. A sentence vector is a weighted
sum of word vectors as generated by an atten-
tion mechanism. Another output layer takes this
sentence vector as input and produces real-value
sentence-level quality scores.

For phrase-level QE, we have modified the
architecture described above. It takes a three-
dimensional MT input (batch length × sentence
length in phrases× phrase length in words).2 Con-
catenation of source and MT sentence represen-
tations, as performed in our word- and sentence-
level architecture, will require source inputs to be
three-dimensional as well. However, as the phrase
alignments are not provided with the task, three-
dimensional source inputs can not be formed with-
out an additional approximation.3 Instead, we fol-
low best practices of NMT (Bahdanau et al., 2015)
and implement its standard encoder-decoder archi-
tecture. The encoder creates source representa-
tions using a bidirectional RNN, at each timestep
the decoder produces a word representation tak-
ing into account not only the previously produced
representations, but also the sum of source word
representations weighted by an attention mecha-
nism.4 This process can be interpreted as defin-
ing word alignments: the resulting decoder repre-
sentations contain information on both MT words
and respective parts of the source attended at each
timestep. Each phrase representation can be com-
puted out of word vectors: average, maximum,
sum, etc. The resulting representations are pro-
vided to the output layer, as illustrated in Figure 1.

Our document-level framework is a wrapper
over sentence QE approaches. It uses a bidirec-
tional RNN to summarize sentence-level represen-
tations as document-level representations used for
regression.

More details on the architecture and implemen-

2Note that other architectural choices may lead to, for in-
stance, two-dimensional inputs (batch length× phrase length
in words). A representation of each MT phrase may be cre-
ated without taking the rest of the translated sentence into
account.

3For instance, we may assume that translation of a
phrase relies on the whole source sentence. Thus, a three-
dimensional input can be formed by simply repeating each
source sentence along the second axis to match respective
counts of phrases in each MT sentence.

4Note that Jhaveri et al. (2018) also use this architecture
for sentence-level QE.

Figure 1: bRNN phrase-level QE architecture.

tation of our sentence and document-level models
can be found in Ive et al. (2018).

2.2 Implementation Details

To train POSTECH’s predictor, we used the corre-
sponding parts of the in-domain corpora provided
by the organisers for the corresponding languages
(≈ 2M sentences were selected randomly per lan-
guage pair). The only exception was EN-LV for
which we had less than 2M sentences in the cor-
pus. Therefore, we combined the in-domain cor-
pus with the Europarl (version 8)5 and EMEA cor-
pus.6 This totaled in 1,241,615 EN-LV sentences.

For the word and phrase-level tasks, we tack-
led prediction of MT error tags, source tags and
MT gaps separately. For predicting source tags,
we built models by swapping source and MT in-
puts. POSTECH’s predictors were then trained
with swapped source and target inputs. For pre-
dicting gaps, we added a dummy word at the be-
ginning of each MT sentence to match the count
of gap tags per line.

We experimented with phrase-level representa-
tions and created them by computing the sum or
the average of composing word vectors. To opti-
mise the usage of computational resources, in each
experiment we fixed the size of a phrase in words
to the upper quartile of the respective distribution
in the training data.

For the document-level QE, we experimented
with sentence-level representations coming from
both bRNN and POSTECH architectures.

For our POSTECH-based document-level mod-
els, we experimented with predictors trained on a

5http://www.statmt.org/wmt17/
translation-task.html

6http://opus.nlpl.eu/EMEA.php
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SHEF-PT SHEF-bRNN Baseline
r MAE ρ r MAE ρ r MAE ρ

EN-DE – SMT 0.487 0.132 0.510 0.366 0.139 0.378 0.365 0.140 0.381
EN-DE – NMT 0.377 0.131 0.468 0.381 0.130 0.480 0.287 0.129 0.420
EN-LV – SMT 0.375 0.141 0.329 0.396 0.138 0.332 0.353 0.155 0.348
EN-LV – NMT 0.463 0.166 0.446 0.421 0.172 0.409 0.444 0.163 0.458

EN-CS 0.533 0.150 0.537 0.501 0.157 0.506 0.394 0.165 0.414
DE-EN 0.554 0.130 0.501 0.482 0.143 0.443 0.332 0.151 0.325

Table 1: Evaluation of our systems for task 1 on the test set. We show scores of Pearson’s r correlation, MAE and
Spearman’s ρ correlation.

part of the English–French Europarl (version 7),7

as well as on an in-domain corpus (described in
Section 3.4). As mentioned before, our document-
level QE system is a modular architecture wrap-
ping over any sentence-level QE model. We took
advantage of this modularity and also attempted
multi-task learning (MTL). We pre-trained the
weights of sentence-level modules (both bRNN
and POSTECH) to predict Multidimensional Qual-
ity Metrics (MQM)8 scores for sentences (more
details in Section 3.4).

3 Tasks Participation

The four QE tasks correspond to different levels of
quality prediction: sentence-level (task 1), word-
level (task 2 and 3a), phrase-level (task 3b) and
document-level (task 4). For each prediction level,
different language pairs and system outputs are
provided. Below we provide a detailed descrip-
tion of the datasets together with the results for
our submitted systems for each of these tasks.

3.1 Task 1: Sentence-level QE
Four language pairs are available for sentence-
level scoring and ranking:
• EN-DE: sentences on the IT domain, with

MT from either an SMT (26, 273 train-
ing / 1, 000 development / 1, 000 test) or an
NMT (13, 442 training / 1, 000 development /
1, 000 test) system,
• EN-LV: sentences on the life sciences do-

main, with MT from either an SMT (11, 251
training / 1, 000 development / 1, 000 test) or
an NMT (12, 936 training / 1, 000 develop-
ment / 1, 000 test) system,
• EN-CS: sentences on the IT domain, with

MT from an SMT system (40, 254 training /
7http://www.statmt.org/wmt15/

translation-task.html
8http://www.qt21.eu/mqm-definition/

definition-2015-12-30.html

1, 000 development / 1, 000 test), and
• DE-EN: sentences on the life sciences do-

main, with MT from an SMT system (25, 963
training / 1, 000 development / 1, 000 test).

In summary, there are six data setting variants
and the quality score for prediction is HTER in all
of them. For each variant in this task we submitted
two systems: SHEF-PT and SHEF-bRNN. For the
ranking evaluation, we rank sentences using the
predicted HTER outputted by our systems.

Following the shared task setup, Pearson’s r
correlation coefficient is used as the primary eval-
uation metric for the scoring task (with Mean
Absolute Error – MAE – as the secondary met-
ric), whilst Spearman’s ρ rank correlation coeffi-
cient is used as metric for the ranking task. The
task baseline systems are Support Vector Machine
(SVM) models trained with 17 baseline features
from QuEst++ (Specia et al., 2015).

We show the official results in Table 1. Both
our systems outperform the baseline for all the
language pairs according to the main evaluation
metric (r). SHEF-bRNN is better than SHEF-PT
only for EN-DE – NMT and EN-LV – SMT. These
may be cases where bRNN is able to better capture
the fluency of high-quality MT by encoding it di-
rectly as sequences rather than assessing it word
for word as POSTECH. On the official develop-
ment set,9 EN-DE – NMT and EN-LV – SMT
translations have the best overall quality (on av-
erage HTER=0.17 versus HTER=0.28 for the rest
of the systems).

3.2 Task 2: Word-level QE
Task 2 uses the same datasets as task 1. Target
words are assigned a binary label (OK or BAD)
based on the alignments between MT and post-
edits extracted by the TER tool. In this year’s edi-
tion, the organisers have also proposed the predic-

9The organisers have not provided the gold labels for the
test set.
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TRG words prediction
SHEF-PT SHEF-bRNN Baseline

F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT
EN-DE – SMT 0.508 0.846 0.430 0.453 0.811 0.367 0.412 0.882 0.363
EN-DE – NMT 0.335 0.869 0.291 0.351 0.863 0.303 0.197 0.918 0.181
EN-LV – SMT 0.416 0.869 0.361 0.409 0.860 0.351 0.381 0.905 0.345
EN-LV – NMT 0.519 0.809 0.420 0.503 0.828 0.416 0.487 0.864 0.421

EN-CS 0.556 0.796 0.443 0.554 0.792 0.439 0.534 0.834 0.445
DE-EN 0.485 0.874 0.424 0.446 0.871 0.389 0.485 0.902 0.437

SRC words prediction
SHEF-PT SHEF-bRNN Baseline

F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT
EN-DE – SMT 0.422 0.799 0.337 0.414 0.821 0.340 - - -
EN-DE – NMT 0.314 0.841 0.264 0.330 0.865 0.286 - - -
EN-LV – SMT 0.351 0.859 0.302 0.357 0.857 0.306 - - -
EN-LV – NMT 0.444 0.814 0.361 0.444 0.800 0.355 - - -

EN-CS 0.493 0.799 0.394 0.490 0.811 0.398 - - -
DE-EN 0.392 0.887 0.348 0.366 0.875 0.320

Gaps prediction
SHEF-PT SHEF-bRNN Baseline

F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT
EN-DE – SMT 0.294 0.962 0.282 0.271 0.955 0.259 - - -
EN-DE – NMT 0.110 0.984 0.108 0.121 0.985 0.119 - - -
EN-LV – SMT 0.141 0.968 0.136 0.118 0.975 0.115 - - -
EN-LV – NMT 0.130 0.965 0.126 0.119 0.944 0.113 - - -

EN-CS 0.171 0.977 0.167 0.179 0.972 0.174 - - -
DE-EN 0.210 0.970 0.204 0.200 0.966 0.193 - - -

Table 2: Evaluation of our systems for task 2 on the test set. We show scores of F1-MULT, F1 for the OK class
and F1 for the BAD class.

tion of gaps and source words quality. According
to the TER alignment, all source words aligned to
a target word will receive the same tag as the target
word. For annotating gaps, a gap tag is placed af-
ter each token and in the beginning of the sentence.
A gap tag will be BAD if one or more words were
expected to appear in the gap, and OK otherwise.

Task 2 has 18 variants, for each of them
we again submitted two systems: SHEF-PT and
SHEF-bRNN.

The primary evaluation metric of task 2 is F1-
MULT: multiplication of F1-scores for the OK
and BAD classes. F1-scores of OK and BAD
classes are used as secondary metrics. The base-
line system for the target word predictions is a
Conditional Random Fields (CRF) model trained
with word-level baseline features from the Mar-
mot (Logacheva et al., 2016) toolkit. There are
no baseline systems for the prediction of gaps or
source word issues.

Table 2 shows the official results. For predic-
tion of target words, SHEF-PT is the best for EN-
DE – SMT, EN-LV – SMT and EN-LV – NMT.
SHEF-bRNN is the best for EN-DE – NMT. This
confirms our previous conclusion that bRNN better

captures the fluency of high-quality MT (cf. Sec-
tion 3.1). For source words and gaps prediction,
SHEF-bRNN and SHEF-PT show similar perfor-
mance across language pairs.

To get a closer insight into the performance of
our models, we manually analysed results for the
official EN-DE – SMT/NMT development sets.
For those two systems either SHEF-PT, or SHEF-
bRNN performs the best respectively. Our ob-
servations suggest that, because of pre-training,
SHEF-PT better captures SMT adequacy (cf. ex-
amples in Table 3; the term “screen readers” is cor-
rectly translated by the SMT system into German
as “Bildschirmlesehilfen” and correctly marked
as OK by SHEF-PT, but incorrectly marked as
BAD by SHEF-bRNN). SHEF-bRNN better cap-
tures NMT fluency: e.g. only the word “Trans-
parenzeffekte” correctly marked as BAD from the
first part of the NMT translation in Table 3 vs. the
context of this word marked as BAD by SHEF-PT.

3.3 Task 3: Phrase-level QE

This task considers a subset of the English-
German SMT data from task 1 (Section 3.1).
Here, the MT output has been manually anno-
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SRC to make your content accessible to screen readers , avoid using these modes .
PE um den Inhalt für Bildschirmlesehilfen zugänglich zu machen , vermeiden Sie diese Modi .
SMT um den Inhalt für Bildschirmlesehilfen zugänglich machen , vermeiden Sie diese Modi .
gold OK OK OK OK OK OK OK OK OK OK OK OK OK
PT OK OK OK OK OK OK OK OK OK OK OK OK OK
bRNN OK OK OK OK BAD BAD BAD BAD BAD BAD BAD BAD OK
SRC besides applying transparency effects to single objects , you can apply them to groups .
PE Sie können Transparenzeffekte nicht nur auf einzelne Objekte , sondern auch auf Gruppen anwenden .
NMT Sie können nicht nur Transparenzeffekte auf einzelne Objekte anwenden , sondern auch auf Gruppen anwenden .
gold OK OK OK OK BAD OK OK OK BAD OK OK OK OK OK OK OK
PT BAD BAD BAD BAD BAD BAD OK OK OK OK BAD BAD BAD BAD OK BAD
bRNN OK OK OK OK BAD OK OK OK OK OK OK BAD OK OK OK OK

Table 3: Examples of prediction errors for task 2 on the EN-DE – SMT/NMT development sets

SHEF-PT SHEF-bRNN Baseline
F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT F1 BAD F1 OK F1-MULT

TRG words 0.3338 0.8250 0.2754 0.3253 0.8235 0.2679 0.2714 0.9099 0.2469
Gaps 0.2730 0.8775 0.2396 0.2631 0.8785 0.2312 - - -

SRC words 0.5048 0.8137 0.4108 0.4920 0.7916 0.3895 - - -

Table 4: Evaluation of our systems for task 3a on the test set. We show scores of F1-MULT, F1 for the OK class
and F1 for the BAD class.

SHEF-PT
F1 BAD F1 OK F1-MULT F1 BAD w o

TRG phrases 0.2294 0.8059 0.1849 0.0794
Gaps 0.1073 0.9349 0.1003 -

SHEF-ATT-SUM
F1 BAD F1 OK F1-MULT F1 BAD w o

TRG phrases 0.2881 0.7614 0.2194 0.1146
Gaps 0.1028 0.9416 0.0968 -

Baseline
F1 BAD F1 OK F1-MULT F1 BAD w o

TRG phrases 0.3919 0.9152 0.3584 0.0194
Gaps - - - -

Table 5: Evaluation of our systems for task 3b on
the test set. We show scores of F1-MULT, F1 for
the OK class, F1 for the BAD class and F1 for the
BAD word order class.

tated at the phrase level with four labels: OK,
BAD, BAD word order and BAD omission, with
the phrase boundaries defined by the SMT de-
coder. The last two labels are new to this task.
They indicate whether a phrase is in an incorrect
position in the sentence, or one or more word(s)
are missing in a certain position, respectively. The
subtasks of predicting gaps and source phrases
quality were proposed similarly to task 2 (cf. Sec-
tion 3.2).

The subtask data are provided with word-level
segmentation. Task 3 is therefore divided into two
subtasks 3a and 3b, for word- and phrase-level pre-
dictions, respectively.

Task3a – word-level prediction Word-level la-
bels have been produced as follows: each
word has been labelled according to the phrase
it belongs to (i.e. as either OK, BAD or
BAD word order); gaps have been labelled as ei-
ther OK or BAD omission. The evaluation metrics
for this subtask are similar to task 2.

The official results are reported in Table 4. Our
two systems outperform the baseline for the target
words prediction, while there are no other results
for gaps and source words predictions.

Task3b – phrase-level prediction In addition
to the usual binary labels (OK and BAD), this
subtask considers the BAD word order label. To
tackle the phrase-level challenge, we implemented
a new model as part of deepQuest (cf. Section 2).
The submitted SHEF-ATT-SUM system takes the
sum of composing word vectors to create phrase
vectors used for regression. This configuration
performed the best on the official development set.

The official results are reported in Table 5.
While we perform better than the baseline for task
3a, we are not able to beat it at the phrase level.
We believe this is because the dataset is too small
to train a competitive neural model. There are no
other results for gaps prediction.10

10We did not participate to the source phrases prediction
task, since the phrase alignments were not provided by the
organisers.
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3.4 Task 4: Document-level QE
Task 4 consists in predicting document-level
quality scores for MT of product reviews from
the Amazon Product Reviews dataset (He and
McAuley, 2016). For this task, a selection of
Sports and Outdoors product titles and descrip-
tions were machine translated from English into
French. The MT system used is a state-of-the-
art NMT system. The machine translated docu-
ments were annotated with word-level MQM in-
formation. The MQM taxonomy has three coarse-
grained classes: accuracy, fluency and style. Each
error was classified into one of the fine-grained
classes within a main class and also according to
its severity: minor (it does not change the meaning
of the source), major (the meaning was changed by
the incorrect word) or critical (besides changing
the meaning the error results in a negative effect,
e.g. the translation can be seen as offensive).

Document-level scores were devised as follows
using the information about the errors and their
severities:

score = 100 ∗ (1.0− Tseverity ∗ 1.0
N

) (1)

where Tseverity is the sum of the severity weights
of all errors in a given document (predefined as
minor = 1.0, major = 5.0 and critical = 10) and
N is the total number of words in this document.

For training, development and testing, 1, 000,
200 and 269 documents were made available, re-
spectively. The baseline is an SVM model trained
with 15 baseline document-level features from
QuEst++. Evaluation is done in terms of Pearson’s
r correlation scores.

Since the MQM scores are at the word level,
Equation 1 can also be used to extract scores
for sentences. We exploit this feature and create
MTL systems trained to predict both sentence and
document-level scores. We submitted two systems
officially and also report three additional systems.
Our systems are listed below, where systems with
an * are the official submissions:
• *SHEF-PT (in-domain): POSTECH system

pre-trained with in-domain data extracted
from the English–French part11 of the Giga-
word corpus,12

11https://catalog.ldc.upenn.edu/
LDC2011T10

12≈300K segments were extracted, using
XenC (Rousseau, 2013), as having the best perplexity
according to a language model trained on a selection of the
English in-domain Amazon reviews (≈200K segments).

• SHEF-PT (out-domain): POSTECH system
pre-trained with the Europarl data,
• SHEF-bRNN: our bRNN system for

document-level QE,
• SHEF-MTL-PT (in-domain): multi-task
POSTECH pre-trained with the in-domain
data, and
• *SHEF-MTL-bRNN: multi-task bRNN.
Table 6 shows the evaluation of our systems on

the test set in terms of Pearson’s r and MAE. The
baseline is considerably strong, achieving over
0.5 of correlation and the lowest MAE (56.09).
SHEF-PT (in-domain) and SHEF-MTL-PT (in-
domain) are the only systems that outperform the
baseline. Note that the SHEF-MTL-bRNN system
achieved results close to the baseline, even though
it does not use any external resources (unlike the
SHEF-PT systems and the baseline).

r MAE
SHEF-PT (in-domain) 0.534 56.23

SHEF-PT (out-domain) 0.511 57.55
SHEF-bRNN 0.468 57.58

SHEF-MTL-PT (in-domain) 0.521 56.60
SHEF-MTL-bRNN 0.473 56.59

Baseline 0.512 56.09

Table 6: Evaluation of our systems for task 4 on the
test set. We show scores of Pearson’s r correlation and
MAE.

4 Conclusions

We presented our systems submitted to the
WMT18 QE shared task. We experimented with
two different architectures: our re-implementation
of the POSTECH system (SHEF-PT) and our
bRNN (bi-directional RNNs) approach (SHEF-
bRNN). Although SHEF-PT is better than SHEF-
bRNN for the majority of the task variants, SHEF-
bRNN is still a competitive system and, given
its simplicity and independence from external re-
sources, it can be seen as a good alternative for
low-resource languages. In addition, it is worth
mentioning that SHEF-bRNN requires consider-
ably less training time than SHEF-PT, which may
better fit certain scenarios.

Acknowledgments

Carolina Scarton is supported by the EC project
SIMPATICO (H2020-EURO-6-2015, grant num-
ber 692819). Frédéric Blain is supported by the
Amazon Academic Research Awards program.

799



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
International Conference on Learning Representa-
tions (ICLR).

Ruining He and Julian McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Pro-
ceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 507–517.

Julia Ive, Frédéric Blain, and Lucia Specia. 2018.
DeepQuest: a framework for neural-based qual-
ity estimation. In Proceedings of COLING 2018,
the 27th International Conference on Computational
Linguistics: Technical Papers. The COLING 2017
Organizing Committee.

Nisarg Jhaveri, Manish Gupta, and Vasudeva Varman.
2018. Translation quality estimation for indian lan-
guages. In Proceedings of th 21st International
Conference of the European Association for Ma-
chine Translation (EAMT).

Hyun Kim, Hun-Young Jung, Hongseok Kwon, Jong-
Hyeok Lee, and Seung-Hoon Na. 2017a. Predictor-
Estimator: Neural quality estimation based on tar-
get word prediction for machine translation. ACM
Transactions on Asian and Low-Resource Language
Information Processing, 17(1):3:1–3:22.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017b. Predictor-estimator using multilevel task
learning with stack propagation for neural quality
estimation. In Proceedings of the Second Confer-
ence on Machine Translation (WMT), pages 562–
568.

Varvara Logacheva, Chris Hokamp, and Lucia Specia.
2016. MARMOT: A toolkit for translation quality
estimation at the word level. In Tenth International
Conference on Language Resources and Evaluation
(LREC), pages 3671–3674.

Anthony Rousseau. 2013. XenC: An open-source tool
for data selection in natural language processing.
The Prague Bulletin of Mathematical Linguistics,
(100):73–82.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of Association for Machine Transla-
tion in the Americas, pages 223–231.

Lucia Specia, Gustavo Paetzold, and Carolina Scarton.
2015. Multi-level Translation Quality Prediction
with QuEst++. In The 53rd Annual Meeting of the
Association for Computational Linguistics and Sev-
enth International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing: System Demonstrations, Bei-
jing, China.

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le.
2014. Sequence to sequence learning with neural
networks. In Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112.

Antonio Toral and Vı́ctor M Sánchez-Cartagena. 2017.
A multifaceted evaluation of neural versus phrase-
based machine translation for 9 language directions.
arXiv preprint arXiv:1701.02901.

800



Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 801–808
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64091

UAlacant machine translation quality estimation at WMT 2018: a simple
approach using phrase tables and feed-forward neural networks
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Abstract

We describe the Universitat d’Alacant sub-
missions to the word- and sentence-level ma-
chine translation (MT) quality estimation (QE)
shared task at WMT 2018. Our approach to
word-level MT QE builds on previous work
to mark the words in the machine-translated
sentence as OK or BAD, and is extended to
determine if a word or sequence of words
need to be inserted in the gap after each word.
Our sentence-level submission simply uses the
edit operations predicted by the word-level ap-
proach to approximate TER. The method pre-
sented ranked first in the sub-task of identify-
ing insertions in gaps for three out of the six
datasets, and second in the rest of them.

1 Introduction

This paper describes the Universitat d’Alacant sub-
missions to the word- and sentence-level machine
translation (MT) quality estimation (QE) shared
task at WMT 2018 (Specia et al., 2018). Our
approach is an extension of a previous approach
(Esplà-Gomis et al., 2015a,b; Esplà-Gomis et al.,
2016) in which we simply marked the words tj of a
machine-translated segment T as OK (no changes
are needed) or as BAD (needing editing). Now we
also mark the gaps γj after each word tj as OK
(no insertions are needed) or as BAD (needing the
insertion of one or more words). In addition, we
use the edit operations predicted at the word level
to estimate quality at the sentence level.

The paper is organized as follows: section 2
briefly reviews previous work on word-level MT
QE; section 3 describes the method used to label
words and gaps, paying special attention to the
features extracted (sections 3.1 and 3.2) and the
neural network (NN) architecture and its training
(section 3.3); section 4 describes the datasets used;
section 5 shows the main results; and, finally, sec-
tion 6 closes the paper with concluding remarks.

2 Related work

Pioneering work on word-level MT QE dealt with
predictive/interactive MT (Gandrabur and Foster,
2003; Blatz et al., 2004; Ueffing and Ney, 2005,
2007), often under the name of confidence esti-
mation. Estimations relied on the internals of the
actual MT system —for instance, studying the n-
best translations (Ueffing and Ney, 2007)— or used
external sources of bilingual information; for in-
stance, both Blatz et al. (2004) and Ueffing and
Ney (2005) used probabilistic dictionaries; in the
case of Blatz et al. (2004), as one of many features
in a binary classifier for each word.

The last decade has witnessed an explosion of
work in word-level MT QE, with most of the recent
advances made by participants in the shared tasks
on MT QE at the different editions of the Confer-
ence on Statistical Machine Translation (WMT).
Therefore, we briefly review those papers related
to our approach: those using an external bilingual
source such as an MT system and those using NN.

As regards work using external bilingual re-
sources, we can highlight four groups of contri-
butions:

• To estimate the sentence-level quality of MT
output for a source segment S, Biçici (2013)
chooses sentence pairs from a parallel corpus
which are close to S, and builds an SMT sys-
tem whose internals when translating S are
examined to extract features.
• MULTILIZER, one of the participants in the

sentence-level MT QE task at WMT 2014 (Bo-
jar et al., 2014) uses other MT systems to
translate S into the target language (TL) and
T into the source language (SL). The results
are compared to the original SL and TL seg-
ments to obtain indicators of quality.
• Blain et al. (2017) use bilexical embeddings

(obtained from SL and TL word embeddings
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and word-aligned parallel corpora) to model
the strength of the relationship between SL
and TL words, in order to estimate sentence-
level and word-level MT quality.
• Finally, Esplà-Gomis et al. (2015a,b), and

Esplà-Gomis et al. (2016) perform word-level
MT QE by using other MT systems to trans-
late sub-segments of S and T and extracting
features describing the way in which these
translated sub-segments match sub-segments
of T . This is the work most related to the one
presented in this paper.

Only the last two groups of work actually tackle
the problem of word-level MT QE, and none of
them are able to identify the gaps where insertions
are needed.

As regards the use of neural networks (NN) in
MT QE, we can highlight a few contributions:

• Kreutzer et al. (2015) use a deep feed-forward
NN to process the concatenated vector embed-
dings of neighbouring TL words and (word-
aligned) SL words into feature vectors —
extended with the baseline features provided
by WMT15 (Bojar et al., 2015) organizers—
to perform word-level MT QE.
• Martins et al. (2016) achieved the best results

in the word-level MT QE shared task at WMT
2016 (Bojar et al., 2016) by combining a feed-
forward NN with two recurrent NNs whose
predictions were fed into a linear sequential
model together with the baseline features pro-
vided by the organizers of the task. An ex-
tension (Martins et al., 2017) uses the output
of an automatic post-editing tool, with a clear
improvement in performance.
• Kim et al. (2017a,b) obtained in WMT

2017 (Bojar et al., 2017) results which were
better or comparable to those by Martins et al.
(2017), using a three-level stacked architec-
ture trained in a multi-task fashion, combin-
ing a neural word prediction model trained
on large-scale parallel corpora, and word- and
sentence-level MT QE models.

Our approach uses a much simpler architecture than
the last two approaches, containing no recurrent
NNs, but just feed-forward NNs applied to a fixed-
length context window around the word or gap
about which a decision is being made (similarly to a
convolutional approach). This makes our approach
easier to train and parallelize.

3 Method

The approach presented here builds on previous
work by the same authors (Esplà-Gomis et al.,
2015a,b; Esplà-Gomis et al., 2016) in which inser-
tion positions were not yet predicted and a slightly
different feature set was used. As in the origi-
nal papers, here we use black-box bilingual re-
sources from the Internet. In particular, we use,
for each language pair, the statistical MT phrase
tables available at OPUS1 to spot sub-segment cor-
respondences between the SL segment S and its
machine translation T into the TL (see section 4.2
for details). This is done by dividing both S and
T into all possible (overlapping) sub-segments, or
n-grams, up to a certain maximum length.2 These
sub-segments are then translated into the TL and
the SL, respectively, by means of the phrase tables
mentioned (lowercasing of sub-segments before
and after translation is used to increase the chance
of a match). These sub-segment correspondences
are then used to extract several sets of features that
are fed to a feed-forward NN in order to label the
words and the gaps between words as OK or as
BAD. One of the main advantages of this approach,
when compared to the other approaches described
below, is that it uses simple string-level bilingual
information extracted from a publicly available
source to build features that allow us to easily esti-
mate quality for the words and inter-word gaps in
T .

3.1 Features for word deletions

We define three sets of features to detect the words
to be deleted: one taking advantage of the sub-
segments τ that appear in T , Keepn(·); another
one that uses the translation frequency with which a
sub-segment σ in S is translated as the sub-segment
τ in T , Freqkeepn (·); and a third one that uses the
alignment information between T and τ and which
does not require τ to appear as a contiguous sub-
segment in T , Alignkeepn (·).

Features for word deletions based on sub-
segment pair occurrences (Keep) Given a set
of sub-segment pairs M = {(σ, τ)} coming from
the union of several phrase tables, the first set of
features, Keepn(·), is obtained by computing the
amount of sub-segment translations (σ, τ) ∈ M
with |τ | = n that confirm that word tj in T should
be kept in the translation of S. A sub-segment

1http://opus.nlpl.eu/
2For our submission, we used L = 5.
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translation (σ, τ) confirms tj if σ is a sub-segment
of S, and τ is an n-word sub-segment of T that
covers position j. This set of features is defined as
follows:

Keepn(j, S, T,M) =

=
|{τ : (σ, τ) ∈ confkeepn (j, S, T,M)}|
|{τ : τ ∈ segn(T ) ∧ j ∈ span(τ, T )}|

where segn(X) represents the set of all possible
n-word sub-segments of segment X , and func-
tion span(τ, T ) returns the set of word positions
spanned by the sub-segment τ in the segment
T ; if τ is found more than once in T , it re-
turns all the possible positions spanned. Function
confkeepn (j, S, T,M) returns the collection of sub-
segment pairs (σ, τ) that confirm a given word tj ,
and is defined as:

confkeepn (j, S, T,M) =
= {(σ, τ) ∈ matchn(M,S, T ) : j ∈ span(τ, T )}

where matchn(M,S, T )) is the set of phrase pairs
in M with n words in the target that are found
in the segment pair (S, T ), and where seg∗(X) is
similar to segn(X) but without length constraints.3

Features for word deletions based on sub-
segment pair occurrences using translation fre-
quency (Freqkeepn ) The second set of features
uses the probabilities of subsegment pairs. To ob-
tain these probabilities from a set of phrase tables,
we first use the count of joint occurrences of (σ, τ)
provided in each phrase table. Then, when look-
ing up a SL sub-segment σ, the probability p(τ |σ)
is computed across all phrase tables from the ac-
cumulated counts. Finally, we define Freqkeepn (·)
as:

Freqkeepn (j, S, T,M) =

=
∑

(σ,τ)∈confkeepn (j,S,T,M)

p(τ |σ).

Features for word deletions based on word
alignments of partial matches (Alignkeepn ) The
third set of features takes advantage of partial
matches, that is, of sub-segment pairs (σ, τ) in
which τ does not appear as such in T . This set of
features is defined as:

Alignkeepn (j, S, T,M, e) =

=
∑

τ∈segs edopn(j,S,T,M,e)

|LCS(τ, T )|
|τ |

(1)

3Esplà-Gomis et al. (2015a) conclude that constraining
only the length of τ leads to better results than constraining
both σ and τ .

where LCS(X,Y ) returns the word-based longest
common sub-sequence between segments X and
Y , and segs edopn(j, S, T,M, e) returns the set
of sub-segments τ of length n from M that are a
translation of a sub-segment σ from S and in which,
after computing the LCS with T , the j-th word tj
is assigned the edit operation e:4

segs edopn(j, S, T,M, e) =
= {(τ : (σ, τ) ∈M ∧ σ ∈ seg∗(S)
∧ |τ | = n ∧ editop(tj , T, τ) = e}

(2)

where editop(tj , T, τ) returns the edit operation
assigned to tj and e is either delete or match.
If e = match the resulting set of features pro-
vides evidence in favour of keeping the word tj
unedited, whereas when e = delete it provides
evidence in favour of removing it. Note that fea-
tures Alignkeepn (·) are the only ones to provide ex-
plicit evidence that a word should be deleted.

The three sets of features described so far,
Keepn(·), Freqkeepn (·), and Alignkeepn (·), are com-
puted for tj for all the values of sub-segment length
n ∈ [1, L]. Features Keepn(·) and Freqkeepn (·)
are computed by querying the collection of sub-
segment pairs M in both directions (SL–TL and
TL–SL). Computing Alignkeepn (·) only queries M
in one direction (SL–TL) but is computed twice:
once for the edit operation match, and once for
the edit operation delete.

3.2 Features for insertion positions

In this section, we describe three sets of features
—based on those described in section 3.1 for word
deletions— designed to detect insertion positions.
The main difference between them is that the for-
mer apply to words, while the latter apply to gaps;
we will call γj the gap after word tj .5

Features for insertion positions based on sub-
segment pair occurrences (NoInsert) The first
set of features, NoInsertn(·), based on the
Keepn(·) features for word deletions, is defined
as follows:

NoInsertn(j, S, T,M) =

|{τ : (σ, τ) ∈ confnoinsn (j, S, T,M)}|
|{τ : τ ∈ segn(T ) ∧ [j, j + 1] ⊆ span(τ, T )}|

4Note that the sequence of edit operations needed to trans-
form X in Y is a by-product of computing LCS(X,Y ); these
operations are insert, delete or match (when the corre-
sponding word does not need to be edited).

5Note that the index of the first word in T is 1, and gap γ0
corresponds to the space before the first word in T .
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where function confnoinsn (j, S, T,M) returns the
collection of sub-segment pairs (σ, τ) covering a
given gap γj , and is defined as:

confnoinsn (j, S, T,M) =
{(σ, τ) ∈ matchn(M,S, T ) :

[j, j + 1] ⊆ span(τ, T )}

NoInsertn(·) accounts for the number of times that
the translation of sub-segment σ from S makes it
possible to obtain a sub-segment τ that covers the
gap γj , that is, a τ that covers both tj and tj+1. If a
word is missing in gap γj , one would expect to find
fewer sub-segments τ that cover this gap, therefore
obtaining low values for NoInsertn(·), while if
there are no words missing in γj , one would expect
more sub-segments τ to cover the gap, therefore
obtaining values of NoInsertn(·) closer to 1. In
order to be able to identify insertion positions be-
fore the first word or after the last word, we use
imaginary sentence boundary words t0 and t|T |+1,
which can also be matched,6 thus allowing us to
obtain evidence for gaps γ0 and γ|T |.

Features for insertion positions based on sub-
segment pair occurrences using translation fre-
quency (Freqnoinsn ) Analogously to Freqkeepn (·)
above, we define the feature set Freqnoinsn (·), now
for gaps:

Freqnoinsn (j, S, T,M) =

=
∑

(σ,τ)∈confnoinsn (j,S,T,M)

p(τ |σ)

Features for insertion positions based on word
alignments of partial matches (Alignnoinsn ) Fi-
nally, the set of features Alignkeepn (·) for word dele-
tions can be easily repurposed to detect the need for
insertions by setting the edit operation e in eq. (1)
to match and insert and redefining eq. (2) as

segs edopn(j, S, T,M, e) = {(τ : (σ, τ) ∈M
∧ |τ | = n

∧ editop(tj , τ, T ) = e}

where the LCS is computed between τ and T ,
rather than the other way round.7 We shall refer
to this last set of features for insertion positions as
Alignnoinsn (·).

6These boundary words are annotated in M when this
resource is built.

7It is worth noting that LCS(X,Y ) = LCS(Y,X), but
the sequences of edit operations obtained as a by-product are
different in each case.

The sets of features for insertion positions,
NoInsertn(·), Freqnoinsn (·) and Alignnoinsn (·), are
computed for gap γj for all the values of sub-
segment length n ∈ [2, L]. As in the case of the
feature sets employed to detect deletions, the first
two sets are computed by querying the set of sub-
segment pairsM via the SL or via the TL, while the
latter can only be computed by querying M via the
SL for the edit operations insert and match.

3.3 Neural network architecture and training
We use a two-hidden-layer feed-forward NN to
jointly predict the labels (OK or BAD) for word tj
and gap γi, using features computed at word posi-
tions ti−C , ti−C+1, . . . , ti−1, ti, ti+1, . . . , ti+C−1,
ti+C and at gaps γi−C , γi−C+1, . . . , γi−1, γi,
γi+1, . . . , γi+C−1, γi+C , where C represents the
amount of left and right context around the word
and gap being predicted.

The NN architecture has a modular first layer
with ReLU activation functions, in which the fea-
ture vectors for each word and gap, with F and
G features respectively, are encoded into interme-
diate vector representations (“embedding”) of the
same size; word features are augmented with the
baseline features provided by the organizers. The
weights for this first layer are the same for all words
and for all gaps (parameters are tied). A second
layer of ReLU units combines these representa-
tions into a single representation of the same length
(2C +1)(F +G). Finally, two sigmoid neurons in
the output indicate, respectively, if word ti has to
be tagged as BAD, or if gap γi should be labelled
as BAD. Preliminary experiments confirmed that
predicting word and gap labels with the same NN
lead to better results than using two independent
NNs.

The output of each of the sigmoid output units
is additionally independently thresholded (Lipton
et al., 2014) using a line search to establish thresh-
olds that optimize the product of the F1 score for
OK and BAD categories on the development sets.
This is done since the product of the F1 scores is
the main metric of comparison of the shared task,
but it cannot be directly used as the objective func-
tion of the training as it is not differentiable.

Training was carried out using the Adam stochas-
tic gradient descent algorithm to optimize cross-
entropy. A dropout regularization of 20% was ap-
plied on each hidden layer. Training was stopped
when results on the development set did not im-
prove for 10 epochs. In addition, each network was
trained 10 times with different uniform initializa-
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tions (He et al., 2015), choosing the parameter set
performing best on the development set.

Preliminary experiments have led us to choose
a value C = 3 for the number of words and gaps
both to the left and to the right of the word and
gap for which a prediction is being made; smaller
values such a C = 1 gave, however, a very similar
performance.

4 Experimental setting

4.1 Datasets provided by the organizers
Six datasets were provided for the shared task on
MT QE at WMT 2018 (Specia et al., 2018), cov-
ering four language pairs —English–German (EN–
DE), German–English (DE–EN), English–Latvian
(EN–LV), and English–Czech (EN–CS)— and two
MT systems —statistical MT (SMT) and neural
MT (NMT). Each dataset is split into training, de-
velopment and test sets. From the data provided by
the organizers of the shared task, the approach in
this paper used:

1. set of segments S in source language,
2. set of translations T of the SL segment pro-

duced by an MT system,
3. word-level MT QE gold predictions for each

word and gap in each translation T , and
4. baseline features8 for word-level MT QE.

Regarding the baseline features, the organiz-
ers provided 28 features per word in the dataset,
from which we only used the 14 numeric features
plus the part-of-speech category (one-hot encoded).
This was done for the sake of simplicity of our
architecture. It is worth mentioning that no valid
baseline features were provided for the EN–LV
datasets. In addition, the large number of part-of-
speech categories in the EN–CS dataset led us to
discard this feature in this case. As a result, 121
baseline features were obtained for EN–DE (SMT),
122 for EN–DE (NMT), 123 for DE-EN (SMT), 14
for EN–CS (SMT), and 0 for EN–LV (SMT) and
EN–LV (NMT).

4.2 External bilingual resources
As described above, our approach uses ready-made,
publicly available phrase tables as bilingual re-
sources. In particular, we have used the cleaned
phrase tables available on June 6, 2018 in OPUS for

8https://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox_baseline_
17

the language pairs involved. These phrase tables
were built on a corpus of about 82 million pairs of
sentences for DE–EN, 7 million for EN–LV, and
61 million for EN–CS. Phrase tables were avail-
able only for one translation direction and some of
them had to be inverted (for example, in the case
of EN–DE or EN–CS).

5 Results

This section describes the results obtained by the
UAlacant system in the MT QE shared task at
WMT 2018 (Specia et al., 2018), which are re-
ported in Table 1. Our team participated in two
sub-tasks: sentence-level MT QE (task 1) and word-
level MT QE (task 2). For sentence-level MT QE
we computed the number of word-level operations
predicted by our word-level MT QE approach and
normalized it by the length of each segment T , in
order to obtain a metric similar to TER. The words
tagged as BAD followed by gaps tagged as BAD
were counted as replacements, the rest of words
tagged as BAD were counted as deletions, and the
rest of gaps tagged as BAD were counted as one-
word insertions.9 This metric was used to partici-
pate both in the scoring and ranking sub-tasks.

Columns 2 to 5 of Table 1 show the results ob-
tained for task 1 in terms of the Pearson’s correla-
tion r between predictions and actual HTER, mean
average error (MAE), and root mean squared error
(RMSE), as well as Sperman’s correlation ρ for
ranking.

Columns 6 to 11 show the results for task 2
in terms of F1 score both for categories OK and
BAD,10 together with the product of both F1 scores,
which is the main metric of comparison of the task.
The first three columns contain the results for the
sub-task of labelling words while the last three
columns 9 to 11 contain the results for the sub-task
of labelling gaps.

As can be seen, the best results were obtained
for the language pair DE–EN (SMT). Surprisingly,
the results obtained for EN–LV (NMT) were also
specially high for word-level and sentence-level
MT QE. These results for the latter language pair
are unexpected for two reasons: first, because no
baseline features were available for word-level MT

9Note that this approach is rather limited, as it ignores
block shifts and the number of words to be inserted in a gap,
which are basic operations to compute the actual TER value.

10For word deletion identification, a word marked as BAD
means that the word needs to be deleted, while in the case of
insertion position identification, if a gap is marked as BAD it
means that one or more words need to be inserted there.
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sentence-level word-level (words) word-level (gaps)
Dataset r MAE RMSE ρ FBAD FOK FMULTI FBAD FOK FMULTI

EN–DE SMT 0.45 0.15 0.19 0.44 0.35 0.81 0.29 0.33 0.96 0.32
EN–DE NMT 0.35 0.14 0.20 0.41 0.22 0.86 0.19 0.12 0.98 0.12
DE–EN SMT 0.63 0.12 0.17 0.60 0.43 0.87 0.37 0.33 0.97 0.32
EN–LV SMT 0.36 0.20 0.26 0.34 0.27 0.82 0.22 0.15 0.94 0.14
EN–LV NMT 0.56 0.17 0.22 0.55 0.44 0.80 0.36 0.17 0.95 0.16
EN–CS SMT 0.43 0.18 0.23 0.46 0.42 0.75 0.31 0.15 0.95 0.15

Table 1: Results for sentence-level MT QE (columns 2–5) in terms of the Pearson’s correlation r, MAE, RMSE,
and Sperman’s correlation ρ (for ranking). Results for the task of word labelling (columns 6–8) and gap labelling
(columns 9–11) in terms of the F1 score for class BAD (FBAD), the F1 score for class OK (FOK) and the product of
both (FMULTI).

QE task for this language pair, and second, because
the size of the parallel corpora from which phrase
tables for this language pair were extracted were
an order of magnitude smaller. One may think that
the coverage of machine translation by the phrase
tables could have an impact on these results. To
confirm this, we checked the fraction of words in
each test set that were not covered by any sub-
segment pair (σ, τ). This fraction ranges from 15%
to 4% depending on the test set, and has the low-
est value for EN–LV (NMT); however, it is not
clear that a higher coverage always leads to a better
performance as one of the datasets with a better
coverage was EN–LV (SMT) (5%) which, in fact,
obtained the worst results in our experiments.

It is worth noting that, when looking at the
results obtained by other participants, the differ-
ences in performance between the different datasets
seems to be rather constant, showing, for example,
a drop in performance for EN–DE (NMT) and EN–
LV (SMT); this lead us to think that the test set
might be more difficult in these cases. One thing
that we could confirm is that, for these two datasets,
the ratio of OK/BAD samples for word-level MT
QE is lower, which may make the classification
task more difficult.

In comparison with the rest of systems participat-
ing in this task, UAlacant was the best-performing
one in the sub-task of labelling gaps for 3 out of the
6 datasets provided (DE–EN SMT, EN–LV SMT,
and EN–LV NMT). Results obtained for the sub-
task of labelling words were poorer and usually in
the lower part of the classification. However, the
sentence-level MT QE submissions, which build
on the labels predicted for words and gaps by the
word-level MT QE system, performed substan-
tially better and outperformed the baseline for all
the datasets but EN–DE (NMT) and, for EN–LV

(NMT), it even ranked third.
As said above, one of the main advantages of

this approach is that it can be trained with limited
computational resources. In our case, we trained
our systems on a AMD Opteron(tm) Processor
6128 CPU with 16 cores and, for the largest set
of features (dataset DE–EN SMT), training took
2,5 hours, about 4 minutes per epoch.11

6 Concluding remarks

We have presented a simple MT word-level QE
method that matches the content of publicly avail-
able statistical MT phrase pairs to the source seg-
ment S and its machine translation T to produce a
number of features at each word and gap. To pre-
dict if the current word has to be deleted or if words
have to be inserted in the current gap, the features
for the current word and gap and C words and gaps
to the left and to the right are processed by a two-
hidden-layer feed-forward NN. When compared
with other participants in the WMT 2018 shared
task, our system ranks first in labelling gaps for 3
of the 6 language pairs, but does not perform too
well in labelling words. We also used word-level
estimations to approximate TER. We participated
with this approximation in the sentence-level MT
QE sub-task obtaining a reasonable performance
ranking, for almost all datasets, above the baseline.

One of the main advantages of the work pre-
sented here is that it does not require huge compu-
tational resources, and it can be trained even on a
CPU in a reasonable time.
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Abstract

The goal of WMT 2018 Shared Task on Trans-
lation Quality Estimation is to investigate au-
tomatic methods for estimating the quality of
machine translation results without reference
translations. This paper presents the QE Brain
system, which proposes the neural Bilingual
Expert model as a feature extractor based on
conditional target language model with a bidi-
rectional transformer and then processes the
semantic representations of source and the
translation output with a Bi-LSTM predictive
model for automatic quality estimation. The
system has been applied to the sentence-level
scoring and ranking tasks as well as the word-
level tasks for finding errors for each word in
translations. An extensive set of experimen-
tal results have shown that our system outper-
formed the best results in WMT 2017 Qual-
ity Estimation tasks and obtained top results in
WMT 2018.

1 Introduction

Quality Estimation (QE) is a task to estimate the
quality of a Machine Translation (MT) system
without the presence of any manually annotated
reference translations. It can serve in a vari-
ety of computer-aided scenarios such as transla-
tion results screening before release or transla-
tion quality comparison between different MT sys-
tems. Currently, the classical and widely-used
method to evaluate an MT system is measured
by BLEU (Papineni et al., 2002), a statistical
language-independent metric that requires human
golden references for validation. What if we ex-
pect to efficiently get the detailed quality evalua-
tion feedbacks (e.g. sentence or token-wise scor-
ing) from an extremely large number of machine
translation outputs? An automatic method with no
access to any reference is highly appreciated.

∗* indicates equal contribution.

The common approach to automatic translation
quality estimation is to transform the problem into
a supervised regression or classification task for
sentence-level scoring and word-level labeling re-
spectively. Traditional baseline models in WMT
12-17 have two modules: human-crafted rule-
based feature extraction model via QuEst++ (Spe-
cia et al., 2015) (sentence-level task) or Marmot1

(word-level task); and an SVM regression with
an RBF kernel as well as grid search algorithms
for predicting how much effort is needed to fix
translations to acceptable results (sentence-level
task) or a sequence-labeling model with CRFSuit
toolkit to predict which word in the translation
output needs to be edited (word-level task). A
recently proposed predictor-estimator model with
stack propagation (Kim et al., 2017) is a recur-
rent neural network (RNN) based feature extrac-
tor and quality prediction model that ranked first
place in WMT17. Another novel method is to
train an Automatic Post-Editing (APE) system and
adapt it to predict sentence-level quality scores and
word-level quality labels (Martins et al., 2017). A
promising APE system can serve as a guidance to
QE system by explicitly explaining errors in the
translation output.

Our submitted system for sentence and word
level QE tasks in WMT18, named QE Brain has
two phases: feature extraction and quality estima-
tion. In the phase of feature extraction, it extracts
high-level latent joint semantics and alignment in-
formation between the source and the translation
output, relying on the “neural Bilingual Expert
model” introduced by Fan et al. (2018) as a prior
knowledge model, which is trained on a large par-
allel corpus. The high-level latent semantic fea-
tures and manually designed mis-matching fea-
tures (Fan et al., 2018) exported from the prior

1https://github.com/qe-team/marmot
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knowledge model are fed into a predictive model
in the phase of quality estimation, with which
the scoring prediction for the sentence-level task
and erroneous or missing word predictions for the
word-level task are targeted. This paper presents
our submissions for the WMT18 Quality Estima-
tion English-German and German-English Shared
Tasks, namely, (i) a sentence-level QE scoring pre-
diction system and (ii) a word-level QE labeling
prediction system including word predictions and
gap predictions. Since both systems are supposed
to understand the complex semantic relationship
between the source and the translation output, the
features produced by a pre-trained neural Bilin-
gual Expert model can be shared by the two level
tasks per language direction.

In Section 3, we will discuss several techniques
to boost our system’s performance. We make use
of extra human-crafted baseline features including
basic descriptive statistics, language model (LM)
probabilities and alignments information of the
source and the translation output. They are com-
bined with features from the neural Bilingual Ex-
pert model to predict the sentence-level scores. In
addition, to make up the shortage of QE train-
ing data, we apply the round-trip translation tech-
nique to generate some artificial QE data that in-
creases the error diversity and prevents overfitting.
To further enhance our model’s performance, we
use a greedy algorithm based ensemble selection
method to decrease the individual error among a
bunch of single quality estimation models.

2 QE Brain Baseline Model

QE Brain base single model contains a feature ex-
tractor and a quality estimator. The feature extrac-
tor relies on the Bilingual Expert model to extract
features representing latent semantic information
of the source and translation pair. These features
will be fed into a quality estimator to estimate the
translation quality.

The Bilingual Expert model uses self-attention
mechanism and transformer neural networks to
construct a bidirectional transformer architecture
(Fan et al., 2018), serving as a conditional lan-
guage model. It is used to predict every sin-
gle word in the target sentence given the entire
source sentence and its context . The Bilingual
Expert model consists of three modules: (i) trans-
former self-attention based encoder for the source
sentence, (ii) forward and backward encoders for

the target sentence with the masked self-attention
in the transformer decoder module, (iii) recon-
struction for the target sentence. Once the model
is fully trained, we can use the prior knowledge
learned from the Bilingual Expert model to extract
the features for the subsequent translation quality
estimator. There are two kinds of features upon
the Bilingual Expert model defined by Fan et al.
(2018): model derived features of latent represen-
tations and manually extracted mismatching fea-
tures.

When we perform quality estimation on a
source and translation pair, we need to obtain
the semantics information of the source and the
translation output and their alignment informa-
tion. We can assume that it is more likely for the
model to predict a correct target word if only few
words around it are incorrect. Fan et al. (2018)
claims that both the latent representations of the
k-th word in the translation output and its mis-
matching features that reflect the error severity if it
is a mistake are sufficiently beneficial to the down-
stream quality predictive model. Choices of the
quality estimation models are compared as well. It
is found that the bi-directional LSTM (Graves and
Schmidhuber, 2005) will be appropriate in the QE
situation. We treat the feature extraction model
based on the neural Bilingual Expert model and
the quality estimation based on Bi-LSTM model
as our baseline system.

3 Boosting the QE Model Performance

3.1 Human-crafted Features
Along with the features produced by the Bilingual
Expert model, we extract another 17 QE baseline
features for the sentence-level task using QuEst++
and additional resources (source and target cor-
pora, language models, ngram counts and lexical
translation tables) provided on the WMT18 QE
website2. Kozlova et al. (2016) verifies the sig-
nificance of these features using Random Forest
(Breiman, 2001). Four of them are the most cru-
cial among all according to their degrees of impor-
tance.

- percentage of trigrams in quartile 4 of fre-
quency of source words in a corpus of the
source language

- LM probability of source sentence
2http://www.statmt.org/wmt18/

quality-estimation-task.html
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- percentage of bigrams in quartile 4 of fre-
quency of source words in a corpus of the
source language

- average number of translations per source
word in the sentence

Language models (LM) assign probabilities to
generate hypotheses in the target language in-
forming lexical selection in statistical machine
translation (SMT). It is reasonable that three of
the above four baseline features are derived from
the LM. Moreover, alignment models can essen-
tially help SMTs determine translational corre-
spondences between the N-grams in the source
with those of the same meanings in the target. Par-
ticularly, a satisfying translation result can contain
as many translated words as possible, according to
an alignment model, IBM model 1 or 2. Conse-
quently, average number of translations per source
word in the sentence becomes large.

Fan et al. (2018) proposed to use the concatena-
tion of the model derived and mis-matching fea-
tures as input of a Bi-LSTM quality predictive
model. The sentence-level score prediction can be
formulated as a regression problem with the objec-
tive function,

argmin
∥∥∥h− sigmoid

(
w>[
−→
hT ;
←−
hT ]
)∥∥∥

2

2
(1)

where
−→
hT and

←−
hT are the hidden states of the last

time stamps of the Bi-LSTM’s output, h represents
the translation score (HTER) and w is a vector.
Alternatively, we introduce the human-crafted fea-
tures as additional linear components for the pre-
dictive layer with a sigmoid activation function.
Therefore, the objective function can be rewritten
as,

argmin
∥∥∥h− sigmoid

(
w>[
−→
hT ;
←−
hT ; fh]

)∥∥∥
2

2
(2)

where fh is the 17-dimensional QE baseline fea-
tures.

3.2 Artificial QE Data Construction
Unlike stacking of an APE-based QE system and
a “pure” QE system trained only on the provided
QE training dataset (Martins et al., 2017), we came
up with the idea to take advantage of the artificial
training data augmentation technique (Junczys-
Dowmunt and Grundkiewicz, 2016) in the APE
task to provide more supplementary training data,

Figure 1: Robustness analysis on English-German QE
model. Experiment 1: model trained with real QE data;
Experiment 2: model trained with real and artificial QE
data

aiming to increase the diversity of erroneous trans-
lations during the training process so that it can re-
duce the overfitting of our model. We trained two
English-German quality estimation models with
(i) the real QE training data alone or (ii) the real
and artificial QE data, and evaluated them on the
development data and the data made up with 1800
random samples from the real QE training data to
investigate the robustness of them. As shown in
Fig 1, the model trained with (ii) (Experiment 2)
is more robust than the model trained with (i) (Ex-
periment 1), but can achieve comparable perfor-
mance on the development data.

The round-trip translation process can produce
literal translations that may be similar to post-
edited triplets including sources (SRC), translation
outputs (MT) and post editions (PE). In order to
mimic the QE data, we randomly pick triplets gen-
erated by the round-trip translation technique ac-
cording to the distribution of HTERs in the real
QE training and development data.

3.3 Greedy Ensemble Selection

To generate an ensemble of submissions for the
WMT 18 QE task, the simplest methods are av-
eraging the predictive scores for the sentence level
and majority voting for the predictive labels for the
word level from a number of single models. Ho-
mogeneous models can be derived from perform-
ing the same learning methodology but with dif-
ferent hyper-parameters of the model architecture
including the neural Bilingual Expert model and
Bi-LSTM quality predictive model.
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In the sentence level, adding human-crafted fea-
tures can be optional when we make different as-
sumptions about the features of source and trans-
lation pairs. Under this situation, heterogeneous
models can be derived from performing the same
learning algorithm on different datasets. We can
also use the Byte-Pair Encoding (BPE) tokeniza-
tion as a substitution for a word tokenization in
text pre-processing. Fan et al. (2018) compared
the performance of the word and BPE tokeniza-
tion on both sentence and word levels in WMT 18
and the results show that the models with BPE tok-
enization can produce comparable or better results
than those with word tokenization.

In general, the ensemble output of K single
models can be produced by the following objec-
tive function,

argmax
tk

K∑

k=1

wkmk (X = x, T = tk) (3)

where mk is the k-th single model that has prob-
ability distribution mk (x, tk) with its correspond-
ing weight wk. X represents the feature instance
of a single model, and T represents the HTER or
the word label where tk can be a continuous qual-
ity score or an OK/BAD label respectively. We
assign equal weights to every single model in our
case for simplicity.

Since not every single model in the ensemble is
always needed for the optimized prediction, it is
appropriate to select a subset from all candidate
models. We follow the greedy ensemble selec-
tion algorithm, Focused Ensemble Selection (FES
) (Partalas et al., 2008), to reduce the size of av-
eraging ensembles but improve its efficiency and
predictive performance.

In the sentence level, FES’s output is averaging
HTER scores of selected single models. However,
in the word level, the ensemble can be made by
majority voting of the binary predictions for se-
lected single models or averaging their probabili-
ties of predicting the word as OK. We use the de-
velopment data for evaluation under the assump-
tion that the development data and the test data are
from the same distribution, even if it might be sus-
ceptible to overfitting. However, we did not ob-
serve this phenomena in results released for the
test data in WMT18 QE task.

4 Experiments

4.1 Experimental Settings

4.1.1 Data for Bilingual Expert Model
We evaluated our system, QE Brain, for the
WMT17/18 QE task for sentence/word-level in
English-German and German-English. The fol-
lowings are data resources that we used for train-
ing the neural Bilingual Expert model,

- parallel corpora released for the WMT17/18
News Machine Translation Task3

- UFAL Medical Corpus and Khresmoi devel-
opment data release for the WMT18 Biomed-
ical Translation Task4

- source and target corpora MT training data
released in the additional resources for the
WMT18 QE Task

- src-pe pairs for for the WMT17/18 QE Task

We filtered all the corpora except src-pe pairs with
basic rules to guarantee the quality. A “high-
quality” sentence pair should both start with a Uni-
code letter character, the lengths of them are equal
to or less than 70, and the length ratio of the source
sentence and the target one should be bounded by
1/3 and 3. The total resulting qualifying parallel
corpora roughly include 13 million for WMT17
QE tasks and 29 million for WMT18 QE tasks.

4.1.2 Data for Quality Estimation Model
The data for quality estimation contains two parts:
(i) real QE data provided by WMT QE organiz-
ers; (ii) artificial QE data generated by the round-
trip translation technique (Junczys-Dowmunt and
Grundkiewicz, 2016). We first combined the real
QE data with the artificial QE data to train a
baseline quality estimation model, then fine tuned
the model with the real QE data alone. The
English-German IT domain artificial QE data can
be obtained directly from the additional resources
of WMT18 Auto Post-Editing task5 created by
Junczys-Dowmunt and Grundkiewicz (2016). We
applied the English-German artificial QE data on

3http://www.statmt.org/wmt18/
translation-task.html

4http://www.statmt.org/wmt18/
biomedical-translation-task.html

5http://www.statmt.org/wmt18/ape-task.
html
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test 2017 en-de test 2017 de-en
Method Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑ Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
Baseline 0.397 0.136 0.175 0.425 0.0745 0.441 0.128 0.175 0.45 0.0681
Unbabel 0.641 0.128 0.169 0.652 0.1136 0.626 0.121 0.179 0.61 0.974

POSTECH Single-Ensemble 0.6731 0.1067 0.1412 0.7029 0.1198 0.7146 0.0942 0.1359 0.6327 0.1044
POSTECH Multi-Ensemble 0.6954 0.1019 0.1371 0.7253 0.1232 0.7280 0.0911 0.1332 0.6542 0.1064
QE Brain Base Single Model 0.6837 0.1001 0.1441 0.7091 0.1200 0.7099 0.0927 0.1394 0.6424 0.1018

+ HF 0.6842 0.1013 0.1449 0.7150 0.1213 0.7085 0.0901 0.1406 0.6551 0.1040
+ FT 0.6957 0.1001 0.1420 0.7205 0.1208 0.7128 0.0933 0.1394 0.6422 0.1013

+ HF/FT 0.6813 0.1021 0.1460 0.7070 0.1197 0.7149 0.0889 0.1385 0.6596 0.1026
QE Brain Ensemble 0.7159 0.0965 0.1384 0.7402 0.1247 0.7338 0.0882 0.1333 0.6700 0.105

Table 1: Results of sentence-level scoring and ranking on WMT17. HF: human features; FT: fine-tune strategy
with artificial QE data.

the SMT QE task. For the neural machine transla-
tion (NMT) QE task, we followed the same pro-
cedure but trained two NMT models (German-
English and English-German) instead.

Similarly, when generating German-English
Pharmacy domain artificial QE data, we first
applied domain data selection to the English
monolingual corpus admissible for the WMT18
News and Biomedical Translation data with cross-
entropy filtering method and seed data set – post-
editing training data and the English biomedical
data. In total, we got 5 million domain-like sen-
tences for the round-trip translation. Afterwards,
we created two phrase-based translation models,
English-German and German-English, using the
parallel bilingual corpora for the WMT18 News
and Biomedial Translation tasks but with different
language models. The 5 million domain-like sen-
tences as PEs would be first translated to German
as SRCs and the SRCs would be then translated
to English as MTs. Finally, we would have 5 mil-
lion artificial APE training data, leading to 5 mil-
lion artificial QE training data with corresponding
HTERs and word labels via the TER tool.

We filtered the English-German and German-
English artificial QE data according to the HTER
distribution of the combination of QE training
and development data, and randomly pick 300,000
triplets per language pair.

Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑
Method test 2018 en-de SMT
Baseline 0.3653 0.1402 0.1772 0.3809
UNQE 0.7000 0.0962 0.1382 0.7244

QE Brain Ensemble 1 0.7308 0.0953 0.1383 0.7470
QE Brain Ensemble 2 0.7397 0.0937 0.1362 0.7543

Method test 2018 en-de NMT
Baseline 0.2874 0.1286 0.1886 0.4195
UNQE 0.5129 0.1114 0.1749 0.6052

QE Brain Ensemble 1 0.5005 0.1134 0.1734 0.6002
QE Brain Ensemble 2 0.5012 0.1131 0.1742 0.6049

Method test 2018 de-en SMT
Baseline 0.3323 0.1508 0.1928 0.3247
UNQE 0.7667 0.0945 0.1315 0.7261

QE Brain Ensemble 1 0.7539 0.0981 0.1355 0.7222
QE Brain Ensemble 2 0.7631 0.0962 0.1328 0.7318

Table 2: Results of sent level QE on WMT2018

F1-BAD F1-OK F1-Multi
Method test 2017 en-de
Baseline 0.407 0.886 0.361

DCU 0.614 0.910 0.559
Unbabel 0.625 0.906 0.566

POSTECH Ensemble 0.628 0.904 0.568
QE Brain Base Single Model 0.6407 0.9045 0.5795

+ FT 0.6410 0.9083 0.5826
QE Brain Ensemble 0.6616 0.9128 0.6039

Method test 2017 de-en
Baseline 0.365 0.939 0.342

POSTECH Single-Ensemble 0.552 0.936 0.516
Unbabel 0.562 0.941 0.529

POSTECH Multi-Ensemble 0.569 0.940 0.535
QE Brain Base Single Model 0.5750 0.9471 0.5446

+ FT 0.5816 0.9470 0.5507
QE Brain Ensemble 0.5924 0.9475 0.5613

Method test 2018 en-de SMT
Baseline 0.4115 0.8821 0.3630

SHEF-PT 0.5080 0.8460 0.4298
QE Brain Ensemble 1 0.6616 0.9168 0.6066
QE Brain Ensemble 2 0.6808 0.9175 0.6246

Method test 2018 en-de NMT
Baseline 0.1973 0.9184 0.1812

SHEF-PT 0.3353 0.8691 0.2914
QE Brain Ensemble 1 0.4750 0.9152 0.4361
QE Brain Ensemble 2 0.4767 0.9149 0.4347

Method test 2018 de-en SMT
Baseline 0.4850 0.9015 0.4373

SHEF-PT 0.4853 0.8741 0.4242
QE Brain Ensemble 1 0.6475 0.9162 0.5932
QE Brain Ensemble 2 0.6523 0.9217 0.6012

Table 3: Results of word-level word prediction on
WMT17/18

Method F1-BAD F1-OK F1-Multi
UAlacante SBI 0.1997 0.9444 0.1886
SHEF-bRNN 0.2710 0.9552 0.2589

SHEF-PT 0.2937 0.9618 0.2824
QE Brain 0.5109 0.9783 0.4999

Table 4: Results of word-level gap prediction on
WMT18 En-De SMT

4.1.3 Model Settings
The number of layers for the self-attention encoder
and forward/backward self-attention decoder are
all set as 2, where we use 8-head self-attention in
practice. The number of hidden units for feed-
forward sub-layer is 512. The bilingual expert
model is trained on 8 Nvidia P-100 GPUs for
about 3 days until convergence. For translation QE
model, we use only one layer Bi-LSTM, and it is
trained on a single GPU. Notice that for the QE
task of WMT17, it is prohibited to use any data
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from 2018, since the training data of 2018 includes
some test data of 2017. The same setting is applied
to all following experiments associated with 2017.
We tuned all the hyper-parameters of our model
on the development dataset to obtain the best sin-
gle model, and report the corresponding results for
test data.

We increased the model diversity from two per-
spectives. First, in terms of data resources, we
experienced with three strategies: word/BPE to-
kenization, w/ or w/o artificial QE data and w/ or
w/o human-crafted features for the sentence-level
task. Secondly, we tuned the number of units for
Bi-LSTM with 96 or 128 and training batch size
with 32 or 64 from the model’s perspective.

4.2 Evaluation Results

In this section, we will report the experimen-
tal results of our approach for WMT 2017 and
2018. For WMT17 QE task, we tried to verify
our proposed strategies. For WMT18 QE task, we
mainly participated in the sentence-level scoring
and ranking tasks and the word-level word pre-
diction tasks for English-German SMT, English-
German NMT and German-English SMT. In ad-
dition, we also submitted results for the word-
level gap predictions for English-German SMT.
In Table 2, part of Table 3 and Table 4, results
of WMT18 QE tasks are listed according to the
WMT18 QE website.

4.2.1 Ablation Study on WMT17 QE Task
Since we can access the translation outputs of hu-
man post-editing for test data, it provides an ideal
held-out test data to verify our proposed strategies.
We illustrated our results in Table 1 and part of Ta-
ble 3 on WMT17 QE Task. The competitors are
POSTECH, DCU and Unbabel. Their results can
be found in (Bojar et al., 2017) , Section 4.4 and
Section 4.5. We also listed the WMT QE baseline
results for reference. The QE Brain base single
model follows the exact training scheme in (Fan
et al., 2018) with model derived features and mis-
matching features. In sentence level, either incor-
porating human features or the use of artificial QE
data will positively contribute to the metrics. For
Pearson’s r, the single fine-tuning strategy yields
the improvement +0.01 on English-German and
+0.003 on German-English. For Spearman’s ρ,
the single model with human features improves
the performance by +0.006 in English-German
and +0.013 in German-English.

In word level, we did not use any human fea-
tures, but we found fine-tune strategy can al-
ways improve the performance. For F1-Multi,
the single fine-tuning strategy yields the improve-
ment +0.003 on English-German and +0.006 on
German-English. In general, with all these strate-
gies, our single models can be comparable or bet-
ter than the state-of-the-art (SOTA) ensemble sys-
tems of WMT17 QE task. Our ensemble models
significantly outperform all of the SOTA systems.

4.3 Ensemble Analysis on WMT18 QE Task

As we discussed previously, we tried both word
and BPE tokenization for the data pre-processing.
Thus, we submitted two types of ensemble mod-
els, where Ensemble 1 is referred to the model en-
sembles trained with word tokenization and En-
semble 2 is the model ensembles trained with both
word and BPE tokenizations. Training with BPE
tokenization can naturally increase the model di-
versity, so it makes sense that Ensemble 2 per-
forms better than Ensemble 1, except for English-
German NMT word-level task, which is very
likely due to the small data size (<14000).

5 Conclusion

This paper introduces our machine translation
quality estimation system, QE Brain, for both the
sentence-level and word-level tasks in WMT 2018
Quality Estimation. The system proposes the neu-
ral Bilingual Expert model to extract semantic fea-
tures from both the source and translation out-
put for estimating translation quality with a bi-
directional LSTM predictive model. In particular,
three important strategies are utilized for obtaining
positive results as incorporating human-crafted
features, artificial QE data augmentation for more
diversified training data and model ensemble with
a greedy algorithm. The results of our system ob-
tained No.1. in the English-German SMT scoring
and ranking tasks as well as the German-English
SMT ranking tasks. Furthermore, our system also
produced the best results in all word-level English-
German and German-English word and gap pre-
diction tasks.
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Abstract
This paper describes the submissions of the
team from the University of Tartu for the
sentence-level Quality Estimation shared task
of WMT18. The proposed models use fea-
tures based on attention weights of a neural
machine translation system and cross-lingual
phrase embeddings as input features of a re-
gression model. Two of the proposed models
require only a neural machine translation sys-
tem with an attention mechanism with no addi-
tional resources. Results show that combining
neural networks and baseline features leads
to significant improvements over the baseline
features alone.

1 Introduction

Over the last several years the quality of machine
translation has grown significantly. However even
today most machine translation systems produce
a lot of unreliable translations, with translation
quality varying greatly between different input and
output segments. To estimate the quality of these
translations several methods have been proposed
(Specia et al., 2013; Martins et al., 2017; Kim
et al., 2017a,b).

In this article we propose an approach to qual-
ity estimation that is based on a regression model
with different sets of features stemming from the
internal parameters of a neural machine translation
(NMT) system. We investigate how different in-
put features of the regression model affect the cor-
relation between the automatic quality estimation
score and human assessment. We show that our
models work for any translation output, without
access to the translation system that produced the
translations in question.

2 Method

The main idea of our method is to use features
based on NMT attention weights and metrics

based on cross-lingual embeddings as features of
a regression model. In the following we explain
the details of both these feature sources.

2.1 Attention Weights

The encoder-decoder NMT systems with an at-
tention mechanism (Bahdanau et al., 2014) pro-
duce the translation output with the help of com-
puted attention weights showing the strength of
the connection between the input and output to-
kens. These attention weights resemble a soft
alignment and their visualization often clearly in-
dicates the translation quality that can be expected
– see Figure 1 for an example of a well translated
sentence.

Rikters and Fishel (2017) have shown that the
attention weights can be used for confidence es-
timation, but only if these attention weights were
computed along with translations, using the inter-
nal parameters of the NMT system producing the
translations. We expand their approach to apply
attention weights to any translations, regardless
of whether they were produced by a data-driven,
rule-based translation system or even a human
translator. The same approach is used for quality
estimation in (Yankovskaya and Fishel, 2018).

To get attention weights for any translation pair,
we replace the decoding part of the NMT sys-
tem with computing the probability of the given
translation under an NMT model for that lan-
guage. This way beam search and selecting the
output token with the highest predicted proba-
bility is replaced with selecting the next given
output token; in other words, force-decoding is
done. Thus, we can get attention weights for any
source/translation pair without even knowing any-
thing about the system that produced this transla-
tion output.

To get features for a regression model we have
computed the following metrics proposed by Rik-
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Figure 1: Attention alignment visualization of a well translated sentence from English to German. The thicker
the line, the stronger the connection between the tokens (Rikters et al., 2017). It is visible from the alignment
visualization alone that the quality/confidence of the translation system is high: each input/output token has a
strong connection to one or at most two tokens on the other side.

ters and Fishel (2017) (see their paper for a more
detailed definition):

• Coverage Deviation Penalty (CDP) penal-
izes the sum of attentions per input token,
so tokens with less or too much attention get
lower scores.

• Absentmindedness Penalties (APin and
APout) compute the dispersion via the en-
tropy of the attention distribution of input and
output tokens.

• Total is the sum of all three metrics described
above.

In addition to the metrics above we have cal-
culated the ratio between input and output absent-
mindedness penalties as a small modification.

2.2 Cross-lingual Embeddings
NMT attention weights show the strength of the
connection between the input and output tokens,
but require running each segment pair through
the NMT system. Here we try to align the in-
put and output embeddings directly with the same
aim of estimating the similarity between the in-
put and output segments. This is done by tak-
ing the embedding-enhanced BLEU score called
BLEU2VEC (Tättar and Fishel, 2017) and doing it
cross-lingually.

We used three different types of embeddings to
learn the cross-lingual similarity:

• Word-level embeddings were trained on to-
kenized data that consisted only of unigram
words.

• Phrase-level embeddings were trained on
data that concatenated words into phrases
stochastically (Tättar and Fishel, 2017).
Phrases consisted of up to three words con-
catenated with underscores.

• BPE-level embeddings use the embeddings
from NMT systems that are trained on byte
pair encoded data (Sennrich et al., 2015).
BPE (byte-pair encoding) splits words into
sub-word units in order to reduce the number
of unique tokens.

The word-level and phrase-level embeddings
were trained separately using monolingual cor-
pora.Embeddings for BPE-s came from the
attention-decoder translation system used in the
attention weight feature extraction. These embed-
dings were not trained separately, so no additional
training time was required for them.

After learning the monolingual embeddings,
joint cross-lingual vector spaces are learned based
on the monolingual ones, using the method of
(Conneau et al., 2017). Cross-lingual mappings
are learned between all the language pairs using
MUSE1. In case of word-level and phrase-level
mappings we used the supervised learning which

1A library for Multilingual Unsupervised or Su-
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Figure 2: An examples of cross-lingual embeddings for French and English in the same vector space. On the
figure, the closest neighbor was found and put on the graph. Dimensions are reduced from 300 down to the 2 first
PCA components. Phrases are concatenated with two underscores. Blue means the source word/phrase and red
means the nearest neighbor.

uses a seed dictionary of 1500 words for learning
the mapping. For BPE embeddings we used the
unsupervised cross-lingual mapping, which does
not require a seed dictionary. Both methods of
learning cross-lingual mappings for embedding
spaces are described in (Conneau et al., 2017).

With the cross-lingual embeddings ready we
compute the BLEU2VEC score:

• we find the optimal alignment between the
words, n-grams or subwords of the input and
output segments using beam search

• using this alignment we compute the BLEU
score’s (Papineni et al., 2002) n-gram preci-
sions, giving partial credit to aligned n-gram
(or word/sub-word) pairs equal to the cosine
similarity of their cross-lingual embeddings

We can see examples of words/phrases after
training cross-lingual embeddings in Figure 2.
The nearest neighbor for a source word or phrase
is visualized in the figure, which can be words or
phrases in target language.

pervised word Embeddings, https://github.com/
facebookresearch/MUSE

3 Experimental Settings

3.1 Data

We have applied our methods to all lan-
guage pairs presented in the WMT18 shared
task on sentence-level quality estimation (Specia
et al., 2018): German-English, English-German,
English-Latvian and English-Czech. For English-
German and English-Latvian language pairs the
translation output was produced by NMT and
SMT systems, for other languages only SMT
translations were given.

The number of sentences for each language pair
and each machine translation system is shown in
Table 1.

3.2 Experiments

The main goal of our experiments is to predict the
normalized edit distance (HTER) (Snover et al.,
2006). To estimate the quality of prediction we
used the Pearson correlation coefficient.

As a regression model we used Random Forest
(Ho, 1995) with a grid search algorithm for the op-
timization of parameters.

To get force-decoded attention weights and
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EN-DE DE-EN EN-CS EN-LV

nmt smt nmt smt nmt smt nmt smt

train 13442 26299 - 26032 - 40254 12936 11251

dev 1000 1000 - 1000 - 1000 1000 1000

test 1023 1926 - 1254 - 1920 1448 1315

Table 1: Number of sentences for each language pair and each machine translation system.

BPE embeddings for all language pairs we used
NMT models trained by the University of Edin-
burgh (Sennrich et al., 2017) for English-German,
German-English and English-Czech; for English-
Latvian we used a different NMT model trained
separately.

Our chosen implementation of word and phrase
embeddings was FastText (Bojanowski et al.,
2016) with a continuous bag-of-words (CBOW)
model and the number of dimensions for embed-
dings was set to 300. MUSE (Conneau et al.,
2017) was used for extracting cross-lingual em-
beddings, with default parameters. A simple beam
search was implemented for finding the quality es-
timation BLEU2VEC score, with beam size 3.

Initial tests showed that models with features
based on cross-lingual embeddings only gave a
close-to-zero Pearson correlation score, therefore
these were not included as standalone features
into the final experiments. A combination of
cross-lingual embeddings (words, phrases, BPE)
demonstrated a little bit better results but they
were still lower than results obtained by using a
model based on the attention weights. Taking into
the account these results, we ran the final experi-
ments with the following sets of features:

• QuEst: a standard set of 17 black-box QuEst
features (Specia et al., 2013);

• AttW: features based on the force-decoded
attention weights: CDP , APin, APout,
total, APratio;

• QuEst+AttW: a combination of QuEst and
attention weights features;

• QuEst+AttW+CrEmb3: a combination of
QuEst, attention weights and cross-lingual
embeddings (phrases, words and BPE) fea-
tures;

• AttW+BPE: a combination of attention
weights and cross-lingual embeddings (BPE)

features – to test a scenario of using only the
parameters of an NMT system, both for the
attention weights and the BPE embeddings

• AttW+CrEmb3: a combination of atten-
tion weights and cross-lingual embeddings
(phrases, words and BPE) features.

The model with QuEst features was used as a
baseline.

4 Results

The resulting Pearson coefficients for the dev and
test sets for the all given language pairs are pre-
sented in Table 2. As one can see the high-
est values were obtained by applying the models
QuEst+AttW or QuEst+AttW+CrEmb3. For
English-German (NMT and SMT) and English-
Latvian (SMT) language pairs the difference be-
tween these two models is negligible.

The baseline model shows the best result for
all language pairs but German-English in com-
parison with two of our models: AttW and
AttW+BPE. Although for English-Czech and
English-Latvian (NMT) the difference between
the baseline model and our models is small:
0.389/0.355 and 0.462/0.445. It is interesting to
note that for German-English all of our proposed
models showed a result that is more than twice the
baseline model’s result.

The main advantage of our models AttW and
AttW+BPE is that they do not require additional
resources like language models, n-gram frequen-
cies, alignment probability files or even additional
embedding models. In the case when the trans-
lation output is produced by an NMT system with
an attention mechanism both models require atten-
tion weights or/and BPE embeddings of this NMT
model. In the case when the system produced the
translation is unknown one might use any NMT
system with an attention mechanism.
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EN-DE DE-EN EN-CS EN-LV
smt nmt smt smt smt nmt

dev test dev test dev test dev test dev test dev test

QuEst 0.387 0.369 0.390 0.354 0.392 0.220 0.406 0.389 0.382 0.389 0.491 0.462

AttW 0.292 0.249 0.197 0.219 0.539 0.533 0.313 0.319 0.336 0.323 0.394 0.438
AttW+
BPE

0.303 0.260 0.207 0.230 0.553 0.544 0.326 0.355 0.357 0.323 0.403 0.445

AttW+
CrEmb3

0.303 0.209 0.244 0.224 0.559 0.551 0.353 0.250 0.349 0.323 0.454 0.444

QuEst+
AttW

0.453 0.426 0.405 0.373 0.565 0.554 0.468 0.451 0.460 0.402 0.562 0.531

QuEst+
AttW+
CrEmb3

0.457 0.424 0.408 0.369 0.592 0.570 0.487 0.406 0.461 0.404 0.585 0.542

Table 2: The Pearson correlation coefficients for the dev and test sets for all language pairs.

5 Discussions

As we mentioned above, the value of the Pearson
correlation coefficient for German-English lan-
guage pair is much higher than the values for
other language pairs. A similar result is observed
for the data of the last year Quality Estimation
shared task, where the resulting Pearson correla-
tion coefficient produced by the model AttW was
0.302 for English-German and 0.485 for German-
English. We assume that this is related to the
domain of data: German-English and English-
Latvian data belongs to one domain (pharmaceuti-
cal) whereas English-German and English-Czech
sentences were taken from the another domain
(IT). This assumption is confirmed by the fact that
the values of the Pearson correlation coefficient for
English-Latvian are also slightly higher than the
values for other language pairs.

To investigate how the choice of the NMT sys-
tem affects the Pearson correlation between an
automatic prediction and human assessment, we
compared the results of our NMT system and Uni-
versity of Edinburgh’s NMT system for German-
English language pair.

The resulting Pearson coefficients of two pro-
posed models AttW and QuEst+AttW are pre-
sented in Table 3. The resulting scores differ but
not significantly; although on one hand this sug-
gests that the choice of the NMT system is not im-
portant, both of the compared NMT systems are
general-domain models, equally dissimilar from
both of the test data domains; a more thorough
comparison is left for future explorations.

AttW
QuEst
+AttW

dev test dev test

Edinburgh’s
NMT system

0.539 0.533 0.565 0.554

Our NMT
system

0.560 0.562 0.594 0.584

Table 3: The Pearson coefficients of two regression
models for German-English language pair. Attention
weights were obtained from two different systems.

6 Conclusions

In this paper we described our submissions to the
sentence-level subtask of WMT18 Quality Esti-
mation task. We proposed several models for qual-
ity estimation of machine translation based on at-
tention weights and embeddings. Our models do
not require any additional resources, except for an
NMT system and/or cross-lingual word embed-
dings learned from monolingual corpora. In the
case when the translation output is produced by
an NMT system with an attention mechanism, two
of our models require only attention weights and
BPE embeddings that are already created by this
system.

For several language pairs the proposed models
demonstrated comparable results with the baseline
model. In the case of the German-English lan-
guage pair all of our systems showed a much bet-
ter result compared to the baseline model. Fur-
thermore, the combination of neural networks and
baseline features gave much better results than the
results of the baseline model.
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We plan to further experiment with the attention
weights for in-domain systems and compare the
scores obtained by using the internal and force-
decoded attention weights.

Acknowledgments

This work was supported by the Estonian Re-
search Council grant no. 1226.

The authors would like to thank Matı̄ss Rik-
ters for providing the English-Latvian NMT sys-
tem used in the experiments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. CoRR,
abs/1710.04087.

Tin Kam Ho. 1995. Random decision forests. In Doc-
ument analysis and recognition, 1995., proceedings
of the third international conference on, volume 1,
pages 278–282. IEEE.

Hyun Kim, Hun-Young Jung, Hongseok Kwon, Jong-
Hyeok Lee, and Seung-Hoon Na. 2017a. Predictor-
estimator: Neural quality estimation based on tar-
get word prediction for machine translation. ACM
Transactions on Asian and Low-Resource Language
Information Processing (TALLIP), 17(1):3.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017b. Predictor-estimator using multilevel task
learning with stack propagation for neural quality
estimation. In Proceedings of the Second Confer-
ence on Machine Translation, pages 562–568.

André F. T. Martins, Fabio Kepler, and Jose Monteiro.
2017. Unbabel’s participation in the wmt17 trans-
lation quality estimation shared task. In Proceed-
ings of the Second Conference on Machine Transla-
tion, Volume 2: Shared Task Papers, pages 569–574,
Copenhagen, Denmark.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matı̄ss Rikters and Mark Fishel. 2017. Confidence
through attention. In Proceedings of MT Summit
XVI, pages 299–311, Nagoya, Japan.

Matı̄ss Rikters, Mark Fishel, and Ondřej Bojar. 2017.
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Abstract

This paper describes the Microsoft and Uni-
versity of Edinburgh submission to the Auto-
matic Post-editing shared task at WMT2018.
Based on training data and systems from the
WMT2017 shared task, we re-implement our
own models from the last shared task and intro-
duce improvements based on extensive param-
eter sharing. Next we experiment with our im-
plementation of dual-source transformer mod-
els and data selection for the IT domain. Our
submissions decisively wins the SMT post-
editing sub-task establishing the new state-of-
the-art and is a very close second (or equal,
16.46 vs 16.50 TER) in the NMT sub-task.
Based on the rather weak results in the NMT
sub-task, we hypothesize that neural-on-neural
APE might not be actually useful.

1 Introduction

This paper describes the Microsoft (MS) and Uni-
versity of Edinburgh (UEdin) submission to the
Automatic Post-editing shared task at WMT2018
(Chatterjee et al., 2018). Based on training data
and systems from the WMT2017 shared task (Bo-
jar et al., 2017), we re-implement our own mod-
els from the last shared task (Junczys-Dowmunt
and Grundkiewicz, 2017a,b) and introduce a few
small improvements based on extensive parameter
sharing. Next, we experiment with our implemen-
tation of dual-source transformer models which
have been available in our NMT toolkit Marian
(Junczys-Dowmunt et al., 2018) since version v1.0
(November 2017). We believe this is one of the
first descriptions of such an architectures for Au-
tomatic Post-Editing (APE) purposes, but similar
approaches have been used for two-step decoding,
for instance in Hassan et al. (2018). We further ex-
tend this model to share parameters across encoders
with improved results for APE.

Our submissions decisively wins the SMT post-
editing sub-task establishing the new state-of-the-
art and is a very close second (or equal, 16.46 vs
16.50 TER) in the NMT sub-task.1

2 Training, development, and test data

We perform all our experiments with the official
WMT-2018 automatic post-editing data and the re-
spective development and test sets. The training
data consists of a small set of post-editing triplets
(src,mt, pe), where src is the original English text,
mt is the raw MT output generated by an English-
to-German system, and pe is the human post-edited
MT output. The MT system used to produce the
raw MT output is unknown, as is the original train-
ing data. The task consists of automatically correct-
ing the MT output so that it resembles human post-
edited data. The main task metric is TER (Snover
et al., 2006) — the lower the better — with BLEU
(Papineni et al., 2002) as a secondary metric.

To overcome the problem of too little training
data, Junczys-Dowmunt and Grundkiewicz (2016)
— the authors of the best WMT-2016 APE shared
task system — generated large amounts of artificial
data via round-trip translations. The artificial data
has been filtered to match the HTER statistics of
the training and development data for the shared
task and was made available for download.

The organizers also made available a large new
resource for APE training, the eSCAPE corpus (Ne-
gri et al., 2018), which contains triplets generated
from SMT and NMT systems in separate data sets.

To produce our final training data set we over-
sample the original training data 20 times and add
both artificial data sets. This results in a total of

1We did not make the models available, but researchers
interested in reproducing these results are encouraged to
contact one or both of the authors. We will be happy to
help. The used architectures are available in Marian: https:
//marian-nmt.github.io
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slightly more than 5M training triplets. We vali-
date on the development set for early stopping and
report results on the WMT-2016 APE test set. The
data is already tokenized. Additionally we truecase
all files and apply segmentation into BPE subword
units (Sennrich et al., 2016). We reuse the subword
units distributed with the artificial data set.

3 Experiments

During the WMT2017 APE shared task we submit-
ted a dual-source model with soft and hard attention
which placed second right after a very similar dual-
source model by the FBK team. We include the
performance of those models based on the shared
task descriptions in Table 1, systems WMT17:FBK
and WMT17:AMU (ours).

We mostly worked on the APE sub-task for auto-
matic post-editing for the SMT system. The system
in the NMT sub-task seemed to have only small
margins for improvements.

3.1 Baselines

During the WMT2017 shared task on post-editing
we made an error in judgment and submitted the
weaker hard-attention model, in post-submission
experiments we saw that a normal soft-attention
model would have fared better. This was confirmed
by the shared-task winner FBK and our own exper-
iments. For this year, we first recreated our own
dual-source model with soft attention (Baseline)
and further experimented with parameter sharing:

• We first tie embeddings across all encoder in-
stances, the decoder embedding layer and de-
coder output layer (transposed). This leads to
visible improvements over our baseline across
all test sets in terms of TER.
• Next, we share all parameters across encoders,

despite the fact that these are encoding differ-
ent language it seems that parameter sharing
is generally beneficial. We see improvement
across two test sets and roughly equal perfor-
mance for the third.

3.2 Dual-source transformer

Figure 1 illustrates the architecture of our dual-
source transformer variant. We naturally extend
the original architecture from Vaswani et al. (2017)
by adding another encoder and stacking an addi-
tional target-source multi-head attention compo-
nent above the previous target-source multi-head

Add & Norm

Multi-Head
Attention

Masked

Add & Norm

Add & Norm

Feed
Forward

Multi-Head
Attention

Softmax

Linear

PE

Positional
Encoding+

Output
Embedding

Add & Norm

Add & Norm

Feed
Forward

Multi-Head
Attention

Positional
Encoding +

Embedding
Input

MT

N N

Add & Norm

Multi-Head
Attention

Add & Norm

Add & Norm

Feed
Forward

Multi-Head
Attention

+

Embedding
Input

SRC

N

Figure 1: Dual-source transformer architecture.
Dashed arrows mark tied parameters between the
two separate encoders and common embedding
matrices for all encoders and the decoder.

attention component. This results in one target-
source attention component per block for each en-
coder. As usual for the transformer architecture,
each multi-head attention block is followed by a
skip connection from the previous input and layer
normalization. Each encoder corresponds exactly
to the implementation from Vaswani et al. (2017),
but with common parameters. Apart from these
modifications, we follow the transformer-base con-
figuration from Vaswani et al. (2017). This means
that we tie source, target and output embeddings.

We found earlier that sharing parameters be-
tween the encoders is beneficial for the APE task
and apply the same modification to our architec-
ture, marked by dashed arrows in Figure 1. The
two encoders share all parameters, but still produce
different activations and are combined in different
places in the decoder.

We briefly experimented with concatenating the
encoder outputs instead of stacking (this would
have been more similar to our work in Junczys-
Dowmunt and Grundkiewicz (2017a,b)), but found
this solution to underperform. We also replaced
skip connections with gating mechanisms, but did
not see any improvements.

The transformer architecture with its skip con-
nections and normalization blocks can be seen to
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dev 2016 test 2016 test 2017
Model TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑
Uncorrected 24.81 62.92 24.76 62.11 24.48 62.49

WMT17: FBK Primary 19.22 71.89 19.32 70.88 19.60 70.07
WMT17: AMU Primary — — 19.21 70.51 19.77 69.50

Baseline (single model) 19.77 70.54 20.10 69.25 20.43 68.48
+Tied embeddings 19.39 70.70 19.82 68.87 20.09 69.06
+Shared encoder 19.23 71.14 19.44 70.06 20.15 69.04

Transformer-base (Tied+Shared) 18.73 71.71 18.92 70.86 19.49 69.72
Transformer-base x4 18.22 72.34 18.86 71.04 19.03 70.46

Table 1: Experiments with WMT 2017 data, correcting a phrase-base system.

dev 2016 test 2016 test 2017
Model TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑
Transformer all 17.84 73.45 17.81 72.79 18.10 71.72
Transformer 1M 17.59 73.45 18.29 72.20 18.42 71.50
Transformer 2M 17.92 73.37 18.02 72.41 18.35 71.57
Transformer 4M 17.75 73.51 17.89 72.70 18.09 71.78

Transformer x4 (all above) 17.31 74.14 17.34 73.43 17.47 72.84

Table 2: Experiments with WMT 2017+eSCAPE data for SMT system.

learn interpolation functions between layers that
are not much different from gating mechanisms.

A single model of this type outperforms already
the complex APE ensembles from the previous
shared task in terms of TER and is on par in terms
of BLEU (Table 1). An ensemble of four identical
models trained with different random initializations
strongly improves over last year’s best models on
all indicators.

3.3 Experiments with eSCAPE

So far, we only trained on data that was avail-
able during WMT2017. This year, the task or-
ganizers added a new large corpus created for au-
tomatic post-editing across many domains. We
experimented with domain selection algorithms for
this corpus and tried to find subsets that would be
better suited to the given IT domain. We trained
an 5-gram language model on a 10M words ran-
domly sampled subset of the German IT training
data and a similarly size language model on the
eSCAPE data. Next we applied cross-entropy fil-
tering (Moore and Lewis, 2010) to produce domain
scores. We sorted eSCAPE by these scores and
selected different sizes of subsets. Smaller subsets

should be more in-domain. We experimented with
1M, 2M, 4M and all sentences (nearly 8M). Results
(Table 2) remain however inconclusive. Adding
eSCAPE to the training data was generally helpful,
but we did not see a clear winner across subsets
and test sets. In the end we use all the experimen-
tal models as components of a 4x ensemble. The
different training sets might as well serve as addi-
tional randomization factors potentially beneficial
for ensembling.

3.4 The NMT APE sub-task

So far we reported only results for the SMT APE
sub-task. For the NMT system we trained our
transformer-base model on eSCAPE NMT data
only. Including SMT-specific data seemed to be
harmful. In the end we only applied an ensemble of
4 such models observing moderate improvements
on the development data. It seemed that our system
was quite good at correcting errors due to hallu-
cinated BPE words. We believe that our shared
embeddings/encoders were helpful here. This does
however indicate that the corrected NMT system
was not well designed as these errors could have
been easily avoided by the original MT system.
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Systems TER↓ BLEU↑
MS-UEdin (Ours) 18.00 72.52
FBK 18.62 71.04
POSTECH 19.63 69.87
USAAR DFKI 22.69 66.16
DFKI-MLT 24.19 63.40
Baseline 24.24 62.99

(a) PBSMT sub-task

Systems TER↓ BLEU↑
FBK 16.46 75.53
MS-UEdin (Ours) 16.50 75.44
POSTECH 16.70 75.14
Baseline 16.84 74.73
USAAR DFKI 17.23 74.22
DFKI-MLT 18.84 70.87

(b) NMT sub-task

Table 3: APE Results provided by shared task orga-
nizers. We only include best-scored results by each
team, see Chatterjee et al. (2018) for the full list of
results.

Furthermore, our submission did only train for
about one day, we would expect better results for a
converged system, but we did not pursue this any
further due to time constraints.

4 Results and conclusions

The organizers informed us about the results of our
systems and we include the scores for the best sys-
tem of each team in Table 3. For full results with
information concerning statistical significance see
the full shared task description (Chatterjee et al.,
2018). As expected, improvements are quite signif-
icant for the SMT-based system, and much smaller
for the NMT-based system. Our submissions to the
PBSMT sub-task strongly outperforms all submis-
sions by other teams in terms of TER and BLEU
and established the new state-of-the-art for the field.
The improvements over the PBSMT baseline ap-
proach impressive 10 BLEU points.

For the NMT sub-task our submission places
second with a 0.04 TER difference behind the lead-
ing submission. We would call this an equal result.
This is interesting considering how little time and
effort was spent on our NMT system compared to
the SMT system. One day more or training time
might have flipped these results.

Based on the overall weak performance for the
neural sub-task, we feel justified in not investing
much time into that particular sub-task. We hy-
pothesize that if the same amount of effort had
been put into the NMT baseline as into the APE
systems that were submitted to the task, none of
the submissions (including our own) would have
been able to beat that baseline. We saw obvious
problems with BPE handling in the baseline which
could have been easily fixed. It is probable that
most of our improvements come from correcting
those BPE errors.

We further believe that this might constitute the
end of neural automatic post-editing for strong
neural in-domain systems. The next shared task
should concentrate on correcting general domain
on-line systems. Another interesting path would be
to make the original NMT training data available
so that both, pure NMT systems and APE systems,
can compete. This would show us where we actu-
ally stand in terms of feasibility of neural-on-neural
automatic post-editing.
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Abstract

This paper presents our English–German
Automatic Post-Editing (APE) system
submitted to the APE Task organized
at WMT 2018 (Chatterjee et al., 2018).
The proposed model is an extension of
the transformer architecture: two sepa-
rate self-attention-based encoders encode
the machine translation output (mt) and
the source (src), followed by a joint en-
coder that attends over a combination of
these two encoded sequences (encsrc and
encmt) for generating the post-edited sen-
tence. We compare this multi-source ar-
chitecture (i.e, {src, mt} → pe) to a
monolingual transformer (i.e., mt → pe)
model and an ensemble combining the
multi-source {src, mt} → pe and single-
source mt → pe models. For both the
PBSMT and the NMT task, the ensem-
ble yields the best results, followed by
the multi-source model and last the single-
source approach. Our best model, the en-
semble, achieves a BLEU score of 66.16
and 74.22 for the PBSMT and NMT task,
respectively.

1 Introduction & Related Work

The ultimate goal of machine translation (MT)
is to provide fully automatic publishable quality
translations. However, state-of-the-art MT sys-
tems often fail to deliver this; translations pro-
duced by MT systems contain different errors and
require human interventions to post-edit the trans-
lations. Nevertheless, MT has become a standard
in the translation industry as post-editing on MT
output is often faster and cheaper than performing
human translation from scratch.

APE is a method that aims to automatically cor-
rect errors made by MT systems before perform-
ing actual human-post-editing (PE) (Knight and
Chander, 1994), thereby reducing the translators’
workload and increasing productivity (Parra Es-
cartı́n and Arcedillo, 2015b,a; Pal et al., 2016a).
Various automatic and semi-automatic techniques
have been developed to auto-correct repetitive er-
rors (Roturier, 2009; TAUS/CNGL Report, 2010).
The advantage of APE lies in its capability to
adapt to any black-box (first-stage) MT engine;
i.e., upon availability of human-corrected post-
edited data, no incremental training or full re-
training of the first-stage MT system is required
to improve the overall translation quality. APE
can therefore be viewed as a 2nd-stage MT system,
translating predictable error patterns in MT output
to their corresponding corrections. APE training
data minimally involves MT output (mt) and the
human-post-edited (pe) version of mt, but may ad-
ditionally make use of the source (src). A more
detailed motivation on APE can be found in Bojar
et al. (2015, 2016, 2017).

Based on the training process, APE systems
can be categorized as either single-source (mt →
pe) or multi-source ({src, mt} → pe) ap-
proaches. In general, the field of APE covers
a wide methodological range, including SMT-
based approaches (Simard et al., 2007a,b; Lagarda
et al., 2009; Rosa et al., 2012; Pal et al., 2016c;
Chatterjee et al., 2017b), and neural APE (Pal
et al., 2016b; Junczys-Dowmunt and Grund-
kiewicz, 2016; Pal et al., 2017) based on neural
machine translation (NMT). Some of the state-
of-the-art multi-source approaches, both statistical
(Béchara et al., 2011; Chatterjee et al., 2015) and
recently neural (Libovický et al., 2016; Chatter-
jee et al., 2017a; Junczys-Dowmunt and Grund-
kiewicz, 2016; Varis and Bojar, 2017), explore
learning from {src, mt} → pe (multi-source, MS)
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to take advantage of the dependencies of transla-
tion errors in mt originating from src.

Exploiting source information in multi-source
neural APE can be configured either by using
a single encoder that encodes the concatenation
of src and mt (Niehues et al., 2016) or by us-
ing two separate encoders for src and mt and
passing the concatenation of both encoders’ final
states to the decoder (Libovický et al., 2016). A
few approaches to multi-source neural APE have
been proposed in the WMT-2017 APE shared task.
Junczys-Dowmunt and Grundkiewicz (2017) ex-
plore different combinations of attention mecha-
nisms including soft attention and hard monotonic
attention on an end-to-end neural APE model that
combines both mt and src in a single neural ar-
chitecture. Chatterjee et al. (2017a) extend the
two-encoder architecture of multi-source models
presented in Libovický et al. (2016). In their ex-
tension each encoder concatenates both contexts
having their own attention layer that is used to
compute the weighted context of src and mt. Fi-
nally, a linear transformation is applied on the con-
catenation of both weighted contexts. Varis and
Bojar (2017) implement and compare two multi-
source architectures: In the first setup, they use
a single encoder with concatenation of src and
mt sentences, and in the second setup, they use
two character-level encoders for mt and src, sep-
arately, along with a character-level decoder. The
initial state of this decoder is a weighted combina-
tion of the final states of the two encoders.

Intuitively, such an integration of source-
language information in APE should be useful
in conveying the context information to improve
the APE performance. To provide the awareness
of errors in mt originating from src, the trans-
former architecture (Vaswani et al., 2017), which
is built solely upon attention mechanisms (Bah-
danau et al., 2015), makes it possible to model
dependencies without regard to their distance in
the input or output sequences and also captures
global dependencies between input and output (for
our case src, mt, and pe). The transformer ar-
chitecture replaces recurrence and convolutions
by using positional encodings on both the input
and output sequences. The encoder and decoder
both use multi-head (facilitating parallel compu-
tations) self-attention to compute representations
of their corresponding inputs, and also compute
multi-head vanilla-attentions between encoder and

decoder representations.
Our APE system extends this transformer-based

NMT architecture (Vaswani et al., 2017) by us-
ing two encoders, a joint encoder, and a single de-
coder. Our model concatenates two separate self-
attention-based encoders (encsrc and encmt) and
passes this sequence through another self-attended
joint encoder (encsrc,mt) to ensure capturing de-
pendencies between src and mt. Finally, this
joint encoder is fed to the decoder which follows a
similar architecture as described in Vaswani et al.
(2017). The entire model is optimized as a single
end-to-end transformer network.

2 Transformer-Based Multi-Source APE

MT errors originating from the input source sen-
tences suggest that APE systems should lever-
age information from both the src and mt, in-
stead of considering mt in isolation. This can
help the model to disambiguate corrections ap-
plied at every time step. Generating the pe output
from mt is greatly facilitated by the availability of
src. To achieve benefits from both single-source
(mt → pe) and multi-source ({src,mt} → pe)
APEs, our primary submission in the WMT 2018
shared task is an ensemble of these two models.

Transformer-based models are currently pro-
viding state-of-the-art performance in MT; hence,
we want to explore a similar architecture for this
year’s APE task. We extend the transformer archi-
tecture to investigate how efficient this approach
is in a multi-source scenario. In a MT task, it
was already shown that a transformer can learn
long-range dependencies. Therefore, we explore
if we can leverage information from src and mt
via a joint encoder through self-attention (see Sec-
tion 2.2) to provide dependencies between src–mt
that are then projected to the pe.

To investigate this, we implement and evaluate
three different models: a single-source approach,
a multi-source approach, and an ensemble of both,
described in more detail below.

2.1 Single-Source Transformer for APE
(mt → pe)

Our single-source model (SS) is based on
an encoder-decoder-based transformer architec-
ture (Vaswani et al., 2017). Transformer models
can replace sequence-aligned recurrence entirely
and follow three types of multi-head attention:
encoder-decoder attention (also known as vanilla
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Figure 1: Multi-source transformer-based APE

attention), encoder self-attention, and masked de-
coder self-attention. Since for multi-head atten-
tion each head uses different linear transforma-
tions, it can learn these separate relationships in
parallel, thereby improving learning time.

2.2 Multi-source Transformer for APE
({src,mt} → pe)

For our multi-source model (MS), we propose
a novel joint transformer model (cf. Figure 1),
which combines the encodings of src and mt
and attends over a combination of both sequences
while generating the post-edited sentence. Apart
from encsrc and encmt, each of which is equiva-
lent to the original transformer’s encoder (Vaswani
et al., 2017), we use a joint encoder with an
equivalent architecture, to maintain the homo-
geneity of the transformer model. For this, we ex-
tend Vaswani et al. (2017) by introducing an addi-
tional identical encoding block by which both the
encsrc and the encmt encoders communicate with
the decoder.

Our multi-source neural APE computes inter-
mediate states encsrc and encmt for the two
encoders, encsrc,mt for their combination, and
decpe for the decoder in sequence-to-sequence
modeling. One self-attended encoder for src maps
s = (s1, s2, ..., sk) into a sequence of continuous
representations, encsrc = (e1, e2, ..., ek), and a
second encoder for mt, m = (m1,m2, ..., ml), re-
turns another sequence of continuous representa-
tions, encmt = (e

′
1, e

′
2, ..., e

′
l). The self-attended

joint encoder (cf. Figure 1) then receives the con-

catenation of encsrc and encmt, encconcat =
[encsrc, encmt] as an input, and passes it through
the stack of 6 layers, with residual connections,
a self-attention and a position-wise fully con-
nected feed-forward neural network. As a result,
the joint encoder produces a final representation
(encsrc,mt) for both src and mt. Self-attention
at this point provides the advantage of aggregat-
ing information from all of the words, including
src and mt, and successively generates a new rep-
resentation per word informed by the entire src
and mt context. The decoder generates the pe out-
put in sequence, decpe = (p1, p2, . . . , pn), one
word at a time from left to right by attending pre-
viously generated words as well as the final repre-
sentations (encsrc,mt) generated by the encoder.

2.3 Ensemble
In order to leverage the network architecture for
both single-source and multi-source APE as dis-
cussed above, we decided to ensemble several ex-
pert neural models. Each model is averaged using
the 5 best saved checkpoints, which generate dif-
ferent translation outputs. Taking into account all
these generated translation outputs, we implement
an ensemble technique based on the frequency of
occurrence of the output words. Corresponding to
each input word, we calculate the most frequent
occurrence of the output word from all the gener-
ated translation outputs. For the two different APE
tasks, we ensemble the following models:

• PBSMT task: We ensemble a SS (mt → pe)
and a MS ({src, mt} → pe) average model.

• NMT task: We ensemble two average SS
(mt → pe) and MS ({src, mt} → pe) mod-
els, together with a SS and a MS model that
are fine-tuned on a subset of the training set
(cf. Section 3.3.2).

3 Experiments

In our experiment we investigate (1) how well the
transformer-based APE architecture performs in
general, (2) if our multi-source architecture using
the additional joint encoder improves the perfor-
mance over a single-source architecture, and (3) if
ensembling of single-source and multi-source ar-
chitectures facilitates APE even further.

3.1 Data
Since this year’s WMT 2018 APE task (Chatterjee
et al., 2018) is divided into two sub-tasks, differ-
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ent datasets are provided for each task: for the PB-
SMT task, there is a total of 23K English–German
APE data samples (11K from WMT 2016 and 12K
from WMT 2017) (Bojar et al., 2017). For the
NMT task, 13,442 samples of English–German
APE data are provided.

All released APE data consists of English–
German triplets containing source English text
(src) from the IT domain, the corresponding Ger-
man translations (mt) from a first stage MT sys-
tem, and the corresponding human-post-edited
version (pe), all of them already tokenized. As this
released APE dataset is small in size (see Table 1),
additional resources are also available: first, the
‘artificial training data’ (Junczys-Dowmunt and
Grundkiewicz, 2016) containing 4.5M sentences,
4M of which are weakly similar to the WMT
2016 training data, while 500K show very simi-
lar TER statistics; and second, the synthetic ‘eS-
CAPE’ APE corpus (Negri et al., 2018), consist-
ing of more than 7M triples for both NMT and
PBSMT.

Table 1 presents the statistics of the released
data for the English–German APE Task organized
in WMT 2018. These datasets, except for the
eSCAPE corpus, do not require any preprocessing
in terms of encoding or alignment.

For cleaning the noisy eSCAPE dataset contain-
ing many unrelated language words (e.g. Chinese),
we perform the following two steps: (i) we use
the cleaning process described in Pal et al. (2015),
and (ii) we execute the Moses (Koehn et al., 2007)
corpus cleaning scripts with minimum and max-
imum number of tokens set to 1 and 80, respec-
tively. After cleaning, we use the Moses tokenizer
to tokenize the eSCAPE corpus. To handle out-
of-vocabulary words, words are preprocessed into
subword units (Sennrich et al., 2016) using byte-
pair encoding (BPE).

3.2 Hyper-Parameter Settings

For {src,mt} → pe, both the self-attended en-
coders, the joint encoder, and the decoder are com-
posed of a stack of N = 6 identical layers fol-
lowed by layer normalization. Each layer again
consists of two sub-layers and a residual connec-
tion (He et al., 2016) around each of the two sub-
layers. During training, we employ label smooth-
ing of value ϵls = 0.1. The output dimension pro-
duced by all sub-layers and embedding layers is
defined as dmodel = 256. All dropout values in the

network are set to 0.2. Each encoder and decoder
contains a fully connected feed-forward network
having dimensionality dmodel = 256 for the input
and output and dimensionality dff = 1024 for the
inner layer. This is a similar setting to Vaswani
et al. (2017)’s C − model1. For the scaled dot-
product attention, the input consists of queries
and keys of dimension dk, and values of dimen-
sion dv. As multi-head attention parameters, we
employ h = 8 for parallel attention layers, or
heads. For each of these we use a dimensional-
ity of dk = dv = dmodel/h = 32. For optimiza-
tion, we use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9.
The learning rate is varied throughout the training
process, first increasing linearly for the first train-
ing steps warmupsteps = 4000 and then adjusted
as described in (Vaswani et al., 2017).

At training time, the batch size is set to 32
samples, with a maximum sentence length of 80
subwords, and a vocabulary of the 50K most fre-
quent subwords. After each epoch, the train-
ing data is shuffled. For encoding the word or-
der, our model uses learned positional embed-
dings (Gehring et al., 2017), since Vaswani et al.
(2017) reported nearly identical results to sinu-
soidal encodings. After finishing training, we save
the 5 best checkpoints saved at each epoch. Fi-
nally, we use a single model obtained by averag-
ing the last 5 checkpoints. During decoding, we
perform greedy-search-based decoding.

We follow a similar hyper-parameter setup for
mt → pe. The total number of parameters for our
{src, mt} → pe and mt → pe model is 46 × 106

and 28 × 106, respectively.

3.3 Experiment Setup

In this section, we present the training process,
using the above datasets, to train mt → pe,
{src, mt} → pe, and ensemble models for both
PBSMT and NMT.

3.3.1 PBSMT Task
For PBSMT, we first train both our SS and MS
systems with the cleaned eSCAPE corpus for 3
epochs. We then perform transfer learning with
4M artificial data for 7 epochs. Afterwards, fine-
tuning is performed using the 500K artificial and
23K real PE training data for another 20 epochs.

1Note: at the time of submission we couldn’t test the
Transformer (big) model due to unavailability of enough
computation power
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Sentences
Corpus 2016 2017 2018 Cleaning

PBSMT
Train 12,000 11,000 - -
Dev 1,000 - - -
Test 2,000 2,000 2,000 -

NMT
Train - - 13,442 -
Dev - - 1,000 -
Test - - 1,023 -

Additional
Resources

Artificial - 4M + 500K - -
eSCAPE-PBSMT - - 7,258,533 6,521,736
eSCAPE-NMT - - 7,258,533 6,485,507

Table 1: Statistics of the WMT 2018 APE Shared Task Dataset.

Furthermore, we generate an ensemble model, by
averaging the 5 best checkpoints of SS with the 5
best checkpoints of MS.

We use the WMT 2016 development data
(dev2016) containing 1,000 triplets to validate the
model during training. To test our system per-
formance, we use the WMT 2016 and 2017 test
data (test2016, test2017), each containing 2,000
triplets. Furthermore, we report the results of the
submitted ensemble model on test2018.

3.3.2 NMT Task
Initial tests for pre-training our NMT model on
the NMT eSCAPE data showed no performance
improvements. Therefore, we use the PBSMT
SS and MS models as a basis for the NMT task.
We use the PBSMT models after training them
on the eSCAPE corpus, the 4M artificial data and
the 500K + 23K train sets of WMT 16 and 17.
These SMT-based models are then fine-tuned us-
ing the WMT 2018 NMT APE data (train18) for
60 epochs.

Afterwards, we perform an additional fine-
tuning step towards the dev18/test18 dataset: For
this, we extract sentences of train18 that are simi-
lar to the sentences contained in dev18/test18 and
fine-train for another 15 epochs on this subset of
train18, which we call fine-tune18. As a sim-
ilarity measure we use the cosine similarity be-
tween the train src and mt segments and the test
src and mt segments, respectively. These cosine
similarities for src and mt are then simply multi-
plied to achieve an overall similarity measure. Our
fine-tuning dataset contains only sentences with an
overall similarity of at least 0.9.

Last, two separate ensemble models are created.
One consists of only the non-fine-tuned SS and
MS models, and one ensembles the SS and MS
models in both fine-tuned and non-fine-tuned vari-
ants. Both ensembles are created by averaging
over the 5 best checkpoints of each sub-model.

We report the results of all created models for
the dev18 NMT dataset, and additionally those of
the submitted overall ensemble model on test18.

3.4 Results and Discussion

Table 2 presents the results for the PBSMT APE
task (cf. 3.3.1), where two different transformer-
based models, one ensemble of these models and
the baseline BLEU scores are shown. The base-
line here refers to the original MT output evalu-
ated with respect to the corresponding PE transla-
tion. All models yield statistically significant re-
sults (p < 0.001) over this baseline. MSavg also
provides statistically significant improvement over
SSavg. For this and all following significance tests
we employ the method by Clark et al. (2011)2.

Generally, reasons for the good performance of
our transformer-based MS architecture in compar-
ison to the SS approach for PBSMT-based APE
could be the positional encoding that injects in-
formation about the relative or absolute position
of the tokens in the sequence. This might help
to handle word order errors in mt for a given
src context. Another possible explanation lies in
the self-attention mechanism, which handles lo-
cal word dependencies for src, mt, and pe. Af-
ter the individual dependencies are learned by
the two encoders’ self-attention mechanisms, an-
other level of self-attention is performed that can
jointly learn from both src and mt using our
joint encoder, thereby informing the decoder about
the long-range dependencies between the words
within both src and mt. Compared to RNNs,
we believe that this technique can better convey
source information via mt to the decoder. The
ensemble model then leverages the advantages of
both our SS and MS approaches to further improve
the results.

The results for our transformer-based architec-
2https://github.com/jhclark/multeval
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WMT APE Systems eScape 4M 500K train16 train17 test16 test17 test18
Baseline - 62.92 62.11 62.99
MSavg 3 eps 7 eps 20 eps 67.31 67.66 -
SSavg 3 eps 7 eps 20 eps 66.27 66.60 -
Ensemble MSavg{5cps} + SSavg{5cps} 68.52 68.91 66.16

Table 2: Evaluation result of WMT 2018 PBSMT task for all trained models.

WMT APE Systems Base Model train18 fine-tune18 dev18 test18
Baseline - - - 76.66 74.73
MSavg MSavg (PBSMT) 60 eps - 74.84 -
SSavg SSavg (PBSMT) 60 eps - 72.75
MSfinetuned MSavg (NMT) - 15 eps 75.05 -
SSfinetuned SSavg (NMT) - 15 eps 73.17 -
Ensemble MSavg{5cps} + SSavg{5cps} 75.80 -
Ensemblefinetuned MSavg{5cps} + SSavg{5cps} + MSfinetuned{5cps} + SSfinetuned{5cps} 75.96 74.22

Table 3: Evaluation result of WMT 2018 NMT task for all trained models.

ture for the NMT task are shown in Table 3. As can
be seen, the baseline NMT system performs best,
followed by the ensemble models, then the multi-
source architectures and lastly the single-source
approach. These differences between the three
approaches, ensemble, MS, and SS, are all sta-
tistically significant. Fine-tuning provides some
small, albeit insignificant, improvements over the
non-fine-tuned versions.

While none of our architectures perform better
than the baseline MT system for the NMT task, we
clearly see that the multi-source approach helps,
and that ensembling of different SS and MS mod-
els further increases the performance. These re-
sults are in line with our expectations, because in-
tuitively, inspecting both src and mt should help
detect and correct common errors. However, we
are unsure why all models did not improve over
the baseline, which could have been achieved by
simply copying the mt. One reason might be the
small amount of PE data, which comprises only
13K samples; this could also explain why the sim-
ple fine-tuning approach already leads to slightly
higher BLEU scores. However, further human
evaluation is necessary to better understand what
our model is doing for the neural APE task and
why it remains approximately 0.5 BLEU points
below the baseline.

4 Conclusions and Future Work

In this paper, we investigated a novel transformer-
based multi-source APE approach that jointly at-
tends over a combination of src and mt to capture
dependencies between the two. This architecture
yields statistically significant improvements over
single-source transformer-based models. An en-

semble of both variants increases the performance
further. For the PBSMT task, the baseline MT sys-
tem was outperformed by 3.2 BLEU points, while
the NMT baseline remains 0.51 BLEU points bet-
ter than our APE approach on the 2018 test set.

In the future, we will investigate if the perfor-
mance of each system can be improved by using
a different hyper-parameter setup. Unfortunately,
we could not test either the ‘big’ or the ‘base’
hyper-parameter configuration in Vaswani et al.
(2017) due to unavailable computing resources at
the time of submission. As additional future work,
we would like to explore whether using re-ranking
and ensembling of different neural APEs helps to
improve the performance further. Moreover, we
will incorporate word-level quality estimation fea-
tures of mt into the encoding layer. Lastly, we
will evaluate if our model indeed is able to bet-
ter handle word order errors and to capture long-
range dependencies, as we expect. Furthermore,
we will analyze if adapting the learning rate to the
size of the datasets used during training increases
the performance compared to the currently used
fixed learning rate initialization of 0.001.
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Abstract

This paper presents the Automatic Post-
editing (APE) systems submitted by the DFKI-
MLT group to the WMT’18 APE shared
task. Three monolingual neural sequence-
to-sequence APE systems were trained using
target-language data only: one using an at-
tentional recurrent neural network architec-
ture and two using the attention-only (trans-
former) architecture. The training data was
composed of machine translated (MT) output
used as source to the APE model aligned with
their manually post-edited version or reference
translation as target. We made use of the pro-
vided training sets only and trained APE mod-
els applicable to phrase-based and neural MT
outputs. Results show better performances
reached by the attention-only model over the
recurrent one, significant improvement over
the baseline when post-editing phrase-based
MT output but degradation when applied to
neural MT output.

1 Introduction

For the 2018 edition of the WMT automatic post-
editing (APE) task, two novelties were added com-
pared to the previous editions: post-editing of neu-
ral machine translation (NMT) output in addition
to phrase-based (PBMT) output, and the availabil-
ity of larger training sets.

The DFKI-MLT systems developed for this
shared task aimed at handling outputs from PBMT
and NMT jointly with a single APE model. This
was achieved by using artificial tokens indicating
which type of MT system was used to produce the
source segment and from which corpus the seg-
ment pair was extracted (inspired by (Yamagishi
et al., 2016; Sennrich et al., 2016a; Johnson et al.,
2017)).

Two NMT architectures were used to train our
APE models, one using gated recurrent layers with

global attention (Bahdanau et al., 2014), and one
using attention and feed-forward layers without
recurrence (Vaswani et al., 2017). The training
data was composed of the official training set re-
leased by the shared task organizers plus subsets of
the two additional resources filtered with bilingual
cross-entropy difference (Axelrod et al., 2011).

The NMT architectures are described in Sec-
tion 2 and the data preparation process is presented
in Section 3. The results obtained by our APE
models are compared to the baseline in Section 4.
Finally, a conclusion is given in Section 5.

2 APE Architectures

The two neural network architectures used in our
experiments were an attentional recurrent neu-
ral network with gated units and a multi-head
attention-only network.

2.1 Recurrent Neural Network

For the Recurrent Neural Network (RNN) ap-
proach, we followed the architecture presented
in (Bahdanau et al., 2014) and implemented in
OPENNMT (Klein et al., 2017)1. Both the en-
coder and the decoder were 2-layered mono-
directional RNNs with LSTM cells. The decoder
applies global attention over the source sentence
and performs input feeding. The source and tar-
get word embeddings, as well as the hidden layers,
had 500 dimensions. The dropout probability was
set to 0.3. The source and target vocabulary size
is limited to 50000 tokens. Standard stochastic
gradient descent is used as optimizer with a maxi-
mum batch size of 64. These hyper-parameters are
the default ones in OPENNMT and were not tuned
during the experiments presented in this paper.

1We used the Torch version of OPENNMT available at
https://github.com/OpenNMT/OpenNMT
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2.2 Attention Only

For the attention only approach, we used the archi-
tecture described in (Vaswani et al., 2017) and im-
plemented in MARIAN (Junczys-Dowmunt et al.,
2018). Two models were trained following this
approach with variations in the number of heads
(parallel attention layers), using 4 heads and 1024
dimensions for the feed-forward layers for one
configuration (noted Transformer small) and 8
heads and 2048 dimensions for the second config-
uration (noted Transformer large). For both con-
figurations, 512 dimensions were used for the em-
bedding layers and the positional encodings, the
dropout rate was set to 0.1 and the batch size to 32.
These hyper-parameters were selected in order to
compare the impact of increasing the dimension-
ality of the encoder and decoder layers, as well as
the number of heads, on the post-editing perfor-
mances.

3 Data Preparation

The training corpora provided for the APE shared
task since 2016 were used (Bojar et al., 2016,
2017), as well as the two additional resources
made available by the shared task organizers,
namely the artificial training data presented
in (Junczys-Dowmunt and Grundkiewicz, 2016)
and the eSCAPE corpus (Negri et al., 2018). The
target language data (German) was used for both
input and output sequences in our APE models,
the machine translated text being the source se-
quences and the corresponding post-edited text
the target sequences, without making use of the
source language (English). We did not split the
machine translated data whether it was produced
by a phrase-based (PBMT) or a neural (NMT) sys-
tem. Instead, we added a specific token at the be-
ginning of every source (machine translated) seg-
ment indicating which type of translation system
was used to produce it.

The two additional parallel resources (artificial
training data and eSCAPE corpora) were filtered
using the bilingual cross-entropy difference ap-
proach presented in (Axelrod et al., 2011). We
used the APE training data as in-domain cor-
pus and each additional parallel corpus individ-
ually as out-of-domain corpus. The top n sen-
tence pairs ranked by their bilingual cross-entropy
scores were kept, with n being set by calculating
the perplexity obtained on the development set.
The resulting corpora used contain approx. 100k,

300k and 360k segment pairs taken from the eS-
CAPE PBMT corpus, the eSCAPE NMT corpus
and the artificial training data respectively. Fi-
nally, we added a specific token at the beginning
of every source segment indicating from which
source it comes from: eSCAPE, artificial and wmt.
The latter token was added to the official training
data provided for the APE task, and to the devel-
opment and test sets as well.

All datasets were used together to train our APE
models, the artificial tokens inspired by (Yamag-
ishi et al., 2016; Sennrich et al., 2016a; Johnson
et al., 2017) allowed for identification of the seg-
ment pairs provenance. In order to balance the
amount of data coming from different sources, we
oversampled the official training data to reach ap-
proximately the amount taken from the two ad-
ditional resources. Similarly, we increased the
amount of data produced by a NMT system to bal-
ance with the amount produced by a PBMT sys-
tem. This method was inspired by the work pre-
sented in (Chu et al., 2017).

The corpora which were not already tokenized
were processed with the tokenizer distributed with
the MOSES toolkit (Koehn et al., 2007). Addi-
tionally, all corpora were true-cased using a pre-
trained true-casing model provided by the WMT
organizers2. Finally, a byte-pair encoding (Sen-
nrich et al., 2016b) model was trained on the Ger-
man training data available for the WMT trans-
lation task and applied to both source and target
sides of all corpora used in our experiments.

4 Evaluation

The three APE models trained for the shared task
were used to post-edit the test set released by the
organizers. Automatic evaluation with BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006)
was conducted by the organizers and the obtained
scores on the official test set are reported in Ta-
ble 1. The automatic metrics results are obtained
by comparing each system output to the manually
post-edited MT output (TERpe and BLEUpe), to
an independent translation (TERref and BLEUref)
and finally using both post-edited MT output and
independent translation simultaneously as a multi-
reference evaluation approach (TERpe+ref and
BLEUpe+ref). The results obtained by the non-
post-edited MT output is presented as a baseline.

2http://data.statmt.org/wmt18/
translation-task/preprocessed/de-en/
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System TERpe BLEUpe TERref BLEUref TERpe+ref BLEUpe+ref

PBMT Output
Baseline 24.24 62.99 48.33 36.42 23.76 66.21
Transformer large 24.19 63.40 47.98 36.81 23.68 66.66
Transformer small 24.50 62.78 48.27 36.61 24.04 66.11
RNN 25.30 62.10 48.55 36.19 24.74 65.33

NMT Output
Baseline 16.84 74.73 42.24 44.22 16.27 76.83
Transformer large 18.86 70.98 43.74 41.53 18.37 72.93
Transformer small 18.84 70.87 43.79 41.53 18.41 72.95
RNN 19.88 69.35 44.28 40.91 19.43 71.36

Table 1: Automatic metrics results on the test set obtained by our APE models and compared to the baseline using
three evaluation methods. Result in bold indicates significant improvement over the baseline.

The automatic evaluation results show that our
models significantly degrades the baseline for the
NMT output experiments when using the manu-
ally post-edited MT output, the independent trans-
lation and both simultaneously as gold reference
to compute the scores. For the PBMT experi-
ments, the model noted Transformer large signif-
icantly improves the PBMT output according to
the BLEU metric for the three evaluation methods
(+0.4pt for the post-edited MT output, +.39pt of
the reference and +.45pt for both). However, the
TER metric does not indicate significant improve-
ments over the baseline when using the manually
post-edited MT output as a gold reference.3

The degradation of NMT output in terms of au-
tomatic metrics might have at least two explana-
tions. First, the lower amount of available train-
ing data produced by this type of MT system and
provided by the organizers (17, 753 unique to-
kens for NMT and 22, 578 for PBMT after true-
casing). We used the over-sampling technique to
balance the amount of NMT and PBMT data but
this method does not increase the vocabulary cov-
erage. Second, the baseline performances as indi-
cated by the BLEU metric, 74.73 and 44.22 for the
post-edited MT output and translation reference
used as gold target respectively, are higher than the
ones obtained with the PBMT experiments, which
might be harder to outperform.

5 Conclusion

This paper presented the DFKI-MLT submissions
to the WMT’18 APE shared task, which involved
datasets produced by NMT and PBMT systems,
as well as larger training data provided by the or-

3Significance tests were performed by the shared task
organizers, more details are available in (Chatterjee et al.,
2018).

ganizers. We evaluated two different APE archi-
tectures based on neural networks and made use
of data preprocessing techniques to allow single
models to be trained while being able to post-edit
both NMT and PBMT outputs and using the target
language data only.

The results as indicated by the BLEU metric
showed that our approach brings significant im-
provement over the non post-edited PBMT output
when using various gold references to compute the
evaluation scores, but fails at improving NMT out-
put. This might be due to the lower amount of
training data produced by an NMT system com-
pared to the PBMT produced data, and to the high
performance reached by the baseline system on the
NMT output as indicated by BLEU.

From the two APE architectures evaluated in
our experiments and according to the automatic
metrics used, the attention-only model outper-
formed the gated recurrent one for both types of
MT output to post-edit. Both NN architectures
could possibly reach better post-editing perfor-
mances with careful hyper-parameters tuning and
we plan to conduct these experiments in the future.
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Abstract 

This paper describes the POSTECH’s sub-

mission to the WMT 2018 shared task on 

Automatic Post-Editing (APE). We pro-

pose a new neural end-to-end post-editing 

model based on the transformer network. 

We modified the encoder-decoder attention 

to reflect the relation between the machine 

translation output, the source and the post-

edited translation in APE problem. Experi-

ments on WMT17 English-German APE 

data set show an improvement in both TER 

and BLEU score over the best result of 

WMT17 APE shared task. Our primary 

submission achieves -4.52 TER and +6.81 

BLEU score on PBSMT task and -0.13 

TER and +0.40 BLEU score for NMT task 

compare to the baseline. 

1 Introduction 

Although machine translation technology has im-

proved, machine translation output inevitably in-

volves errors and the type of errors in the output 

varies depending on the machine translation sys-

tem. Correcting those systematic errors inside the 

system may cause other problems such as increase 

of the decoding complexity (Chatterjee et al., 

2015). For this reason, Automatic Post-Editing 

(APE) is suggested as an alternative to enhance the 

performance of the machine translation. 

APE aims at the automatic correction of system-

atic errors in the machine translation output with-

out any modification of the original machine trans-

lation system (Bojar et al, 2015; Bojar et al, 2016; 

Bojar et al, 2017). Basically, APE problem can be 

defined as a translation problem from machine 

translation output (mt) to post-edited sentence (pe), 

but source sentence (src) is used as an additional 

source for the problem. As a result, APE problem 

becomes a multi-source translation problem be-

tween two sources (mt, src) and a target (pe). 

Due to the additional source, APE has two trans-

lation directions, the mt→pe direction and the 

src→pe direction. Previous researches have sug-

gested various methods to combine the two direc-

tions with neural network architecture, such as log-

linear combination of two translation models 

(Junczys-Dowmunt and Grundkiewicz, 2016), fac-

tored translation model (Hokamp, 2017) and multi-

encoder architecture (Libovický et al., 2016; Chat-

terjee et al., 2017; Junczys-Dowmunt and Grund-

kiewicz, 2017; Variš and Bojar, 2017). 

Among the methods, we focus on the multi-en-

coder approach because it is more appropriate to 

model the multi-source translation problem. Also, 

considering the importance of proper attention 

mechanism, as shown in the research of Junczys-

Dowmunt and Grundkiewicz (2017), we use the 

transformer network (Vaswani et al., 2017) com-

posed of a novel attention mechanism. 

With this consideration, our submission to the 

WMT 2018 shared task on Automatic Post-Editing 

is a neural multi-encoder model based on the trans-

former network. We extend the transformer net-

work implementation in Tensor2Tensor (Vaswani 

et al., 2018) library to implement our model. We 

participated in both PBSMT task and NMT task 

with this multi-encoder model. 

In this paper, we introduce the multi-encoder 

transformer network for APE. The remainder of 

the paper is organized as follows: Section 2 con-

tains the related work. Section 3 describes our 

method. Section 4 gives the experimental results, 

and Section 5 is the conclusion. 

2 Related Work 

2.1 Multi-Encoder Architecture 

For a multi-source translation problem, the proper 

modeling of the relation between the multiple 

sources and the target is important. Combining 

two separate single-source translation models for 

Multi-encoder Transformer Network for Automatic Post-Editing 
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each source-target relation (Junczys-Dowmunt 

and Grundkiewicz, 2016) or constructing single 

input by combining the all sources (Hokamp, 2017) 

may be a solution, but these are not the exactly 

modeling the multi-source translation problem. 

Zoph and Knight (2016) proposed the basic 

model of the multi-source translation problem. 

Their multi-encoder architecture uses trilingual 

data and contains separate encoders for each input 

to model the conditional probability of the target 

over the two sources. Libovický et al. (2016) 

showed the application of this multi-encoder archi-

tecture to model APE problem. They used the same 

architecture in both APE task and multi-modal 

translation task, because the two tasks can be de-

fined as multi-source translation problem. 

Although their model did not show a good result 

in the competition, the idea of multi-encoder archi-

tecture succeeded in the following WMT evalua-

tion (Chatterjee et al., 2017; Junczys-Dowmunt 

and Grundkiewicz, 2017; Variš and Bojar., 2017) 

and achieved good results. 

2.2 Transformer Network 

Transformer network is a novel neural machine 

translation architecture proposed by Vaswani et al. 

(2017), which avoids recurrence and convolution 

and focuses on the attention mechanism. The net-

work utilizes an encoder-decoder architecture 

based on the stacked layers and each layer uses a 

new novel attention mechanism called multi-head 

attention. 

Multi-head attention is a variation of scaled dot-

product attention. It employs a number of attention 

heads for information from different representation 

subspaces at different positions. With this charac-

teristic, multi-head attention can model the de-

pendency between tokens regardless of their dis-

tance up to the number of heads. 

Transformer network uses the multi-head atten-

tion in three different ways: self-attention in en-

coder, masked self-attention in decoder, and en-

coder-decoder attention. The self-attention and the 

masked self-attention model the internal depend-

ency of the input and the output respectively, and 

the encoder-decoder attention models the depend-

ency between the input and the output. 

With this attention mechanism, transformer net-

work achieved the state-of-the-art result on the 

WMT 2014 English-to-German and English-to-

French translation tasks, and were faster to train 

than other prior models (Vaswani et al., 2017).  

3 Multi-Encoder Transformer Network 

In a normal multi-source translation problem, all of 

the sources and the target are assumed to be a dif-

ferent representation of a common abstracted 

meaning. However, in APE problem, we cannot 

adopt this assumption because the machine trans-

lation output is considered to have systematic er-

rors. These errors make a gap between the machine 

translation output and the post-edited sentence. 

Therefore, for APE problem, we should aim to re-

duce the gap, not to find the common abstracted 

meaning. In this intuition, the three directions 

should be considered to model the APE problem, 

sentence correction (mt→pe), ideal translation 

(src→pe), and original translation (src→mt). 

Even though Bérard et al. (2017) used a chained 

architecture for the context information of original 

translation, most of previous approaches focused 

on combining sentence correction and ideal trans-

lation. However, in terms of reducing the gap, APE 

problem is close to modeling the relation between 

original translation and ideal translation, rather 

than the relation between the machine translation 

output and the post-edited sentence. 

Our multi-encoder transformer network is based 

on this idea. Figure 1 illustrates the overall archi-

tecture of our multi-encoder transformer network 

Figure 1: The overall architecture of multi-encoder 

transformer network for automatic post-editing task. 
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for APE problem. We extend transformer network 

to have two encoders, one for the machine transla-

tion output and the other for the source sentence. 

Each encoder has its own self-attention layer and 

feed-forward layer to process each input separately. 

Also, we add two multi-head attention layers to de-

coder, one for original translation dependency 

(src→mt) and another for ideal translation depend-

ency (src→pe). After these attention layers, the 

words common to both the machine translation 

output and the post-edited sentence have similar 

dependency on the source sentence, so those com-

mon words obtain similar source contexts. Then 

we apply multi-head attention between the output 

of those attention layers, expecting that the source 

context helps the decoder to recognize those com-

mon words which should be remained in post-ed-

ited sentence. 

In short, we added the second encoder for the 

source sentence to the transformer network and 

modified the encoder-decoder attention structure 

to reflect the relation between the original transla-

tion and the ideal translation. 

4 Experimental Results 

4.1 Data 

We used WMT’18 official data set (Chatterjee et 

al., 2018) for PBSMT task and NMT task individ-

ually. The official PBSMT data set consists of 

training data, development data and two test data 

(2016, 2017), and the official NMT dataset consists 

of training data and development data. 

We adopted the artificial training data (Junczys-

Dowmunt and Grundkiewicz, 2016) as an addi-

tional training data for both tasks. Table 1 summa-

rizes the statistic of the data sets. In addition, the 

artificial-small data set is the subset of the artifi-

cial-large data set. 

4.2 Training Parameters 

We used the base model parameters of transformer 

network: 6 stacks, 8 heads, 512 hidden dimension, 

2,048 feed-forward dimension, 64 key dimension, 

64 value dimension, dropout probabilities 0.1 and 

Adam optimization with β1=0.9, β2=0.997 and 

ε=10-9. 

We built a shared word piece vocabulary with 

size of 216 from the combined set of PBSMT train-

ing data set and artificial-large data set for PBSMT 

model. For NMT model, we used the combined set 

of official data and artificial-small data to build the 

vocabulary, with consideration of the difference 

between two tasks. 

For training, we used a mini batch size of 2,048 

with max sequence length of 256 and initial learn-

ing rate of 0.2. We set warmup steps to 16k and 

trained the model during 160k steps. Model check-

points were saved every 1,000 mini batches. We 

select this model as our base model. 

4.3 Tuning 

After 160k steps of training, we tuned the base 

model in two step. For the first tuning step, we re-

duced the training data to the sum of the official 

training data set and artificial-small data set. We 

trained the base model on the reduced training data 

during 30k steps more and selected the model with 

the lowest validation loss (1st-tuned). 

For the second tuning step, we used the official 

training data to fine-tune the 1st-tuned model. We 

used the same tuning method with 1k training step. 

The model with lowest validation was selected as 

the final model (2nd-tuned). 

4.4 Evaluation 

We evaluated the models using the WMT data set, 

computing the TER (Snover et al., 2006) and 

BLEU (Papineni et al., 2002) scores on the de-

coded output. The decoding parameter is the same 

as the default decoding parameter of the Ten-

sor2tensor. We used the scores of original machine 

translation output as the baseline to compare our 

results. Table 2 shows the results of the evaluation 

on PBSMT data set and NMT data set. 

The result on PBSMT data set is comparable to 

the last year’s top result without any additional 

post-processing. In contrast, the result on NMT 

data set shows almost no improvement. We guess 

that the different characteristics of PBSMT artifi-

cial data set from the NMT training data set causes 

the result. 

Task Data set Sentences TER 

PBSMT 

training set 23,000 25.35 

development set 1,000 24.81 

test set 2016 2,000 24.76 

test set 2017 2,000 24.48 

artificial-small 526,368 25.55 

artificial-large 4,391,180 35.37 

NMT 
training set 13,442 14.89 

development set 1,000 15.08 

Table 1: Statistics for WMT APE data sets. 
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4.5 Submitted System 

We used checkpoint averaging to make an ensem-

ble model for submission candidates. For the better 

result, we used various checkpoint saving frequen-

cies in the second tuning step and trained the model 

five times for each frequency. Then, we applied 

checkpoint averaging on the models with follow-

ing conditions: top-5 models (top5), top-5 models 

in a fixed checkpoint frequency (fix5), five top-1 

models for various checkpoint frequencies (var5). 

We used TER score on the development data set to 

select the models. In addition, we chose the top-1 

model to the submission candidate. Table 3 sum-

marizes the result of the four submission candi-

dates on both PBSMT and NMT data set. For the 

submission, we chose three models with low TER 

score and high BLEU score.  

Table 4 shows the official result of the submitted 

model on WMT18 test data set. Our primary sub-

mission for PBSMT achieves -4.52 TER and +6.81 

BLEU scores and our primary submission on NMT 

task -0.13 TER and +0.40 BLEU scores compare 

to the baseline. 

5 Conclusion 

In this paper, we propose a multi-encoder trans-

former network for APE task. We modified the 

structure of encoder-decoder attention to reflect the 

relation between machine translation output, 

source sentence and post-edited sentence in APE. 

Our multi-encoder model showed a comparable re-

sult to the top result of last year’s competition on 

PBSMT task, although almost no improvement on 

NMT task. 

Task Systems TER↓ BLEU↑ 

PBSMT 

WMT18-Baseline 24.24  62.99  

PRIMARY (top5) 19.72  69.80  

CONTRASTIVE1 (fix5) 19.63  69.87  

CONTRASTIVE2 (var5) 19.74  69.70  

NMT 

WMT18-Baseline 16.84  74.73  

PRIMARY (fix5) 16.71  75.13  

CONTRASTIVE1 (top1) 16.70  75.14  

CONTRASTIVE2 (var5) 16.71  75.20  

Table 4: The official results of the submitted models to WMT18 APE task.. 

 

model 

PBSMT   NMT 

dev test 2016 test 2017 
 

dev 

TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑ 

Mutli-T2T_top5-avg 18.87  71.72  19.15  70.88  18.82  70.86    14.97  77.22  

Mutli-T2T_fix5-avg 18.88  71.68  19.22  70.80  18.90  70.78   14.96  77.25  

Mutli-T2T_var5-avg 18.85  71.83  19.19  70.75  18.85  70.68   14.97  77.25  

Mutli-T2T_top1 18.91  71.66  19.23  70.78  18.91  70.74    14.94  77.26  

Table 3: The results of submitted models on WMT APE data set. 

model 

PBSMT   NMT 

dev test 2016 test 2017  dev 

TER↓ BLEU↑ TER↓ BLEU↑ TER↓ BLEU↑   TER↓ BLEU↑ 

MT Baseline 24.81  62.92  24.76  62.11  24.48  62.49   15.08  76.76  

Multi-T2T_base  22.80  66.36  22.70  65.84  22.98  65.46   16.73  74.43  

Multi-T2T_1st-tuned 21.11  68.78  21.20  67.95  21.64  67.33   15.76  76.02  

Multi-T2T_2nd-tuned 19.05  71.79  19.14  70.98  19.26  70.50    15.27  76.88  

Chatterjee et al. (2017)* 19.22  71.89  19.32  70.88  19.60  70.07    ─ ─ 

Table 2: The result of multi-encoder transformer network on WMT APE data set. 
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Abstract

Recent approaches to the Automatic Post-
editing (APE) of Machine Translation (MT)
have shown that best results are obtained by
neural multi-source models that correct the
raw MT output by also considering informa-
tion from the corresponding source sentence.
To this aim, we present for the first time a
neural multi-source APE model based on the
Transformer architecture. Moreover, we em-
ploy sequence-level loss functions in order to
avoid exposure bias during training and to be
consistent with the automatic evaluation met-
rics used for the task. These are the main fea-
tures of our submissions to the WMT 2018
APE shared task, where we participated both
in the PBSMT subtask (i.e. the correction of
MT outputs from a phrase-based system) and
in the NMT subtask (i.e. the correction of neu-
ral outputs). In the first subtask, our system
improves over the baseline up to -5.3 TER and
+8.23 BLEU points ranking second out of 11
submitted runs. In the second one, character-
ized by the higher quality of the initial transla-
tions, we report lower but statistically signifi-
cant gains (up to -0.38 TER and +0.8 BLEU),
ranking first out of 10 submissions.

1 Introduction

The purpose of Automatic Post-Editing (APE) is
to correct the raw output of a Machine Transla-
tion system by learning from human corrections.
Since the inner workings of MT engines are often
not accessible (e.g. by users relying on Google
Translate), hence impossible to modify and im-
prove, APE becomes a solution to enhance the
quality of the translated segments. Good solutions
to the problem have high potential in the transla-
tion industry, where better translation means lower
costs for human revision and where the adapta-
tions of third-party, general-purpose systems to
new projects is a major need.

In the last few years, the APE shared tasks
at WMT (Bojar et al., 2015, 2016, 2017) have
renewed the interests in this topic and boosted
the technology around it. Moving from the
phrase-based approaches used in the first edi-
tions of the task (Chatterjee et al., 2015), last
year the multi-source neural models (Chatterjee
et al., 2017; Junczys-Dowmunt and Grundkiewicz,
2017; Hokamp, 2017) have shown their capability
to significantly improve the output of a PBSMT
system. These APE systems shared several fea-
tures and implementation choices, namely: 1) an
RNN-based architecture, 2) the use of large arti-
ficial corpora for training, 3) model ensembling
techniques, 4) parameter optimization based on
Maximum Likelihood Estimation (MLE) and 5)
vocabulary reduction using the Byte Pair Encod-
ing (BPE) technique. Although they achieve good
performance and impressive translation quality
improvements, some of these techniques are not
optimal for the actual deployment of APE tech-
nology in the translation industry. The main rea-
sons are the long time required for model train-
ing and the high maintenance costs of complex
architectures that combine multiple models. To
make APE solutions usable and useful for the in-
dustrial market, our submissions focus on the de-
velopment of an end-to-end system that does not
require multiple models and external components
(e.g. hypothesis re-ranker), but leverages a fast to
train architecture, effective pre-processing meth-
ods and task-specific losses to boost performance.
Our main contributions are:

• We adapt the Transformer (Vaswani et al.,
2017) to the APE problem, so that multi-
ple encoders can be exploited to leverage in-
formation both from the MT output to be
corrected and from the corresponding source
sentence (multi-source encoding).
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• We explore different strategies for combining
token and sentence level losses.

• We apply ad hoc pre-processing for the
German language by re-implementing the
pipeline used by the best system at the
WMT‘17 Translation task (Huck et al.,
2017).

• In addition to the artificial data released
by (Junczys-Dowmunt and Grundkiewicz,
2016), we make extensive use of a synthetic
corpus of 7.2M English-German triplets (Ne-
gri et al., 2018), which was provided by the
organizers as additional training material.

We participated in both the APE‘18 subtasks
with positive results. In the PBSMT subtask our
top run improves the baseline up to -5.3 TER and
+8.23 BLEU points (ranking second out of 11 sub-
missions) while, in the NMT subtask, it achieves a
-0.38 TER and +0.8 BLEU improvement (ranking
first out of 10 submissions).

2 Multi-source Transformer Network

The Transformer network (Vaswani et al., 2017),
like most of the sequence-to-sequence models,
follows an encoder-decoder architecture. It
uses stacked layers for the encoder and the de-
coder. The encoder layers consist of a multi-head
self-attention, followed by a position-wise feed-
forward network. The decoder layers have an ex-
tra multi-head encoder-decoder attention after the
multi-head self-attention sub-layer. Also, a soft-
max normalization is applied to the output of the
last layer in the decoder to generate a probabil-
ity distribution over the target vocabulary. Since
there is no recurrence in this architecture, a posi-
tional encoding is added to both the source and the
target word embeddings in order to empower the
model to capture the position of the words. More
formally, the positional encoding is defined as fol-
lows:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)

where pos is the position of the word in the sen-
tence, i is the dimension of the vector, and dmodel

is the dimensionality of the word embeddings.
The attention is a mapping from a query (Q), a

key (K), and a value (V ) to an output vector. In

Transformer, the attention is based on dot-product
attention which is defined as follow:

Attention(Q,K, V ) = softmax(QKT /
√
dk)V

where dk is added as a scaling factor for improv-
ing the numerical stability, which is equal to the
dimensionality of the key matrix. The multi-head
attention receives h different representations of
(Q,K, V ), which makes it possible to learn dif-
ferent relationships between information coming
from different positions simultaneously. It is com-
puted as follows:

MH(Q,K, V ) = Concat(head1, ..., headh)WO

where h is number of heads and WO is a param-
eter matrix with hdv*dmodel dimension. In Trans-
former, the multi-head attention is used in two dif-
ferent ways: encoder-decoder and self-attention.
In the self-attention, in both the encoder and the
decoder, the Q, K, and V matrices are coming
from the previous layer, while in the encoder-
decoder attention, Q matrix comes from the pre-
vious layer, and the K and V matrices come from
the encoder.

In order to encode the source sentence in addi-
tion to the MT output, we employ the multi-source
method by Zoph and Knight (2016). Our model
consists of two encoders, one for the source sen-
tence and one for the MT output. The outputs of
these two encoders are concatenated and passed as
the key in the attention. This helps to have a better
representation, leading to a more effective atten-
tion at decoding time.

3 Sequence-Level Loss Function

For training the model, most of the approaches in
sequence-to-sequence modeling try to maximize
the likelihood over the training data. In this sce-
nario, the loss function is a token-level loss defined
as:

LMLE = −
N∑

n=1

p(yn|y<n,x)

where p(yn|y<n,x) is the probability of generat-
ing the target word in the n-th position. Ranzato
et al. (2015), however, indicate two drawbacks for
Maximum Likelihood Estimation (MLE). First,
during training, the previous words passed to the
decoder are always chosen from the ground-truth.
However, the fact that at test time the previous
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words are chosen from the model distribution, re-
sults in a bias called exposure bias. Such bias
makes the model unable to recover from the er-
rors made in the decoding step, which easily have
a cumulative catastrophic effect. Second, using
MLE as loss function, the model is optimized
to maximize the probability of the training data,
while the performance of the model is evaluated
by the sequence-level evaluation metrics (TER and
BLEU in the case of the APE task). In order
to overcome the mentioned drawbacks, follow-
ing Minimum Risk Training (MRT) introduced by
Shen et al. (2016), we use a risk function which is
defined as:

RMRT =
∑

y∈S(x)

P (y|x)∑
y′∈S(x) P (y′|x)

∆(y)

where S(x) is a set of sampled hypotheses from
the model for the input sentence x, P (y|x) is
the probability of the sampled hypothesis, and
∆(y) is a cost value for generating the sample
y, e.g. ∆(y) = −BLEU(y). Following Sen-
nrich et al. (2016), we employ negative smoothed
sentence-level BLEU (Papineni et al., 2002; Chen
and Cherry, 2014) for computing the cost func-
tion.1

4 Data Pre-processing

In order to reduce the vocabulary size, on the Ger-
man MT output and post-edits we apply our re-
implementation of the word segmentation method
introduced by Huck et al. (2017). It consists of
three different steps:

1. Suffixes are separated from the word stems
by using a modified version of snowball
stemming, which separates and keeps the suf-
fixes instead of stripping them;

2. The output of the previous step is passed to
the empirical compound splitter described in
(Koehn and Knight, 2003), which is run with
the same parameters reported in (Huck et al.,
2017);

3. The output of the previous step is segmented
with Byte Pair Encoding (BPE) (Sennrich
et al., 2016).

1Although TER (Snover et al., 2006) is the primary evalu-
ation metric for the task, we opted for BLEU since, according
to (Shen et al., 2016), optimizing with this metric gives better
results also when evaluation is done with TER.

For the English source sentences, we only use BPE
to reduce the vocabulary size.

5 Experimental Setting

5.1 Data

To train our models, we used both the in-domain
data released by APE the task organizers and the
synthetic data provided as additional training ma-
terial.

In-domain Data. In-domain data consist of
English-German (SRC, MT, PE) triplets in which
the MT element (a German translation of the En-
glish SRC sentence) has been generated by “black-
box” MT systems: a phrase-based one for the PB-
SMT subtask and a neural one for the NMT sub-
task. In both cases, the post-edit element (PE)
is a correction of the target made by professional
post-editors. The PBSMT training set, which is
the largest one, comprises 28K triplets. The NMT
training set, is smaller in size and contains 13K
instances. From the two training corpora, we ex-
tracted 1K triplets to be used as development set to
compare the performance of different models dur-
ing training.

Synthetic data. Since building neural APE
models heavily relies on the availability of large
training data, we took advantage of the following
two corpora:

• the eSCAPE corpus (Negri et al., 2018),
which contains 7.2M English-German
triplets for each MT paradigm (i.e. 7.2M
phrase-based and neural translations of the
same source sentences). It has been gener-
ated from a parallel English-German corpus,
by taking the target sentences as artificial
post-edits and the machine-translated source
sentences as MT elements of each triplet.

• The artificial corpus provided by Junczys-
Dowmunt and Grundkiewicz (2016), which
contains 4.0M English-German triplets gen-
erated by applying a round-trip translation
protocol to German monolingual data.

Before applying the pre-processing described in
Section 4 to the eSCAPE data, we performed the
following two cleaning steps:

1. We removed the triplets in which the length
ratio between the source sentence and the
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post-edit is too different from the average in
the corpus;

2. We run a language identifier2 in order to re-
move the triplets having a non-English source
sentence or a non-German post-edit.

The application of these two cleaning steps re-
sulted in the removal of approximately 600K in-
stances from the eSCAPE corpus.

5.2 Evaluation Metrics
In order to evaluate our models, we use the two au-
tomatic evaluation metrics: i) TER which is com-
puted based on edit distance (Snover et al., 2006)
and ii) BLEU which is the geometric mean of n-
gram precisions multiplied to the brevity penalty
(Papineni et al., 2002).

5.3 Hyperparameters
We set the number of merging rules to 32K for
applying BPE in the pre-processing steps. We
employ OpenNMT-tf toolkit (Klein et al., 2017)
for our implementation, by using 512 dimensions
for word embeddings, 4 layers for both the en-
coders and the decoder with 512 units, and feed-
froward dimension of 1,024. In order to avoid
over-fitting, we use attention and residual dropout
by setting the dropout probability to 0.1, along
with the label-smoothing with parameter equal to
0.1. For training using MLE, we use the Adam op-
timizer (Kingma and Ba, 2014) with batch size of
8,192 tokens, learning rate of 2.0 and the warm-
up strategy introduced by (Vaswani et al., 2017)
with the warm-up steps equals to 8,000. For train-
ing using MRT, we use stochastic gradient descent
optimizer with the batch size of 4,096 tokens. We
also employ the beam search with beam width of
5 to sample hypotheses from the model.

6 Results

For both the subtasks, we train six different mod-
els. The performance of these models on the PB-
SMT and NMT development sets is reported in Ta-
bles 1 and 2.

Generic. First, we train a model using the union
of the (out-domain) synthetic datasets. As ex-
pected, the performance of this model in both sub-
tasks is lower than the baseline. We only train this

2For this purpose we used the language detector
available at: https://github.com/optimaize/
language-detector.

model as initial generic model in order to fine-tune
it using the in-domain data.

MLE. Using MLE, we fine-tune the generic
model on the corresponding in-domain data for
each subtask. For the PBSMT subtask, this model
achieves a -6.73 TER and +9.94 BLEU improve-
ment over the baseline. The gain is much lower for
the NMT subtask (-0.33 TER and +0.85 BLEU),
confirming that, together with the availability of
less training data, the quality of the underlying
NMT system has left little space for improvement.

MRT. We continue the training by using MRT
in two ways: i) by adding the reference to the
set of hypotheses sampled from the model and
ii) without adding the reference. In contrast with
Shen et al. (2016), who suggest to add the refer-
ence to the sampled set of hypotheses, we found
that adding the reference is harmful. Actually, by
adding the reference to the sample, the other hy-
potheses are considered as poor alternatives, since
they have a lower BLEU score. Nevertheless,
these samples usually have good quality and a con-
siderable overlap with the reference. Therefore,
updating the model in the direction of decreas-
ing the probability of these hypotheses is does not
seem a promising direction.

MRT + MLE. In order to avoid this problem
and take advantage of the reference, we re-run the
previous learning step using the linear combina-
tion of the two loss functions. Formally, we use
the following loss function:

Lcomb = αLMLE + (1− α)RMRT

where α is set to 0.5 to give equal importance to
the two components3 The results show that com-
bining the two loss functions makes the model able
to learn also from the reference without ignoring
the contribution of the other hypotheses.

Our model outperforms the best performing
system at the last round of the shared task (Chat-
terjee et al., 2017), with improvements up to -1.27
TER and +1.23 BLEU on the PBSMT develop-
ment set. Although we are using more out-of-
domain data, it is interesting to note that these
scores are obtained with a much simpler architec-
ture, which does not require to ensemble n mod-
els and to train a re-ranker. Since using only

3We leave for future work the empirical estimation of op-
timal values for α.
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Model Reference TER BLEU
Generic - 25.00 61.69
MLE - 18.08 72.86
MRT Yes 18.02 72.91
MRT No 18.44 73.05
MLE + MRT Yes 17.99 72.99
MLE + MRT No 17.95 73.121

Table 1: Results of the multi-source Transformer with
specific losses on the PBSMT outputs. The perfor-
mance of the MT baseline are 24.81 TER and 62.92
BLEU. Superscript 1 denotes that improvement over
MLE is statistically significant.

Model Reference TER BLEU
Generic - 17.35 72.55
MLE - 14.75 77.61
MRT Yes 14.81 77.57
MRT No 14.78 77.74
MRT + MLE Yes 14.75 77.68
MRT + MLE No 14.68 77.68

Table 2: Results of the multi-source Transformer with
specific losses on the NMT outputs. The performance
of the MT baseline are 15.08 TER and 76.76 BLEU.

MRT produced a better BLEU score in NMT sub-
task, we submitted the best model using only MRT
without reference as our Primary submission, and
the best model using MRT+MLE as our Con-
trastive submission.

7 Test Set Results

The performance of the primary and contrastive
APE systems on the test set for both the subtasks
is reported in Table 3. Apart from a minimal varia-
tion in the TER scores for the PBSMT subtask, the
results confirm what previously seen on the devel-
opment set. Our APE systems are able to signifi-
cantly improve the quality of the PBSMT outputs
by achieving a gain of -5.62 TER and +8.23 BLEU
points.

When post-editing the output of a NMT sys-
tem, the gains are smaller (-0.38 TER and +0.8
BLEU). This is somehow expected since the role
of an APE system is to fix MT errors: in pres-
ence of higher quality translations (from PBSMT
to NMT: -7.4 TER and +12.54 BLEU) there are
less errors to correct and the chance to apply un-
necessary changes is higher. Apart from that, our
APE systems are able to improve the NMT outputs
showing that, even in this challenging condition,

Task System TER BLEU

PBSMT
Baseline 24.24 62.99
Primary 18.94 71.22
Contrastive 18.62 71.04

NMT
Baseline 16.84 74.73
Primary 16.46 75.53
Contrastive 16.55 75.38

Table 3: Submissions at the WMT APE shared task.

APE is useful.

8 Conclusion

We presented the FBK’s submissions to the APE
shared task at WMT 2018. Our models extend a
Transformer-based architecture by: 1) leveraging
multi-source inputs consisting in the source and
MT texts and 2) taking advantage of combined to-
ken and task-specific losses. Moreover, an ad hoc
text pre-processing for the German language and
more artificial data are exploited to help the train-
ing of the model. The resulting systems show large
gains in performance when post-editing the PB-
SMT translations (our top-submission ranks sec-
ond in this subtask), while minimal improvements
are obtained when correcting the NMT outputs
(still, our top-run ranks first in this subtask). These
differences in performance strongly depend on the
initial quality of the MT outputs that significantly
changes from the PBSMT to the NMT system.

It is worth to remark that our implementation
choices were mainly driven by the needs of a trans-
lation market in which simple solutions that are
easy to maintain are always preferable to complex
architectures. In this direction, our APE systems
consist of a single network that can be trained in an
end-to-end fashion, without recourse to ensembles
of multiple models or the concatenation of com-
ponents (e.g. hypothesis re-ranker) that have to be
trained independently.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation, pages 131–
198, Berlin, Germany. Association for Computa-
tional Linguistics.
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Abstract 

Our entry to the parallel corpus 

filtering task uses a two-step strategy.  

The first step uses a series of pragmatic 

hard ‘rules’ to remove the worst 

example sentences.  This first step 

reduces the effective corpus size down 

from the initial 1 billion to 160 million 

tokens. The second step uses four 

different heuristics weighted to 

produce a score that is then used for 

further filtering down to 100 or 10 

million tokens.  Our final system 

produces competitive results without 

requiring excessive fine tuning to the 

exact task or language pair. The first 

step in isolation provides a very fast 

filter that gives most of the gains of the 

final system. 

1 Introduction 

This task asks for applicants to provide a score for 

each sentence pair in a 1-billion-word Machine 

Translation (MT) training corpus that is 

considered to be ‘very noisy’, such that those 

scores can be used to filter the corpus down into 

10 million and 100 million words subsets. The 

quality of the output is measured by BLEU score 

obtained by training standard systems on these 

two subsets of data. 

We consider this task to comprise of two 

primary components, namely (a) removing 

sentences that do not represent good examples of 

translation from one language to the other (‘junk’) 

and (b) distilling the remaining data down to a 

smaller training footprint without losing quality or 

diversity and then attaching scores to those 

sentences. 

These two components are somewhat related; 

however, we chose to use a two-pass system to 

tackle them independently, so our system could be 

used to tackle the two components separately if 

required by a ‘real-world’ use case. 

There are various approaches to this task that 

have previously been reported and we have 

attempted to select the most pragmatically useful 

of these to incorporate into our final system.  Our 

philosophy in choosing what to put into our system 

was to make it as general as possible, such that it 

could be used for other language pairs and different 

datasets, rather than specifically tuning for this 

task.  That then allows us to use the system more 

widely across our efforts in the field of machine 

translation.  We have also chosen to use an array of 

different metrics to produce a final score, rather 

than a single score, to gain the benefits of multiple 

models that approach the problem in different 

ways. 

1.1 Dev Data 

As well as the 1-billion-word corpus to be 

processed, a smaller corpus of paired English-

German data is available as a development set.  

This data comprises the data for the WMT 2018 

news translation task data for German-English 

without the Paracrawl parallel corpus.  This data is 

approximately 130M words, drawn from Europarl, 

Common Crawl, News Commentary and Rapid 

EU Press Release Corpora.  More details of this 

data are available from 

http://www.statmt.org/wmt18/translation-

task.html. 

This data is hereafter referred to as the ‘dev data’. 

2 System Description  

Our filtering system consists of two passes.  The 

first pass uses some hard ‘rules’ to eliminate the 

bulk of the data.  We consider this data to be ‘junk’ 

and score each sentence thus removed with a zero. 

The second pass uses several heuristics we have 

developed to assign scores greater than zero to 
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each sentence pair, with the aim of distilling down 

the data into as rich a subset as possible. 

2.1 Initial ‘rules’ 

The following hard rules are performed 

sequentially on the corpus.  If any sentence ‘fails’ 

a rule it is immediately given a score of 0 and not 

considered for any further portion of our scoring 

system. 

 

Line Length: we follow the ‘length-based 

filtering’ of Khadivi and Ney (2005).  This method 

attempts to catch instances of grossly mistranslated 

sentences using the assumption that sentences in 

different languages will consist of approximately 

the same number of words and removing sentence 

pairs that have widely varying lengths. 

If I and J denote the source and target sentence 

length respectively, sentence pairs are eliminated 

unless all of the following are true:  

6 ∗ I > J and I < 6 ∗ J 
I < 3 or J < 3 or (I < 2.2 ∗ J and J < 2.2 ∗ I) 
I < 10 or J < 10 or (I < 2 ∗ J and J < 2 ∗ I)          (1) 

We sampled these same thresholds on a range of 

other languages and were surprised to see they 

were reasonable without alteration even in quite 

diverse situations, such as agglutinative languages. 

 

Non-translation: following Song et. al. (2014) we 

remove sentence pairs where the source and target 

have a BLEU similarity score greater than 0.6.  

This deals with cases of either untranslated or only 

partially translated sentences. 

 

Language identification: Web crawled corpora 

typically contain many data that are not in the 

language it claims to be.  To try and identify such 

cases we use lang-id (Lui and Baldwin, 2012) to 

identify the most likely language of both the source 

and target sentence and remove the entry if either 

source or target disagrees with the correct label. 

We also tried a different version of this in which 

we used the language probabilities generated by 

langid alongside a threshold instead of a binary 

decision based on the langid 1-best.  With 

appropriate tuning this gave marginal gains, but the 

processing time was increased more than we found 

acceptable so is not used in our target system. 

For languages not supported by pre-trained 

language identification models, we intend to use 

FastText (Joulin et. al, 2017) to train our own. 

We believe this is the part of our rules most 

likely to give false positives.  It was not possible to 

quantify this, but from qualitative judgement of the 

output it appeared to often falsely misjudge 

something as being in an incorrect language, 

particularly short sentences.  Nonetheless our 

experiments show the rule greatly improved 

overall quality of the final corpus, so we believe it 

provides a lot more good than harm. 

 

Character filtering: we expect there to be 

unwanted characters in a noisy corpus – for 

example Denkowski et. al. (2012) filter out all lines 

with invalid Unicode, control characters and 

similar. We approach this in a systematic way, by 

defining a list of characters we deem acceptable for 

each language and only keeping sentences 

containing just those characters.  We create our 

character lists by counting character occurrence in 

the ‘dev data’, sorting on character count and then 

quickly manually scanning through the most 

common characters to generate a final list of 

around 80 characters per language that we deem 

‘acceptable’. 

Our system then eliminates any sentences that 

use any character not in these lists.  This both 

reduces any remaining cases of data in an incorrect 

language and incorrectly parsed markup from the 

web crawlers.  It also reduces the effective 

character set remaining in the training data, which 

in turn reduces the effective vocabulary size of 

resultant MT systems, which we found to be 

beneficial when training modern NMT systems. 

 

Digit matching: numbers, in particular digits, can 

be used to mark well matched sentences, and 

indeed they have been used as such in paired 

corpus alignment (Khadivi and Ney, 2005, Simard 

et. al 1992).  Our system captures this by extracting 

all digits (in this case the characters 0-9) from the 

source and target sentence and eliminating them if 

they differ at all.  This does introduce a small 

number of false positives where one side has the 

number in digits and the other in words (‘1’ vs 

‘one’), but we qualitatively found occurrences of 

this to be small. 

2.2 Scoring Heuristics 

To rank the remaining words, we turned to four 

heuristics we developed and found to be correlated 

with quality of the data. 
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Each heuristic produced a score with a positive 

correlation to data quality (as measured by 

resultant BLEU), which we then scaled to be 

between 0 and 1.  Our submissions were then based 

on weighted averages of those scores, where the 

weights between the different heuristics were 

determined empirically. 

 

Sentence length: We noticed that the sentences in 

the corpus remaining after the rules were applied 

tended to be quite short. We confirmed this by 

comparing the sentence length distribution to that 

in the dev data (Figure 1).  Note that our definition 

of sentence length here is the length of both source 

and target sentence summed, rather than length of 

one or the other. 

These short sentences tended to be indicative of 

‘poor quality’ and so we set up a heuristic to 

encourage longer sentences. In particular we use 

the following formula: 

 

     𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 40: 

        𝑠𝑐𝑜𝑟𝑒 =
2 ∗ length

100
 

    𝑒𝑙𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 80: 

        𝑠𝑐𝑜𝑟𝑒 = 0.8 ∗
length − 40

200
 

    𝑒𝑙𝑠𝑒: 
        𝑠𝑐𝑜𝑟𝑒 = 1.0  (2) 

We chose to use this relatively simple algorithm 

rather than any more sophisticated fitting 

technique in order to keep the system as general as 

possible.  Any system which attempts to fit the 

exact curve is reliant on a target corpus which goes 

against the spirit of the task.  We do note that we 

would probably not choose to use this heuristic in 

isolation however, as it would then essentially be 

no more than selecting the longest sentences. 

 

Perplexity: perplexity measures have been used to 

filter language modelling corpora with respect to a 

specific domain (Gao et al, 2002; Lin et al., 1997). 

We would expect the same techniques to be 

beneficial here too.  However, in the task 

description we were specifically asked not to use 

metrics related to domain-relatedness.  As with our 

sentence length heuristic we look to mirror the 

overall perplexity statistics of a ‘clean’ corpus 

instead. 

Rather than compare to a specific domain we 

trained a 5-gram using KenLM (Heafield et al, 

2013) on the data itself, measured log(perplexity) 

of each sentence using this self-trained model and 

then did the same on the dev data.  As with the 

sentence length heuristic, we found that the dev 

data displayed a slightly different behavior to the 

corpus being filtered (Figure 2) – in this case the 

overall shape of the graph was similar, peaked at a 

value of 0.82 for negative log perplexity divided by 

sentence length, but the dev data had a sharper 

peak, and the corpus to be filtered had more 

sentences of higher or lower perplexity values. 

Our heuristic therefore upweights sentences 

closer to this peak, to try and match the dev data 

behavior. 

 

Figure 1: Plot of sentence length versus proportion 

of words that appear in sentences of that length, for 

the raw corpus (orange with leftmost peak), the 

corpus after our initial ‘rules’ (blue with central 

peak), and the dev data (grey with rightmost peak). 

With our sentence length heuristic we are trying to 

move the blue line to be closer to the grey one. 
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Figure 2: Plot showing frequency against negative 

log perplexity normalised by sentence length, for 

the corpus after rules were applied (blue, lower 

peak) and dev data (grey, higher peak). With our 

perplexity heuristic we are trying to move the blue 

line to be closer to the grey one. 
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𝑖𝑓 − log(𝑝𝑝𝑙) 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑 ≤ 0.82: 

    𝑠𝑐𝑜𝑟𝑒 = 1 −
(0.82 + log(𝑝𝑝𝑙) 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑)

0.82
 

𝑒𝑙𝑠𝑒: 

    𝑠𝑐𝑜𝑟𝑒 = max (0,1 −
− log(𝑝𝑝𝑙)𝑝𝑒𝑟 𝑤𝑜𝑟𝑑−0.82

3
) (3) 

Diversity: following Song et. al (2014) we used 

sentence similarity in a rolling buffer to measure 

how diverse a sentence was compared to its 

neighbours. 

Like Song et. al. we used a rolling window of 

200 sentences, however we found that using BLEU 

to measure sentence similarity was too slow for 

practical use with such a large corpus. Instead we 

took a two-step approach, first checking if at least 

half of the words in the two sentences were in 

common.  If so we then used simple edit distance 

to measure how similar the sentences were.  The 

per sentence score derived from this heuristic was 

the minimum Levenshtein edit distance between a 

given sentence and all other sentences in its 200-

sentence window. 

To give this metric more chance of identifying 

similar sentences, we first sorted the entire corpus 

by sentence length, as sentences of similar length 

are more likely to have smaller edit distances. 

This heuristic then effectively assigns high 

scores to sentences that exhibit distinctness to 

others in the corpus, whilst giving low scores to 

sentences that are near duplicates and hence adding 

little new information. 

 

MT filtering: previous work has shown that 

machine translation systems themselves can 

directly be used to filter parallel corpora, either as 

a preprocessing step (Gaspers et. al. 2018) or even 

on the fly as part of the training process (Zhang et. 

al., 2017). 

We therefore train an MT system on the entirety 

of the post-rules corpus.  We then compute the one 

best translation for each sentence.  Finally, we 

compute the decoder cost of both the one best 

translation and the reference translation.  The 

decoder cost in this case is the cross-entropy loss.  

We did not normalize by sentence length as we 

found it made little difference. 

The raw decoder cost of the reference 

translation by itself is an initially interesting 

metric, as low values correspond to sentences that 

are more likely to be correct translations as they 

don’t diverge from what the system would expect 

to see.  However, we also find that this approach 

biases the results towards short sentences that are 

very similar to one another, meaning resulting 

corpora lack diversity and fall foul of the rare 

words problem (Luong et. al 2015).  The decoder 

cost of the 1-best translation is therefore used as a 

constraint on this.  Our final score for this heuristic 

is the decoder cost of the reference sentence minus 

the decoder cost of the 1-best.  We then compute 

this number in both translation directions and 

average. 

High values of this derived score represent 

situations where the reference translation is judged 

much less likely than the 1-best by the decoder and 

thus should be discarded as likely junk.  Very low 

scores show that the reference translation agrees 

with the model and are therefore unlikely to be 

junk.  And further than that scores where the target 

has a lower cost than the target indicate explicit 

areas where the model needs to be improved – in 

other words exactly the sorts of inputs that are most 

valuable for the task of training a machine 

translation system. 

We used the tensor2tensor framework to train a 

machine translation system for this scoring 

(Vaswani et al. 2018).  The setup was the same as 

we used for benchmarking, as described in Section 

3. 

3 Benchmarking 

To benchmark our progress, we use the 

tensor2tensor system (Vaswani et. al. 2018) which 

reports world leading results on machine 

translation tasks at present.  We took the most 

recent commit of the code (at the time) from 

https://github.com/tensorflow/tensor2tensor/com

mit/99750c4b and used it without alteration. 

We use this system without attempting to tune 

hyperparameters, except that we use the predefined 

‘transformer_small’ recipe from the code 

repository (rather than the default 

‘transformer_base’), for speed and memory 

reasons.  The ‘transformer_small’ recipe uses two 

hidden layers, each of size 256 and 4 attention 

heads.  We trained each system for 500k steps (we 

found training for more steps was not helpful for 

performance) then averaged the last 8 checkpoints.   

All BLEU scores reported used the described 

filtering system to prepare the training data, and 

then benchmark a trained transformer_small 

against the ‘newstest2016’ test set.  BLEU was 

calculated using the t2t-bleu function in 
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tensor2tensor and all reported numbers are on 

uncased text, with no tokenization applied. 

4 Results 

4.1 Initial ‘rules’ 

Using the initial ‘rules’ removed 840 million words 

from the 1-billion-word corpus, leaving 160 

million words for further scoring.  Table 1 shows 

the contribution each rule made to this.  Note that 

by contrast the rules would have removed a much 

smaller, but still significant, proportion of the dev 

data.  This shows both that the rules are effective at 

removing ‘bad’ data (as we assume the 1 billion 

words contains more ‘bad’ data than the dev set) 

and that they are perhaps over aggressive and could 

bear some more tuning. 

The rules were applied sequentially, so the latter 

rules may have removed more words if applied 

directly to the initial corpus. 

Purely using these initial hard rules and then 

randomly selecting from the resulting 160M 

improves BLEU scores vastly compared to 

randomly selecting from the entire 1Bn word 

corpus (Table 2).  For a target corpus size of 10M 

words the BLEU score improves from 5.93 to 

26.14. 

4.2 Scoring Heuristics 

We applied the scoring heuristics described above 

in various combinations on the 160M words 

remaining after our initial ‘rules’. 

When filtering down to 100M words of data, 

any of the heuristics by themselves improved the 

BLEU score by between 0.12-1.67 as compared to 

randomly selecting from the 160M words post- 

‘rules’ (Table 2). Combining them in any 

combination gives further improvements and using 

all of them together gives a total of 1.97 gain in 

BLEU. 

When filtering down to 10M words the picture 

is more complicated.  Two of the heuristics by 

themselves produce worse BLEU scores (sentence 

length and MT scoring) and two improve the 

BLEU scores (perplexity and diversity).  When 

combined equally there is a gain of 5.22, which is 

degraded if any of the metrics are omitted from that 

averaging.  In particular the BLEU is degraded 

significantly if MT scoring is omitted from the 

combination. 

We suspect that the very low scores exhibited in 

the 10M results are more than likely due to 

 1bn word 

corpus 

dev corpus 

Line length 12.3% 6.0% 

Non-translation 8.3% 0.6% 

Language 

identification 

12.0% 1.5% 

Character filtering 24.9% 13.5% 

Digit matching 26.5% 6.3% 

Table 2: Percentages of the 1 billion word and dev 

corpora removed by each of the initial filtering 

rules. 

 

 

Method of filtering data down to target amount 100M 

words 

10M 

words 

Randomly selected sentences from initial 1Bn * 5.93 

Randomly selected sentences from 160M after initial ‘rules’ 31.14 26.14 

Sentence length scoring used to pick best from 160M after ‘rules’ 32.52 17.72 

Perplexity scoring used… 32.81 29.00 

Diversity scoring used… 31.80 28.46 

MT scoring used … 32.26 17.07 

All four heuristics except length used… 32.98 30.47 

All four heuristics except perplexity used… 32.69 30.97 

All four heuristics except diversity used… 32.71 30.34 

All four heuristics except MT used… 32.83 17.86 

All four scoring heuristics averaged and used… 33.11 31.36 

Table 1: BLEU scores computed by training a tensor2tensor transformer_small system on 10M and 100M 

samples of data and then testing on newstest2016. The cell marked ‘*’ could not be computed due to memory 

issues with our training setup.  We list columns in terms of number of words in the corpus rather than the 

(perhaps more familiar) number of sentence pairs, as the task demanded we filter to a specific number of words 

rather than sentence pairs. The number of sentence pairs varied in each cell as different filtering techniques led 

to different average sentence lengths.  The 10M corpora varied between 200k and 1M sentence pairs, for 

example, and the 100M corpora between 4M and 10M sentence pairs. 
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pathological failures in training the tensor2tensor 

system, however we were unable to ascertain the 

exact cause and found the numbers were 

reproduceable on multiple runs of training with the 

same setup and data. 

4.3 Discussion 

It is clear that using our initial ‘rules’ offer a 

significant improvement over random selection 

and that the scoring heuristics we have used are all 

capable of adding additional value in sub selecting 

data. 

The sentence length scoring heuristic and the 

initial rules (barring language identification) are by 

some order of magnitude the fastest and simplest 

part of the system.  For an initial look at data we 

would recommend using these before investing 

time into the more compute intensive rules. 

Our entries to the competition were based on the 

balanced scoring across all four heuristics 

(‘speechmatics-best-candidate-balanced-

scoring.txt’), scoring purely based on the MT 

scoring (‘speechmatics-purely-neural-scoring.txt’) 

and a version with asymmetric weights heavily 

skewed towards the MT scoring (‘speechmatics-

prime-neural-scoring.txt’). 

4.4 Further Work 

At present we have not tuned many parameters in 

our system.  For optimal results we would spend 

more time on each of the 9 separate components 

we used for our system to optimize their various 

parameters with respect to final system BLEU. 

For realistic use cases we would also expect that 

domain specific entropy filtering would be hugely 

beneficial, as we have previously found in 

language modelling (Williams et. al. 2015). 

Conceptually we believe that the MT scoring 

heuristic has the most scope for future 

development.  It is also the component most 

closely related to the actual task – translating text. 

Particularly interesting would be investigating its 

efficacy as the model capacity is scaled.  Our belief 

is that some form of system that dynamically 

eliminates text as part of training could end up 

being the optimal approach to filtering out noisy 

parallel data. 

5 Conclusion 

The Speechmatics entry to the parallel corpus 

filtering task comprises a two-step system.  The 

first step applies some simple rules to remove the 

bulk of the poor-quality data from a corpus.  This 

gives most of the gains in terms of BLEU on a final 

trained system.   We then apply four heuristics for 

scoring that give additional BLEU improvements. 

We believe this is a relatively straightforward 

system that can be used across a wide variety of 

language pairs with little alteration to produce high 

quality reduced size MT corpora. 
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Abstract

We describe Vicomtech’s participation in the
WMT 2018 Shared Task on parallel corpus
filtering. We aimed to evaluate a simple ap-
proach to the task, which can efficiently pro-
cess large volumes of data and can be eas-
ily deployed for new datasets in different lan-
guage pairs and domains. We based our ap-
proach on STACC, an efficient and portable
method for parallel sentence identification in
comparable corpora. To address the specifics
of the corpus filtering task, which features
significant volumes of noisy data, the core
method was expanded with a penalty based
on the amount of unknown words in sentence
pairs. Additionally, we experimented with a
complementary data saturation method based
on source sentence n-grams, with the goal of
demoting parallel sentence pairs that do not
contribute significant amounts of yet unob-
served n-grams. Our approach requires no
prior training and is highly efficient on the type
of large datasets featured in the corpus filtering
task. We achieved competitive results with this
simple and portable method, ranking in the top
half among competing systems overall.

1 Introduction

Data-driven approaches to Machine Translation
(MT) have been the dominant paradigm in the last
two decades, with the development of Statistical
Machine Translation (SMT) (Brown et al., 1990),
and, more recently, of Neural Machine Transla-
tion (NMT) (Bahdanau et al., 2015). These ap-
proaches require large volumes of parallel sen-
tences to properly model translation in a given lan-
guage pair. However, large quality parallel cor-
pora based on human translations are scarce across
language pairs, and there is a strong need to build
clean corpora from different sources.

The World Wide Web is a rich source of mul-
tilingual data, from which parallel corpora can

be automatically created under appropriate condi-
tions of use (Forcada et al., 2016). However, cor-
pora created via crawling, with automated docu-
ment and sentence alignment, tend to exhibit sig-
nificant volumes of noisy data, which can be detri-
mental to the training of MT systems (Khadivi and
Ney, 2005; Khayrallah and Koehn, 2018a).

The task of cleaning noisy data from parallel
corpora has been tackled by various researchers
over the years. In (Munteanu and Marcu, 2005),
noise removal is performed via a maximum en-
tropy model trained on observations of clean and
noisy data. Esplá-Gomis and Forcada (2009) in-
clude sentence alignment scores in BiTextor, a
tool that performs the complete chain of corpus
creation from web data, to filter dubious sen-
tence pairs. In (Khadivi and Ney, 2005), two ap-
proaches are evaluated, based on length and on
lexical translation likelihood, showing statistically
significant improvements in translation quality us-
ing the filtered corpus. An unsupervised filter-
ing method based on outlier detection is proposed
in (Taghipour et al., 2011), who also report im-
provements in translation quality from their fil-
tered corpus. In (Cui et al., 2013), the approach
to data filtering is based on graph-based random
walks, with improvements observed for Chine-
English machine translation. Recently, Xu and
Koehn (2017) introduced Zipporah, a fast data se-
lection system for noisy parallel corpora, which is
shown to result in improved SMT system quality.

The WMT 2018 task on parallel corpus filter-
ing offers the possibility to compare different ap-
proaches to the task, evaluating their impact on
both SMT and NMT systems on several test sets in
different domains. Our participation in the task
aimed to evaluate a simple and portable approach,
based on the efficient STACC system for paral-
lel sentence extraction from comparable corpora
(Etchegoyhen and Azpeitia, 2016). We extended

860

https://doi.org/10.18653/v1/W18-64100


the original approach with a simple method based
on the number of unknown words, to tackle the
significant amounts of noise featured in the corpus
filtering task. Additionally, we experimented with
a simple approach to data redundancy, based on n-
gram saturation. Our contribution centred on pro-
viding a sound method that can be easily deployed,
does not require prior training, and can efficiently
process large volumes of data.

2 Approach

Our approach to the task is based on STACC, a
portable and efficient method for the identifica-
tion of parallel sentences in comparable corpora
(Etchegoyhen and Azpeitia, 2016) which obtained
the best results for all language pairs in the BUCC

shared tasks (Azpeitia et al., 2017, 2018). As the
method assigns an alignment score to source and
target sentence pairs, it can be directly applied to
parallel corpus filtering as well, with a simple ex-
tension for this specific task. We describe the com-
ponents of our approach in the next sub-sections.

2.1 STACC
The STACC approach has been described and ex-
plored in detail in (Etchegoyhen and Azpeitia,
2016), and we briefly summarise below how simi-
larity is computed with this method.

Let si and sj be two tokenised and truecased
sentences in languages l1 and l2, respectively, Si

the set of tokens in si, Sj the set of tokens in sj , Tij

the set of lexical translations into l2 for all tokens
in Si, and Tji the set of lexical translations into l1
for all tokens in Sj .1

Lexical translations are initially computed from
sentences si and sj by retaining the k-best trans-
lations for each word, if any, as determined by the
ranking obtained from the lexical translation prob-
abilities computed with IBM word alignment mod-
els (Brown et al., 1990). The sets Tij and Tji that
comprise these k-best lexical translations are then
expanded by means of two operations:

1. For each element x in the set difference T ′
ij =

Tij − Sj (respectively T ′
ji = Tji − Si), and

each element y in Sj (respectively Si), if x
and y share a common prefix of more than
n characters, the prefix is added to both Tij

1As in the original approach, we use sets rather than mul-
tisets, i.e. without repeated elements. The term tokens refers
to the components of the tokenised sentences, and repeated
tokens are thus only represented once in the sets.

and Sj (respectively Tji and Si). This longest
common prefix matching strategy is meant to
capture morphological variation via minimal
computation.

2. Numbers and capitalised truecased tokens
not found in the translation tables are added
to the expanded translation sets Tij and
Tji. This operation addresses named entities,
which are strong indicators of potential align-
ment given their low relative frequency and
are likely to be missing from translation ta-
bles trained on different domains.

With source and target sets as defined here, the
STACC similarity score is then computed as in
Equation 1:

stacc(si, sj) =

|Tij∩Sj |
|Tij∪Sj | +

|Tji∩Si|
|Tji∪Si|

2
(1)

Similarity for the core metric is thus defined
as the average of the Jaccard similarity coeffi-
cients obtained between sentence token sets and
expanded lexical translations in both directions.

The STACC approach has been extended in
(Azpeitia et al., 2017, 2018), notably via a word
weighting scheme that led to significant improve-
ments in the parallel sentence extraction task. In
this work, we used the original weightless ap-
proach, as it performed slightly better in prelim-
inary experiments on the noisy web data of the
WMT 2018 task.

2.2 OOV Density
The corpus for the WMT 2018 shared task on
parallel corpus filtering features significant vol-
umes of noise, as is typical with parallel cor-
pora gathered via web crawling that targets recall.
(Khayrallah and Koehn, 2018b) manually exam-
ined a sample of data generated by the Paracrawl
project,2 of the type used in this shared task,
and identified as noise misaligned sentences, con-
tent in the wrong languages, untranslated sen-
tences, random byte or HTML markup sequences.
The latter four types can be notably characterised
as displaying significant percentages of out-of-
vocabulary (OOV) words, assuming a vocabulary
extracted from a separate parallel corpus with lim-
ited amounts of noisy data.

As previously described, the STACC approach,
which constitutes the core of our method, is geared

2https://paracrawl.eu/
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towards computing alignment scores in compara-
ble corpora, with lower volumes of noise, notably
allowing OOV words to contribute to the score if
they are capitalised words in truecased sentences
or numbers. This enables the capture of surface-
defined named entities, which are a decisive fac-
tor for parallel sentence identification in compara-
ble datasets (Azpeitia et al., 2018). However, this
approach can be weaker in highly noisy datasets,
where, for instance, random sequences of numbers
may lead to an unwarranted high alignment score.

Since we aimed to avoid adding task-specific
cleanup heuristics, such as performing time-
consuming language identification or filtering se-
quences in an ad-hoc manner, we experimented
with a penalty based on the number of unknown
words in the corpus to be filtered, determined from
the separate parallel corpus used to extract lexical
translations. The penalty is computed as follows
for each sentence s, source or target, where |oov|
is the number of unknown words in the sentence
and |s| is the sentence length, in number of words:

p(s) = 1− |oov||s| (2)

The STACC.OOV alignment score for each sen-
tence pair (si, sj) is then computed as follows:

stacc.oov(si, sj) = stacc(si, sj) ·
p(si) + p(sj)

2
(3)

Thus, sentences with a small amount of OOV

words, of interest to extend MT coverage, will be
assigned a score close to the original STACC score,
whereas the score for dubious sentences with large
numbers of unknown words will tend to zero. Our
primary submission was based on the metric in
Equation 3, as the initial goal of the task was to
assign an absolute alignment quality score.

2.3 N-gram Saturation

The organisers of the shared task had allowed the
use of metrics that did not score sentences in iso-
lation. That is, sentence pairs could be scored
by considering their redundancy with regards to
higher scoring pairs. This aspect enables the de-
sign of methods that select the n-best sentence
pairs to train machine translation models.

To experiment with data redundancy, we imple-
mented a simple method based on n-gram cover-
age, similar in spirit to the n-gram coverage and

saturation methods of Eck et al. (2005) and Lewis
and Eetemadi (2013). The method can also be
related to the Feature Decay approach proposed
in (Biçici and Yuret, 2011), originally applied to
SMT models and recently evaluated on NMT as
well (Poncelas et al., 2018).

We compute n-gram saturation by first sorting
the corpus according to the STACC.OOV scores,
from high to low scores. We then process the
sorted corpus by extracting n-grams (up to a spe-
cific order n) from each source sentence, storing
the collected n-grams in a Patricia trie T (Mor-
rison, 1968) for fast retrieval, and computing the
amount of new n-grams for each sentence. The
steps for a given sentence s are described below:

1. Retrieve all n-grams in s.

2. Determine all new n-grams from step 1, i.e.
n-grams not found in the trie T .

3. Compute the ratio of new to existing n-grams
in s as in Equation 4, for each n-gram ng up
to order k:

ngsat(s) =

k∑
n=1

ngn /∈ T

k∑
n=1

ngn ∈ T

(4)

4. Add all new n-grams to the trie T .

Finally, we compute the score of the
STACC.OOV.NGSAT variant for each sentence
pair by multiplying the pair’s existing score in
the sorted corpus, computed as in Equation 3, by
its ngsat score. Thus, pairs that provide no new
n-grams would get an overall score of zero, while
pairs with a large amount of new n-grams would
get a score close to the existing score.

This simple method differs from the one in (Eck
et al., 2005) in two ways: we do not pre-compute
nor use n-gram frequency, and our normalisation
factor is the total number of n-grams for the sen-
tence instead of sentence length. Our approach
also has linear complexity instead of quadratic,
since, contrary to their different scenario focussed
on data selection, we do not need to recalcu-
late costs for all sentence pairs after processing
one pair. Our method also differs from that of
(Lewis and Eetemadi, 2013), as we do not use
a threshold of n-gram counts but the percentage
of new n-grams contributed by a given sentence,
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MT SYSTEM AVG RANK NEWS IWSLT ACQUIS EMEA GLOBAL KDE

SMT 10M BEST 24.58 1/48 29.59 22.16 21.45 28.28 22.67 25.51
SMT 10M STACC.OOV 23.25 16/48 27,48 20.42 19.33 26.51 21.20 24.55
SMT 10M STACC.OOV.NGSAT 23.29 13/48 27,52 19.80 19.33 26.84 21.12 25.14
SMT 100M BEST 26.50 1/48 31.35 23.17 22.51 31.45 24.00 26.93
SMT 100M STACC.OOV 25.91 24/48 30.47 22.47 22.16 30.30 23.43 26.63
SMT 100M STACC.OOV.NGSAT 25.80 29/48 30.17 22.39 22.12 30.03 23.36 26.70
NMT 10M BEST 28.62 1/48 36.04 25.23 25.30 32.72 26.72 28.25
NMT 10M STACC.OOV 26.35 13/48 32.33 22.57 22.55 28.96 24.28 27.39
NMT 10M STACC.OOV.NGSAT 25.64 17/48 31.25 21.81 20.67 29.09 23.48 27.56
NMT 100M BEST 32.06 1/48 39.85 27.43 28.36 36.70 29.26 30.79
NMT 100M STACC.OOV 30.40 27/48 37.08 26.35 26.81 34.54 27.74 29.89
NMT 100M STACC.OOV.NGSAT 24.91 40/48 27.23 22.44 23.15 26.92 22.94 26.76

Table 1: Results on the WMT 2018 test sets

MT SYSTEM ∆MEAN ∆MEDIAN ∆BEST

SMT 10M STACC.OOV +1.83 +0.74 -1.33
SMT 10M STACC.OOV.NGSAT +1.87 +0.79 -1.29
SMT 100M STACC.OOV +1.03 +0.03 -0.59
SMT 100M STACC.OOV.NGSAT +0.92 -0.08 -0.71
NMT 10M STACC.OOV +4.51 +1.79 -2.27
NMT 10M STACC.OOV.NGSAT +3.80 +1.09 -2.98
NMT 100M STACC.OOV +2.47 -0.27 -1.65
NMT 100M STACC.OOV.NGSAT -3.03 -5.77 -7.15
ALL STACC.OOV +2.46 +0.57 -1.46
ALL STACC.OOV.NGSAT +0.89 -0.99 -3.03

Table 2: Scoring differences on core statistics

and also assume the initial ordering provided by
the STACC.OOV scores. Finally, our approach dif-
fers from the Feature Decay method in (Biçici and
Yuret, 2011) on several aspects, as it is not based
on rate of decay and n-gram saturation scores are
computed in a single pass on the corpus to be fil-
tered, without referring to source test features.

Our goal in experimenting with n-gram satu-
ration was mainly to include a low complexity
method that could account for data redundancy in
a simple way. The scope of the experiments was
also reduced to only cover n-grams on the source
side, as we meant to evaluate the impact of data
redundancy in terms of source context coverage.
This evidently excludes cases where a saturated
source context can be translated differently in the
target language, which can impact the number of
learned translation options and subsequently affect
evaluation scores. We leave further evaluations of
such cases for future research. In the next sections,
we evaluate the STACC.OOV.NGSAT variant as our
secondary submission to the WMT 2018 task.

3 Experimental Setup

Our approach implies only minimal deployment
settings. We ran STACC with the following two
hyper-parameters: minimal prefix length was set
to 4 and k-best translation lists limited to 5 can-

didates. For the STACC.OOV.NGSAT variant, the
n-gram order was set to 3.

For the lexical translation tables needed by the
STACC algorithm, we trained IBM2 models with
the FASTALIGN toolkit (Dyer et al., 2013), on
corpora made available for the WMT 2018 news
translation task. The corpora thus included Eu-
roparl v7, Common Crawl, NewsCommentary,
and the Rapid corpus of EU press releases. The
Paracrawl corpus was excluded from the training
data in order to extract reliable lexical translation
tables from less noisy bilingual corpora. After du-
plicates removal, the training corpus amounted to
5, 623, 721 parallel sentences.

The corpus was processed on an in-house
server, using 64 threads. The total processing time
for the 104 million sentence pairs of the corpus
was around 57 minutes with the STACC.OOV vari-
ant, consuming a maximum of 11.3GB of RAM.
With the STACC.OOV.NGSAT variant, processing
time was approximately 5 times slower, with an
order of magnitude larger consumption of RAM,
mainly due to our online trie computation.

Given our stated objectives of evaluating a sim-
ple and portable method for the task, our pre-
liminary experiments were all based on variants
of the STACC approach, evaluated on the devel-
opment set provided by the organisers. We no-
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tably experimented with the variant in (Azpeitia
et al., 2017), where the STACC score is computed
via frequency-based lexical weighting that favours
content words, and the variant in (Azpeitia et al.,
2018), which features a scoring penalty that pro-
motes named-entity matching. Although the dif-
ferences were minor, the original STACC approach
performed better overall and was thus selected as
the core of the metric for our final submissions.

4 Results

The results of our approach on the WMT 2018
test sets are shown in Table 1.3 Overall, our pri-
mary submission, STACC.OOV performed well on
the task, ranking in the top third for SMT 10M and
NMT 10M, and as a mid-performing system in the
other two scenarios. Given the simplicity and ef-
ficiency of our approach, and the relatively minor
differences with the top performing systems, we
view these results as quite satisfactory.

The ranking was relatively uniform between test
sets, with the notable exception of the KDE test set
for which our approach was among the top 10 sub-
missions in 3 out of 4 scenarios, and ranked 20th
in the fourth case. This may be due to the fact that
our scores are assigned purely in terms of align-
ment and not geared towards selecting sentence
pairs that may be more informative for the news
domain or similar, for instance. Thus, short sen-
tence pairs with technical content that are correct
translations will receive high scores although they
may not be the most relevant pairs for the other
test sets that feature less technical language.

Both systems performed similarly for SMT and
NMT in terms of rankings obtained on the 10M and
100M versions. The variant of our approach that
includes n-gram saturation performed similarly to
our primary submission overall for SMT, but worse
for NMT. Given these results and the fact that
computing n-gram saturation is more resource-
consuming, our primary submission was the op-
timal option of the two. A more detailed anal-
ysis would be needed to evaluate the causes for
the drop caused by n-gram saturation for NMT. It
could be conjectured that NMT training is optimal

3For ease of presentation, we only indicate the official re-
sults in terms of C-BLEU scores, as provided by the shared
task organisers. Along with the results of our systems, we
also indicate the scores of the best system for each test set.
The column AVG indicates the average score across all test
sets and RANK denotes the ranking of the system among all
participants according to the average score.

with the largest number of contextual variants in
the training data, variants which would tend to be
demoted via n-gram saturation. Phrase-based SMT

can be considered less sensitive to contextual vari-
ants, given its core phrase-independence transla-
tion assumption. We leave a more precise analysis
of these aspects for future research.4

To further compare our systems to the other
submissions, we computed the core statistics on
the average scores of all systems. In Table 2 we
indicate the differences between our submission
scores and the mean (∆MEAN), median (∆MEDIAN)
and best (∆BEST) scores. In the last two rows of
the table, we indicate the average differences for
all scenarios in each category.

Our system performed better than the mean, in
particular for NMT, with improvements of 4.51
and 2.47 for the primary submission. The one
exception is the n-gram saturation variant, whose
performance dropped significantly for NMT 100M,
which may be explained under the aforementioned
conjecture. The results in terms of the median are
in line with the rather similar results obtained by a
large number of participating systems.

Another notable aspect illustrated by this view
of the results is the relatively higher differences
with respect to the best performing system when
considering NMT results, with a 1 BLEU point dif-
ference on average. Determining whether this dif-
ference reflects a systematic tendency would re-
quire a larger set of experiments with different cor-
pora and language pairs. On average, our primary
submission was 1.46 BLEU points below the best
system and 2.46 points above the mean. Consider-
ing also the high efficiency of the approach, which

4As pointed out by one of the reviewers, an alternative
explanation could be formulated. SMT systems are more sen-
sitive to missing n-grams, contrary to NMT models, which
rely on word embeddings and are thus less sensitive to spe-
cific words or n-grams. Thus, rather than NMT needing more
contextual variants, the results could reflect that SMT bene-
fits more from the additional n-grams provided via the satu-
ration method, whereas NMT suffers from the imbalance in
the training data that results from n-gram saturation filter-
ing. Although this explanation has its merits, it would also
warrant further examination. First, our results did not actu-
ally improve when using n-gram saturation for SMT, overall,
which would tend to show that the additional n-grams col-
lected via saturation did not have a significant impact in these
experiments; only NMT systems were negatively impacted by
the saturation method. Secondly, the suggested data imbal-
ance could actually be viewed as a reduction in contextual
variants, as we hypothesised, which could impact the compu-
tation of both embeddings and context vectors in attention-
based NMT. Whether data imbalance could be viewed dif-
ferently from contextual variants reduction is an interesting
topic to be further explored.
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can process the 104M parallel sentences in under
an hour without the need for language-dependent
tools nor any prior training, we view our method
as a practical and reliable alternative to filter large
noisy parallel corpora.

5 Conclusions

We have described our participation in the WMT
2018 shared task on parallel corpus filtering. Our
approach was based on the STACC system, which
only requires lexical translation tables to assign
alignment quality scores. For this task, the core
system was augmented with a simple penalty
based on the number of unknown words in the
sentences, to account for the significant volumes
of noise in the corpus. Additionally, we experi-
mented with a simple n-gram saturation scheme to
evaluate the impact of demoting redundant data.

The results were satisfactory for such a sim-
ple and computationally efficient approach, which
does not require prior training, sophisticated set-
ups, language-dependent analysers, complex fea-
ture sets or extensive computational resources. In
fact, our approach only requires pre-trained IBM2
lexical translation tables, which can be efficiently
computed with generic off-the-shelf tools. We
achieved competitive results overall, ranking in
the top half among competing systems overall,
with scores above the mean and less than 1.5 BLEU

points below the top performing systems on aver-
age. The n-gram saturation variant did not provide
significant improvements and actually performed
significantly worse in one scenario, while also
consuming more computational resources. The
simpler primary variant of the system thus proved
optimal for the task and more research would
be needed to better account for data redundancy
within our core approach.

The system we submitted is also quite efficient,
being able to process the 104M sentence pairs in
the task corpus in under an hour. Overall, we view
our approach as a portable and efficient method to
filter noisy data from parallel corpora. In future
work, we will evaluate variants of the approach,
exploring in particular the specifics of the data fea-
tured in different domains.
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Abstract

A hybrid pipeline comprising rules and ma-
chine learning is used to filter a noisy web
English-German parallel corpus for the Par-
allel Corpus Filtering task. The core of the
pipeline is a module based on the logistic re-
gression algorithm that returns the probability
that a translation unit is accepted. The train-
ing set for the logistic regression is created by
automatic annotation. The quality of the auto-
matic annotation is estimated by manually la-
beling the training set.

1 Introduction

The task “Parallel Corpus Filtering” presented
a noisy web crawled parallel corpora (English-
German) whose English side contains one billion
words. The participants had to select two “clean”
subsets consisting of 10 million words and 100
million words, respectively. The quality of the
two subsets was determined by the BLEU score of
a statistical machine translation (based on Moses)
and a neural machine translation system (Marian)
trained on these subsets. The BLEU scores were
computed for multiple not disclosed sets.

The parallel corpus filtering task bears similar-
ity to translation memory cleaning task and Qual-
ity estimation task.

Some systems that spot false translation units
in translation memories are surveyed in Barbu
(2016). One of the most successful systems is
trained not only on features related to translation
quality, but also on features related to grammati-
cal errors and features related to fluency and lexi-
cal choice (Wolff, 2016).

Given the similarity between the translation
memory cleaning task and this task we have
adapted part of our system for cleaning the trans-
lation memories. The system requires supervision
and word alignment knowledge. However, the

“Parallel Corpus Filtering” task specifications re-
strict the usage of external parallel corpora and al-
low minimum alignment information. Therefore,
we had to re-engineer the above mentioned sys-
tem and produce a pipeline that respects the task
requirements.

In the next section we present the re-engineered
pipeline. The section 3 shows an in-house evalu-
ation and in the last section we draw the conclu-
sions.

2 Pipeline description

The pipeline for finding the best translation units
for the Parallel corpus filtering task is shown in
figure 1. The pipeline consists of three modules,
which we describe below.

The module Filtering Rules filters those trans-
lation units that are not good to train machine
translation systems on because they are either too
short or are prone to errors. The discarded units
have less than 10 words in source or target, or
the language codes assigned by the language de-
tector Cybozu1 do not coincide with the expected
language codes (“en” for the source segment and
“de” for the target segment), or have a Church-
Gale score (Gale and Church, 1993) that is less
than −4 or greater than 4. In the task submission
the translation units that do not fulfill the above
criteria have a score equal to −100. The initial
number of translation units is 104.002.521. After
filtering there remain 11.030.014 translation units.
The English side of the remaining units contains
269.949.547 words corresponding to 241.984.520
German words. From this filtered set the two sub-
sets required by the task description are selected.

The module Machine Learning is the core of
the pipeline. Because the manual annotation was

1https://github.com/shuyo/
language-detection
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Figure 1: The pipeline for translation units selection

not allowed, the training set was generated by a
simple heuristic rule. From the translation units
not scored by the previous module we have drawn
randomly approximately 1700 translation units.
These units are annotated automatically in the fol-
lowing way. If the Hunalign (Varga et al., 2005)
score, provided with the test file, for a translation
unit is higher than a fixed threshold 0.92 we con-
sider that translation unit as a positive example. If
the Hunalign score is less or equal to the thresh-
old the translation unit is a negative example. In
section 3 we evaluate how accurate the automatic
annotation is.

The Machine Learning module uses three
kinds of features: Presence/Absence features,
Alignment Features and Fluency Features. The
feature values are all numerical because for clas-
sification we use scikit-learn machine learning
toolkit (Pedregosa et al., 2011).

1. Presence/Absence features. This category of
features signal the presence/absence of an en-
tity in source or target segments. The fea-
tures capture the intuition that if an entity is
present in the source segment and if the tar-
get segment is a translation of the source seg-
ment it is very probable that the same entity
is present in the target segment.

• Entity Features. These features are tag,
URL, email, name entity, punctuation,
number, capital letters, words in capital
letters. The value of these features is 1
if the source or target segments contain
a tag, URL, email, name entity, punctu-
ation, capital letters or words written in
capital letters, otherwise is 0.
• Entity Similarity Features. For features

tag, URL, email, name entity, punctua-
tion, number, the cosine similarity be-

2The threshold value comes from our previous experience
with Hunalign aligner.

tween the source and target segments
entity features vectors is computed. If
the respective features are present in the
source segment and the target segment is
the translation of the source we expect
that the system learns the range of the
admissible similarity values.
• Capital letters word difference. The

value of this feature is the ratio between
the difference of the number of words
containing at least a capital letter in the
source segment and the target segment
and the sum of the capital letter words
in the translation unit. It is complemen-
tary to the feature capital letters.
• Only capital letters difference. The

value of the feature is the ratio be-
tween the difference of the number of
words containing only capital letters in
the source segment and the target seg-
ments and the sum of only the capital
letter words in the translation unit. It is
complementary to the feature words in
capital letters.

2. Alignment Features. The idea behind align-
ment features is that sentence alignments, or
the information that can help to decide if an
alignment is likely or not, provide an impor-
tant clue for the hypothesis that source and
target segments are translations.

• language difference. If the language
codes identified by Cybozu language de-
tector for the source and target segments
coincide with the language codes de-
clared for the same source and target
segments, then the feature value is 1,
otherwise the feature value is 0. As we
have seen, the English and German seg-
ments have more than 10 words, there-
fore the language detector has enough
information to return the segment lan-
guage with good precision.
• Gale-Church score. This feature is the

slightly modified Gale-Church score de-
scribed in the equation 1 and introduced
in (2011). This score reflects the idea
that the length of the source (ls) and
target segments (ld) that are true trans-
lations is correlated. We expect that
the classifiers learn the threshold that
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separates the positive and negative ex-
amples. However, relying exclusively
on the Gale-Church score is tricky be-
cause there are cases when a high Gale-
Church score is perfectly legitimate. For
example, when the acronyms in the
source language are expanded in the tar-
get language.

CG =
ls − ld√

3.4(ls + ld)
(1)

• Hunalign score. This is the score re-
turned by Hunalign sentence aligner and
was provided by the task organizers.
The score depends on the quality of the
English-German dictionary used by the
aligner.

3. Fluency Features. These features values
correlate with fluency of the translation units
in source and target languages.

• Perplexity To capture the fluency of the
source and target we compute the per-
plexity of the segments in English and
German using KenLM toolkit (Heafield,
2011). The KenLM language model
was trained as advised on the shared-
task web page - on the WMT 2018
news translation task data for German-
English from which we have eliminated
the Paracrawl parallel corpus. More-
over, we have also run Cybozu lan-
guage detector to eliminate sentences
that are not identified as written in
English or German. Thus, the En-
glish corpus for training KenLM lan-
guage model has 5.802.775 sentences
and 126.831.658 words and the German
corpus has 5.673.375 and 116.360.460
words.

The classification algorithm used by the Ma-
chine Learning module is logistic regression. For
each filtered translation unit this module outputs
the probability score that the respective unit is pos-
itive. One hopes that this probability score corre-
lates with the translation unit quality.

The last module, Re-ranking rules, comprises
a set of rules to re-score the probability scores out-
putted by the previous module. It implements the
following rules :

1. Same Digits Rule. This rule states that if the
target segment is a translation of the source
segment, and the source segment contains
some digits, then the target segment should
contain the same digits, possibly in a differ-
ent order. If this is not the case, the transla-
tion unit is re-scored by subtracting 1 from
its probability score. Please, notice that the
rule allows for the dates to be written in dif-
ferent formats. For example, if the source
segment contains the date “02/01/2001” (for-
mat mm/dd/yyyy) and in the target segment
the date is written as “01/02/2001” (format
dd/mm/yyyy), then the translation unit is not
re-scored.

2. Same Numbers. This rule states that if the tar-
get segment is a translation of the source seg-
ment, and the source segment contains some
numbers, then the target segment should con-
tain the same numbers possibly in a different
order. If a translation unit passes the first rule
by chance and if it does not pass this rule,
then it will be downgraded subtracting 1 from
is probability score.

3. Rule URL. This rule applies to those transla-
tion units that contain Uniform Resource Lo-
cators like web addresses, for example. If the
length of the web address is longer than the
portion of normal text in the source or target
segment, then the translation unit is re-scored
by subtracting 1 from its probability score.

4. Rule Tags. If the source and target segments
are translations and they contain tags, then
we expect that the tags are the same. If this is
not the case 1 is subtracted from the transla-
tion unit probability score.

Finally, to ensure diversity among the best rated
translation units that comprise the first evaluated
set containing 10 millions of words we compute
the cosine similarity between the English seg-
ments. We keep in the first set only those transla-
tion units whose cosine similarity (computed be-
tween English segments) is less than 0.853

3To compute the cosine matrix we have used “TfidfVec-
torizer” from “sklearn”. Unfortunately, on our server we
could not compute the matrix for all units and had to restrict
to compute matrices with 30000 lines.
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Confusion Matrix Predicted 1 Predicted 0
Actual 1 1010 233
Actual 0 67 404

Table 1: The Confusion Matrix

3 Evaluation

We have manually annotated the automatically
annotated pairs used to train the logistic regres-
sion algorithm. A non-native German language
speaker has annotated this set with the label ”1”
if the translation unit is accurate and ”0” other-
wise. Two examples of annotated translation units
are given bellow.

• A correctly automatic annotated transla-
tion unit

– In a nutshell: the usage of the machin-
ery for sifting, to loosen and rasp, or to
prepare powdery substances and hygro-
scopic materials.

– Kurz: Überall zum maschinellen
Passieren, Auflockern und Raspeln
oder zum Aufbereiten pulverförmiger
Massen und hygroskopischer Materi-
alien.

• An incorrectly automatic annotated trans-
lation unit

– Large swimming pool and gym, for
those who want to combine open air and
relaxing activities with indoor training

– Die Räume liegen direkt neben dem
großen Pool und dem Fitnessraum, für
all diejenigen die zu den vielzähligen
Outdoor-Aktivitäten ein Trainigspro-
gramm in den Innenräumen kom-
binieren möchten.

In both examples the Hunalign score is higher
than the fixed threshold but only the first exam-
ple is correctly annotated automatically. The au-
tomatic annotator is a binary classifier and we can
evaluate this classifier as is customary by compar-
ing its annotation with a gold standard (the man-
ual annotation). As one can see from the confu-
sion matrix in table 1 the training set is imbalanced
with only 27 percent negative examples.

The precision, recall, F1-score and the balanced
accuracy for the positive and negative classes are
shown in table 2. All scores are high, showing

Measure Value
Precision Positive class 0.93
Precision Negative class 0.63
Recall Positive class 0.81
Recall Negative class 0.86
F1 score Positive class 0.87
F1 score Negative class 0.73
Balanced Accuracy 0.83

Table 2: Classification results

that the heuristic based on Hunalign threshold is
a good one. However, one should also consider
that the automatically annotated set is not a rep-
resentative sample of the test set provided by the
organizers of the task. To have a representative
sample much more translation units should have
been annotated.

The annotation errors are mitigated by the fact
that the Logistic regression classifier trained on the
automatically annotated set will return the proba-
bility of the positive class. If the probability corre-
lates with translation unit quality, then some trans-
lation units, even if not perfect, could be useful for
training machine translation systems.

We counted some cases when the sentence in
one language translates the sentence in the other
language, but, at the same time, is more informa-
tive, as it contains another part for which there
is no translation in the other language. Another
worth making remark is the existence of many
Bible passages, at least in the set we have man-
ually annotated. They have lexical, morphological
and syntactic characteristics which are specific to
this kind of writing and which, when applied to
other kinds of writing, will give inappropriate re-
sults. Although accepted as useful for MT in this
task, they are probably good only for translating
similar kinds of texts (i.e., religious ones).

A much better evaluation is provided by the task
organizers. They have determined the quality of
the cleaning performed by the teams by the BLEU
score of a statistical machine translation (based on
Moses) and a neural machine translation system
(Marian) trained on two subsets as explained in
the introduction section. There were 48 submis-
sions and our system ranked in the range 22 - 31
depending on the subset and machine translation
system used in the evaluation. For details regard-
ing shared task preparation, the official results ta-
ble and a survey of the methods used by the partic-
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ipating systems one should consult (Koehn et al.,
2018).

4 Conclusions

In this paper we have presented a hybrid pipeline
comprising rules and machine learning that was
used to filter a noisy web English-German paral-
lel corpus. The core of the pipeline is a logis-
tic regression algorithm trained on an automatic
annotated set. We have seen that the heuristic
used to automatically annotate the training set is
very good having 0.83 balanced accuracy (com-
puted against the same set manually annotated).
The pipeline also contains rules for re-scoring the
translation units and a module based on cosine
similarity to enhance the diversity of translation
unit selection.

The core system, the manually annotated set
and the python script for the evaluation procedure
described in section 3 are publicly available on
github4.
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Abstract

TheWMT 2018 Parallel Corpus Filtering Task
aims to test variousmethods of filtering a noisy
parallel corpus, to make it useful for train-
ing machine translation systems. We describe
the AFRL submissions, including their prepro-
cessing methods and quality metrics. Numeri-
cal results indicate relative benefits of different
options and show where our methods are com-
petitive.

1 Introduction

For this task the participants were provided with
a large corpus of parallel data in English and
German. The corpus contains approximately 108

lines, with approximately 109 words in each lan-
guage. Hunalign scores (Varga et al., 2005) also
were provided for each line. The task organiz-
ers built statistical machine translation (SMT) and
neural machine translation (NMT) systems from
the scores produced, based on parallel training sets
of 106 and 107 words.
Subset selection techniques often strive to re-

duce a set to the most useful. In this circumstance,
this entails:

• Avoiding selecting a line with undue repeti-
tion of content of other selected lines. This
can extend training times and/or skew the
translation system to favor this type of line.

• Avoid selecting long lines, which will be ig-
nored in training an NMT system.

In addition to adapting the corpus to the building
of a general-purpose machine translation system,
we must also deal with its significant noise. The
main types of noise present in the given data are:

• Not natural language

• One or both languages are incorrect

• Correct languages and natural language, but
not translations of each other

2 Preprocessing

As a first step, a rough preprocessing filter is ap-
plied to the data. This entails removing:

• Lines where either language contains more
than 80 words

• Lines where either language contains less
than 4 words

• Lines containing “www”, as lines with web
addresses tend to provide less useful informa-
tion

• Lines where the ratio of the number of En-
glish words to the number of German words
is greater than three or less than one third

• Lines containing characters with the Unicode
general category of “other”

• Lines where the English text is identical to the
German text, after removing space, period,
and numeric characters.

• Lines where numeric characters are different
(or in a different order) in the two languages

• Lines where the hunalign score is less than 0.5
or greater than 1.5

The first of these criteria is based on limitations of
NMT training, where long lines are discarded or
truncated. The other criteria are highly empirical,
based on indicators of apparent qualitative prob-
lems.
The remaining lines are put through further pro-

cessing prior to scoring:

• Punctuation is normalized
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• Words are truncated to 72 characters. The
tokenizer attempts to separate German com-
poundwords, and longwords cause it to hang.

• Language-specific tokenization is performed,
using SYSTRAN’s Linguistic Development
Kit. Subword units are generated via byte-
pair-encoding (BPE) (Gage, 1994). The BPE
models are learned on a per-language basis,
trained with 2000 byte-pair encoding merges,
over all WMT 2018 news translation task
parallel German–English data1 without the
Paracrawl2 corpus. This small vocabulary
was chosen to reduce the number of out-of-
vocabulary tokens resulting from morphol-
ogy and compounding.

• The BPE form is transformed into the for-
mat used for character-based processing, with
denoted spaces and no subword continuation
markers (e.g., stand@@ ard prac@@ tice
becomes stand ard _ prac tice)

• Case features are removed, essentially allow-
ing BPE formation using case but scoring
lowercased.

This preprocessed text is used to generate the
scores that determine a line’s usefulness.

3 Coverage Metric

We use two metrics to estimate the relative appro-
priateness of a selected set to a reference. The first
is our own coverage metric (Gwinnup et al., 2016),
which we reproduce here. Let us select a subset S
from a larger set C to maximize its similarity to a
representative set T . Let our preferred subselected
set size be τ times the size of T . Let V be a set of
vocabulary elements of interest. Define cv(X) to
be the count of the occurrence of feature v ∈ V in
a given corpus X and cτ

v(T ) = cv(T )/τ to be the
scaled count that accounts for the preferred size of
the selected set. The coverage g is then given by

g(S, T, τ) =

∑
v∈V f(min(cv(S), cτ

v(T )))∑
v∈V f(cτ

v(T )) + pv(S, T, τ)
(1)

where the oversaturation penalty pv(S, T, τ) is

max(0, cv(S)−cτ
v(T )) [f(cτ

v(T ) + 1) − f(cτ
v(T ))] .

1http://www.statmt.org/wmt18/
translation-task.html#download

2https://paracrawl.eu

Here f can be any submodular function, and we
choose exclusively f(x) = log(1 + x).
The final score reported for a line is the change

it makes to the coverage metric on its inclusion.
Lines which are not selected are given scores of
zero.

4 Cynical Metric

As another approach we defined a metric based
on the cynical selection method (Axelrod, 2017),
which seeks to minimize the cross-entropy H . In
our terms, this is

H(S, T ) = −
∑

v∈V

cv(T )∑
v′∈V cv′(T )

log
cv(S)∑

v′∈V cv′(S)
.

(2)
We prefer to maximize metrics, so we define
h(S, T ) = −H(S, T ) as the cynical metric to
maximize. Including the scaling factor τ would
have no effect on the cross-entropy value.
Note that Axelrod (2017) defines the cross-

entropy purely in terms of unigrams, motivated
by an unsmoothed unigram language model. We
include unigrams through 4-grams in our feature
set V . This extension to n-grams was not recom-
mended by Axelrod (2017). However, we found it
useful for this task.
The final score reported for a line is the change it

makes to the cynical metric on its inclusion, with a
maximum score of 1. Lines which are not selected
are given scores of zero.

5 Set-building Algorithm

Whether the metric is our coverage metric or our
cynical metric, the method of building the set is the
same. We iterate the following two steps until the
selected set is large enough:

1. Add the line that has the best effect on the
metric.

2. Check if removing a line from the selected
corpus would improve the metric. If so, re-
move the line with greatest such improve-
ment, unless it was the most-recently selected
or would lead to infinite cycling.

This is a greedy algorithm with review after each
selection.
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6 Translation Score

The preceding processes and metrics were de-
signed to remove many sources of error men-
tioned in the introduction of this paper. How-
ever, we have not yet dealt with the case of hav-
ing both English and German lines being natu-
ral and useful, but the lines not being transla-
tions of one another. To help mitigate this phe-
nomenon, we created a German–English NMT
system using OpenNMT(Klein et al., 2017). It
was trained on all WMT 2018 news translation
task parallel German–English data, excluding the
Paracrawl corpus. This system was a 4-layer bidi-
rectional RNN, with 600-dimensional word em-
beddings and an RNN dimension of 1024, incor-
porating case features and a vocabulary from 2000
byte-pair encoding merges. The small vocabu-
lary was chosen to reduce the number of out-of-
vocabulary tokens resulting from morphology and
compounding.
We translated all German the lines that sur-

vived the preprocessing step using thisMT system.
We computed the sentence-level Meteor scores
(Denkowski and Lavie, 2011) of the English from
the MT system, with the given data as the refer-
ence. We simply multiplied positive coverage or
cynical scores by their Meteor scores.

7 Application

This section outlines the particulars of the method
applied to the given data for this task. First, the
Paracrawl data are preprocessed according to the
method in §2. This reduces the set of potential
lines from 108 to 107. This reduced set is divided
into 100 parts of 105 lines for scoring via batch
processing.
Five different scoring methods will be consid-

ered. The baseline is cvg-mix, which uses our
coverage metric and sums the coverage score for
a small set (τ corresponding to 106 total lines)
and a large set (τ corresponding to 107 total
lines). Other scores are variants of this. The
treatment cvg-large considers only the large set,
and cvg-small considers only the small set. Me-
teor scores of translated lines are considered in
cvg-mix-meteor. Finally, cynical scores are
considered in cyn-mix.

8 Numerical Results

The results of the WMT 2018 Parallel Filtering
Task are given by Bojar et al. (2018). BLEU scores

for MT systems built from sets selected via our
scoring methods are given in Tables 1-4. We do
not consider the development set (newstest2017)
in any analysis below, but we include it in the ta-
bles for completeness.
Several trends are apparent within our five sub-

missions. First, including the Meteor score is al-
ways beneficial for the MT systems trained on
smaller sets and rarely detrimental for the systems
trained on larger sets. The filtering that includes
a translation score, cvg-mix-meteor, is our top
submission by mean BLEU score for all four MT
systems. Second, the filter cvg-small, designed
for producing a small training set, is poor at pro-
ducing a large training set. Third, for the small
training set there is almost always (test set EMEA
in SMT excepted) a benefit from averaging the
small training set method and the large training set
method. Fourth, the coverage and cynical mea-
sures produce very similar results for SMT, but the
cynical score is much better for the NMT system
that used a small training set. The fact that selec-
tion methods differ in performance for SMT and
NMT is known (van der Wees et al., 2017), but
it is interesting that it is true for our two scoring
methods.
Our best filtering method, cvg-mix-meteor,

scores better than themean performance of all non-
AFRL methods in the task, for every test set and
every MT system type. This method exhibits rel-
atively better quality on the smaller (106-word)
training sets, where it also bests the median. It
is especially competitive with the top two systems
using the 106-word training sets on the test sets Ac-
quis and KDE.

9 Conclusions

We have described a total of five different meth-
ods for filtering parallel data, as submitted to the
WMT 2018 Parallel Filtering Task. We present nu-
merical results, showing that ourmethods are espe-
cially competitive on certain test sets in the small
training set condition.
Our coverage and cynical metrics yield approx-

imately equivalent results in SMT, but the cyni-
cal metric is much better for the NMT system built
on a small training set. Cynical scoring requires
roughly half the computational time burden, so it
is sometimes a good choice for NMT.
The ability to specify the size of the selected set

is beneficial for our coverage scoring method in
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Table 1: BLEU scores of created systems, 106-word SMT. Filter mean excludes the development set (new-
stest2017). The two additional systems listed are the best performing in the task, by mean test set BLEU score. Set
score statistics are over the 43 task submissions from other participants.

Filter name newstest2017 newstest2018 iwslt2017 Acquis EMEA Global Vcs KDE mean
cvg-mix 20.61 25.22 18.39 17.65 23.64 19.35 21.12 20.89
cvg-small 20.38 25.03 18.04 15.82 24.31 18.99 20.46 20.44
cvg-large 20.39 25.00 17.97 15.81 24.30 18.98 20.43 20.42
cyn-mix 20.52 25.45 18.44 17.22 23.72 19.16 21.10 20.85

cvg-mix-meteor 21.46 26.41 19.01 17.98 24.55 19.90 22.06 21.65
microsoft 24.04 28.18 20.39 17.13 26.95 21.20 22.76 22.77

rwth-nn-redundant 24.36 28.40 20.60 18.58 26.12 21.37 21.48 22.76
median 21.77 24.91 18.50 16.11 23.99 18.98 21.48 20.66
mean 20.57 23.70 17.30 14.70 22.71 18.14 20.65 19.53
std dev 3.73 4.81 3.93 3.31 3.79 3.40 2.91 3.69

Table 2: BLEU scores of created systems, 107-word SMT. Filter mean excludes the development set (new-
stest2017). The two additional systems listed are the best performing in the task, by mean test set BLEU score. Set
score statistics are over the 43 task submissions from other participants.

Filter name newstest2017 newstest2018 iwslt2017 Acquis EMEA Global Vcs KDE mean
cvg-mix 23.36 28.61 21.24 18.67 28.05 21.49 23.68 23.62
cvg-small 21.10 25.88 18.98 18.19 24.06 20.06 20.97 21.36
cvg-large 23.40 28.76 21.11 18.61 28.04 21.55 23.75 23.64
cyn-mix 23.19 28.28 21.06 18.49 27.94 21.26 23.59 23.44

cvg-mix-meteor 23.33 28.68 21.12 18.66 28.22 21.66 23.85 23.70
microsoft 24.48 29.99 21.98 19.43 29.81 22.63 24.67 24.75
prompsit-al 24.50 29.83 21.67 19.71 29.48 22.54 24.72 24.66
median 23.96 29.26 21.52 19.19 28.89 22.15 24.33 24.22
mean 22.85 27.91 20.46 18.18 27.67 21.27 23.65 23.19
std dev 2.91 3.61 2.70 2.55 3.21 2.46 1.99 2.75

Table 3: BLEU scores of created systems, 106-word NMT. Filter mean excludes the development set (new-
stest2017). The two additional systems listed are the best performing in the task, by mean test set BLEU score. Set
score statistics are over the 43 task submissions from other participants.

Filter name newstest2017 newstest2018 iwslt2017 Acquis EMEA Global Vcs KDE mean
cvg-mix 15.16 18.81 10.36 20.97 25.04 14.06 20.84 18.35
cvg-small 8.11 10.40 5.28 13.20 22.18 8.08 15.40 12.42
cvg-large 8.42 10.70 5.80 13.31 22.27 8.43 15.92 12.74
cyn-mix 22.35 28.06 20.35 21.44 27.29 21.49 22.03 23.44

cvg-mix-meteor 26.43 32.03 22.01 22.50 28.01 24.10 22.89 25.26
microsoft 27.22 34.32 23.86 20.87 30.75 25.46 25.47 26.79

rwth-nn-redundant 28.08 34.65 23.96 22.01 29.23 25.38 21.50 26.12
median 24.04 29.90 20.53 18.46 25.71 22.42 21.50 23.09
mean 21.21 26.25 18.20 16.07 23.42 19.74 19.07 20.46
std dev 6.93 8.80 6.64 5.75 6.82 6.46 6.41 6.81

Table 4: BLEU scores of created systems, 107-word NMT. Filter mean excludes the development set (new-
stest2017). The two additional systems listed are the best performing in the task, by mean test set BLEU score. Set
score statistics are over the 40 task submissions from other participants.

Filter name newstest2017 newstest2018 iwslt2017 Acquis EMEA Global Vcs KDE mean
cvg-mix 28.76 36.00 24.81 22.94 32.88 26.89 26.13 28.27
cvg-small 17.00 22.33 15.95 19.71 24.31 18.17 16.77 19.54
cvg-large 28.81 35.63 25.10 23.20 33.06 26.75 26.13 28.31
cyn-mix 28.04 34.82 23.85 22.78 32.91 26.21 25.68 27.71

cvg-mix-meteor 28.98 36.07 24.79 23.19 33.15 26.84 26.29 28.39
microsoft 31.04 38.39 26.06 24.91 34.68 28.04 28.37 30.07
alibaba-div 30.55 38.02 25.71 25.03 34.65 27.90 28.33 29.94
median 29.47 36.84 25.19 24.17 33.46 27.00 27.44 29.02
mean 26.25 32.72 22.17 21.42 30.63 24.40 25.29 26.11
std dev 7.47 9.50 6.67 6.15 6.77 6.36 5.37 6.80
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the small training set conditions, where it yields
about the same results for an order of magnitude
less computation time. Unfortunately, specifying a
desired output set size is not as obvious for cynical
scoring.
Inclusion of a translation metric score such as

Meteor is beneficial, and the simplistic version
given here produced our best system. Introduc-
ing of a translation metric score directly in the
set-building process would help in avoiding redun-
dancy.
Optimizing the heuristic and empirical prefilter-

ing and preprocessing steps given here could yield
substantial benefit. We have doubtlessly removed
some beneficial lines in the prefiltering, which ex-
cluded up to 90% of the data. In fact, the pre-
filtering could conceivably be replaced by moving
the application of the machine translation system
to before scoring, rather than after. Unfortunately
this change would cause much more of a computa-
tional burden, as every line would need to be trans-
lated.
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Abstract

This paper describes the participation of We-
binterpret in the shared task on parallel corpus
filtering at the Third Conference on Machine
Translation (WMT 2018). The paper describes
the main characteristics of our approach and
discusses the results obtained on the data sets
published for the shared task.

1 Task description

Parallel corpus filtering task at WMT181 tackles
the problem of cleaning noisy parallel corpora.
Given a noisy parallel corpus (crawled from the
web), participants develop methods to filter it to a
smaller size of high quality sentence pairs.

Specifically, the organizers provide a very noisy
1 billion word German–English corpus crawled
from the web as part of the Paracrawl project2.
Participants are asked to select a subset of sentence
pairs that amount to (a) 100 million words, and
(b) 10 million words. The quality of the resulting
subsets is determined by the quality of a statisti-
cal and a neural Machine Translation (MT) sys-
tems trained on the selected data. The quality of
the translation systems is measured computing the
BLEU score on the (a) official WMT 2018 news
translation test set and (b) another undisclosed test
set.

The organizers make explicit that the task ad-
dresses the challenge of data quality and not
domain-relatedness of the data for a particular use
case. Hence, they discourage participants from
sub-sampling the corpus for relevance to the news
domain despite being one of the evaluation test
sets. Organizers thus place more emphasis on the

∗Marina Fomicheva worked at Webinterpret at the time of
preparation of this submission.

1http://www.statmt.org/wmt18/
parallel-corpus-filtering.html

2https://paracrawl.eu/

second undisclosed test set, although they report
both scores.

The provided raw parallel corpus is the outcome
of a processing pipeline that aimed for high recall
at the cost of precision, which makes it extremely
noisy. The corpus exhibits noise of all kinds
(wrong language in source and target, sentence
pairs that are not translations of each other, bad
language, incomplete or bad translations, etc.).

We address this problem under the framework
of quality estimation (QE) (Blatz et al., 2004). QE
aims at assessing MT quality in the absence of ref-
erence translation, based on the features extracted
from the source sentence and from the MT out-
put. We consider parallel corpus filtering as a QE
task where the goal is to estimate to what extent
a pair of sentences in two languages correspond
and, therefore, can be considered as translations
of each other.

The rest of this paper is organized as follows.
First, we describe our submission. Next, we
present our experiments and the results of the
shared task. Finally, we close the paper with the
conclusions and some ideas for future work.

2 Corpus filtering as QE task

We frame the corpus filtering task within the QE
framework. Given a pair of sentences (s, t), we
first compute a set of features indicating to what
extent the sentences correspond to each other.
Then, these features are used to predict a binary
score indicating if the sentences in the pair can be
considered translations of each other.

In order to make the training process effective,
any binary classification model needs to use both
positive and negative examples. In our context
positive examples are pairs of original and trans-
lated sentences, whereas negative examples are
sentence pairs that cannot be considered transla-
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tions of each other. Positive examples can be
easily obtained from clean parallel corpora, and,
while there is no explicit corpus with negative ex-
amples, these can be generated on demand.

We use the confidence score from our binary
classifier as the final score for our submission to
the shared task. As described in the previous Sec-
tion, based on this score, the sentence pairs in the
original noisy corpus provided by the organizers
will be sorted and then the first N pairs will be se-
lected and used to train the MT systems.

Note that this approach may be sub-optimal
since it considers each individual pair of sentences
in isolation from the rest. In exchange for this, we
end up with a much more efficient method, linear
in the size of the noisy data.

Next, we describe in detail the features we used
for our submission (Sec. 2.1), the process we fol-
lowed for generating negative examples (Sec. 2.2)
and the classification model we chose (Sec. 2.3).

2.1 Features

We use a rich variety of features intended to cap-
ture what it means to be an adequate training pair
of sentences. For simplicity, we split them into
three categories.

Adequacy These features measure how much
of the meaning of the original is expressed in the
translation and vice versa. We use probabilistic
lexicons with different formulations of word align-
ment to estimate the extent to which the words in
the original and translated sentences correspond to
each other.

• Average Max lexical probability (2 f.): orig-
inally proposed by (Ueffing and Ney, 2005)
for word-level QE. It measures the average
maximum probability of translation for each
word in the sentence. We apply it in both
source-to-target and target-to-source direc-
tions. Formally, source-to-target is given by:

1

n

n∑

1

m
max
j=0

P (ti | sj)

where the source word s = s1 . . . sm has
m words, the target sentence t = t1 . . . tn
has n words and the word s0 indicates the
NULL word (Brown et al., 1993). For target-
to-source, source and target words swap their
roles.

• Cross-entropy (2 f.): proposed by (Xu and
Koehn, 2017), it measures a “distance” be-
tween the sentence pairs based on a bag-of-
words translation model. Specifically, the
“distance” is measured as the cross-entropy
between the bag-of-words of the actual sen-
tence and the bag-of-words estimated from
the other sentence in the pair via the proba-
bilistic lexicon. We apply it in both source-
to-target and target-to-source directions.

Fluency This type of features aim at capturing
if the sentences are well-formed grammatically,
contain correct spellings, adhere to common use
of terms, titles and names, are intuitively accept-
able and can be sensibly interpreted by a native
speaker. We use two different features, both based
on language models:

• Language model score (2 f.): given language
models for the source and target languages,
we use as features the log probability of each
sentence in the pair computed with the corre-
sponding model.

• Perplexity (2 f.): is measured as the inverse
probability of the sentence normalized by its
number of words. Again, we apply it to both
source and target sentences in the pair.

Shape features These features can be seen as
an extension of adequacy since they measure the
mismatch between the frequency of different to-
kens between the two sentences in the pair; these
features are quite commonly used in the QE liter-
ature, (Specia et al., 2015) inter alia.

• Counts (8 f.): count of words, numbers, al-
phanumeric tokens, and punctuation in both
source and target sentences.

• Jaccard index (4 f.): metric that measures the
similarity and diversity of the sets of tokens
between the source and target sentences. For-
mally it is defined as:

| A ∩B |
| A ∪B |

where A and B are the set of tokens of the
source and target sentences respectively. We
apply it to words, numbers, alphanumeric to-
kens and punctuation.
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• Counts difference (16 f.): we compute four
metrics from the counts of tokens: the ra-
tio in both directions, the absolute difference,
and the absolute difference normalized by
the maximum number of tokens of both sen-
tences. Each of these metrics is applied to
four different types of tokens: words, num-
bers, alphanumeric tokens and punctuation.

• Specific punctuation (12 f.) same as the pre-
vious features, but in this case we only com-
pute the absolute difference and the normal-
ized difference for specific punctuation to-
kens: dot (.), comma (,), colon (:), semicolon
(;), exclamation mark (!), and question mark
(?).

2.2 Training regime

An important consideration for this task is how
to obtain suitable examples to train the classifi-
cation model. Positive examples are easy to ob-
tain since any clean parallel corpus provide us with
plenty of them. Negative examples, however, are
not readily available -there exist no collection of
“wrong” sentence pairs. Fortunately, they can be
easily generated on demand. We mostly followed
the approach described in (Xu and Koehn, 2017),
perturbing one or both of the sentences in a pair
to create a new synthetic pair that by construction
constitutes a negative example.

We apply three different perturbation operations
when generating negative pairs:

• Swap: exchange source and target sentences.

• Copy: two copies of the same string. We ap-
ply it to both source and target strings.

• Randomization: replace the source or target
sentence by a random sentence from the same
side of the corpus.

As can be seen from above, we focus on the
perturbation operations that mess with the correct
alignment between the sentences. Thus, we aim
at identifying correctly aligned sentence pairs. A
complementary approach would be to aim at de-
tecting the actual “quality” of the sentence pair,
or, in other words, how valuable a sentence pair is
when used for training MT systems. However, this
is left for future developments.

2.3 Classification model

We did some initial experiments testing the perfor-
mance of different classifiers on the task of distin-
guishing between actual original-translation sen-
tence pairs and the synthetically generated nega-
tive examples (see Sec. 3.2 for details on the data
we used). Gradient boosting algorithm (Fried-
man, 2002) obtained the highest accuracy and,
therefore, we used it for our final submission.

Gradient boosting (Gra) is a machine learning
technique for regression and classification prob-
lems, which produces a prediction model in the
form of an ensemble of weak prediction models,
typically decision trees. Similar to other boosting
methods, it builds the models in a stage-wise fash-
ion and it generalizes them by allowing optimiza-
tion of an arbitrary differentiable loss function.

3 Submission

Next, we describe the tools and the data we ex-
ploited for feature extraction, the data used to train
the classifier, and the results of our participation in
the shared task.

3.1 Feature Extraction

We need to generate two types of models to ex-
tract our features: probabilistic lexicons and lan-
guage models. We used the probabilistic lexicons
that can be obtained as a sub product of the train-
ing of full statistical models. In particular, we used
Moses (Koehn et al., 2007) with its default config-
uration with the News Commentary V13 parallel
corpus as provided for the News translation shared
task. We used the same corpora to train the lan-
guage models. For this, we used Kenlm (Heafield
et al., 2013) and estimated models of order 5.

3.2 Training the classifier

We also used News Commentary V13 parallel
corpus for training the classifier. We generated
as many negative examples as positive sentence
pairs in the corpus for a total of almost 600k data
points. The negative examples were evenly dis-
tributed among the three perturbation operations
described in the previous section. We used the im-
plementation of gradient boosting classifier from
the scikit-learn library3 to train our model. The
model was then applied to each sentence pair in
the noisy Paracrawl corpus from the shared task.

3http://scikit-learn.org/stable/index.
html
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We used the probability of the positive class as
predicted by the classifier as the final scores in our
submission.

We also conducted some initial experiments us-
ing the Common Crawl corpus, under the rationale
that it would be closer to the domain of the noisy
data from the Paracrawl corpus. However, Com-
mon Crawl data has quite a large number of mis-
aligned sentences. To handle this issue we imple-
mented an iterative training process which com-
prises the following steps: a) train the model us-
ing all available data as positive class and syn-
thetically generated data as negative class (see
Sec 2.2); b) use the trained model to clean the
available data eliminating the sentence pairs as-
signed to the negative class with a very high proba-
bility; c) use the cleaned data to train a new model;
d) repeat until no more sentence pairs can be elim-
inated with a given threshold. An advantage of this
approach is that it allows to be less dependent on
the quality of the initial training data. However,
we had to stop exploring this direction due to time
constraints.

3.3 Evaluation and results

Participants in the shared task have to submit a file
with quality scores, one per line, corresponding to
the sentence pairs on the 1 billion word German-
English Paracrawl corpus. Scores do not have to
be meaningful, except that higher scores indicate
better quality. The performance of the submis-
sions is evaluated by sub-sampling 10 million and
100 million word corpora based on these scores,
training statistical (Koehn et al., 2007) and neu-
ral (Junczys-Dowmunt et al., 2018) MT systems
with these corpora, and assessing translation qual-
ity on six blind test sets4 using the BLEU (Pap-
ineni et al., 2002) score.

Figure 1 displays the score of the best sub-
mission of each individual participant institution.
The top plot shows the results for the 10 million
token sub-sampled corpus, and the bottom plot
shows the results for the 100 million token corpus.
Scores are the aggregation of the BLEU scores of
the statistical and neural systems averaged over the
six blind test sets.

One first observation we can make is that (al-
most) all scores are quite close to each other with
little variation between them; particularly in the

4Tests: newstest 2018, iwslt 2017, Acquis, EMEA, Global
Voices, and KDE.

Figure 1: Best submission of each participant insti-
tution. We display BLEU [%] results stacked for
SMT (blue) and NMT (red).

100 million condition. Also, the scores for the
statistical and neural systems tend to follow the
same pattern. We do not have confidence intervals
available which makes difficult to interpret the ob-
served differences between systems. Still, in the
case of 100 million tokens sub-sampling, it seems
quite clear that all the systems except for the DCU
and UTFPR submissions are of the same quality.
There is only a 5% relative improvement between
the last system of this group and the best submis-
sion to the task. Scores are a bit more spread out in
the 10 million tokens sub-sampling. This indicates
that 100 million sample neutralizes the differences
between the data cleaning methods and allows (al-
most) all systems to reach a theoretical maximum.

Our submission (Webinterpret) scored 22.5 for
statistical and 24.8 for neural MT systems on
the 10 million tokens sub-sampling, in compari-
son to the corresponding scores of 24.5 and 28.6
achieved by the best submission. For the 100
million condition, we scored 26.1 and 31.2, in
comparison to the best system with the respective
scores of 26.5 and 32.1.
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4 Conclusions

We have presented our submission to the WMT18
shared task on parallel corpus filtering. We frame
the task as a QE problem, where we estimate how
well two sentences correspond to each other to be
part of a training sample for MT models. Our ap-
proach is computationally light, takes advantage
of well-known methods used for QE, and exploits
a general training regime that allows to customize
it by defining under demand samples of negative
examples.5

There are several directions that can be explored
to extend this approach:

• Use a neural model to automatically estimate
the features relevant for the system instead of
hand-crafting them.

• Extend the training regime with new pertur-
bation operations, in particular those that de-
grade the quality of the pair so it is less valu-
able as training data for MT.

• Implement an iterative training procedure
where steps of model training and data clean-
ing are repeated over the available training
data until convergence. This will make train-
ing more robust and less dependent on the
quality of available training data.
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Abstract

In this paper we describe LMU Munich’s
submission for the WMT 2018 Parallel Cor-
pus Filtering shared task which addresses the
problem of cleaning noisy parallel corpora.
The task of mining and cleaning parallel sen-
tences is important for improving the quality
of machine translation systems, especially for
low-resource languages. We tackle this prob-
lem in a fully unsupervised fashion relying
on bilingual word embeddings created without
any bilingual signal. After pre-filtering noisy
data we rank sentence pairs by calculating
bilingual sentence-level similarities and then
remove redundant data by employing mono-
lingual similarity as well. Our unsupervised
system achieved good performance during the
official evaluation of the shared task, scoring
only a few BLEU points behind the best sys-
tems, while not requiring any parallel training
data.

1 Introduction

Machine translation is important for eliminating
language barriers in everyday life. To train sys-
tems which can produce good quality translations
large parallel corpora are needed. Mining paral-
lel sentences from various sources in order to train
better performing MT systems is essential, espe-
cially for low resource languages. Previous ef-
forts1 showed that it is possible to crawl parallel
data from the web, but also showed that additional
steps are necessary to filter noisy sentence pairs.
In this paper we introduce our approach to filter
noisy parallel corpora without the need of any ini-
tial bilingual signal to train the filtering system.

We participate in the WMT 2018 Parallel Cor-
pus Filtering shared task with our system which
tackles the problem of selecting the best quality

1https://paracrawl.eu

sentence pairs for training both statistical and neu-
ral MT systems (Koehn et al., 2018). A lot of
previous work has studied the problem of par-
allel data cleaning. Esplà-Gomis and Forcada
(2010) proposed BiTextor which filters data based
on sentence alignment scores and URL informa-
tion. Similarly, word alignments and language
modeling were used in (Denkowski et al., 2012)
to select sentence pairs that are useful for training
an MT system. Xu and Koehn (2017) proposed
Zipporah, a logistic regression based model that
uses bag-of-words translation features to measure
fluency and adequacy in order to score sentence
pairs. Another line of work is to select data based
on the target domain. A static sentence-selection
method was used for domain adaptation based on
the internal sentence embedding of NMT (Wang
et al., 2017) while van der Wees et al. (2017) used
domain-based cross-entropy as a criterion to grad-
ually fine-tune the NMT training in a dynamic
manner. In contrast with previous work, we do
not rely on any bilingual supervision, making our
approach applicable to language pairs which lack
initial parallel resources. Similarly to the work of
Kajiwara and Komachi (2016), where word em-
beddings were used to mine monolingual sentence
pairs for text simplification, we use a word level
metric to compute sentence pair similarity in a
computationally efficient way.

Our approach consists of three steps. Due to the
noisiness of the input data we use a pre-filtering
step which detects sentences which are not useful.
We developed a simple rule-based method which
looks for sentence pairs which for example came
from the wrong languages or have significantly
different lengths. As a second step, we calcu-
late sentence pair similarities using bilingual word
embeddings and orthographic information. In the
third step, we perform post-ranking where we
counterweight source language sentences which
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are less fluent or redundant using language model-
ing and monolingual document similarity respec-
tively. Our system is fully unsupervised, i.e., we
do not use any parallel data for the training of our
methods. We show results on the official test sets
of the shared task which includes six datasets from
different sources. Although, our method is fully
unsupervised it achieves good performance on the
extrinsic task of training MT systems on the fil-
tered parallel data, scoring only 2.17 BLEU points
behind the best systems.

2 Approach

In this section we introduce our approach for the
filtering task. Since parallel sentence mining is
most crucial for resource-poor languages our goal
was to develop a system that does not need any
bilingual signal for training. Our approach is
based on recent developments in the field of bilin-
gual word embeddings, i.e., it was shown that
good quality bilingual embeddings can be trained
using only source and target language monolin-
gual data (Conneau et al., 2017). As was men-
tioned in the previous section our approach con-
sists of three steps which we introduce below. In
each step we score the input candidate sentence
pairs which are used at the sampling step to se-
lect sentence pairs before the training of MT sys-
tems. Higher score means higher probability for
being selected during the sampling process. For
more detail about the data, the preprocessing and
the sampling procedure see section 3.

2.1 Pre-Filtering

The input data, released by the shared task orga-
nizers, contain a large amount of erroneous can-
didate sentence pairs which can be filtered out
based on some simple heuristics. For detecting
these instances we use the following rules and set
the weight of these noisy candidate pairs to zero.
Note, we ignore the candidates selected here in
later steps for reasons of speed.

1. Hunalign scores of the sentence pairs were
released with the data. We ignore candidates
if the initial score is less then 0.0.

2. If either of the sentences has a length of less
then 3 tokens we consider it as noise.

3. A good indicator of bad alignment of sen-
tences is their length difference. If this value

is greater than 15 tokens we set its weight to
zero.

4. We also consider a candidate as noise if the
number and URL ratio, compared to the
number of all tokens, is greater than 0.6.

5. In many cases the language of the sentences
is incorrect. We use the system of Sarwar
et al. (2001) to detect these instances.

2.2 Scoring

In the main step of our approach we calculate the
score of a candidate sentence pair based on the
similarities of the contained words. First, we de-
scribe how we train bilingual word embeddings
and then we describe the method for sentence sim-
ilarity.

Bilingual word embeddings Recently, Con-
neau et al. (2017) showed that good quality bilin-
gual embeddings can be produced by training
monolingual word embedding spaces for both
source and target languages and mapping them to
a shared space without any bilingual signal. We
follow this approach and use bilingual word em-
beddings, trained in an unsupervised fashion. For
this we use the system released by (Conneau et al.,
2017). We discuss the used data and parameters in
section 3.

Sentence pair similarity Given a candidate pair
of source and target sentences S and T , the sim-
ilarity score is calculated by iterating over the
words in S from left to right and pairing each
word s ∈ S, in a greedy fashion, with the word
t ∈ T that has the highest cosine similarity based
on our dictionary. We then greedily eliminate t
from T , so that it cannot be matched by a later
word “s”. Then, the averaged word-pair similarity
gives the final score. We remove stopwords, digits
and punctuation from texts before calculating sim-
ilarity. Note, this idea is similar to Word Movers
Distance introduced in (Kusner et al., 2015) but
simpler due to runtime considerations on huge cor-
pora.

As was shown in previous work (Braune et al.,
2018), the quality of bilingual word similarity can
be significantly improved by using orthographic
cues, especially for rare words. We extend this
idea to the sentence level by using a dictionary
containing orthographically similar source-target
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language word pairs and their similarity. We de-
fine orthographic similarity as one minus the nor-
malized Levenshtein distance. We use this ortho-
graphic dictionary together with the BWE-based
dictionary when mining parallel sentences by us-
ing the higher value from the two dictionaries. If
the given word pair is not in a dictionary we con-
sider their similarity as 0.0 for that dictionary. One
issue with orthographic similarity of words is that
it tends to give high scores to sentences which con-
tain many orthographically similar words, e.g., a
sentence with a list of named entities, which are
often not useful for MT systems. To overcome this
issue, we multiply the orthographic word similari-
ties with 0.2.

2.3 Post-Ranking
In the third step we re-rank candidates from the
previous step in order to reduce the number of re-
dundant sentence pairs and to ensure that we have
more fluent sentences. We apply these steps only
to the source sentences due to speed considera-
tions.

Monolingual Document Similarity The input
corpus contains redundant sentences, i.e., sen-
tences which have similar structure and meaning,
and which are often generated based on predefined
sentence templates. It is enough to use only one el-
ement from these clusters of redundant sentences
since the rest does not have a big impact on the
translation quality. Due to the huge size of the in-
put data we used a simple thus fast approach to de-
tect redundant sentences and decrease their score.
First, we embed each source side sentence to a
fixed sized sentence embedding by simply averag-
ing the word embeddings of the words in the sen-
tence. We calculate sentence similarities of each
possible pairs which can be done efficiently even
for large inputs (Johnson et al., 2017). We use co-
sine as the similarity metric and we consider those
sentences as redundant which have lower differ-
ence than 0.02 between the similarity value of its
top two most similar sentences. We multiply the
original score of redundant sentences by 0.5.

Language model It is beneficial to use fluent
sentences for training MT systems. To take this
aspect into consideration we used KenLM lan-
guage model (Heafield et al., 2013) to change the
score of a candidate pair based on the source side
sentence’s normalized language model probabil-
ity. We multiply scores if the given sentence has

higher (lower) probability than 1×10−3 (5×10−6)
by 1.5 (0.5).

3 Experimental Setup

The goal of the shared task is, given a noisy par-
allel corpus, to filter candidate sentence pairs that
are most useful for training MT systems. Candi-
date pairs have to be scored based on the predicted
quality of the corresponding candidate where the
scores do not have a special meaning except that
higher values indicate better quality. To produce
the actual training data for the MT systems the
scored corpus is sampled using an official tool, re-
leased by the organizers, which samples sentences
with a probability proportional to their scores.

3.1 Data

A German-English dataset was released contain-
ing 1 billion (English) tokens. The corpus was
crawled from the web as part of the ParaCrawl
project. After extracting texts from web pages
with BiTextor (Esplà-Gomis and Forcada, 2010),
documents and sentences were aligned using
(Buck and Koehn, 2016) and Hunalign (Varga
et al., 2007) respectively. The aligned sentence
pairs are the candidates which have to be scored
for the sampling process and used as training par-
allel data for the MT systems. The alignment
scores of the candidate sentence pairs were also
released which do not by themselves correlate
strongly with sentence pair quality which we show
in section 4. For more details of the data see the
overview paper of the shared task (Koehn et al.,
2018). As an additional data source we use mono-
lingual German and English NewsCrawl sentences
from the time period between 2011 and 2014 (Bo-
jar et al., 2014) which we use to train word em-
beddings and the language model.

3.2 Evaluation

To evaluate systems two setups were performed:
(i) sampling 10M tokens and (ii) 100M tokens
from the scored corpus using the released sam-
pler tool. The quality of the resulting subsets is
determined by the quality of a German-English
SMT (Koehn et al., 2007) and an NMT (Junczys-
Dowmunt et al., 2018) system trained on this data
and using BLEU to measure translation quality.
We will refer to these setups as SMT 10M, SMT
100M, NMT 10M and NMT 100M. As develop-
ment set newstest 2017 was used, while newstest
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newstest 2017 newstest 2018 iwslt2017 Acquis EMEA Global Voices KDE avg

SMT 10M
lmu-ds-lm 21.73 28.03 20.61 17.97 26.95 21.45 24.73 23.29

lmu-ds 21.71 28.03 20.57 17.96 26.96 21.46 24.58 23.26
lmu 19.62 25.35 19.67 15.30 25.32 20.03 23.08 21.46

SMT 100M
lmu-ds-lm 24.86 30.14 22.42 21.47 30.08 23.09 26.20 25.57

lmu-ds 24.86 30.00 22.31 21.25 30.18 23.19 26.11 25.51
lmu 25.09 30.34 22.37 20.98 30.44 23.27 26.24 25.61

NMT 10M
lmu-ds-lm 26.17 31.89 22.40 18.51 27.01 24.60 17.46 23.65

lmu-ds 26.22 31.79 22.09 18.43 27.14 24.53 17.94 23.65
lmu 23.03 28.79 21.06 16.01 26.98 23.30 21.64 22.96

NMT 100M
lmu-ds-lm 29.14 36.99 25.48 25.19 33.46 27.52 28.17 29.47

lmu-ds 29.33 36.71 25.48 25.25 34.15 27.67 27.95 29.54
lmu 30.82 37.78 25.95 25.77 35.61 28.48 29.62 30.54

Table 1: BLEU scores of our setups on the different datasets. We underline best results for each setup and dataset.

Insitution SMT 10M SMT 100M NMT 10M NMT 100M
RWTH 24.58 26.21 28.01 31.29

Microsoft 24.45 26.50 28.62 32.06
Alibaba 24.11 26.44 27.60 31.93

NRC 23.89 26.40 27.41 31.88
Speechmatics 23.88 25.85 27.97 31.00

NICT 23.46 25.98 25.94 30.04
AFRL 23.36 25.32 27.09 30.28

Vicomtech 23.29 25.91 26.35 30.40
LMU 23.29 25.61 23.65 30.54
Tilde 23.03 26.19 26.56 31.24

Prompsit 22.94 26.41 26.05 31.83
ARC 22.68 26.13 25.79 31.34
JHU 22.61 25.84 25.41 30.16

MAJE 22.53 26.07 24.81 31.20
Univ. Tartu 22.31 25.70 25.17 30.60

Systran 21.83 25.44 24.30 29.91
UTFPR 20.81 22.35 21.75 22.23

DCU 15.67 21.19 6.27 18.60

Table 2: Best systems of participants on the four setups av-
eraged over all test sets.

2018, iwslt2017, Acquis, EMEA, Global Voices
and KDE were the undisclosed test sets (Koehn
et al., 2018).

3.3 Parameter setup

We preprocessed all data using the tokenizer from
Moses with aggressive mode (Koehn et al., 2007)
and lower casing. To train monolingual word em-
beddings we used FastText (Bojanowski et al.,
2016) with default parameters except the dimen-
sion of the vectors which is 300. As input the con-
catenation of the shared task data and NewsCrawl
was used. For the unsupervised mapping we ran
(Conneau et al., 2017) using the source and tar-
get language monolingual spaces. As a language
model we used KenLM (Heafield et al., 2013),
with n-gram size 5 and using default values for
the rest of the parameters, on the source side of
our data. All other parameters introduced earlier
are based on manual analysis of the data and non-
exhaustive tuning on the development set. During

development we only run SMT 10M due to time
constraints.

4 Results

We present official BLEU scores of our systems
on the four setups and seven datasets in table 1.
Our default system lmu applies pre-filtering and
scoring and we incrementally add monolingual
document similarity and language modeling post-
ranking steps. During development we calculated
the performance of only applying the pre-filtering
step on newstest 2017 with SMT 10M which re-
sulted in a score of 15.53 BLEU while the released
hunalign scores resulted in a score of 6.88. This
result shows the noisiness of the data and the im-
portance of pre-filtering.

Based on table 1 it can be seen that our de-
fault system, without post-ranking, could already
achieve good performance. The additional post-
ranking steps were most helpful for the setups with
only 10M tokens in the training data. This in-
dicates that giving less weight to redundant and
not fluent sentences is especially important in the
low resource setups. During the development
we also performed an ablation study on the post-
ranking methods. Using only the language model
on top of pre-filtering and scoring gave 20.67
BLEU points while activating only the document
similarity module we got 21.66 with SMT 10M.
This shows that the latter method is more im-
portant because it removes more redundant data
from the training set and makes space for sen-
tence pairs that contain additional lexical infor-
mation. On the other hand, language modeling
causes lower performance increase because the
rule-based pre-filtering step could already detect
and remove some of the less fluent candidates. By
combining the two techniques we could achieve
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the best performance on the newstest 2017 dataset.
In contrast, post-ranking steps only helped for the
iwslt2017 and Acquis datasets in the case of the
100M token setups. We conjecture that the down-
weighting of candidates by these steps was too
heavy which resulted in lower importance of these
candidates comparing to candidates which are not
even parallel. This issue could be overcome by
better fine tuning of hyperparameters.

In table 2 we show the averaged results over
all test sets of the best system of the official par-
ticipants. Our systems performs better then the
average in three out of four cases and scores be-
low the best system by only 2.17 BLEU points
on average. Our results are less competitive with
NMT which is because we only used SMT during
development. Our results show that competitive
performance can be achieved without the use of
any bilingual signal for the parallel corpus filter-
ing task.

5 Conclusion

In this paper we introduced LMU Munich’s sub-
mission to the WMT 2018 Parallel Corpus Filter-
ing shared task. Such systems are especially use-
ful in low resource setups, so we proposed a fully
unsupervised system which is built on three mod-
ules: (i) we apply a pre-filtering step to remove
noisy data (ii) we score sentences based on bilin-
gual word embeddings and (iii) as a post-ranking
step we penalize sentence pairs which are redun-
dant or not fluent enough. We achieved good re-
sults with all setups which shows the competitive-
ness of our unsupervised system.
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Abstract

In this work we introduce dual conditional
cross-entropy filtering for noisy parallel data.
For each sentence pair of the noisy parallel cor-
pus we compute cross-entropy scores accord-
ing to two inverse translation models trained
on clean data. We penalize divergent cross-
entropies and weigh the penalty by the cross-
entropy average of both models. Sorting or
thresholding according to these scores results
in better subsets of parallel data. We achieve
higher BLEU scores with models trained on
parallel data filtered only from Paracrawl than
with models trained on clean WMT data. We
further evaluate our method in the context of
the WMT2018 shared task on parallel corpus
filtering and achieve the overall highest rank-
ing scores of the shared task, scoring top in
three out of four subtasks.

1 Introduction

Recently, large web-crawled parallel corpora which
are meant to rival non-public resources held by
popular machine translation providers have been
made publicly available to the research community
in form of the Paracrawl corpus.1 At the same time,
it has been shown that neural translation models
are far more sensitive to noisy parallel training data
than phrase-based statistical machine translation
methods (Khayrallah and Koehn, 2018; Belinkov
and Bisk, 2017). This creates the need for data
selection methods that can filter harmful sentence
pairs from these large resources.

In this paper, we introduce dual conditional
cross-entropy filtering, a simple but effective data
selection method for noisy parallel corpora. We
think of it as the missing adequacy component to
the fluency aspects of cross-entropy difference fil-
tering by Moore and Lewis (2010). Similar to
Moore-Lewis filtering for monolingual data, we

1https://paracrawl.eu

directly select samples that have the potential to
improve perplexity (and in our case translation per-
formance) of models trained with the filtered data.

This is different from Axelrod et al. (2011) who
simply expand Moore and Lewis filtering to both
sides of the parallel corpus. We use conditional
probability distributions and enforce agreement be-
tween inverse translation directions.

In most cases, neural translation models are
trained to minimize perplexity (or cross-entropy)
on a training set. Our selection criterion includes
the optimization criterion of neural machine trans-
lation which we approximate by using neural trans-
lation models pre-trained on clean seed data.

We evaluated our method in the context of the
WMT2018 Shared Task on Parallel Corpus Filter-
ing (Koehn et al., 2018) and submitted our best
method to the task. Although we only optimized
for one of the four subtasks of the shared task, our
submission scored highest for three out of four sub-
tasks and third for the fourth subtask; there were
48 submissions to each subtask in total.

2 WMT 2018 shared task on parallel
corpus filtering

We quote the shared task description provided by
the organizers on the task website2 and add cita-
tions where appropriate: The organizers “provide
a very noisy 1 billion word (English token count)
German-English corpus crawled from the web as
part of the Paracrawl project” and “ask partici-
pants to subselect sentence pairs that amount to
(a) 100 million words, and (b) 10 million words.
The quality of the resulting subsets is determined
by the quality of a statistical machine translation
— Moses, phrase-based (Koehn et al., 2007) —
and a neural machine translation system — Mar-

2http://www.statmt.org/wmt18/
parallel-corpus-filtering.html
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ian (Junczys-Dowmunt et al., 2018) — trained on
this data.” The organizers note that the task is
meant to address “the challenge of data quality and
not domain-relatedness of the data for a particular
use case.” They discourage participants from sub-
sampling the corpus for relevance to the news do-
main and announce that more emphasis will be put
on undisclosed test sets rather than the WMT2018
test set.

Furthermore the organizers remark that “the pro-
vided raw parallel corpus is the outcome of a pro-
cessing pipeline that aimed from high recall at the
cost of precision, so it is very noisy. It exhibits
noise of all kinds (wrong language in source and
target, sentence pairs that are not translations of
each other, bad language, incomplete or bad trans-
lations, etc.)” It is allowed to use the 2018 news
translation task data for German-English (without
the Paracrawl parallel corpus) to train components
of our methods.

2.1 Sub-sampling based on submitted scores
Participants submit files with numerical scores, one
score per line of the original unfiltered parallel cor-
pus. A tool provided by the organizers takes as in-
put the scores and the German and English corpus
halves in form of raw text. Higher scores are better.
The tool first determines at which best thresholds
10M and 100M words can be collected and next
creates two data sets containing all sentences with
scores above the two selected respective thresholds.
Systems trained on these data sets are used for eval-
uation by the organizers (4 systems per submission)
and for development purposes by task participants.

We focus on the 100M sub-task for neural ma-
chine translation systems as this is closest to our
interests of finding as much relevant data as possi-
ble in large noisy parallel corpora. We only develop
systems for this scenario.

2.2 Neural machine translation evaluation
As required by the shared task, we use Marian
(Junczys-Dowmunt et al., 2018) to train our de-
velopment systems. We choose hyper-parameters
that favor quicker convergence during our own de-
velopment phase. We follow the recommended
settings quite closely in terms of model architec-
ture, but change training settings. We switched
off synchronous ADAM in favor of asynchronous
ADAM, increased the evaluation frequency to once
per 5000 updates and increased work-space size to
5000MB per GPU. We also set the initial learning-

rate to 0.0003 instead of 0.0001 and used an inverse
square-root decaying scheme for the learning rate
(Vaswani et al., 2017) that started after 16,000 up-
dates. We removed dropout of source and target
words and decreased variational dropout from 0.2
to 0.1 (Gal and Ghahramani, 2016). With these set-
tings, our models usually converged within 10 to
15 hours of training on four NVidia Titan Xp GPUs.
Convergence was assumed if perplexity did not im-
prove for 5 consecutive evaluation steps. We eval-
uated on the provided WMT2016 and WMT2017
test sets.

3 Scores and experiments

We produce a single score f(x, y) per sentence pair
(x, y) as the product of partial scores fi(x, y):

f(x, y) =
∏

i

fi(x, y). (1)

Partial scores take values between 0 and 1, as
does the total score f . Partial scores that might
generate values outside that range are clipped. We
assume that sentence pairs with a score of 0 are
excluded from the training data.3

In this section, we describe the scores explored
in this work and present results on the development
data.

3.1 Experimental baselines

Following the training recipe in Section 2.2, we
first trained a model (“WMT18-full” in Table 2) on
the admissible parallel WMT18 data for German-
English (excluding Paracrawl). This model is
only used for the computation of reference BLEU
scores.

Next, we trained a German-English model on
randomly scored Paracrawl data only (“random” in
Table 2). The random scores – uniformly sampled
values between 0 and 1 – were used to select rep-
resentative data consisting of 100M words from
unprocessed Paracrawl while using the threshold-
based selection tool provided by the shared task
organizers. Results for WMT16 and WMT17 test
sets for both systems are shown in Table 2. The
Paracrawl-trained systems (random) has dramati-
cally worse BLEU scores than the WMT18-trained
system. Upon manual inspection, we see many

3This is only guaranteed by the selection algorithm of the
shared task if more than 100M words appear in sentence pairs
scored with non-zero scores. However, we did not encounter
situations where we got close or below that boundary.
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Model Description

Wen RNN language model trained on 1M
sentences from English WMT mono-
lingual news data 2015-2017

Pen RNN language model trained on 1M
sentences from target (English) side
of Paracrawl

Wde→en German-English translation model
trained on WMT parallel data

Wen→de English-German translation model
trained on WMT parallel data

Wde↔en Translation model trained on union
of German-English and English-
German WMT parallel data

Table 1: Helper models trained for various scorers.
All models are neural models, we do not use n-
gram or phrase-based models. WMT parallel data
excludes Paracrawl data.

untranslated and partially copied sentences in the
case of the randomly-selected Paracrawl system.

3.2 Language identification

We noticed that the provided sentence pairs do not
seem to have been subjected to language identifica-
tion and simply used the Python langid package
to assign a language code to each sentence in a
sentence pair. We did not restrict the inventory of
languages beforehand as we wanted the tool to pro-
pose a language if that language wins against all
other candidates. We only accepted sentence pairs
where both elements of a pair had been assigned
the desired languages (German for source, English
for target). The result is our first non-trivial score:

lang(x, l) =

{
1 if LANGID(x) = l
0 otherwise

de-en(x, y) = lang(x, “de”) · lang(y, “en”) (2)

This is a very harsh but also very effective filter
that removes nearly 70% of the parallel sentence
candidates. As a beneficial side-effect of language
identification many language-ambiguous fragments
which contain only little textual information are dis-
carded, e.g. sentences with lots of numbers, punc-
tuation marks or other non-letter characters. The

identification tool gets confused by the non-textual
content and selects a random language.

We combined the de-en(x, y) filter with the ran-
dom scores and trained a corresponding system
(de-en·random). As we see in Table 2, this strongly
improved the results on both dev sets. When re-
viewing the translated development sets, we did
not see any copied/untranslated sentences in the
output.

3.3 Dual conditional cross-entropy filtering

The scoring method introduced in this section is
our main contribution. While inspired by cross-
entropy difference filtering for monolingual data
(Moore and Lewis, 2010), our method does not aim
for monolingual domain-selection effects. Instead
we try to model a bilingual adequacy score.

Moore and Lewis (see next section) quantify the
directed disagreement (signed difference) of sim-
ilar distributions (two language models over the
same language) trained on dissimilar data (differ-
ent monolingual corpora). A stronger degree of
separation between the two models indicates more
interesting data.

In contrast, we try to find maximal symmetric
agreement (minimal absolute difference) of dis-
similar distributions (two translation models over
inverse translation directions) trained on the same
data (same parallel corpus). Concretely, for a sen-
tence pair (x, y) we calculate a score:

|HA(y|x)−HB(x|y)|

+
1

2
(HA(y|x) +HB(x|y))

(3)

where A and B are translation models trained on
the same data but in inverse directions, and HM (·|·)
is the word-normalized conditional cross-entropy
of the probability distribution PM (·|·) for a model
M :

HM (y|x) =− 1

|y| logPM (y|x)

=− 1

|y|

|y|∑

t=1

logPM (yt|y<t, x).

The score (denoted as dual conditional
cross-entropy) has two components with
different functions: the absolute difference
|HA(y|x)−HB(x|y)| measures the agreement
between the two conditional probability distribu-
tions, assuming that (word-normalized) translation
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probabilities of sentence pairs in both directions
should be roughly equal. We want disagreement to
be low, hence this value should be close to 0.

However, a translation pair that is judged to be
equally improbable by both models will also have
a low disagreement score. Therefore we weight the
agreement score by the average word-normalized
cross-entropy from both models. Improbable sen-
tence pairs will have higher average cross-entropy
values.

This score is also quite similar to the dual learn-
ing training criterion from He et al. (2016) and
Hassan et al. (2018). The dual learning criterion
is formulated in terms of joint probabilities, later
decomposed into translation model and language
model probabilities. In practice, the influence of
the language models is strongly scaled down which
results in a form more similar to our score.

While Moore and Lewis filtering requires an in-
domain data set and a non-domain-specific data set
to create helper models, we require a clean, rela-
tive high-quality parallel corpus to train the two
dual translation models. We sample 1M sentences
from WMT parallel data excluding Paracrawl and
train Nematus-style translation models Wde→en

and Wen→de (see Table 1).
Formula (3) produces only positive values with

0 being the best possible score. We turn it into a
partial score with values between 0 and 1 (1 being
best) by negating and exponentiating, setting A =
Wde→en and B = Wen→de:

adq(x, y) = exp(−(|HA(y|x)−HB(x|y)|
+

1

2
(HA(y|x) +HB(x|y))).

Combining the adq filter with the de-en filter
results in a promising NMT system (de-en · adq in
Table 2) trained on Paracrawl alone that beats the
BLEU scores of the pure-WMT baseline.

We further evaluated three ablative systems:

• we omitted the language id filter (no de-en)
which resulted in a system worse than ran-
domly selected. This is not too surprising as
we would expect many identical strings to be
selected as highly adequate;
• we dropped the absolute difference from for-

mula (3) which decreased BLEU by about 1
point;
• we removed the weighting by the averaged

cross-entropies from formula (3), loosing
about 3 BLEU points.

This seems to indicate that the two components of
the dual conditional cross-entropy filter are indeed
useful and that we have a practical scoring method
for parallel data.

3.4 Cross-entropy difference filtering

When inspecting the training data generated with
the above methods we saw many fragments that
looked like noisy or not particularly useful data.
This included concatenated lists of dates, series
of punctuation marks or simply not well-formed
text. Due to the adequacy filtering, the noise was
at least adequate, i.e. similar or identical on both
sides and mostly correctly translated if applicable.
The language filter had made sure that only few
fully identical pairs of fragments had remained.

However, we preferred to have a training corpus
that also looked like clean data. To achieve this we
treated cross-entropy filtering proposed by Moore
and Lewis (2010) as another score. Cross-entropy
filtering or Moore-Lewis filtering uses the quantity

HI(x)−HN (x) (4)

where I is an in-domain model, N is a non-domain-
specific model and HM is the word-normalized
cross-entropy of a probability distribution PM de-
fined by a model M :

HM (x) =− 1

|x| logPM (x)

=− 1

|x|

|x|∑

t=1

logPM (xt|x<t).

Sentences scored with this method and selected
when their score is below a chosen threshold are
likely to be more in-domain according to model
I and less similar to data used to train N than
sentences above that threshold.

We chose WMT English news data from the
years 2015-2017 as our in-domain, clean language
model data and sampled 1M sentences to train
model I = Wen. We sampled 1M sentences from
Paracrawl without any previously applied filtering
to produce N = Pen. The shared task organizers
encourage submitting teams to not optimize for
a specific domain, but it has been our experience
that news data is quite general and clean data beats
noisy data on many domains.

To create a partial score for which the best sen-
tence pairs produce a 1 and the worst at 0, we apply
a number of transformations. First, we negate and
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exponentiate cross-entropy difference arriving at a
quotient of perplexities of the target sentence y (x
is ignored):

dom′(x, y) = exp(−(HI(y)−HN (y)))

=
PPN (y)

PPI(y)
.

This score has the nice intuitive interpretation of
how many times sentence y is less perplexing to the
in-domain model Wen than to the out-of-domain
model Pen.

We further clip the maximum value of the score
to 1 (the minimum value is already 0) as:

dom(x, y) = max(dom′(x, y), 1). (5)

This seems counterintuitive at first, but is done
to avoid that a high monolingual in-domain score
strongly overrides bilingual adequacy; we are fine
with low in-domain scores penalizing sentence
pairs. This is a precision-recall trade-off for ad-
equacy and we prefer precision.

Finally, we also propose a cut-off value c as a
parameter:

cut(x, c) =

{
x if x ≥ c
0 otherwise

domc(x, y) = cut(dom(x, y), c). (6)

Parameter c can be used to completely eliminate
sentence pairs, regardless of other scores, if y is less
than c times more perplexing to the out-of-domain
model than to the in-domain model, or inversely
1/c times more perplexing to the in-domain model
than the out-of-domain model. This seems useful if
we want a hard noise-filter similar to the language-
id filter described above.

We used the domain filter only in combination
with the previously introduce filters. In Table 2,
we can observe that any variant leads to small im-
provements of the model over variants without the
dom filters. This is expected as we optimized for
WMT news development sets. We experimented
with three cut-off values: 0.00 (no cut-off), 0.25
and 0.50, reaching the highest BLEU scores for a
cut-off value c = 0.25. This best result (bold in Ta-
ble 2) was submitted to the shared task organizers
as our only submission.

Future work should consider bilingual cross-
entropy difference filtering as proposed by Axelrod
et al. (2011) where both sides of the corpus undergo

Filter test16 test17

WMT18-full 33.9 29.0
random 16.2 14.1

de-en·random 26.6 23.3

de-en·adq 35.1 30.2
- no de-en 15.4 12.7
- no absolute difference 33.8 29.3
- no CE weighting 31.7 27.4

de-en·adq·dom0.00 35.5 30.5
de-en·adq·dom0.25 36.0 31.0
de-en·adq·dom0.50 35.4 30.6

de-en·sim 34.5 29.6
de-en·sim·dom0.25 35.5 30.6
de-en·adq·sim·dom0.25 35.5 30.7

Table 2: Results on development data. We only
train neural models for the 100M sub-task. We did
not optimize for any of the other three sub-tasks.

the selection process or experiment with condi-
tional probability distributions (translation models)
for domain filtering.

3.5 Cosine similarity of sentence embeddings
We further experimented with sentence embedding
similarity to contrast this method with our cross-
entropy based approach. Recently, Hassan et al.
(2018) and Schwenk (2018) used cosine similari-
ties of sentence embeddings in a common multi-
lingual space to select translation pairs for neural
machine translation. Both these approaches rely on
creating a multi-lingual translation model across all
available translation directions and then using the
accumulated encoder representations (after sum-
ming or max-pooling contextual word-level embed-
dings across the time dimension) of sentences in a
pair to compute similarity scores.

Following Hassan et al. (2018), we train a new
multi-lingual translation model on WMT18 paral-
lel data (excluding Paracrawl) by joining German-
English and English-German training data into a
mixed-direction training set (see model Wde↔en in
Table 1). For a given sentence x, we create its sen-
tence embedding vector sx according to translation
model Wde↔en by collecting encoder representa-
tion vectors h1 to h|x|

h1:|x| = EncoderWde↔en
(x) (7)

which are then averaged to form a single vector
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System Avg-BLEU

RWTH Neural Redund. 24.58
RWTH Neural Indep. 24.53
Our submission 24.45
AliMT Mix 24.11
AliMT Mix-div 24.11

(a) SMT 10M

System Avg-BLEU

Our submission 26.50
AliMT Mix 26.44
AliMT Mix-div 26.42
Prompsit Active 26.41
NRC yisi-bicov 26.40

(b) SMT 100M

System Avg-BLEU

Our submission 28.62
RWTH Neural Redund. 28.01
RWTH Neural Indep. 28.00
Speechmatics best 27.97
Speechmatics prime 27.88

(c) NMT 10M

System Avg-BLEU

Our submission 32.05
AliMT Mix 31.93
AliMT Mix-div 31.92
NRC yisi-bicov 31.88
NRC yisi 31.76

(d) NMT 100M

System Avg-BLEU

Our submission 111.63
RWTH Neural Redundancy 110.09
AliMT Mix 110.07
AliMT Mix-div 110.05
RWTH Neural Independent 109.91

(e) Sum of all sub-tasks

Table 3: Top-5 out of 48 submissions for each of the four sub-tasks and total sum

representation

sx =
1

|x|

|x|∑

t=1

ht. (8)

For a given sentence pair (x, y) we compute the
cosine similarity of sx and sy as

sim(x, y) = cos(]sxsy) =
sx · sy
|sx||sy|

. (9)

Since the model has seen both languages, English
and German, as source data it can produce use-
ful sentence representations of both sentences in a
translation pair. Unlike Hassan et al. (2018), we did
not define a cut-off value for the similarity score
as the threshold-based selection method of shared-
task tool computes its own cut-off thresholds.

We ran two experiments with the similarity
based scores, evaluating configurations de-en·sim
and de-en·adq·sim·dom0.25. The first one corre-
sponds to de-en·adq and we compare the effec-
tivness of the adq and sim filters after the appli-
cation of the language-id-based filter de-en. We

see in Table 2 that while de-en·sim leads to im-
provements over the language-filtered randomly
selected Paracrawl data, it is significantly worse
than de-en·adq on both development sets. Inter-
estingly, even when combined with our best scor-
ing scheme (de-en·adq·dom0.25) resulting in de-
en·adq·sim·dom0.25 we see a slight degradation.
Based on these results, we do not use the similarity
scores for our submission.

In future experiments we want to use the multi-
lingual model Wde↔en instead of the two mod-
els Wen→de and Wde→en for our dual conditional
cross-entropy method from Section 3.3. A multi-
lingual model does not only have a common en-
coder, but also a common probability distribution
for both languages which might lead to better agree-
ment of the conditional cross-entropies.

4 Shared task results

As mentioned before, we submitted only our single-
best set of scores de-en·adq·dom0.25 to the shared
task. The shared task organizers trained four sys-
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tems with each set of submitted scores, two Moses
SMT (Koehn et al., 2007) systems on the best 10M
and 100M words corpora and two neural Marian
NMT systems on the same sets.

Based on the spread-sheet made available by
the organizers, 48 sets of scores where submitted.
Each set of scores was evaluated using the four
mentioned models on 6 different test sets (newstest
2018, iwslt 2017, Acquis, EMEA, Global Voices,
KDE). This required the organizers to train nearly
200 separate models; an effort that should be ap-
plauded.

It seems that systems are ranked by their aver-
age score across these test sets and sub-tasks. In
Table 3 we selected the top-5 system across each
sub-task for the purpose of this paper. The shared
task overview will likely include a more thorough
analysis. We place highest out of 48 submissions in
three out of four tasks (SMT 100M, NMT 10M and
NMT 100M) and third out of 48 for sub-task SMT
10M. The systems are packed quite closely, but the
overall total across all four tasks shows, that we
accumulate a slightly larger margin over the next
best systems while the next four systems barely
differ. This result is better than we expected as we
only optimized for the NMT 100M task.

For more details on the evaluation process and
conclusions see the shared task overview paper
Koehn et al. (2018).

5 Future work and discussion

We introduced dual conditional cross-entropy fil-
tering for noisy parallel data and combined this
filtering with multiple other noise filtering meth-
ods. Our submission to the WMT 2018 shared task
on parallel corpus filtering achieved the highest
overall rank and scored best in three out of four
subtasks while scoring third in the fourth subtask.
Each subtask had 48 participants.

We believe this positive effect is rooted in the
idea of directly asking a model that is very simi-
lar to the to-be-trained model which data it prefers
(weighting by cross-entropy) while also constrain-
ing its answer with the introduced disagreement
penalty. Our selection criterion is also very close
to the optimization criterion used during NMT
training, especially the dual learning training cri-
terion. Other methods, for instance the evaluated
similarity-based methods, do not have this direct
connection to the training process.

Future work should concentrate on further for-

malizing this method. We should analyze the con-
nection to the dual learning training criterion on
experiments whether models that were trained with
this criterion are also better candidates for sen-
tences scoring. Furthermore, the models we used
for scoring were trained on small subsamples of
clean data, we should investigate if stronger transla-
tion and language models are better discriminators.
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Abstract
This work describes our submission to the
WMT18 Parallel Corpus Filtering shared task.
We use a slightly modified version of the Zip-
porah Corpus Filtering toolkit (Xu and Koehn,
2017), which computes an adequacy score and
a fluency score on a sentence pair, and use a
weighted sum of the scores as the selection
criteria. This work differs from Zipporah in
that we experiment with using the noisy cor-
pus to be filtered to compute the combination
weights, and thus avoids generating synthetic
data as in standard Zipporah.

1 Introduction

Todays machine translation systems require large
amounts of training data in form of sentences
paired with their translation, which are often com-
piled from online sources. This has not changed
fundamentally with the move from statistical ma-
chine translation to neural machine translation,
also we observed that neural models require more
training data (Koehn and Knowles, 2017) and are
more sensitive to noise (Khayrallah and Koehn,
2018). Thus both the acquisition of more training
data such as indiscriminate web crawling and cor-
pus filtering will have large impact on the quality
of state-of-the-art machine translation systems.

The JHU submission to the WMT18 Parallel
Corpus Filtering shared task uses a modified ver-
sion of the Zipporah Corpus Filtering toolkit (Xu
and Koehn, 2017). For a sentence pair, Zippo-
rah uses a bag-of-words model to generate an ad-
equacy score, and an n-gram language model to
generate fluency score. The two scores are com-
bined based on weights trained in order to separate
clean data from noisy data. The original version
of Zipporah generates artificial noisy training data
to train such classifier, in this submission we also
treat the Paracrawl corpus as the negative exam-
ples.

2 Related Work

Zipporah builds upon prior work in data cleaning
and data selection.

For data selection, work has focused on select-
ing a subset of data based on domain-matching.
Moore and Lewis (2010) computed cross-entropy
between in-domain and out-of-domain language
models to select data for training domain-relevant
language models. XenC (Rousseau, 2013), an
open-source tool, also selects data based on cross-
entropy scores on language models. Axelrod et al.
(2015) utilized part-of-speech tags and used a
class-based n-gram language model for selecting
in-domain data and Duh et al. (2013) used a neural
network based language model trained on a small
in-domain corpus to select from a larger mixed-
domain data pool. Lü et al. (2007) redistributed
different weights for sentence pairs/predefined
sub-models. Shah and Specia (2014) described
experiments on quality estimation which, given a
source sentence, select the best translation among
several options.

For data cleaning, work has focused on re-
moving noisy data. Taghipour et al. (2011) pro-
posed an outlier detection algorithm which leads
to an improved translation quality when trimming
a small portion of data. Cui et al. (2013) used a
graph-based random walk algorithm to do bilin-
gual data cleaning. BiTextor (Esplá-Gomis and
Forcada, 2009) utilizes sentence alignment scores
and source URL information to filter out bad URL
pairs and selects good sentence pairs. Similar to
this work, the qe-clean system (Denkowski et al.,
2012; Dyer et al., 2010; Heafield, 2011) uses word
alignments and language models to select sentence
pairs that are likely to be good translations of one
another.

We focus on data cleaning for all purposes, as
opposed to data selection for a given domain. We

896

https://doi.org/10.18653/v1/W18-64106


aim to create a corpus of generally valid transla-
tions, which could then be filtered to adapt to a
particular domain.

3 Zipporah

We use a slightly modified version of the Zipporah
Corpus Filtering toolkit (Xu and Koehn, 2017).
Zipporah works as follows: it first maps all sen-
tence pairs into the proposed feature space, and
then trains a simple logistic regression model to
separate known good data and bad data. Once the
model is trained, it is used to score sentence pairs
in the noisy data pool.

Zipporah uses two features inspired by ade-
quacy and fluency. The adequacy feature uses bag-
of-words translation scores, and the fluency fea-
ture uses n-gram language model scores.

3.1 Adequacy Score
Zipporah generates probabilistic dictionaries from
an aligned corpus, and uses them to generate bag
of words translation scores for each sentence. This
is done in both directions.

Given a sentence pair (sf , se) in the noisy data
pool, we represent the two sentence as two sparse
word-frequency vectors vf and ve. For exam-
ple for any French word wf , we have vf [wf ] =
c(wf ,sf )
l(sf )

, where c(wf , sf ) is the number of occur-
rences of wf in sf and l(sf ) is the length of sf .
We do the same for ve. Then we “translate” vf
into v′e, based on the probabilistic f2e dictionary,
where

v′e[we] =
∑

wf

vf [wf ]p(we|wf )

For a French word w that does not appear in the
dictionary, we keep it as it is in the translated vec-
tor, i.e. assume there is an entry of (w,w, 1.0) in
the dictionary. We compute the cross-entropy be-
tween ve and v′e,

xent(ve, v′e) =
∑

we

ve[we] log
1

v′e[we] + c
(1)

where c is a smoothing constant to prevent the
denominator from being zero, which we set c =
0.0001 for all experiments.

We perform similar procedures for English-to-
French, and compute xent(vf , v′f ). We define the
adequacy score as the sum of the two:

adequacy(sf , se) = xent(ve, v′e) + xent(vf , v′f )

3.2 Fluency Score
Zipporah trains two 5-gram language models with
a clean French and English corpus, and then for
each sentence pair (sg, se) scores each sentence
with the corresponding model, Fngram(sg) and
Fngram(se), each computed as the ratio between
the sentence negative log-likelihood and the
sentence length. We define the fluency score as
the sum of the two:

fluency(sG, se) = Fngram(sG) + Fngram(se)

3.3 Classifier
We train a binary classifier to separate a clean cor-
pus from noisy corpora, based on the 2 features
proposed. Higher orders of the features are used
in order to achieve a non-linear decision boundary.
We implement this using the logistic regression
model from scikit-learn (Pedregosa et al., 2011),
and use the features in the form of (x8, y8).

3.4 Training Data
We use clean WMT training data as the examples
of clean text. The original version of Zipporah cre-
ates synthetic negative training examples by shuf-
fling the clean data set, both at the corpus and sen-
tence levels in order to generate inadequate and
non-fluent text.

Since much of the raw Paracrawl data is noisy
(Khayrallah and Koehn, 2018), we also train a ver-
sion where we simply use the portion of Paracrawl
released for the shared task as the negative exam-
ples to train our classifier, without generating syn-
thetic noisy data. We experiment with using both
the full portion of Paracrawl and a 10, 000 line
subset.

4 Results

We include the results of running the three ver-
sions of Zipporah in Table 1. The final column is
the average score across the 6 test sets.

• Zipporah-synthetic denotes the system with
synthetic negative examples as in the original
version of Zipporah.

• Zipporah-paracrawl denotes the system
trained with the Paracrawl as the negative
examples.

• Zipporah-paracrawl-10000 denotes the sys-
tem trained with a 10000 sentence subset of
Paracrawl.
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Statistical machine translation (SMT) scores, 10 million words
dev test

System Name Newstest2017 Newstest2018 IWSLT Acquis EMEA GV KDE avg
zipporah-synthetic 21.77 26.75 20.78 19.40 25.07 20.70 24.45 22.85
zipporah-paracrawl-10000 20.24 26.31 20.21 19.88 24.69 20.28 24.30 22.61
zipporah-paracrawl 20.18 26.26 20.36 19.33 24.76 20.37 24.32 22.57
best shared task submission 23.14 29.59 21.76 21.45 28.12 22.63 23.93 24.58

Statistical machine translation scores (SMT), 100 million words
dev test

System Name Newstest2017 Newstest2018 IWSLT Acquis EMEA GV KDE avg
zipporah-synthetic 24.93 30.32 22.79 22.42 30.13 23.40 26.57 25.94
zipporah-paracrawl-10000 24.85 30.19 22.61 22.12 29.92 23.35 26.42 25.77
zipporah-paracrawl 24.81 30.35 22.63 22.13 30.12 23.26 26.52 25.84
best shared task submission 25.80 31.35 23.17 22.29 31.45 23.88 26.87 26.50

Neural machine translation scores (NMT), 10 million words
dev test

System Name Newstest2017 Newstest2018 IWSLT Acquis EMEA GV KDE avg
zipporah-synthetic 26.13 32.22 23.89 22.73 26.95 24.26 24.94 25.83
zipporah-paracrawl-10000 25.21 31.44 23.13 22.82 26.31 24.02 24.32 25.34
zipporah-paracrawl 25.20 31.31 23.14 22.51 26.56 24.38 24.53 25.41
best shared task submission 28.49 35.67 25.10 23.69 32.72 26.72 27.81 28.62

Neural machine translation scores (NMT), 100 million words
dev test

System Name Newstest2017 Newstest2018 IWSLT Acquis EMEA GV KDE avg
zipporah-synthetic 29.59 36.42 24.61 27.60 35.47 27.50 29.57 30.20
zipporah-paracrawl-10000 29.56 36.75 24.24 27.57 35.36 27.70 29.32 30.16
zipporah-paracrawl 29.13 36.43 23.25 27.26 35.06 27.32 29.20 29.75
best shared task submission 32.41 39.85 27.43 28.31 36.70 29.26 30.79 32.06

Table 1: Results of our Zipporah variants, compared to the submission with the best average test score.

In general, our systems lag behind the top per-
forming systems by about 3 BLEU on the average
of the six test sets. The different Zipporah systems
perform similarly, with a slight edge to the original
version with synthetic parallel data. This indicates
that a subset can be used for faster training of Zip-
porah.

Zipporah does not require building an initial
NMT system to score the data, as required by
some of the top performing systems. Zipporah
also has a very fast run time, the most expensive
part being the language model scoring.

Our submissions are more competitive in the
SMT experiments, and lag behind the top per-
forming system system by less than a BLEU point
(averaged across the test sets) for SMT systems
trained on 100 million sentences. This may be due
to the fact that Zipporah’s adequacy and fluency
scores directly track the translation and language
model components of SMT.

5 Conclusion

Our submission to the WMT 2018 shared task on
parallel corpus filtering was based on our Zipoorah
toolkit. We varied methods to generate negative

samples for the classifier to detect noisy sentence
pairs, with similar results for synthetic noise, the
full raw corpus to be filtered, and a subset of it.

We note that our method is quite simple and
fast, using only n-gram language model and bag-
of-words translation model features.
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Miquel Esplá-Gomis and M Forcada. 2009. Bitextor,
a free/open-source software to harvest translation
memories from multilingual websites. Proceedings
of MT Summit XII, Ottawa, Canada. Association for
Machine Translation in the Americas.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74–83, Melbourne, Australia. Association for Com-
putational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39, Vancouver. Association
for Computational Linguistics.
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Abstract

The WMT18 shared task on parallel corpus fil-
tering (Koehn et al., 2018b) challenged teams
to score sentence pairs from a large high-
recall, low-precision web-scraped parallel cor-
pus (Koehn et al., 2018a). Participants could
use existing sample corpora (e.g. past WMT
data) as a supervisory signal to learn what a
“clean” corpus looks like. However, in lower-
resource situations it often happens that the
target corpus of the language is the only sam-
ple of parallel text in that language. We there-
fore made several unsupervised entries, setting
ourselves an additional constraint that we not
utilize the additional clean parallel corpora.
One such entry fairly consistently scored in
the top ten systems in the 100M-word condi-
tions, and for one task—translating the Euro-
pean Medicines Agency corpus (Tiedemann,
2009)—scored among the best systems even
in the 10M-word conditions.

1 Introduction and motivation

The WMT18 shared task on parallel corpus filter-
ing assumes (but does not require) a supervised
learning approach. Given

1. a set of “clean” German-English parallel cor-
pora including past WMT data, Europarl
(Koehn, 2005), etc., and

2. a large, potentially “dirty” corpus (i.e., one
that may contain non-parallel data, non-
linguistic data, etc.) scraped from the internet
(Koehn et al., 2018a),

can one identify which sentences from (2) are
clean? Supervised learning is an obvious approach
in well-resourced languages like German and En-
glish, in which there exist well-cleaned parallel
corpora across various domains.

However, in much lower-resourced languages,
we generally do not have multiple parallel corpora

in a given language pair to assess the quality of
the corpus at hand; the corpus to be evaluated is
often the only one available.1 If we want to assess
the quality of one corpus, we cannot rely on a su-
pervisory signal derived from additional, cleaner
corpora. We therefore do not utilize the additional
parallel corpora (except as additional sources of
monolingual data).

The systems described in this paper were in-
spired instead by anomaly detection approaches:
can we instead attempt to identify sentence pairs
that are, in some way, “strange” for this dataset?
Considering each sentence pair as a draw from a
distribution of high-dimensional vectors, we de-
fine an anomalous sentence pair as one whose
draw was improbable compared to the probabil-
ity of drawing its component sentences indepen-
dently. The resulting measure, conceptually simi-
lar to pointwise mutual information albeit couched
in terms of Mahalanobis distances rather than ac-
tual probabilities, is detailed in §3.

A submission based primarily on this one mea-
surement (with some pre- and post-processing
to avoid duplicate and near-duplicate sentences)
performed consistently above the median in the
100M-word conditions, and for a few tasks (par-
ticularly EMEA translation) was among the top
systems even for the 10M-word conditions. It
was also the #2 system in one of the dev condi-
tions (WMT newstest2017, NMT trained on 100M
words), which is surprising given that it could not
have overfit to the development set; it did not uti-
lize the WMT17 development set in any way.

2 Overall architecture

The highest-ranked submission of our unsu-
pervised submissions, NRC-seve-bicov,

1We are thinking in particular of the English-Inuktitut
translation pair, which is a long-standing research interest of
NRC (e.g. Martin et al., 2003).
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shares the same general skeleton as NRC’s
highest-ranked supervised submission,
NRC-yisi-bicov (Lo et al., 2018); it dif-
fers primarily in the parallelism estimation
component (§2.3).

2.1 Training sentence embeddings
We began by training monolingual sentence em-
beddings using sent2vec (Pagliardini et al.,
2018), on all available monolingual data. This
included the monolingual data available in the
“clean” parallel training data. That is to say, we
did not completely throw out the clean parallel
data for this task, we simply used it as two un-
aligned monolingual corpora.

We trained sentence vectors of 10, 50, 100, 300,
and 700 dimensions; our final submissions used
the 300-dimensional vectors as a compromise be-
tween accuracy (lower-dimensional vectors had
lower accuracy during sanity-checking) and effi-
ciency (higher-dimensional vectors ended up ex-
ceeding our memory capacity in downstream com-
ponents).

In a system such as this, which is looking for
“strange” sentence pairs, training on additional
monolingual data beyond the target corpus car-
ries some risks. If the additional monolingual data
were to have very different domain characteristics
(say, mostly religious text in the first language and
mostly medical text in the second), then the two
vector spaces could encode different types of sen-
tence as “normal”. On the other hand, not using
additional monolingual data carries its own risks;
monolingual data that is domain-balanced could
help to mitigate domain mismatches in the target
parallel data (say, newswire text erroneously mis-
aligned to sequences of dates).

2.2 Pre-filtering
Although the input data had already been de-
duplicated by the shared task organizers, we did
an additional de-duplication step in which email
addresses and URLs were replaced with a place-
holder token and numbers were removed, before
deciding which sentences were duplicates. We
had noticed that large amounts of data consisted
of short sentences that were largely numbers (for
example, long lists of dates). Although these sen-
tences were indeed unique, we noticed that several
of our parallelism measurements ended up prefer-
ring such sentences to such an extent that the re-
sulting MT training sets were disproportionately

dates, and performed comparatively poorly when
tasked with training full sentences. To mitigate
this, we ran an additional de-duplication step on
the English side in which two sentences that dif-
fer only in numbers (e.g., “14 May 2017” and “19
May 1996”) were considered duplicates.

Without numerical de-duplication, we believe
the parallelism estimation step in §2.3 would have
had too much of a bias towards short numerical
sentences. It is, after all, essentially just looking
for sentence pairs that it considers likely given the
distribution of sentence pairs in the target corpus;
if the corpus has a large number of short numeri-
cal sentences (and it appears to), the measurement
will come to prefer those, whether or not they are
useful for the downstream task.

The additional de-duplication also had a practi-
cal benefit in that the resulting corpus was much
smaller, allowing us to perform calculations in
memory (e.g., that in §3.2) on the entire corpus
at once rather than having to approximate them in
mini-batches.

We also discarded sentence pairs that were ex-
actly the same on each side, in which one sen-
tence contained more than 150 tokens, in which
the two sentences’ numbers did not match, or
in which there were suspiciously non-German or
non-English sentences according to the pyCLD2
language detector2. When pyCLD2 believed a pu-
tatively German sentence to be something other
than German with certainty greater than 0.5, or a
putatively English sentence to be something other
than English with certainty greater than 0.5, it was
discarded.

2.3 Parallelism estimation

With sentence vectors (§2.1) for the reduced cor-
pus (§2.2) in hand, we set out to estimate the de-
gree of parallelism of sentence pairs. A novel
measure of parallelism, based on ratios of squared
Mahalanobis distances, performed better on a syn-
thetic dataset than some more obvious measure-
ments, and the single-feature submission based on
it was our best unsupervised submission.

We also made several other unsupervised mea-
surements:

2https://github.com/aboSamoor/pycld2
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1. Perplexity of the German sentence accord-
ing to a 6-gram KenLM language model3

(Heafield, 2011)

2. Perplexity of the English sentence according
to a 6-gram KenLM language model

3. The ratio between (1) and (2), to find sen-
tences pairs that contain different amounts of
information

4. Cosine distances between German and
English sentence vectors, in a bilingual
sent2vec space trained only on the target
corpus

As we did not have a supervisory signal, we
did not have a principled way of choosing weights
for these features. Instead, we simply took an
unweighted average of the above four features
and the Mahalanobis feature in §3.2, after rescal-
ing each to the interval [0.0, 1.0]. As seen in
§5, systems based on this feature combination
(NRC-mono-bicov and NRC-mono) were out-
performed by our single-feature system in most
conditions.

We also considered combinations of these unsu-
pervised measurements with supervised measure-
ments, but this attempt was also unsuccessful com-
pared to a system that used only a single super-
vised measurement for sentence pair ranking (Lo
et al., 2018).

2.4 Post-filtering
After scoring each sentence for parallelism, we
performed another de-duplication step. In this
step, we iterated over each target-language sen-
tence in order of parallelism (that is, sentences as-
sessed to have the highest parallelism were consid-
ered first), and removed pairs that only consisted
of bigrams that had already been seen. (That is to
say, a sentence pair was kept only if it contains a
bigram that had not previously been seen.)

This step has to occur after quality assessment
because, in contrast to regular de-duplication, the
sentences in question are not identical; the sen-
tence (and the pair it comes from) may differ in
quality from the sentence(s) that make it a dupli-
cate, so we want to keep the best such sentence,

3Although we assumed that high perplexity sentences
would be worse—that they might be ungrammatical, for
example—sanity checking suggested higher-perplexity sen-
tences were actually better. Error analysis later suggested that
many non-parallel (or parallel but non-informative) sentences
were short, possibly explaining why taking perplexity as a
positive feature resulted in higher scores in sanity-checking.

not just the one that happened to come first in the
original corpus.

3 Mahalanobis ratios for parallelism
assessment

As mentioned in §2.3, we performed several un-
supervised measurements on each sentence pair;
of these, the measurement that best predicted par-
alellism (on synthetic data and on our small 300-
sentence annotated set) was a novel measurement
based on squared Mahalanobis distances.

This measurement rests on two insights:

• If sentence vectors (or in our case, sentence-
pair vectors) are normally distributed, the
probability that we draw a particular vector
(or a more extreme vector) is related to the
squared Mahalanobis distance via the χ2 dis-
tribution.

• If the two sentences relate the same infor-
mation, the probability of drawing the vec-
tor for that pair should not be much less than
the probability of drawing the individual sen-
tence vectors in isolation.

While Mahalanobis distance is a common sta-
tistical measurement, particularly in anomaly de-
tection (e.g. Reed and Yu, 1990), it is not com-
monly used in machine translation, so we briefly
introduce it below.4

3.1 Mahalanobis distance
The probability of a draw from a univariate nor-
mal distribution can be related to its distance to
the mean in terms of standard deviations (the z-
score). In a multivariate normal distribution, how-
ever, just measuring the Euclidean distance to the
mean can lead to incorrect conclusions; visual in-
spection of Figure 1a illustrates that the red vector,
despite being a clear outlier, is nonetheless closer
to the mean than the blue vector.

Rather, the appropriate measurement for relat-
ing distance to probability is the square of the Ma-
halanobis distance (Mahalanobis, 1936); for a vec-
tor x from distribution X with correlation Σ and
mean µ:

4The following relies heavily on the explanation in Boggs
(2014). Note that this explanation is also concerned with
the square of the Mahalanobis distance rather than the Ma-
halanobis distance; it is typical for authors to describe both
as “Mahalanobis distance” in prose (cf. Warren et al., 2011,
p. 10). It is also typical to use “Mahalanobis distance” to
specifically refer to Mahalanobis distance from a point to the
mean, although this distance is defined for any two points.
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(a) Euclidean distance (b) Mahalanobis distance

Figure 1: Euclidean distance to the mean in a multivariate normal distribution is not necessarily related to
probability; in figure (a), the red vector, despite being an outlier, is closer to the mean. In figure (b), we
have rescaled and decorrelated the distribution; Euclidean distance measured in the resulting space (the
Mahalanobis distance) can be related to probability through the χ2 distribution.

d2(x) = (x− µ)TΣ−1(x− µ) (1)

This is equivalent to decorrelating and rescal-
ing to unit variance in all dimensions, via the in-
verse square root of the correlation matrix (“Ma-
halanobis whitening”), and then measuring the
squared Euclidean distance to the mean in the re-
sulting space.

d2(x) = (x− µ)TΣ− 1
2 Σ− 1

2 (x− µ) (2)

= (Σ− 1
2 (x− µ))T (Σ− 1

2 (x− µ)) (3)

= ‖Σ− 1
2 (x− µ)‖22 (4)

Figure 1b illustrates the same distribution trans-
formed by Σ− 1

2 ; we can see that now the magni-
tude of the outlier red vector is greater than the
magnitude of the blue vector.

As mentioned above, the squared magnitudes
can be used to calculate probabilities, but in prac-
tice the probabilities were so similar in higher-
dimensional spaces as to be identical. There re-
mains the possibility, however, that the magni-
tudes themselves remain sufficiently informative;
this was borne out in practice.

3.2 Calculating the magnitude ratios
We have high-dimensional vectors, trained mono-
lingually, of German and English sentences (§2.1).
We consider their joint distribution by simply con-
catenating their vectors; there is no additional
utility here in learning a translation between the
monolingual spaces. We recenter the distribution

to have zero mean—this simply makes the calcu-
lation and presentation easier—and transform the
resulting matrix by Σ− 1

2 .
For each sentence vector pair 〈l1, l2〉 (after re-

centering), we consider three vectors in the trans-
formed space:

• the vector e1 corresponding only to l1’s con-
tribution to the concatenated and transformed
vector (as if l2 = ~0)

• the vector e2 corresponding only to l2’s con-
tribution (as if l1 = ~0)

• the vector e corresponding to the transforma-
tion of the concatenation of l1 and l2

e1 = Σ− 1
2 (l1,~0) (5)

e2 = Σ− 1
2 (~0, l2) (6)

e = Σ− 1
2 (l1, l2) = e1 + e2 (7)

The measurement m we are interested in is the
squared magnitude of the combined vector, di-
vided by the sum of the squared magnitudes of e1
and e2 alone.

m =
‖e‖22

‖e1‖22 + ‖e2‖22
(8)

Roughly speaking, does the sentence pair vec-
tor e in Mahalanobis space give more information
(expressed in terms of its squared magnitude) than
the component sentence vectors e1 and e2 do on
their own? If so, we consider them unlikely to
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p 0.1 0.2 0.3 0.4 0.5
Mahalanobis 0.977 0.976 0.974 0.972 0.972

Linear 0.944 0.930 0.920 0.914 0.913
Nonlinear 0.871 0.871 0.897 0.900 0.905

Table 1: Accuracy of distinguishing parallel (i.e., related by a translation matrix T ) vs. non-parallel
(i.e., random) vectors, from a synthetic dataset of 100,000 pairs of 50-dimensional vectors, plus standard
normal additive noise. p represents the proportion of parallel pairs in the dataset.

σ 1.0 2.0 3.0 4.0 5.0
Mahalanobis .974 .778 .665 .617 .597

Linear .920 .722 .640 .606 .592
Nonlinear .897 .658 .600 .586 .582

Table 2: Accuracy of distinguishing parallel (i.e., related by a translation matrix T ) vs. non-parallel
(i.e., random) vectors, from a synthetic dataset of 100,000 pairs of 50-dimensional vectors and “true”
proportion p = 0.3, with varying degrees of additive noise. σ represents the standard deviation of the
additive noise added to each of L1 and L2.

be parallel. We take the resulting value m to be
the ranking (with lower values being better) for the
post-filtering step described in §2.4.

Implementation-wise, we do not actually have
to concatenate l2 or l1 with zeros in order to calcu-
late (5) and (6), we can just multiply l1 and l2 by
the relevant sub-matrix of Σ− 1

2 . It is also unnec-
essary to actually transform the vector correspond-
ing to the concatenation of 〈l1, l2〉; the result is just
the element-wise sum of e1 and e2.

def mahalanobis_whitening(X):
# inverse square root of covariance
cov = np.cov(X, rowvar=False)
inv_cov = np.linalg.inv(cov)
L, V = np.linalg.eig(inv_cov)
diag = np.diag(np.sqrt(L))
return V.dot(diag).dot(V.T)

def ssq(X): # sum of squares
return np.sum(X*X, axis=1)

def mahalanobis_ratio(L1, L2):
L1 -= L1.mean(axis=0)
L2 -= L2.mean(axis=0)
L = np.concatenate([L1,L2], axis=1)
whitener = mahalanobis_whitening(L)
E1 = L1.dot(whitener[:L1.shape[1],:])
E2 = L2.dot(whitener[L1.shape[1]:,:])
return ssq(E1+E2) / (ssq(E1) + ssq(E2))

Figure 2: Sample implementation of the Ma-
halanobis ratio calculation in Python, for two
n×d NumPy arrays representing n samples of d-
dimensional sentence vectors for two languages.

In code, this is a very simple calculation (only
about 15 lines of Python+NumPy) and efficient
(taking only a few minutes for millions of sen-
tences), provided one has enough system memory
to calculate it in one fell swoop. A sample imple-
mentation is given in Figure 2.

4 Internal results

4.1 Synthetic data

The unsupervised measurements on the sentence
vectors were first tested on purely synthetic data:
two sets of random normal vectors L1 and L2, in
which some proportion p of vectors in L1 corre-
sponded to L2 via a linear transformation T, and
some proportion of vectors did not. We also added
some Gaussian noise to each of L1 and L2, so
that this transformation would not be perfect (as
it would not be in real data). We varied the pro-
portion of “true” pairs, and the proportion of addi-
tive noise, to test how robust these measurements
would be in a variety of noise conditions.

Accuracy measurements on this data were made
by thresholding scores so that the top p scores are
set to 1.0 and the rest to 0.0.5 This is also how we
evaluate accuracy during sanity checking, below.

Table 1 contrasts three systems:

5Since the overall task is a ranking task, rather than a clas-
sification task, we do not at any point have to set a particular
threshold for keeping data; this is a way in which the task
at hand is easier than a typical anomaly detection task. We
therefore simply use the correct proportion to set the thresh-
olds.
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1. (Mahalanobis) We perform the Mahalanobis
ratio calculation described in §3.2.

2. (Linear) We learn a linear regression be-
tween L1 and L2, transform L1 according the
resulting matrix, and measure the cosine sim-
ilarity between the result and L2.

3. (Nonlinear) System (2), but instead of a lin-
ear regression we construct a simple two-
layer perceptron with a ReLU nonlinearity.6

In each condition, the Mahalanobis measure-
ment outperformed the other measurements. It
may, of course, be that the conditions of this syn-
thetic data are unlike real data—the relationship
between the German and English sentence vec-
tors might, for example, be better approximated
with a nonlinear relationship—but, given the com-
paratively robust performance of the Mahalanobis
measurement against a variety of noise conditions,
we prioritized our development time to exploring
it further.

4.2 Sanity checking

We also annotated about 300 random sentence
pairs from the target corpus, according to whether
we judged them to be parallel or not. We did not
tune any parameters to this set, except to make
sure that one hyperparameter, the dimensionality
of the sentence vectors, did not lead to a numerical
underflow condition as dimensionality increased.

Many of our initial attempts at measuring prob-
abilities (and log probabilities) of sentence draws
in higher dimensions (e.g. higher than 50) led
to the differences between probabilities being so
small that they could not be distinguished by
floating-point representations, leading to a situa-
tion in which almost all probabilities were equiv-
alent and no meaningful comparisons could be
made, and thus to random performance when
ranking sentences pairs. Keeping the measure-
ments in terms of distances, and not converting
them to probabilities, did appear to allow fine-
grained comparison in higher dimensions, but we
wanted to ensure that continuing to increase the

6We did not expect this to outperform the linear version—
after all, there is no actual nonlinearity in the relationship be-
tween L1 and L2—but nonetheless wanted to see how a non-
linear regression would perform in different noise conditions.
We observe, for example, that it does unsurprisingly poorly
when only a low proportion p of sentences are related, a con-
dition in which a linear regression performs comparatively
well.

dimensionality did not lead to indistinguishable
measurements again.

Sanity checking (Table 3) confirmed that higher
dimensionality does not necessarily lead to poorer
discrimination: while 10-dimensional vectors only
led to 44.1% accuracy in discriminating parallel
from non-parallel pairs, 300-dimensional vectors
gave 63.4% accuracy.

Dimensionality 10 50 100 300
Accuracy .441 .548 .483 .634

Table 3: Sanity-checking results on 300 annotated
sentences, for the Mahalanobis calculation (§3.2)
on 10-, 50-, 100-, and 300-dimensional sentence
vectors.

It is unclear why 100-dimensional vectors
perform more poorly than both 50- and 300-
dimensional vectors, but in any case this dataset
only has 300 samples and we do not want to
put too much stock in the results. The real pur-
pose of this trial was to determine if the curse of
dimensionality affects the Mahalanobis measure-
ment adversely, and it does not appear to do so.
We therefore used 300-dimensional vectors in our
final submissions.

5 Official Results

Table 4 presents the results of the official evalua-
tion, on seven corpora in four conditions. To help
navigate the wall of numbers, keep in mind that we
are mostly interested in the top unsupervised sys-
tem NRC-seve-bicov, and that each table also
presents average scores across the seven corpora,
in the bottom right corner of each.

In the 100M-word conditions (that is to say,
in the conditions where a statistical or neu-
ral machine translation system was trained on
the top 100M words, as ranked by our fil-
ters), we find generally strong performance, with
NRC-seve-bicov always performing above the
median system and with most results in the top 10
(among 48 submissions).

However, we generally observe weaker down-
stream MT performance in 10M conditions, com-
pared to other competitors; performing roughly
near the median system in the NMT 10M con-
dition and frequently below the median in the
SMT 10M condition. This suggests to us that
the unsupervised systems are adequate in finding
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SMT, 10M-word
dev. test

domain news news speech laws medical news IT
corpus newstest17 newstest18 iwslt17 Acquis EMEA GlobalVoices KDE average
top score 23.23 (1) 29.59 (1) 22.16 (1) 21.45 (1) 28.70 (1) 22.67 (1) 25.51 (1) 24.58 (1)
seve-bicov 19.66 (33) 25.96 (32) 18.64 (35) 18.78 (23) 27.94 (5) 20.05 (28) 21.38 (41) 22.13 (29)
mono-bicov 19.61 (35) 25.13 (36) 17.86 (39) 16.59 (35) 24.21 (37) 19.97 (34) 22.07 (37) 20.97 (38)
mono 17.98 (41) 23.49 (41) 16.63 (41) 15.49 (40) 23.09 (40) 18.65 (40) 21.39 (40) 19.79 (41)

SMT, 100M-word
top score 25.80 (1) 31.35 (1) 23.17 (1) 22.51 (1) 31.45 (1) 24.00 (1) 26.93 (1) 26.49 (1)
seve-bicov 25.61 (11) 31.11 (8) 22.84 (10) 22.19 (15) 31.20 (3) 23.67 (10) 26.47 (18) 26.25 (9)
mono-bicov 25.65 (5) 31.12 (5) 22.84 (10) 22.37 (8) 31.11 (7) 23.75 (7) 26.19 (30) 26.23 (10)
mono 25.45 (14) 30.63 (21) 22.72 (20) 22.06 (21) 30.74 (20) 23.70 (9) 26.20 (28) 26.01 (19)

NMT, 10M-word
dev. test

domain news news speech laws medical news IT
corpus newstest17 newstest18 iwslt17 Acquis EMEA GlobalVoices KDE average
top score 29.44 (1) 36.04 (1) 25.64 (1) 25.57 (1) 32.72 (1) 26.72 (1) 28.25 (1) 28.62 (1)
seve-bicov 24.49 (27) 30.32 (27) 21.47 (24) 22.57 (15) 31.71 (2) 23.08 (27) 22.89 (27) 25.34 (21)
mono-bicov 23.38 (30) 28.86 (32) 19.33 (34) 19.03 (29) 26.45 (32) 22.03 (32) 23.72 (23) 23.07 (30)
mono 20.83 (35) 24.97 (37) 17.19 (37) 16.57 (38) 23.79 (38) 19.75 (35) 21.85 (31) 20.69 (35)

NMT, 100M-word
top score 32.41 (1) 39.85 (1) 27.43 (1) 28.43 (1) 36.72 (1) 29.26 (1) 30.92 (1) 32.06 (1)
seve-bicov 32.10 (2) 39.39 (7) 27.09 (6) 28.31 (5) 36.30 (10) 28.94 (9) 30.12 (16) 31.69 (8)
mono-bicov 31.67 (9) 38.86 (15) 27.10 (5) 28.15 (9) 35.96 (15) 28.87 (11) 30.41 (11) 31.56 (11)
mono 31.39 (16) 38.42 (21) 26.80 (12) 27.94 (12) 35.71 (21) 28.00 (27) 30.32 (14) 31.20 (19)

Table 4: BLEU scores (and ranking, out of 48 submissions) of NRC’s unsupervised submissions: “seve”
indicates single-feature (Mahalanobis ratio) parallelism assessment, “mono” indicates parallelism as-
sessment using an unweighted ensemble of unsupervised features, “bicov” indicates that the final bigram
coverage step (§2.4) was performed. Results in the top 10 performers are bolded.

a 100M word training set7 but relatively poor at
sub-selecting higher-quality sentences from that
set. We think this may be because our system
might have a bias towards picking relatively sim-
ilar sentences, rather than the more diverse set of
sentences that an MT training set needs, which is
amplified in the 10M condition.

A surprising exception to this weakness is
the European Medicines Agency (EMEA) cor-
pus, in which NRC-seve-bicov is the #5
and #2 system in the SMT 10M and NMT
10M conditions, respectively. This could sug-
gest that competitors are overfitting to the do-
main(s) of the training data, and performing cor-
respondingly poorly on the out-of-domain EMEA,
whereas NRC-seve-bicov cannot overfit in
this manner. However, the other NRC unsu-
pervised submissions, which also cannot overfit,
have no special advantage on EMEA, and nor

7Spot-checking a random sample of sentences suggested
to us that there were indeed roughly 100M words worth of
genuinely parallel data, but much of it would not have been
particularly informative for machine translation. We there-
fore interpret 100M results as representing one’s success at
identifying parallel data, and the 10M results as represent-
ing how well one assesses usefulness-for-MT beyond paral-
lelism.

does NRC-seve-bicov perform notably well
on other out-of-domain corpora in the 10M con-
ditions.

6 Future research

The unsupervised methods described here seem
promising in distinguishing parallel from non-
parallel sentence pairs, but we interpret the 10M-
word results as suggesting they are comparatively
poor at distinguishing other MT-relevant features
of sentence-pair quality. Considering bigram cov-
erage (§2.4) appears to help somewhat, but more
research is needed into mitigating the tendency of
these measurements to prefer an uninteresting se-
lection of sentences.

Also, it is likely that a sentence-vector, even
a high-dimensional one, is not sufficiently fine-
grained to choose the highest-quality pairs; the
process described in this paper essentially says
that two sentences with sufficiently similar topics
are to be considered parallel, even if there is lit-
tle word-level correlation between the sentences.
We therefore intend to investigate a word-level
analogue of the sentence-level Mahalanobis ratio
measurement.
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Abstract

We present our semantic textual similarity ap-
proach in filtering a noisy web crawled paral-
lel corpus using YiSi—a novel semantic ma-
chine translation evaluation metric. The sys-
tems mainly based on this supervised approach
perform well in the WMT18 Parallel Corpus
Filtering shared task (4th place in 100-million-
word evaluation, 8th place in 10-million-word
evaluation, and 6th place overall, out of 48
submissions). In fact, our best performing
system—NRC-yisi-bicov is one of the
only four submissions ranked top 10 in both
evaluations. Our submitted systems also in-
clude some initial filtering steps for scaling
down the size of the test corpus and a fi-
nal redundancy removal step for better seman-
tic and token coverage of the filtered corpus.
In this paper, we also describe our unsuc-
cessful attempt in automatically synthesizing
a noisy parallel development corpus for tuning
the weights to combine different parallelism
and fluency features.

1 Introduction

The WMT18 shared task on parallel corpus filter-
ing (Koehn et al., 2018b) challenged teams to find
clean sentence pairs from ParaCrawl, a humon-
gous high-recall, low-precision web crawled par-
allel corpus (Koehn et al., 2018a), for training ma-
chine translation (MT) systems. Data cleanliness
of parallel corpora for MT systems is affected by
a wide range of factors, e.g., the parallelism of the
sentence pairs, the fluency of the sentences in the
output language, etc. Previous work (Goutte et al.,
2012; Simard, 2014) showed that different types
of errors in the parallel training data degrade MT
quality at different levels. Intuitively, the crosslin-
gual semantic textual similarity of the sentence
pairs in the corpora is one of the most important
factors affecting the parallelism of the target sen-
tence pairs. Lo et al. (2016) scored crosslingual

semantic textual similarity crosslingually, using a
semantic MT quality estimation metric with fewer
resource requirements, or monolingually, using a
pipeline of MT system and semantic MT evalua-
tion metric with better performance. The core of
the National Research Council of Canada (NRC)
supervised submissions (NRC-yisi-bicov and
NRC-yisi) of the parallel corpus filtering shared
task were developed in the same philosophy using
a new semantic MT evaluation metric, YiSi (Lo,
2018).

The participants of the parallel corpus fil-
tering shared task were given a large set of
“clean” German-English monolingual and bilin-
gual training corpora for the WMT18 news trans-
lation shared task (except a filtered version of
ParaCrawl) and tasked to score the cleanliness of
each sentence pair in the “dirty” ParaCrawl cor-
pus. Our supervised submissions used the given
parallel data to train an MT system to translate the
German side of the dirty corpus into English. The
provided version of the dirty ParaCrawl corpus
contains raw data crawled from the web with min-
imal de-duplication processing only, and includes
non-parallel, or even non-linguistic data. It con-
tains 104 million German-English sentence pairs,
with 1 billion English tokens and 964 million Ger-
man tokens before punctuation tokenization. A
10-million-word (10M-word) and a 100-million-
word (100M-word) corpus sub-selected by the
participating cleanliness scoring system were used
to train statistical machine translation (SMT) and
neural machine translation (NMT) systems. The
success of the participating scoring systems was
determined by the quality of the MT output from
the four MT systems as measured by BLEU (Pap-
ineni et al., 2002) on some in-domain and out-of-
domain evaluation sets.

In this paper, we describe the efforts in devel-
oping our supervised submissions: the initial fil-
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tering steps for scaling down the size of the given
ParaCrawl dirty corpus, the wide range of features
experimented for measuring parallelism, fluency
and grammaticality, the failed attempt to combine
useful features and the final redundancy removal
for improving token coverage of the filtered cor-
pus. Despite the simple single-feature architecture
used in the NRC best-performing supervised sub-
mission (NRC-yisi-bicov), it performed well
in the MT quality evaluation compared to other
participants. It ranked 4th in the 100-million-word
evaluation, 8th in the 10-million-word evaluation
and 6th overall among 48 submissions. It is one
of the only four submissions ranked top 10 in both
evaluations.

2 System architecture

There are a wide range of factors constituting a
good parallel sentence pair for training MT sys-
tems. Some of the more important factors for a
good general MT system parallel training corpus
include:

• High parallelism in the sentence pairs

• High fluency and grammaticality, especially
for sentences in the output language

• High token coverage, especially in the input
language

• High variety of sentence lengths

The NRC supervised and unsupervised submis-
sions shared the same general skeleton for the sys-
tem architecture. The systems consisted of: ini-
tial filtering to remove obvious noise and to pre-
vent selections constituted of a large collection
of short sentences; feature scoring for measur-
ing parallelism, fluency and grammaticality; fea-
ture combination (only in the NRC-mono and
NRC-mono-bicov submissions); and final re-
dundancy removal (only in the NRC-*-bicov
submissions) to improve token coverage.

2.1 Initial filtering
Although the given “dirty” corpus had already
been deduplicated, we did an additional de-
duplication step in which email and web addresses
were replaced with a placeholder token, before de-
ciding which sentences were duplicates. Sentence
pairs were filtered out if the pair was seen before
or if the input side was exactly the same as the out-
put side.

We also observed that many sentences in the
corpus, although parallel, were rather similar and
uninformative, especially numerical data such as
long lists of page numbers or dates. We observed
that using measurements that preferred such sen-
tences resulted in comparatively poor MT perfor-
mance, likely because the MT systems did not get
enough varied data. To mitigate this, we ran two
additional filtering steps regarding numbers. First,
over 50% of the numbers on each side of the sen-
tence pair had to have a match, otherwise it was
filtered out as a bad translation. Next, we removed
all the numbers and punctuation and, similar to the
previous deduplication step, filtered out sentence
pairs if their non-number parts had been seen be-
fore, or if the non-number input side was exactly
the same as the non-number output side.

A common error found in web crawled corpora
is sentences that are in the wrong language. We
therefore ran the pyCLD2 language detector1 on
each side of the sentence pair and filtered out pairs
whose input side was non-German with a confi-
dence score over 0.5, or whose output side was
non-English with a confidence score over 0.5.

Our final filtering step was to remove unrea-
sonably long sentences. Another common error
in web crawled corpora is that they contain non-
linguistic data, such as tables or computer code.
We therefore punctuation-tokenized both sides of
the sentence pairs and removed the pair if either
side was more than 150 tokens.

The above mentioned steps removed obvious
and uninteresting noise and significantly scaled
down the size of the original ParaCrawl corpus
for more resource demanding feature scoring. The
corpus was scaled down from 104 million sen-
tence pairs originally to 28 million sentence pairs.

2.2 Feature scoring
We experimented with a large collection of feature
models to address the factors for good general MT
training data mentioned at the beginning of this
section. Below is a selected list of features that
performed reasonably well in our internal sanity
check.

2.2.1 Parallelism
YiSi-1: monolingual semantic MT evaluation
metric We first used the “clean” WMT18 news
translation task monolingual and parallel train-
ing data (tokenized and lowercased) to train an

1https://github.com/aboSamoor/pycld2
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SMT system using Portage (Larkin et al., 2010),
a conventional log-linear phrase-based SMT sys-
tem. The translation model of the SMT system
uses IBM4 word alignments (Brown et al., 1993)
with grow-diag-final-and phrase extraction heuris-
tics (Koehn et al., 2003). The system has two
n-gram language models: a 5-gram mixture lan-
guage model (LM) trained on the four corpora
components using SRILM (Stolcke, 2002), and a
pruned 6-gram LM trained on the WMT monolin-
gual English training corpus built using KenLM
(Heafield, 2011). The SMT system also includes
a hierachical distortion model, a sparse feature
model consisting of the standard sparse features
proposed in Hopkins and May (2011) and sparse
hierarchical distortion model features proposed in
Cherry (2013), and a neural network joint model,
or NNJM, with 3 words of target context and 11
words of source context, effectively a 15-gram LM
(Vaswani et al., 2013; Devlin et al., 2014). The
parameters of the log-linear model were tuned by
optimizing BLEU on the development set (new-
stest2017) using the batch variant of margin in-
fused relaxed algorithm (MIRA) by Cherry and
Foster (2012). Decoding uses the cube-pruning
algorithm of Huang and Chiang (2007) with a 7-
word distortion limit. We then translated the Ger-
man side of the filtered ParaCrawl into English.

We also used the monolingual English data
to train word embeddings using word2vec
(Mikolov et al., 2013) for evaluating monolingual
lexical semantic similarity.

YiSi is new a semantic MT evaluation met-
ric inspired by MEANT 2.0 (Lo, 2017). YiSi-
1 is equivalent to MEANT 2.0-nosrl. It mea-
sures the segmental semantic similarity. The seg-
mental semantic precision and recall divide the
inverse-document-frequency weighted sum of the
n-gram lexical semantic similarity of the MT out-
put and the English sentence of the target pair by
the weighted count of n-grams in the MT output
and the English sentences, respectively. In this
work, we set the n-gram size to two. Precisely,
YiSi-1 is computed as follows:

w (e) = inverse document freq. of token e

w (−→e ) =
∑

k

w (ek)

v(e) = word embedding of token e

s(e, f) = cos(v(e), v(f))

sp(
−→e ,
−→
f ) =

∑
a w

(−−−−−−−→ea..a+n−1

)
·max

b

n−1∑
k=0w(ea+k)·s(ea+k,fb+k)

n−1∑
k=0w(ea+k)∑

a w
(−−−−−−−→ea..a+n−1

)

sr(
−→e ,
−→
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∑
b w
(−−−−−−→
fb..b+n−1

)
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∑
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)

precision = sp(
−−−→esent,

−−−→
fsent)

recall = sr(
−−−→esent,

−−−→
fsent)

YiSi-1 =
precision · recall

α · precision + (1− α) · recall

YiSi-1 srl measures the semantic similarity
with additional frame semantic or semantic role
labeling (srl) information. It uses a more prin-
ciple way to compute the precision and recall of
semantic similarity between the translation output
and the reference when comparing to MEANT 2.0.
Instead of aggregating the precision and recall at
the segmental semantic similarity level, YiSi-1 srl
precision is the weighted sum of the segmental se-
mantic precision and the frame semantic precision
and similarly, for YiSi-1 srl recall. The frame se-
mantic precision is the weighted sum of the seg-
mental semantic precision of the semantic role
fillers according to the shallow semantic structure
parsed by the mateplus (Roth and Woodsend,
2014) English semantic parser over the weighted
counts of roles and frames according to the shal-
low semantic structure of the MT output and sim-
ilarly, for the frame semantic recall. Precisely,
YiSi-1 srl is computed as follows:

q0i,j = ARG j of aligned frame i in MT

q1i,j = ARG j of aligned frame i in REF

w0
i =

#tokens filled in aligned frame i of MT
total #tokens in MT

w1
i =

#tokens filled in aligned frame i of REF
total #tokens in REF

wj = count (ARG j in REF)

wt = 0.25 ∗ count (predicate in REF)

srlp =

∑
iw

0
i

wtsp(
−→ei,t,
−→
fi,t)+

∑
j wjsp(

−→ei,j ,
−→
fi,j)

wt+
∑

j wj |q0i,j |∑
iw

0
i

srlr =

∑
iw

1
i

wtsr(
−→ei,t,
−→
fi,t)+

∑
j wjsr(

−→ei,j ,
−→
fi,j)

wt+
∑

j wj |q1i,j |∑
iw

1
i

precision = β · srlp + (1− β) · sp(−−−→esent,
−−−→
fsent)

recall = β · srlr + (1− β) · sr(−−−→esent,
−−−→
fsent)
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YiSi-1 srl =
precision · recall

α · precision + (1− α) · recall

When we evaluate MT output in practice, YiSi
score is a weighted harmonic mean of the preci-
sion and recall. However, in this work, we segre-
gated the precision and recall of YiSi into separate
features as we planned to let the regression decide
suitable weights to combine them. Further details
of YiSi are provided in Lo (2018).

YiSi-2: crosslingual semantic MT evaluation
metric For the crosslingual version of YiSi,
YiSi-2, instead of training a German-English MT
system, we used the “clean” WMT18 news trans-
lation task parallel training data to train bilingual
word embeddings using bivec (Luong et al.,
2015) for evaluating crosslingual lexical semantic
similarity.

Similar to YiSi-1, YiSi-2 precision and recall
are the weighted sum of the crosslingual lexical
semantic similarity of the sentence pairs over the
weighted count of tokens in the German and En-
glish sentences respectively. In this work, we set
the n-gram size to one.

YiSi-2 srl precision and recall are the weighted
sum of the crosslingual lexical semantic similar-
ity according to the shallow semantic structure
parsed by mateplus German and English se-
mantic parser over the weighted counts of roles
and frames according to the shallow semantic
structure of the German and the English sentence,
respectively. We also segregated the precision and
recall of YiSi-2 and YiSi-2 srl into separate fea-
tures for the same reason mentioned above.

Alignment scores The SMT model trained on
the “clean” WMT18 news translation task parallel
training data for YiSi score computation include
several alignment models as components, from
which probabilities p(d|e) and p(e|d) were com-
puted. We find the hidden markov model (HMM)
alignment models (Vogel et al., 1996) are reliably
useful for scoring parallelism of the sentence pairs
in the target corpus.

Perplexity ratio of input sentences and output
sentences The perplexity ratio reflects the dif-
ferent amounts of information contained in each
side of the sentence pairs. This is computed by di-
viding the smaller perplexity score of the two sen-
tences in the target pair by the larger one. Thus,
the ratio ranged from 0 to 1, where a larger value
represents better parallelism.

Perplexity ratio of the part-of-speech (POS)
tags of the input sentences and output sentences
Similar to the previous feature, the perplexity ra-
tio of the input and output sentences POS tags is
computed by dividing the smaller POS perplexity
score of the two sentences in the target pair by the
larger one.

Distance of sentence vectors Sentence vectors
were trained using sent2vec (Pagliardini et al.,
2018) on each side of the “clean” parallel WMT18
news translation task parallel training data. Fur-
ther details on how to compute these features are
described in Littell et al. (2018).

2.2.2 Fluency and grammaticality
Perplexity 6-gram LMs of the input and out-
put languages were built using KenLM (Heafield,
2011) on the WMT18 news translation task Ger-
man (263 million sentences) and English (303 mil-
lion sentences) monolingual corpora.

Perplexity of POS tags We parsed the German
and the English monolingual training data using
mateplus and built 6-gram LMs based on the
POS tags using KenLM.

2.3 Feature combination

2.3.1 Synthetic noisy data generation
We used the WMT09-13 test sets (Callison-Burch
et al., 2009, 2010, 2011, 2012; Bojar et al., 2013)
as the basis of our development set, as we believe
that all the test sets in the previous years are clean
and highly parallel, as opposed to the “clean”
training data where glitches may occur (especially
in the Europarl and CommonCrawl corpora). We
introduced several types of synthetic errors into
the development set as negative examples and as-
signed scores according to the severity of each er-
ror.

We added the output from the best and the worst
participating systems in each year as the mostly
parallel but less fluent sentence pairs. We also
constructed error sentence pairs by offsetting or
deleting tokens on either side, or introducing to-
kens in the wrong language. The target scores of
these pairs are proportional to the percentage of
tokens offset, deleted or introduced. Lastly, mis-
aligned sentence pairs were added as fluent but
non-parallel negative examples. The resulting de-
velopment set had 11k sentence pairs of positive
and synthetic negative examples.
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2.3.2 Regression
In order to benefit from multiple features, we first
experimented with linear feature combination. Us-
ing the scores generated in §2.2 as features, and the
data described in the previous section as modeling
data, we trained a linear model with L1 regular-
ization. The amount of regularization was set by
optimizing a 10-fold cross-validation estimator of
the generalization error on the modeling data. On
the synthetic data, it turns out that the optimal level
of regularization is minimal, suggesting the over-
fitting is minimal with this amount of data. We
also tried building a linear combination of a sub-
set of the most relevant features, selected from the
results of the regularized model built on the full
set of features (essentially removing features for
which combination weights were not significantly
different from zero). The linear features combina-
tion models yield marginal improvements accord-
ing to the cross-validation estimator built from the
synthetic data. However, there was no gain in pre-
cision when evaluated on our small annotated set
or in MT quality when training MT system using
data sub-selected by the combined model, so we
ended up not submitting the combined results.

2.4 Redundancy filtering

Our scoring mechanisms naturally tend to assign
higher scores to semantically similar sentences
without paying attention to their usefulness for
MT. As a result, we observe much redundancy
and a somewhat limited vocabulary coverage in
the top-ranking sentences, such as numerous per-
fectly translated dateline. To compensate for this
effect, we applied a form of redundancy filtering
after scoring sentence pairs: going down the re-
ranked corpus, we filtered out any sentence pair
that did not contain at least one “new” source-
language word bigram, i.e., a pair of consecutive
source-language tokens not observed in previous
pairs. This had the effect of excluding sentences
that were too similar to one another. Because it
was applied post-scoring on the re-ranked corpus,
it tended to retain higher-scoring sentence pairs.

3 Experiments and results

3.1 Sanity check

We annotated about 300 random sentence pairs
from the filtered target corpus, labeling 93 as cor-
rect translations and the rest as non-parallel. We
did not tune any parameters to this set, since it was

features precision
baselines
random 0.312
hunalign 0.624
parallelism
YiSi-1 precision 0.796
YiSi-1 recall 0.763
YiSi-1 srl (β=1) precision 0.559
YiSi-1 srl (β=1) recall 0.559
YiSi-2 precision 0.753
YiSi-2 recall 0.731
YiSi-2 srl (β=1) precision 0.441
YiSi-2 srl (β=1) recall 0.452
HMM p(d|e) 0.753
HMM p(e|f) 0.753
s2v d100 cosine 0.435
s2v d300 Mahalanobis 0.634
perplexity ratio 0.538
POS perplexity ratio 0.441
fluency and grammaticality
German perplexity 0.419
English perplexity 0.355
German POS perplexity 0.376
English POS perplexity 0.462
feature combination
regression 0.763

Table 1: Precision on the 300-annotated sentence pairs.

small and also doing so would violate the competi-
tion guidelines, but used it to sanity check our fea-
ture engineering. We computed the precision of
each experimented feature by dividing the number
of true positives in the top 93 pairs (scored by the
feature) by 93.

Table 1 shows the precision of the experimented
features. We also include the results from a
random scoring baseline and the given hunalign
scores (Initial filtering was integrated into both
baselines). YiSi-1 precision was the best perform-
ing feature with close to 80% true positive rate in
its top ranking sentence pairs. In general, we can
see that supervised parallelism features achieved
over 73% precision. It is expected that the struc-
tural semantic options of YiSi were less accurate
as standalone features due to the fact the score for
a sentence pair would be zero when the shallow
semantic parser failed to find a semantic frame on
either side. Our original plan was to combine these
features with other semantic features and bias the
combined scores to prefer longer sentences with
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SMT NMT
10M-word 100M-word 10M-word 100M-word

system dev. test dev. test dev. test dev. test
random 17.52 20.28 22.06 26.88 19.58 24.06 27.27 34.63
HMM p(e|f) 19.09 23.55 24.42 29.73 21.16 26.59 31.53 39.52
HMM p(e|f) bicov 20.42 25.31 24.68 29.98 23.17 29.08 31.98 39.66
YiSi-1 precision (NRC-yisi) 21.56 24.68 24.47 30.10 24.24 30.75 32.49 40.27
YiSi-1 precision bicov (NRC-yisi-bicov) 22.19 27.41 24.84 30.46 26.69 33.56 33.20 40.98
regression bicov 21.86 26.97 24.84 30.27 25.28 31.94 31.30 39.34

Table 2: BLEU scores of SMT and NMT systems trained on the 10M- and 100M-word corpora subselected by the
scoring systems. “bicov” indicates that the final bigram coverage step (§2.4) was performed. The development set
is newstest2017 and the test set is newstest2018.

semantic structure recognized by the parser. How-
ever, as we can see, the regression hurt the preci-
sion on the 300-annotated subset of data. This was
the first hint that our feature combination was not
a promising avenue.

3.2 MT quality check

We used the official software to extract the 10M-
word and 100M-word corpora from the origi-
nal ParaCrawl according to the feature scores.
We then trained SMT and NMT systems us-
ing the extracted data. The SMT systems were
trained using Portage with components and pa-
rameters similar to the German-English SMT sys-
tem in Williams et al. (2016). The NMT sys-
tems were transformer models with self-attention
(Vaswani et al., 2017) trained using Sockeye-
1.18.20 (Hieber et al., 2017) with default param-
eter settings2, except for the maximum sequence
length, which was reduced to 60:60, and we also
clip gradients to 1. We used newstest2017 and
newstest2018 as the MT development and test set.

Table 2 shows the BLEU scores for MT sys-
tems trained on the ParaCrawl data subselected by
our scoring features. We have also included the
random scoring feature (with initial filtering) as a
baseline. The MT quality trained on data subse-
lected by the feature scores showed the same trend
as the results of the sanity check. That is to say,
a feature that performed better in the sanity check
indeed was able to pick “cleaner” data to train bet-
ter MT systems.

We noticed that the differences in BLEU of MT
systems trained on the 100M-word corpus sub-
selected by our features were very small. This
shows that our supervised features were success-
ful in identifying parallel data.

2https://github.com/awslabs/sockeye/
blob/arxiv_1217/arxiv/code/transformer/
sockeye/train-transformer.sh

In addition, the results on MT quality confirmed
again that our feature combination was not per-
forming as planned. Compared to the systems
trained on data subselected by the best feature
(YiSi-1 precision bicov), those trained on data
subselected by the regression score list had their
performance decreased by 0.2-0.5 BLEU on SMT
and 1.6 BLEU on NMT.

Systems in which we applied redundancy re-
moval are labeled “bicov”. On the larger (100M
words) selections, the redundancy removal had
virtually no effect when applied after YiSi scoring.
However, on the smaller (10M words) selection,
it allowed for substantial BLEU score increases:
+1.61 BLEU for SMT systems on average and
+2.44 BLEU for NMT systems.

4 Official Results

Table 3 presents the results of the official BLEU
scores on seven development and test sets (de-
vtests) in four training conditions, the average
scores across the seven devtests for each of the
four training conditions, the average scores across
all the devtests for the 10M-word and 100M-word
training conditions and the average scores across
all the test documents and all training conditions.
Our best performing supervised submission—
NRC-yisi-bicov ranked 4th in the 100M-
word evaluation, 8th in the 10M-word evaluation
and 6th overall, out of 48 submissions. In fact, it
is one of the only four submissions ranked top 10
in all four training conditions.

Our supervised systems perform strongly on the
100M-word conditions with most of the results in
the top 10 (among 48 submissions) and very small
differences from the highest score of each test set.
Similar to the results from our internal MT quality
check, the performance differences of our super-
vised systems on the 100M-word conditions were
very small. In other words, the redundancy re-
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SMT
10M-word

dev. test
domain news news speech laws medical news IT
system \ test set newstest17 newstest18 iwslt17 Acquis EMEA Global Voices KDE average
highest scores 23.23 (1) 29.59 (1) 22.16 (1) 21.45 (1) 28.70 (1) 22.67 (1) 25.51 (1) 24.58 (1)
NRC-yisi-bicov 22.03 (8) 28.72 (6) 21.34 (7) 19.66 (12) 26.35 (21) 22.06 (4) 25.21 (3) 23.89 (6)
NRC-yisi 21.34 (20) 27.97 (12) 21.12 (9) 19.26 (19) 26.00 (22) 21.79 (8) 24.99 (5) 23.52 (10)

100M-word
highest scores 25.80 (1) 31.35 (1) 23.17 (1) 22.51 (1) 31.45 (1) 24.00 (1) 26.93 (1) 26.49 (1)
NRC-yisi-bicov 25.76 (3) 31.35 (1) 22.80 (15) 22.36 (9) 31.11 (7) 23.84 (5) 26.93 (1) 26.40 (5)
NRC-yisi 25.63 (7) 31.04 (9) 23.16 (2) 22.46 (5) 30.83 (18) 23.93 (3) 26.82 (5) 26.37 (6)

NMT
10M-word

dev. test
domain news news speech laws medical news IT
system \ test set newstest17 newstest18 iwslt17 Acquis EMEA Global Voices KDE average
highest scores 29.44 (1) 36.04 (1) 25.64 (1) 25.57 (1) 32.72 (1) 26.72 (1) 28.25 (1) 28.62 (1)
NRC-yisi-bicov 27.61 (8) 33.93 (9) 24.37 (9) 23.20 (12) 29.75 (13) 25.44 (7) 27.75 (4) 27.41 (8)
NRC-yisi 26.62 (11) 32.72 (12) 23.89 (11) 22.22 (19) 28.55 (19) 24.83 (12) 26.81 (8) 26.50 (12)

100M-word
highest scores 32.41 (1) 39.85 (1) 27.43 (1) 28.43 (1) 36.72 (1) 29.26 (1) 30.92 (1) 32.06 (1)
NRC-yisi-bicov 31.97 (3) 39.59 (4) 26.95 (9) 28.35 (4) 36.59 (3) 29.09 (3) 30.70 (5) 31.88 (4)
NRC-yisi 31.53 (11) 39.30 (9) 27.13 (4) 27.91 (13) 36.28 (12) 29.01 (6) 30.92 (1) 31.76 (6)

system 10M-word average 100M-word average all average
highest scores 26.54 (1) 29.27 (1) 27.90 (1)
NRC-yisi-bicov 25.65 (8) 29.14 (4) 27.39 (6)
NRC-yisi 25.01 (11) 29.07 (5) 27.04 (9)

Table 3: BLEU scores (and ranking, out of 48 submissions) of NRC’s supervised submissions: “bicov” indicates
that the final bigram coverage step (§2.4) was performed. The highest scores of each testing conditions are included
for reference. Results in the top 10 performers are bolded.

moval had virtually no effect on the larger selec-
tions.

Compared to other top-ranking submissions,
both of our supervised submissions have weaker
MT performance in the 10M-word training con-
ditions although still rank above the median sys-
tem on all test sets. This suggests that our sys-
tems are generally good at identifying parallel sen-
tences for the 100M-word training set but rela-
tively weaker at ranking the sentence pairs accord-
ing to the usefulness-for-MT beyond parallelism.
Although the redundancy removal heuristic ap-
peared to play a more significant role in the 10M-
word training conditions, the improvements on the
official test sets are less substantial than what we
observed in our internal experiments. This is po-
tentially due to the differences in architecture be-
tween our MT systems and the MT systems built
in the official evaluation.

5 Conclusion

In this paper, we presented the NRC su-
pervised submissions (NRC-yisi-bicov and

NRC-yisi) to the WMT18 parallel corpus filter-
ing task. The core of the submissions used YiSi –
a novel semantic machine translation (MT) eval-
uation metric to score the semantic textual simi-
larity between the translated German side and the
English of the target sentence pair. Despite fail-
ing to combine with other fluency or grammat-
icality oriented features, the YiSi-based system
with redundancy removal performed well in the
shared task, particularly in the 100M-word evalua-
tion (4th place out of 48 submitted systems). This
shows that using an adequacy oriented scoring
measure is a reliable method to identify good sen-
tence pairs for training MT systems. At the same
time, the slightly worse performance in the 10M-
word evaluation (8th place out of 48 submitted
systems) also suggests that fluency or grammati-
cality oriented features are useful for fine-grained
ranking of MT training data quality. Thus, future
work includes investigating other feature combi-
nation methodologies, such as more realistic tun-
ing example generation.
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Canada.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for
statistical machine translation. In Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics, pages 1370–1380, Baltimore,
Maryland.

Cyril Goutte, Marine Carpuat, and George Foster.
2012. The impact of sentence alignment errors on
phrase-based machine translation performance. In
Proceedings of the Tenth Conference of the Associa-
tion for Machine Translation in the Americas.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, WMT
’11, pages 187–197, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A Toolkit for Neural Machine
Translation. arXiv preprint arXiv:1712.05690.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 1352–1362. Association for Computational
Linguistics.

Liang Huang and David Chiang. 2007. Forest Rescor-
ing: Faster Decoding with Integrated Language
Models. In Proc. 45th Annual Meeting of the As-
soc. for Comp. Linguistics, pages 144–151, Prague,
Czech Republic.

Philipp Koehn, Kenneth Heafield, Mikel L. For-
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Abstract

This paper describes the Alibaba Machine
Translation Group submissions to the WMT
2018 Shared Task on Parallel Corpus Filter-
ing. While evaluating the quality of the par-
allel corpus, the three characteristics of the
corpus are investigated, i.e. 1) the bilin-
gual/translation quality, 2) the monolingual
quality and 3) the corpus diversity. Both rule-
based and model-based methods are adapted to
score the parallel sentence pairs. The final par-
allel corpus filtering system is reliable, easy to
build and adapt to other language pairs.

1 Introduction

The parallel corpus is an essential resource for
machine translation and multilingual natural lan-
guage processing. Apart from the quantity and
domain, the quality of parallel corpus is also
very important in MT system training (Koehn and
Knowles, 2017; Khayrallah and Koehn, 2018).
The Internet contains a large number of multilin-
gual resources, including parallel and comparable
sentences (Resnik and Smith, 2003). Many suc-
cessful machine translation systems are built using
the corpus crawled from the web. But in practice,
this kind of parallel corpus may be very noisy. The
task of Parallel Corpus Filtering tackles the prob-
lem of cleaning noisy parallel corpus.

In this task, we can divide the corpus cleaning
task into three parts. Firstly, a high-quality paral-
lel sentence pair should have the property that its
target sentence precisely translates the source sen-
tence, and vice versa. In this task, we attempt to
quantify the translation quality (also called bilin-
gual score) and accuracy of the sentence pair. Sec-
ondly, the quality of the target and/or source sen-
tences of the parallel corpus should also be eval-
uated. In this work, the target side sentences
are concerned a lot for their importance in NMT.

Thirdly, as described by the Parallel Corpus Fil-
tering task, the participants should not pay atten-
tion to the domain-relatedness. We need to focus
on all the domains so that the resulting MT sys-
tem can be widely used. So the diversity should
be evaluated while subsampling the parallel cor-
pus. Finally, the three characteristics of the par-
allel corpus are combined to build the final clean
corpus.

The paper is structured as follows: Section 2 de-
scribes our methods which are used in parallel cor-
pus filtering. Section 3 specifies the experiments
and results. The dataset for building model-based
methods is also detailed in this section. Conclu-
sions are drawn in Section 4.

2 Parallel Sentence Pairs Scoring
Methods

In this section, three kinds of scoring/filtering
methods are detailed.

2.1 Bilingual Quality Evaluation

Here, we describe the noisy corpus filtering rules
and two kinds of translation quality evaluation
methods: (1) Word Alignment Based bilingual
scoring and (2) Bitoken CNN Classifier based
bilingual scoring(Chen et al., 2016).

Rule-based Filtering
A series of heuristic rules are applied to filter
bad sentence pairs. They are simple but efficient,
which are described below.

• The length ratio of source sentence to target
sentence. Sentence length is calculated as the
number of tokens/words. In our system, the
ratio is set between 0.4 and 2.5.

• The edit distance between the source token
sequence and the target token sequence. A
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small edit distance indicates that the source
and target sentences are very similar. This
kind of corpus harms the performance of the
NMT system a lot (Khayrallah and Koehn,
2018). Besides, the edit distance can be nor-
malized by the average length of source and
target sentence length, which represents the
edit distance ratio. Both edit distance and
edit distance ratio are used to filter sentence
pairs in which the source and target sentence
are similar. In our system, a sentences pair
will be dropped if its edit distance is less than
2 or edit distance ratio is less than 0.1.

• The consistency of special tokens (Taghipour
et al., 2010). For example, the high-quality
sentence pairs should contain the same email
address in both source and target sentences
(if exists). In this task, special tokens are an
email address, URL, and a big Arabic num-
ber.

Word Alignment-based Bilingual Scoring

The word alignment model can be used for evalu-
ating the translation quality of bilingual sentence
pairs (Khadivi and Ney, 2005; Taghipour et al.,
2010; Ambati, 2011). Inspired by the work of
(Khadivi and Ney, 2005), we simplify the origi-
nal algorithm, and the translation score of sentence
pairs is given below:

score(s, t) =
1

m

∑

si,tj∈as2t
log p(tj |si)

+
1

n

∑

si,tj∈at2s
log p(si|tj) (1)

In Equation (1), s and t represent the source and
target sentences respectively, p(w1|w2) indicates
the word translation probability, as2t indicates the
source words to target words alignment, m and n
are the lengths of source and target sentences.

In this task, the word alignment model is trained
on a clean parallel corpus provided by WMT18
New Translation Task. We use the fast align
toolkit (Dyer et al., 2013) to train the model, and
get the forward and reverse word translation prob-
ability tables.

This model is also called alignment scoring
model.

Figure 1: Bitoken sequence

Bitoken CNN Classifier-based Bilingual
Scoring

Following the work of (Chen et al., 2016), a bito-
ken CNN based scoring model is built for transla-
tion quality evaluation.

In this model, the bitokens are extracted from
aligned sentence pairs. Figure 1 shows how a bito-
ken sequence can be obtained from a word-aligned
sentence pair. Each bitoken in the sequence is
treated as a word, and each bitoken sequence is
treated as a normal sentence. Then these bitoken
sentences are fed to the CNN Classifier to build
the bilingual scoring model. For every candidate
sentence pair, this model will give two probabili-
ties: ppos and pneg, and the quality score is treated
as scorebitoken = ppos − pneg. For the train data
set, the bitoken sequences obtained from the high-
quality corpus are labeled as positive. As for the
negative train data, we manually construct some
noisy data based on the clean data.(Lample et al.,
2017) For example, shuffle the target side sen-
tences of the clean parallel corpus, or randomly
delete the source or target sentence’s words. So
the negative bitoken sequences could be obtained
from this unparallel corpus.

This scoring model can also be called bito-
ken CNN scoring model.

2.2 Monolingual Quality Evaluation

Rule based Filtering

A few rules are applied to filtering the sentence
pairs whose source or target side are not good.
These rules are:

• The length of the sentence which is too short
(≤ 2 words) or too long (> 80 words) will be
dropped.
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• The ratio of valid tokens counts to the length
of the sentence. Here, valid tokens are the
tokens which contain the letters in the corre-
sponding language. For example, a valid to-
ken in English should contain English letters.
In our system, the sentence is filtered if its
valid-tokens ratio is less than 0.2.

• Language filtering. For German-English par-
allel corpus, the source and target sentences’
languages should be English and German.
We can detect the sentence’s language by us-
ing a language detection tool we developed1.
The sentences pair is filtered if the languages
of its source and target sides are not German
and English.

Language Model Scoring
We use the language model to evaluate the qual-
ity of sentences. The language model is success-
fully used to select domain-related corpus (Yasuda
et al., 2008; Moore and Lewis, 2010). Besides,
the language model can also be used to filter out
ungrammatical data (Denkowski et al., 2012; Al-
lauzen et al., 2011), which is suitable for this task.

In our corpus filtering system, we focus on the
quality of target sentences, i.e. English sentences,
as they are more important in NMT. Firstly, a large
language model is built on all available English
monolingual corpus provided by WMT18. The
training corpus is cleaned using some rules men-
tioned above. Then the normalized-length lan-
guage model score can be regarded as the mono-
lingual quality score. But in practice, this method
has a shortcoming: it gives lower scores for the
good sentences that contain rare words. The train-
ing corpus needs to be generalized to overcome
this shortness, for example, we can replace the
words that occur less than 10 times in LM train
corpus with their part of speech tag(Axelrod et al.,
2015). Finally, the language model is re-built on
the generalized corpus.

2.3 Corpus Diversity
Rule-based Filtering
We could use a simple rule to reduce the number
of similar sentence pairs. Firstly, source and tar-
get sentences should be generalized. In our ex-
periment, for the English sentence, the general-
ization is done by removing all the characters ex-

1This tool is similar to Google’s CLD2:
https://github.com/CLD2Owners/cld2

cept for English letters. Also, a similar operation
is done for generalizing German sentences. After
that, if some sentence pairs have the same gener-
alized source or target sentences, the sentence pair
that has the highest quality score will be selected.

N-gram based Diversity Scoring
In this method, we aim to sub-select a corpus
which contains a variety of N-grams. Such a cor-
pus is regarded as high diversity. We follow the
work of (Ambati, 2011; Biçici and Yuret, 2011),
with the motivation for introducing a feature decay
function for the n-gram weight. In our system, af-
ter selecting a subset Sj−1

1 , the next sentence sj’s
diversity score is given by:

f(sj |Sj−1
1 ) =

∑N
n=1

∑
ng∈NG(sj ,n)

weight(ng, j − 1)

norm(sj)
(2)

weight(ng, j − 1) = Freq(ng, S) ∗ e−λ∗Freq(ng,S
j−1
1 ),

where Sj−1
1 represents the set of selected sen-

tences which contains 1st to (j − 1)th sentences,
and S is the whole sentences pool to be selected.
f(sj |Sj−1

1 ) is the diversity score of sentence sj
under the condition that corpus Sj−1

1 is selected.
NG(sj , n) is all n-grams of size n in sentence

sj . |NG(sj , n)| is the size of the NG(sj , n).
norm(sj) is the normalization factor for sen-

tence sj , and equals
∑N

n=1 |NG(sj , n)|.
Freq(ng, S) is the frequency of n-gram in se-

lection data S.
λ is the exponential decay hyper parameter, λ =

1 in our experiment.
The equation (2) indicates that the n-gram is

weighted by its frequency in the pool set S and
selected set Sj−1

1 . The higher the frequency of n-
grams in the selected set, the lower the weight;
the higher the frequency of n-gram in the pool
set, the higher the weight. In practice, firstly, the
sentences pairs in the pool S are sorted by their
quality scores(combined by bilingual and mono-
lingual score) in descending order. Then the se-
lection method described above is carried out on
the target side of the bilingual corpus.

Parallel Phrases Diversity Scoring
The N-gram based Diversity Scoring is commonly
used for selecting monolingual sentences with
high diversity. Here we aim to sub-select a bilin-
gual corpus which contains a variety of parallel
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phrases. With this kind of corpus, the MT model
will learn more translation knowledge.

Firstly, we use the fast align toolkit to train a
word alignment model. And then the phrase table
of the corpus can be extracted by using the Moses
toolkit. Next, we can obtain the parallel phrases
pairs for each sentence pair from the phrase table
using the methods of maximum matching. Finally,
following the method described in section N-gram
based Diversity Scoring, the same selection pro-
cedure (in which, N-gram is replaced by phrase
pairs) is used for sentence pairs’ scoring. In our
system, it works best when the phrase length is
less than 7.

2.4 Methods Combination and corpus
sampling

In our corpus filtering system, all the methods are
combined into a pipeline.

First of all, we apply all the bilingual and mono-
lingual rules to filter very noisy sentence pairs.
Then, two bilingual scores and target side lan-
guage model score could be produced by the above
corresponding models. These three scores are
individually normalized and then linearly com-
bined to produce a single quality score. Here,
the weights of these scores are selected with gird
search method(Hsu et al., 2003). After that, we
sort the sentence pairs by their corresponding
quality scores in the descending order. The diver-
sity method is then used to re-score/re-order the
corpus. Finally, we select two sets of the top-
N sentence pairs that contain totally 10 million
words and 100 million words.

3 Experiments and Results

In this section, we specify the experimental set-
tings and results in corpus filtering task.

3.1 Corpora and Settings
The selection data pool2 is provided by WMT18
Corpus Filtering Task, which contains about 100
million sentences pairs. It is very noisy. The task’s
participants are asked to sub-select sentence pairs
that amount to (a) 100 million words and (b) 10
million words.3 The quality of the resulting sub-
sets is determined by the BLEU scores of a sta-
tistical machine translation (Moses, phrase-based)

2http://www.statmt.org/wmt18/parallel-corpus-filtering-
data/data.gz

3http://www.statmt.org/wmt18/parallel-corpus-
filtering.html

and neural machine translation system (Marian)
trained on this data. In our SMT and NMT exper-
iments, we used the SMT and NMT configuration
that are provided by the task organizer4, as well as
the development and test set.

While building the alignment scoring model,
after using the bilingual and monolingual filter-
ing rules, 4,337,154 sentence pairs are selected
from the corpora provided by the WMT18 English-
German news translation task. Next, the fast align
tool is used to build the word alignment model on
the clean corpus, and then we can obtain the for-
ward and reverse word translation probability ta-
bles.

When building the bitoken CNN scoring
model, 20,000 positive labeled bitoken sequences
and 20,000 negative labeled bitoken sequences
are constructed. The fast align toolkit is also used
here. Then, we use the CONTEXT5 toolkit to
train the CNN models. The bitokens’ embedding
vectors are trained by word2vec6, and the size of
each vector was set to 200.

For target sentences’ quality evaluation, we use
the KenLM(Heafield et al., 2013) toolkit to train
the normal and generalized LM. The clean train-
ing corpus contains 60 million English sentences,
which are sub-selected from the corpora provided
by WMT18 News Translation Task.

3.2 Experimental Results

Firstly, the whole corpus which contains about
100 million sentence pairs was evaluated by train-
ing the SMT and NMT system. The final BLEU
scores are 21.21 and 7.8 respectively. This experi-
ment shows that the whole corpus is really noisy.

Other experimental results are detailed in Ta-
ble 1. The randomly sub-selected corpus’ perfor-
mance is also very poor. The sys 1 system uses the
bilingual/monolingual rules and alignment scor-
ing, which performed much better. We replace
the alignment scoring method by bitoken CNN
method and then build the sys 2 system. We
find that the alignment scoring method and bito-
ken CNN method are very similar in sentences
pairs scoring. As a result, a lot of sentence pairs
(about 70% in the subset) are selected by both
methods. The two methods are combined in sys 3,
which has a little improvement. While combining,

4http://www.statmt.org/wmt18/parallel-corpus-filtering-
data/dev-tools.tgz

5http://riejohnson.com/cnn download.html
6https://code.google.com/archive/p/word2vec/
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System
ID

Method
10M words subset 100M words subset

sentence
pairs count

(×106)
SMT NMT

sentence
pairs count

(×106)
SMT NMT

- Random subset 1.31 15.25 7.73 8.23 18.21 7.57

sys 1
bilingual & monolingual rules

+ Alignment scoring
1.29 20.57 23.23 7.56 25.15 30.02

sys 2
bilingual & monolingual rules

+ bitoken CNN scoring
1.09 21.02 23.69 6.45 25.19 30.33

sys 3
bilingual & monolingual rules

+ Alignment + bitoken CNN
0.46 21.93 24.14 5.05 25.13 30.43

sys 4 sys 3 + Language Model 0.76 23.53 25.01 5.41 25.77 31.44
sys 5 sys 4 + Diversity Evaluation 0.64 23.79 25.34 5.41 25.77 31.44

Table 1: Methods used in Corpus selection and their performance

the original scores are normalized to the interval
[0, 1], and then the linear model is used to produce
a new score. In sys 3 system, the weights of align-
ment score and bitoken CNN score are 0.4 and 0.6
respectively.

The sys 4 introduced language mode score
based on sys 3. The weights of the align-
ment score, bitoken CNN score, and the language
model score are 0.4, 0.6 and 0.8 respectively. It
shows that the language model is useful in select-
ing clean sentences pairs.

Finally, based on sys 4, the corpus diversity fil-
tering rules and scoring are introduced in sys 5.
We find that the diversity method (only Parallel
Phrases Diversity Scoring is used in sys 5 system)
works well in selecting the smaller subset corpus,
e.g. the 10 million words corpus. For large subset
corpus selection, it almost has no improvement.
We attribute this to the sufficiently high diversity
of larger subset corpus.

4 Conclusions

In this paper, we present our corpus filtering sys-
tem for the WMT 2018 Corpus Filtering Task. In
our system, sentence pairs are evaluated in three
aspects: (1) the bilingual translation quality, (2)
the monolingual quality of the source and target
sentences and (3) the diversity of the sub-selected
corpus. Our experiments show that all the meth-
ods are contributed to building a cleaner parallel
corpus.
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Abstract

We present the UTFPR systems at the
WMT 2018 parallel corpus filtering task.
Our supervised approach discerns between
good and bad translations by training clas-
sic binary classification models over an
artificially produced binary classification
dataset derived from a high-quality trans-
lation set, and a minimalistic set of 6 se-
mantic distance features that rely only on
easy-to-gather resources. We rank trans-
lations by their probability for the “good”
label. Our results show that logistic regres-
sion pairs best with our approach, yielding
more consistent results throughout the dif-
ferent settings evaluated.

1 Introduction

It is no secret that Machine Translation (MT) sys-
tems have a wide array of applications, which
range from translating news to multiple languages
in order to more widely spread useful information,
to producing translated transcriptions of real-time
audio so that people from different places can com-
municate more easily.

MT systems have evolved considerably through-
out recent years due mainly to the widespread
adoption of neural machine translation (NMT)
approaches. Attention-based encoder-decoders
(Bahdanau et al., 2014) and neural semantic en-
coders (Munkhdalai and Yu, 2016) are just some
examples of recurrent neural network architectures
that have achieved great success in this task.

But regardless of how much MT approaches
have evolved from a modelling standpoint, both

c© 2018 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

modern and legacy approaches learn from the same
type of information: parallel data containing hand-
crafted translations. This data usually takes the
form of millions (sometimes billions) of paral-
lel original-to-translated sentences, and are often
extracted from translated versions of documents,
such as news articles (Bojar et al., 2017), and sub-
titles (Lison and Tiedemann, 2016).

Despite being hand-crafted, sometimes these
datasets contain a lot of spurious translation exam-
ples that would not necessarily teach anything use-
ful to an MT model, potentially compromising its
performance. Consequently, it is important to fil-
ter these datasets in order to maximise the model’s
performance. Tiedemann (2012) and Lison et al.
(2018) effectively filter large parallel corpora ex-
tracted from subtitles by using unsupervised met-
rics that combine features such as translation prob-
abilities, language model probabilities, etc. In this
contribution, we attempt to elaborate on the ideas
of Tiedemann (2012) and Lison et al. (2018) by
using such features as input to supervised machine
learning models.

In what follows, we present the UTFPR systems
for the WMT 2018 parallel corpus filtering task:
A minimalistic approach that aims at combining
easy-to-harvest features with classic supervised bi-
nary classification models to create efficient trans-
lation filters.

2 Task Description

The WMT 2018 parallel corpus filtering task is a
very simple one: given a large dataset containing
many automatically harvested translations, rank
them according to their quality i.e. how useful one
can expect them to be to an MT system.

The dataset provided contains around 1 billion
words from English-to-German translations gath-
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ered as part of the Paracrawl project (Buck and
Koehn, 2016). The translations were of mixed do-
main, and among them are many spurious ones,
such as misaligned translations, incomplete trans-
lations, translations with non-English and/or non-
German sentences, etc. Participants were allowed
to use the parallel corpora1 from the WMT 2018
MT shared task to train their systems, if they
wished to do so.

Participants were tasked with creating systems
that assign a quality score to each translation in the
dataset. To evaluate the systems, the organizers
subsampled the dataset by choosing the N high-
est quality translations, training MT systems with
them, then using traditional MT evaluation metrics
to measure their performance. More details on the
MT systems and evaluation metrics used are pro-
vided in Section 4.

3 Approach

In order to rank translations according to their
quality, we’ve conceived a minimalistic supervised
binary classification approach that relies on fea-
tures that are easy to produce, and can hence
be calculated even for resource-limited languages.
The pipeline of our approach is illustrated in Fig-
ure 1.

First, we create a binary classification dataset
using a set of high-quality English-German trans-
lations. The goal of this step is to create a very
contrasting set of instances that greatly differed
in terms of how coherent the source in English
aligned with its German target. We create our
dataset through the following steps:

1. We split the dataset in two equally sized por-
tions, which we will henceforth refer to as
“positive” and “negative” halves.

2. We then keep the positive half as it is, and
shuffle the German side of the translations in
the negative half, consequently misaligning
the source and target side of the translations.

3. Finally, we assign label 1 (good quality) to
all instances in the positive half, and -1 to the
ones in the negative half (bad quality).

With our dataset at hand, we then calculate 6
features for each instance:
1http://statmt.org/wmt18/translation-task.html

• The cosine distance between the average em-
bedding vector of all content words in the
source and target sentences.

• The minimum, maximum, and average cosine
distance between the word embeddings of all
possible word pairs in the source and target
sentences.

• The proportion of words in the English source
that have at least one ground-truth translation
in the German target according to a dictio-
nary.

• The proportion of words in the German target
that have at least one ground-truth translation
in the English source according to a dictio-
nary.

These features have the main goal of capturing
the overall semantic distance between the source
and target in different ways. Notice that, since we
prioritised creating an efficient and extensible ap-
proach to this task, we refrained from trying to ex-
ploit other features that attempt to capture syntac-
tic properties, which require for parsers, which are
often scarce for resource-limited languages.

To calculate our cosine distance features, we use
the pre-trained 300-dimension English-German
bilingual embeddings made available by the
MUSE project (Lample et al., 2017). These em-
beddings offer a common distributional feature
space for both English and German, and allow
for us to calculate the cosine distance between
English and German words. For the translation
precision features, we used the English-German
ground truth dictionary also made available by the
MUSE project. These dictionaries are derived in
unsupervised fashion from the same learning pro-
cess that originate the previously described embed-
dings. Both of these resources can be obtained
with raw text, without the need for parallel cor-
pora, which makes our features easily obtainable
for the great majority of languages. We treat as
content words any words that are not featured in a
list of stop words.

After feature calculation, we train a binary clas-
sification model over our dataset. At test time, we
produce quality scores for unseen instances by cal-
culating the same 6 features, passing them through
our model, then extracting the probability of the
positive class (label 1). To create a set of filtered
translations, we rank the translations according to
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Figure 1: Architecture of the UTFPR systems

their positive class probabilities and choose the
ones with highest scores. We name our approach
UTFPR in reference to the university sponsoring
this contribution.

4 Experimental Setup

As mentioned in Section 2, we submit our results
to the parallel corpus filtering shared task of WMT
2018, of which the test set contains roughly one
billion unfiltered parallel English-German transla-
tions. To train our supervised model, we use the
Europarl v7 parallel corpus (Koehn, 2005), which
contains 1, 920, 209 translations.

For learning, we experiment with three classifi-
cation models: Logistic Regression (UTFPR-LR),
Decision Trees (UTFPR-DT), and Random Forests
(UTFPR-RF). We chose them because they use
a varying array of learning methods, and can be
trained efficiently even when presented with hun-
dreds of millions of input instances.

To evaluate our approach, the shared task orga-
nizers first created two sub-sampled sets of par-
allel translations containing the 10 million and
100 million highest scoring translations in the test
set. They then used these sets to train both sta-
tistical (SMT) and neural MT (NMT) models us-
ing the Moses (Koehn et al., 2007) and Marian
(Junczys-Dowmunt et al., 2018) toolkits, and eval-
uated the models according to BLEU-c (Koehn,
2011) over a combination of the newstest 20182,
iwslt 20173, Acquis4, EMEA5, Global Voices6,
and KDE7 datasets.

2http://statmt.org/wmt18/translation-task.html
3https://sites.google.com/site/iwsltevaluation2017
4https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis
5http://opus.nlpl.eu/EMEA.php
6http://opus.nlpl.eu/GlobalVoices.php
7http://opus.nlpl.eu/KDEdoc.php

5 Results

We compare our approach to the 5 systems from
the WMT 2018 parallel corpus filtering task with
the highest and lowest average BLEU-c scores.
The results illustrated in Table 1 reveal that, al-
though our models do not fair very well against
more sophisticated strategies, they do perform
more consistently than other strategies of similar
performance across all the settings evaluated; one
can observe that the main reason why our logis-
tic regressor outperforms the bottom five shared
task systems is because it achieves similar BLEU-c
scores in all settings, while the bottom five achieve
unusually low BLEU-c scores in some settings
(particularly 10M sentences for NMT). However,
this is not necessarily a strong point of our ap-
proach, since one would expect to achieve signifi-
cantly higher scores in settings where the MT sys-
tems are being fed more sentences, specially in the
case of NMT. This suggests that our models may
be prone to choosing redundant/repetitive content.

It can also be noted that, overall, the logistic
regression model performs much better than both
our decision trees and random forests, specially for
NMT, where the difference between them reaches
upwards of 16.08 BLEU-c points. Inspecting
the highest scores produced by these models, we
found that our logistic regressor and the tree-based
models prioritise much different translations. Both
our decision tree and random forest assign higher
scores to very short translation pairs averaging 15
tokens in length on either side, while our logistic
regressor prioritises much longer ones, averaging
40 tokens in length on either side. We noticed that,
although the shorter translation pairs prioritised by
our tree-based models often feature a slimmer ar-
ray of translation errors, they seem much less use-
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SMT NMT
10M 100M 10M 100M Average

Microsoft 24.45 26.50 28.62 32.06 27.91
RWTH 24.58 26.21 28.01 31.29 27.52

Alibaba 24.11 26.44 27.60 31.93 27.52
Alibaba-Div 24.11 26.42 27.60 31.92 27.51

NRC 23.89 26.40 27.41 31.88 27.39

UTFPR-LR 20.81 22.35 21.75 22.23 21.79
UTFPR-DT 17.55 20.67 11.44 11.88 15.38
UTFPR-RF 13.22 16.96 6.57 6.15 10.72

AFRL-Small 21.93 22.89 13.49 21.05 19.84
DCU-System 4 15.67 21.19 6.27 18.60 15.43
DCU-System 3 15.26 21.09 5.01 18.39 14.94
DCU-System 2 12.86 18.57 3.42 8.61 10.86
DCU-System 1 6.56 13.22 3.34 4.78 6.98

Table 1: Parallel corpus filtering results with respect to the average BLEU-c scores obtained over the datasets described in
Section 4. The first and last five lines feature, respectively, the five systems that achieved the highest and lowest average
BLEU-c scores in the task. Boldface numbers highlight the highest BLEU-c scores achieved among the UTFPR systems.

ful to an MT system. Most of them are translations
of dates, article titles, ads, and list items, which we
expect would offer little to no insight on how to
translate longer, more elaborate sentences. In con-
trast, the longer translations prioritised by our lo-
gistic regressor feature more meaningful, complex
sentences, which is most likely why they make for
better input to MT models.

6 Conclusions

In this contribution, we presented the UTFPR sys-
tems submitted to the WMT 2018 parallel corpus
filtering task. Our supervised systems discern be-
tween good and bad translations using classic bi-
nary classification models, and use as input a min-
imalistic set of 6 features that aim to capture the
semantic distance between original and translated
sentences without relying neither on syntactic in-
formation or scarce resources and tools.

We found that our approach performs best when
employing logistic regression. Overall, our best
performing system places 41th, when considering
the BLEU-c average of all outcomes evaluated. In
the future, we aim to evaluate the effectiveness
of applying more elaborate dataset creation meth-
ods for training that produce more types of errors,
employing more sophisticated neural models for
the task, and incorporating cost-effective syntactic
clues into the feature set.
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Abstract

This paper describes the submission of the
Institute for Language and Speech Process-
ing/Athena Research and Innovation Center
(ILSP/ARC) for the WMT 2018 Parallel Cor-
pus Filtering shared task. We explore several
properties of sentences and sentence pairs that
our system explored in the context of the task
with the purpose of clustering sentence pairs
according to their appropriateness in training
MT systems. We also discuss alternative meth-
ods for ranking the sentence pairs of the most
appropriate clusters with the aim of generat-
ing the two datasets (of 10 and 100 million
words as required in the task) that were eval-
uated. By summarizing the results of several
experiments that were carried out by the or-
ganizers during the evaluation phase, our sub-
mission achieved an average BLEU score of
26.41, even though it does not make use of any
language-specific resources like bilingual lex-
ica, monolingual corpora, or MT output, while
the average score of the best participant system
was 27.91.

1 Introduction

There is a growing literature on using web-
acquired data for constructing various types of
language resources, including monolingual and
parallel corpora. As shown in, among others,
Pecina et al. (2014) and Rubino et al. (2015),
such resources can be exploited in training generic
or domain-specific machine translation systems.
Nevertheless, compared to the acquisition of
monolingual data from the web, construction of
parallel resources is more challenging. Apart from
the identification of document pairs that are trans-
lations of each other and can be crawled from mul-
tilingual websites, the extraction of sentence pairs
and, crucially, the selection of sentence pairs of
good quality are far from straightforward.

Zariņa et al. (2015) exploit already available
parallel corpora in order to get word alignments,
which are then used to identify mistranslations.
Denkowski et al. (2012) use N-gram language
models built from monolingual corpora to estimate
probabilities of source and target sentences, in a
manner of assigning high scores to grammatical
sentences and lower scores to ungrammatical sen-
tences and non-sentences such as site maps, large
lists of names, and blog comments. Aiming to
select sentence pairs of good adequacy and flu-
ency, Xu and Koehn (2017) generate probabilis-
tic dictionaries and n-gram models from Europarl
corpora. Taghipour et al. (2011) and Cui et al.
(2013) extract features based on translation and
language models, and word alignments from the
dataset under examination (i.e. this dataset is used
to train models instead of using external language
resources) and then apply unsupervised techniques
such as outlier detection of estimated probability
density and graph-based random walk algorithm
to discard sentence pairs that are of limited or no
importance. In the case of web acquired data, shal-
low features like aligners’ scores, length ratio, and
patterns in URLs from which the content was orig-
inated, have been proposed (Esplà-Gomis and For-
cada, 2010).

In a different manner, many researchers have
approached data selection as a domain-matching
issue. For instance, Duh et al. (2013) proposed
the use of a neural language model trained on a
domain-specific corpus to identify in-domain sen-
tence pairs in a large corpus.

This paper describes the submission of IL-
SP/ARC for the WMT 2018 Parallel Corpus Fil-
tering shared task. The task consisted in cleaning a
very noisy English-German parallel corpus of 104
million sentence pairs provided by the organizers,
with each EN-DE sentence pair accompanied by a
score generated by the Hunalign sentence aligner.
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The participants were to assign a quality score for
each sentence pair, with higher scores indicating
sentence pairs of better quality. As reported in
the shared task webpage1, “Evaluation of the qual-
ity scores will be done by subsampling 10m and
100m [EN] word corpora based on these scores,
training statistical and neural machine translation
systems with these corpora, and evaluating trans-
lation quality on blind test sets using the BLEU
score.” Given that the organizers discouraged par-
ticipants from subsampling the corpus for rele-
vance to a specific domain (e.g. the news domain),
domain adaptation approaches like the ones men-
tioned above seem to not fit this task.

In the shared task webpage, the organizers also
released a development environment with configu-
ration files and scripts that allowed participants to
subsample corpora based on quality scores and to
replicate the testing procedure with a development
test set.

2 System architecture

Our submission system is based on the cleaning
module of the ILSP Focused Crawler (Papavassil-
iou et al., 2013), an open-source toolkit2 that in-
tegrates all necessary software3 for the creation of
high-precision parallel resources from the web in
a language-independent fashion.

The toolkit and its cleaning module have been
used in research projects like the European Lan-
guage Resource Coordination for the acquisition
of high-precision parallel language resources (Pa-
pavassiliou et al., 2018).

2.1 Noise in Web acquired parallel corpora

In a pipeline for the construction of parallel cor-
pora from the web, shortcomings of each pro-
cessing step may introduce errors, usually called
“noise”, that affect the quality of the final output.
In this shared task, the data collection pipeline of
the Paracrawl4 project was adopted for the con-
struction of the input (i.e. the raw, very noisy par-
allel corpus).

Many types of noise occur due to misses dur-
ing parsing HTML pages and extracting their tex-

1http://www.statmt.org/wmt18/
parallel-corpus-filtering.html

2http://nlp.ilsp.gr/ilsp-fc/
3Including modules for metadata extraction, language

identification, boilerplate removal, document clean-up, text
classification and sentence alignment

4https://paracrawl.eu/releases.html

tual content. Such errors are typically introduced
when HTML code is considered text and/or page
encoding is not successfully detected. Moreover,
inaccurate identification of paragraph limits may
lead to wrong sentence splitting and, eventually, in
the alignment of incomplete sentences. False neg-
atives in the detection of boilerplate text (i.e. nav-
igation headers, disclaimers, etc.) may result in
large numbers of (near-)duplicate sentence pairs,
which are of only limited or no use for the produc-
tion of good-quality language resources.

Other errors concern the accuracy of the lan-
guage identification process. Even when the lan-
guage of a web page is correctly detected at doc-
ument level, it is possible that small parts of the
page are written in another language. Thus, ignor-
ing language detection at paragraph or sentence
level may lead to sentence pairs with the wrong
language in the source and/or the target side. Fi-
nally, misalignments at document and/or sentence
level generate sentence pairs that are not transla-
tions of each other.

2.2 Filter-based clustering
Given that the existence of the types of noise dis-
cussed above is not strongly influenced by the tar-
geted language pair, we developed a language ag-
nostic method with the purpose of clustering sen-
tence pairs in respect of their quality, i.e. of their
correctness and usefulness for training MT en-
gines.

The first cluster, C0, includes obviously noisy
sentence pairs. We assign to these pairs a 0 score
in order to prohibit their participation in the sub-
samples to be used for training. Sentence pairs in
C0 match one of the following patterns:

1. sentence pairs with too short or too long
EN or DE sentences (after tokenization) that
would have been excluded from the training
phase according to the shared task configura-
tion. By enforcing a sentence length between
1 and 80 tokens, and a sentence length ratio
less than 9 tokens (i.e. by using the default
values of the Moses SMT toolkit for cleaning
a corpus before training an MT system), we
remove 3.42% of the sentence pairs in the in-
put corpus. Our intuition is that most of these
sentence pairs are the result of wrong HTML
parsing or encoding detection.

2. sentence pairs with an EN or DE sentence
that does not contain any letter in the range
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of Unicode character sets relevant to Latin
scripts. This pattern discards sentence pairs
(11.12% of the input corpus) that are either
the result of wrong encoding detection, or
contain only dates, prices, flight numbers, di-
mensions, products’ IDs, etc.

3. sentence pairs with identical text in both
languages (after removing non-Latin charac-
ters mentioned above). These sentence pairs
(9.94% of the input corpus) mainly contain
boilerplate elements, dates, locations, etc.5

4. sentence pairs for which the EN or DE parts
were not in the proper language as detected
by the Cybozu language detection library.6

Sentences in these pairs (13.01% of the cor-
pus) were often French or Spanish. As with
most language detectors, the accuracy of the
tool is lower during the examination of short
sentences.

5. sentence pairs (1.71% of the corpus) with un-
usual features (e.g. words with transitions
from lowercase to uppercase and vice versa,
consecutive identical letters, long sequences
of very short words, etc.)

6. sentence pairs consisting mostly of URLs,
and emails (1.42% of the corpus)

Table 1 provides examples of sentences grouped
into C0 by some of the criteria described above.

In the next step of our language agnostic ap-
proach, we clustered the remaining sentence pairs
using shallow features that are likely to be related
to correctness of sentence alignment. Specifically,
we compared the sequences of digits and symbols
(e.g. punctuation marks, % , $, etc.) on each side
of the remaining sentence pairs. Depending on the
results (i.e. same/different digits and same/differ-
ent symbols), the following four clusters, ordered
from worst to best, were constructed:

C1 Different digits and different symbols

C2 Different digits and same symbols

C3 Same digits and different symbols

C4 Same digits and same symbols
5In future work we plan to reconsider the usefulness of

this pattern in preparing parallel corpora for NMT engines.
6http://code.google.com/p/

language-detection/

Table 2 contains examples of sentence pairs
grouped into clusters according to this approach.

In a final step we focused on the identification
of (near) duplicates. In more detail, we normal-
ized sentence pairs by lowercasing and removing
non-Latin characters, and we examined if a sen-
tence pair was identical to or was included in an-
other sentence pair. When a duplicate was de-
tected, we kept the sentence pair that belonged to
a better cluster. If both sentence pairs belonged to
the same cluster, we kept the longer one in terms
of tokens.

By assigning the corresponding cluster number
to each sentence pair as a score (i.e. 4 to pairs
of C4, 3 to pairs of C3, etc), the sentence pairs
in the provided noisy corpus were roughly ranked.
We then ran the subsampling algorithm that was
provided by the organizers in order to obtain the
two datasets required from each participant. We
noticed that the sizes of the resulting corpora ex-
ceeded the 10M and 100M EN word thresholds.
This is explained by the fact that we provided only
5 scores (as many as the clusters) and the algo-
rithm selects all sentence pairs for a score (star-
ing from the highest) iteratively until the size of
the selected subcorpus reaches the threshold. For
instance, clusters C4, C3 and C2 (i.e. sentence
pairs with scores 4, 3 and 2 respectively) includ-
ing more than 14M English words, were sampled
for the 10M corpus! To overcome this shortcom-
ing, in our final rankings each cluster is initially
assigned to an integer of different scale (e.g. C1

to score 10, C2 to score 1000, etc). The score of
each sentence pair is then calculated by adding the
Hunalign score to the initial cluster score, with the
purpose of ensuring the granularity of the scores
and of keeping clusters well-separated. This rank-
ing led to corpora of 626K and 5.7M pairs for the
10M and the 100M corpora, respectively.

For a submission based on an alternative rank-
ing, we add the character length of each pair to the
initial cluster score. Compared to the Hunalign-
based scoring, this variant favors long sentences
and thus results in significantly smaller corpora in
terms of sentence pairs (221K pairs and 5.4M pairs
for the 10M and 100M corpora, respectively).

3 Evaluation Results

In the evaluation experiments conducted by the or-
ganizers, four different translation systems were
trained, namely (a) a Moses statistical system
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EN DE Aligner
score

1 Relatively extreme values are also taken
into account.

Relatively extreme values are also taken
into account.

2.4

2 www.gamersglobal.de about Risen 2 www.gamersglobal.de ber Risen 2 6.3
3 wie gehts denn so? wo hast deins denn her? 1.12381
4 5103 Dec 5104 JanFebMarAprMayJun-

JulAug
4574 FebMAprMaiJunJulAugSepOkt 1.46471

5 Abstr. Appl. Anal. 2014, Art. ID
363925, 7 pp. 54H25 (45G10)

Fluct. Noise Lett. 5 (2005), no. 2, L275
L282. 82C31

1.26739

Table 1: Examples of sentence pairs grouped into C0 by filters focusing on sentence pairs with 1) iden-
tical text in both languages 2) sentences consisting mainly of URLs/emails/dates 3) the sentence in the
first/second column detected as non-EN/non-DE, respectively 4) unusual patterns like mixture of upper-
and lowercase ; 5) long sequences of short words.

(Koehn et al., 2007) trained on the 10M EN word
parallel corpus, (b) a Moses system trained on the
100M EN word parallel corpus, (c) a Marian neu-
ral translation system (Junczys-Dowmunt et al.,
2018) trained on the 10M EN word parallel corpus
and (d) a Marian system trained on the 100M EN
word parallel corpus. For all systems the official
WMT 2017 news translation test set was used as
a development set. According to the shared task’s
settings, the quality of the machine translation sys-
tem is measured by BLEU score (Papineni et al.,
2002) on the (a) official WMT 2018 news trans-
lation test set and (b) another undisclosed test set,
which is the union of 5 test sets listed in Tables 3
and 4.

Table 3 summarizes the evaluation scores ob-
tained using the ranking based on the combination
of clusters and Hunalign scores on the various test
sets. Our submission had an average BLEU score
of 26.41 on the different test configurations (4 sys-
tems evaluated over 6 test sets), while the average
score of the best participant system was 27.91.

It can be seen that for all datasets the best results
are obtained by the NMT systems over their equiv-
alent SMT ones, with the top one being the NMT
trained over the 100M English token German-
English filtered corpus. For both the Moses SMT
and the Marian NMT systems there is a significant
increase of the BLEU score when increasing the
size of the training corpus from 10M to 100M En-
glish tokens. Specifically, for the Moses system
the average increase is 16.6%, while for Marian
the average increase is 21.5%.

Similarly, Table 4 lists the evaluation scores ob-
tained with the alternative ranking scheme using

the sentence length information. This submis-
sion had an average BLEU score of 24.98 on the
different test configurations. Again, the best re-
sults are obtained with the NMT system trained
over the 100M corpus. When comparing the av-
erage BLEU scores between the 10M and 100M
systems, the SMT system shows an increase of
15.2%, while the NMT system shows a huge in-
crease of 58.5%. Interestingly, the performance
of the NMT system trained on the 10M corpus is
lower than that of the SMT one. This can be at-
tributed to the fact that the 10M corpus comprises
221K long sentence pairs, a relatively small num-
ber of sentences for NMT systems, which evalu-
ate fluency over entire sentences. The equivalent
SMT system is rather unaffected, presumably be-
cause SMT systems are based on n-gram models.

By comparing the results of the two alternative
ranking schemes, we conclude that their perfor-
mances are similar for the 100M corpora. This is
explained by the fact that their intersection is ex-
tremely high: 5.2M sentence pairs are included in
the 5.7M and 5.4M sentence pairs selected with
the two schemes. Regarding the 10M corpora
which differ significantly in number of sentence
pairs (626K vs 221K), the performance of both
schemes is similar for the SMT systems but dif-
fers for the NMT ones. In future work, we plan to
carry out experiments that will provide evidence of
how size and length of sentence pairs in a training
corpus affect the performance of an NMT system.

4 Conclusions

In this paper we described the ILSP/ARC submis-
sion to the WMT 2018 Parallel Corpus Filtering
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Cluster EN DE Aligner
score

C2 We offer 2 comfortable bedrooms,
sleeping up to 4 guests, a cot

Zwei komfortable Schlafzimmer für bis
zu 4 Personen, Kinderbett

0.41805

C2 The table now has 2 columns for the
2 euro commemorative coins, because
some countries will issue two different
2 euro special coins. A description can
be viewed by holding the mouse over
the i-symbol for a while.

Es gibt in der Tabelle 2 Spalten für
2 Euro Gedenkmnzen, da seit 2007
einige Länder mehrere 2 Euro Son-
dermünzen ausgeben. Über das i-
Symbol kann die entsprechende Beze-
ichnung der Münzen angezeigt werden.

0.49576

C3 Our club for runners who have finished
in Düsseldorf 10 times. We would like
to honour this accomplishment.

Unser Club für alle Läufer, die bereits
10 Mal in Düsseldorf gefinished haben.
Diese besondere Leistung, möchten wir
auch besonders würdigen.

1.5466

C4 Austrian declaration of principles at the
Conference on Security and Cooper-
ation in Europe (Helsinki, December
1972)

Grundsatzerklärung Österreichs auf der
Konferenz über Sicherheit und Zusam-
menarbeit in Europa (Helsinki, Dezem-
ber 1972)

3.9431

C4 A current application: The turbine
sheets of the new Airbus A 380 were
manufactured by a milling machine
equipped by a self carrying product of
WeBe Electronic GmbH.

Eine aktuelle Applikation: Die Tur-
binenblätter des neuen Airbusses A
380 von einer mit einem selbsttra-
genden WeBe-Produkt ausgerüsteten
Fräsmaschine gefertigt.

2.6620

Table 2: Examples of sentence pairs grouped to different clusters based on the shallow features detailed
in Section 2.2.

SMT SMT NMT NMT
10M 100M 10M 100M

news2017 20.49 25.28 26.09 31.46
news2018 26.30 30.58 31.32 38.99
iwslt2017 18.83 22.82 21.20 26.57

Acquis 18.71 22.27 22.94 27.63
EMEA 26.50 30.88 30.17 35.96

GlobalVoices 20.20 23.43 23.39 28.20
KDE 23.78 26.74 25.73 30.63

average 22.39 26.12 25.79 31.33

Table 3: BLEU evaluation scores (ranking was
based on the combination of clusters and Hunalign
scores)

Shared Task. We explored shallow features of sen-
tences and sentence pairs and grouped the task
data in 5 clusters according to their presumed use-
fulness for training MT systems. Our language-
pair independent submissions were not based on
MT output or bilingual lexica, i.e. on resources
which are often scarce or simply not available for
many language pairs. Nevertheless, the results ob-

SMT SMT NMT NMT
10M 100M 10M 100M

news2017 20.82 25.50 16.32 31.38
news2018 26.91 30.80 20.33 39.01
iwslt2017 18.91 22.70 11.40 26.60

Acquis 19.34 22.35 21.13 27.82
EMEA 27.24 30.86 27.43 35.89

GlobalVoices 20.38 23.49 14.67 28.32
KDE 23.32 26.59 23.68 30.37

average 22.68 26.13 19.77 31.34

Table 4: BLEU evaluation scores (ranking was
based on the combination of clusters’ scores and
sentences’ length)

tained from the systems trained on our submis-
sions indicate that this language-pair independent
approach yields datasets on which competitive MT
systems can be built.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Vassilis Papavassiliou, Prokopis Prokopidis, and Ste-
lios Piperidis. 2018. Discovering parallel language
resources for training MT engines. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources
Association (ELRA).

Vassilis Papavassiliou, Prokopis Prokopidis, and Gre-
gor Thurmair. 2013. A modular open-source fo-
cused crawler for mining monolingual and bilingual
corpora from the web. In Proceedings of the Sixth
Workshop on Building and Using Comparable Cor-
pora, pages 43–51, Sofia, Bulgaria. Association for
Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pages 311–318,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Pavel Pecina, Antonio Toral, Vassilis Papavassiliou,
Prokopis Prokopidis, Aleš Tamchyna, Andy Way,
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2015. Word alignment based parallel corpora eval-
uation and cleaning using machine learning tech-
niques. In Proceedings of the 18th Annual Con-
ference of the European Association for Machine
Translation, pages 185–192, Antalya, Turkey.

933



Proceedings of the Third Conference on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 934–938
Belgium, Brussels, October 31 - Novermber 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/W18-64112

SYSTRAN Participation to the
WMT2018 Shared Task on Parallel Corpus Filtering

MinhQuang Pham, Josep Crego, Jean Senellart
SYSTRAN / 5 rue Feydeau, Paris (France)

FirstName.LastName@systrangroup.com

Abstract

This paper describes the participation of SYS-
TRAN to the shared task on parallel corpus
filtering at the Third Conference on Machine
Translation (WMT 2018). We participate for
the first time using a neural sentence similar-
ity classifier which aims at predicting the re-
latedness of sentence pairs in a multilingual
context. The paper describes the main char-
acteristics of our approach and discusses the
results obtained on the data sets published for
the shared task.

1 Introduction

Corpus-based approaches to machine translation
rely on the availability and quality of parallel cor-
pora. In the case of neural machine translation,
a large neural network is trained to maximise the
translation performance on a given parallel corpus.
Therefore, the quality of an MT engine is heav-
ily dependent upon the amount and quality of the
training parallel sentences. Such resource is not
naturally existing, and because of the process nec-
essary to compile a parallel corpus, it may contain
multiple sentence pairs that are often not as paral-
lel as one might assume.

The primary objective of our approach is to as-
sess whether we are able to identify parallel sen-
tences using a flexible method that relies on deep
learning architectures. Thus, eliminating the need
for any domain specific feature engineering. We
evaluate the feasibility of a model learnt over the
same noisy data that must be cleaned. Using as
few external tools as possible.

Hence, we tackle the filtering problem by means
of a neural sentence similarity network, which
aims at predicting the relatedness of sentence
pairs. Pairs are selected according to their simi-
larity score, thus filtering those sentences which
are less likely to be translations of each other. The
rest of this paper is organised as follows. After

describing the filtering task we outline our simi-
larity classifier. Next, we present experiments and
results of the shared task. Finally, we draw some
conclusions.

2 Task description

In the context of the third conference on machine
translation (WMT18), the parallel corpus filter-
ing shared task1 tackles the problem of cleaning
noisy parallel corpora. Given a noisy parallel cor-
pus (crawled from the web), participants develop
methods to filter it to a smaller size of high quality
sentence pairs. Specifically, the organisers provide
a very noisy 1 billion word (English token count)
German-English corpus crawled from the web as
part of the Paracrawl project2. Participants must
subselect sentence pairs that amount to (a) 100
million words, and (b) 10 million words. The qual-
ity of the resulting subsets is determined by the
quality of a statstical and a neural machine transla-
tion system trained on this data. The quality of the
machine translation system is measured by BLEU
score on the (a) official WMT 2018 news transla-
tion test and (b) another undisclosed test set.

The organisers explicit that the task addresses
the challenge of data quality and not domain-
relatedness of the data for a particular use case.
Hence, they discourage participants from subsam-
pling the corpus for relevance to the news do-
main despite being one of the evaluation test sets.
Organisers thus place more emphasis on the sec-
ond undisclosed test set, although they report both
scores. The provided raw parallel corpus is the
outcome of a processing pipeline that aimed for
high recall at the cost of precision, which makes it
extremely noisy. The corpus exhibits noise of all
kinds (wrong language in source and target, sen-
tence pairs that are not translations, bad language,

1http://www.statmt.org/wmt18/
parallel-corpus-filtering.html

2https://paracrawl.eu/
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incomplete or bad translations, etc.).

3 Neural Similarity Classifier

Our network architecture is very much inspired by
the work on Word Alignment in (Legrand et al.,
2016). Figure 1 illustrates the network. In the fol-
lowing, we consider a source-target sentence pair
(s, t) with s = (s1, ..., sI) and t = (t1, ..., tJ).

Figure 1: Illustration of the model. The network is com-
posed of source and target word embedding lookup tables
(LTs and LTt) and two identical subnetworks (nets and
nett) that compute in context representations of source (si)
and target words (tj).

The model is composed of 2 Bi-directional
LSTM subnetworks, nets and nett, which respec-
tively encode source and target sentences. Since
both nets and nett take the same form we describe

only the source architecture. The source-sentence
Bi-LSTM network outputs forward and backward
hidden states,

−→
h src

i and
←−
h src

i , which are then con-
catenated into a single vector encoding the ith

word of the source sentence, hsrci = [
−→
h src

i ;
←−
h src

i ].
In addition, the last forward/backward hidden
states (outlined using dark grey in Figure 1) are
also concatenated into a single vector to represent
whole sentences hsrc = [

−→
h src

I ;
←−
h src

1 ]. At this
point a measure of similarity between sentences
can be obtained by cosine similarity:

sim(hsrc, htgt) =
hsrc·htgt

||hsrc|| ∗ ||htgt||
(1)

where two vectors (embeddings) with the same
orientation have a cosine similarity of 1, while two
vectors with opposed orientation have a similarity
of −1, independent of their magnitude.

Similar to (Legrand et al., 2016) our model ex-
tracts context information from source and target
sentences and then computes simple dot-products
to estimate word alignments. The objective func-
tion is computed at the level of words. To enable
unsupervised training, we use an aggregation op-
eration that summarizes the alignment scores for
a given target word. A soft-margin objective in-
creases scores for true target words while decreas-
ing scores for target words that are not present.
The aggregation function combines the scores of
all source (or target) words for a particular tar-
get (or source) word and promotes source words
which are likely to be aligned with a given target
word according to the knowledge the model has
learned so far. Alignment scores S(i, j) are given
by the dot-product S(i, j) = hsrci ·htgtj , while ag-
gregation functions are defined as:

aggrs(i, S) =
1

r
log




J∑

j=1

er∗S(i,j)




aggrt(j, S) =
1

r
log

(
I∑

i=1

er∗S(i,j)
) (2)

The loss function is defined as:

L(src, tgt) =
I∑

i=1

log
(
1 + eaggrs(i,S)∗Y

src
i

)
+

+
J∑

j=1

log
(
1 + eaggrt(j,S)∗Y

tgt
j

)
(3)
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where Ysrc
i and Ytgt

j are vectors with reference la-
bels containing −1 when the word is present in
the translated sentence, and +1 for divergent (un-
paired) words.

Further details on the network can be found
in (Pham et al., 2018).

3.1 Training with Negative Examples
Training is performed by minimising Equation 3,
for which examples with annotations for source
Ysrc
i and target Ytgt

j words are needed.
As positive examples we use paired sentences

of the parallel corpus. In this case, all words in
both sentences are labelled as parallel, Ysrc

i = −1
and Ytgt

j = −1.
As negative examples we use random unpaired

sentences. In this case, all words are labelled as
divergent, Ysrc

i = +1 and Ytgt
j = +1.

In order to be able to predict less obvious di-
vergences we replace random sequences of words
on either side of the sentence pair by a sequence
of words with the same part-of-speeches. The ra-
tionale behind this method is to keep the new sen-
tences as grammatical as possible. Otherwise, to
predict divergence the network can learn to detect
non-grammatical sentences. Words that are not re-
placed are considered parallel (−1) while those
replaced are assigned the divergent label (+1).
Words aligned to some replaced words are also as-
signed the divergent label (+1).

Finally, motivated by sentence segmentation er-
rors observed in many corpora, we also build neg-
ative examples by inserting a second sentence at
the beginning (or end) of the source (or target)
sentence pair. Words in the original sentence pair
are assigned the parallel label (−1) while the new
words inserted are considered divergent (+1).

In order to avoid that negative examples are eas-
ily predicted just by looking at the difference in
length of training sentences we constraint all neg-
ative examples to have a difference in length not
exceeding 2.0. Very short sentences, of up to 4
words, are accepted if the length ratio does not ex-
ceeds 3.0.

4 Experiments

4.1 Neural Similarity Classifier
All data is preprocessed with OpenNMT3, per-
forming minimal tokenisation, basically splitting-
off punctuation. After tokenisation, the 50, 000

3http://opennmt.net

most frequent words of each language are used
as vocabulary. Each out-of-vocabulary word
is mapped to a special UNK token. Word
embeddings (LTs and LTt) are initialised us-
ing fastText4, further aligned by means of
MUSE5 following the unsupervised method de-
tailed in (Lample et al., 2018). Size of embed-
dings is Es = Et = 256 cells. Both Bi-LSTM
use 256-dimensional hidden representations (E =
512). We use r = 1.0. Optimisation of the pa-
rameters is done using the stochastic gradient de-
scent method along with gradient clipping (rescal-
ing gradients whose norm exceeds a threshold) to
avoid the exploding gradients problem (Pascanu
et al., 2013). For each epoch we randomly select 1
million sentence pairs that we place in batches of
32 examples. Word alignments and English part-
of-speeches used to build negative examples were
performed by fast align6 and FreeLing7

respectively. We run 10 epochs and start decay-
ing at each epoch by 0.8 when score on validation
set increases. Similarity is always computed fol-
lowing equation 1.

4.2 Simple Filtering
The Corpora of the shared task contains 1 billion
word (English token count) German-English cor-
pus crawled from the web as part of the Paracrawl
project. Observing that many sentence pairs could
be easily filtered out by simple rules imposed on
length and language, we use a very simple filter
which removes 80% of the sentence pairs. Our ba-
sic filterig consists of:

• Language Identification on source and target
sentences,

• removing pairs whose source-target or target-
sources length ratio is higher than 6,

• removing pairs whose source or targets
length is higher than 100.

After this simple filtering, our corpus is reduced to
22 million sentence pairs.

5 Results

Participants in the shared task have to submit a file
with quality scores, one per line, corresponding to

4https://github.com/facebookresearch/fastText
5https://github.com/facebookresearch/MUSE
6https://github.com/clab/fast align
7https://github.com/TALP-UPC/FreeLing.git
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Figure 2: BLEU score of the best submission of each participant measured for the neural MT system trained with 100M
tokens. Score is averaged over the six blind test sets.

the sentence pairs on the 1 billion word German-
English Paracrawl corpus. Scores do not have to
be meaningful, except that higher scores indicate
better quality. The performance of the submis-
sions is evaluated by sub-sampling 10 million and
100 million word corpora based on these scores,
training statistical (Koehn et al., 2007) and neu-
ral (Junczys-Dowmunt et al., 2018) MT systems
with these corpora, and assessing translation qual-
ity on six blind test sets8 using the BLEU (Pap-
ineni et al., 2002) score.

Figure 2 displays the score of the best submis-
sion of each individual participant corresponding
to the 100 million tokens corpus using the neural
MT system. BLEU score is averaged over the six
blind test sets.

As it can be seen, very similar results were ob-
tained by most of the participants. Accuracy re-
sults fall within a margin of 3 points BLEU for the
first 16 classified.

6 Conclusions

We have presented our submission to the WMT18
shared task on parallel corpus filtering. We par-
ticipated for the first time using a neural sentence
similarity classifier that predicts relatedness be-
tween sentence pairs in a multilingual context.
The primary objective of our approach was to as-
sess whether we were able to identify parallel sen-
tences using a flexible method that relies on deep
neural networks. Thus, eliminating the need for
any domain specific feature engineering and using
as few external tools as possible. We succeeded

8Tests: newstest 2018, iwslt 2017, Acquis, EMEA, Global
Voices, and KDE.

in our objective as we built a very simple network
that was able to filter out divergent sentence pairs.
Only assisted by a very simple filtering technique
using rules based on length and language identifi-
cation.
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Abstract
The paper describes parallel corpus filtering
methods that allow reducing noise of noisy
“parallel” corpora from a level where the cor-
pora are not usable for neural machine trans-
lation training (i.e., the resulting systems fail
to achieve reasonable translation quality; well
below 10 BLEU points) up to a level where the
trained systems show decent (over 20 BLEU
points on a 10 million word dataset and up
to 30 BLEU points on a 100 million word
dataset). The paper also documents Tilde’s
submissions to the WMT 2018 shared task on
parallel corpus filtering.

1 Introduction

Parallel data filtering for statistical machine trans-
lation (SMT) has shown to be a challenging task.
Stricter filtering does not always yield positive re-
sults (Zariņa et al., 2015). This phenomenon can
be explained with the higher robustness to noise
of SMT systems, i.e., it does not harm the model
if there are some incorrect translation candidates
for a word or a phrase if the majority are still
correct. However, there are also positive exam-
ples where data filtering allows improving SMT
translation quality (Xu and Koehn, 2017). Neural
machine translation (NMT), on the other hand, is
much more sensitive to noise that is present in par-
allel data (Khayrallah and Koehn, 2018). From our
own experience (as also shown by the experiments
below), stricter filtering allows NMT models to
show faster training tendencies and reach higher
overall translation quality.

In this paper, we describe Tilde’s methods for
parallel data filtering for NMT system develop-
ment and Tilde’s submissions to the WMT 2018
shared task on parallel data filtering.

The paper is further structured as follows: Sec-
tion 2 describes the data used in the filtering ex-
periments, Section 3 provides details on the filter-

ing methods that were applied to filter the paral-
lel corpus of the shared task, Section 4 describes
NMT experiments performed to evaluate the dif-
ferent filtering methods, Section 5 discusses the
evaluation results, and Section 6 concludes the pa-
per.

2 Data

The parallel data filtering experiments were per-
formed on a German-English corpus that was pro-
vided by the WMT 2018 organisers. The corpus
was a raw deduplicated subset1 of the German-
English ParaCrawl corpus2. It consists of one bil-
lion words and 104,002,521 sentence pairs.

For filtering, we require source-to-target and
target-to-source probabilistic dictionaries. The
dictionaries for the WMT 2018 experiments were
acquired by 1) performing word alignment of
the parallel corpora from the WMT 2018 shared
task on news translation3 (excluding the filtered
ParaCrawl corpus) using fast align (Dyer et al.,
2013), and 2) performing raw probabilistic dictio-
nary filtering using the transliteration-based prob-
abilistic dictionary filtering method by Aker et al.
(2014).

3 Filtering Methods

Although the filtering task required to score sen-
tence pairs and not filter invalid sentence pairs out
of the dataset, we start by filtering sentence pairs
out of the raw corpus, after which we score each
sentence pair and produce the scored output for
submission. In order to filter the rather noisy “par-
allel” corpus, we use a combination of pre-existing
parallel data filtering methods from the Tilde MT

1The corpus can be found online at
http://www.statmt.org/wmt18/parallel-corpus-filtering.html.

2https://paracrawl.eu/download.html
3http://www.statmt.org/wmt18/translation-task.html

939

https://doi.org/10.18653/v1/W18-64113


Filtering step Sentence pairs Proportion of the raw corpus
Raw corpus 104,002,521 100.00%

Tilde MT filters for SMT systems
1.1. Identical source and target sentence filter 7,102,840 6.83%
1.2. Sentence length ratio filter 5,276,660 5.07%
1.3. Maximum sentence length filter 415,995 0.40%
1.4. Maximum word length filter 286,485 0.28%
1.5. Maximum word count filter 0 0.00%
1.6. Unique sentence pair filter 20,821,646 20.02%
1.7. Foreign word filter 14,983,927 14.41%
Additional Tilde MT filters for NMT systems
2.1. Empty sentence filter 222 0.00%
2.2. Token count ratio filter 1,430,818 1.38%
2.3. Corrupt symbol filter 33,519 0.03%
2.4. Digit mismatch filter 20,534,497 19.74%
2.5. Invalid character filter 630,818 0.61%
2.6. Invalid language filter 1,229,434 1.18%
2.7. Stricter sentence length ratio filter 1,710,401 1.64%
2.8. Low content overlap filter 352,474 0.34%
Additional filters for the filtering task
3.1. Non-translated sentence filter 2,781,252 2.67%
3.2. Maximum alignment filter 12,663,101 12.18%

Sentence pairs after filtering 13,748,432 13.22%

Table 1: Statistics of sentence pairs removed by individual filtering steps

platform (Pinnis et al., 2018) and methods specif-
ically developed to address the noisy nature of the
ParaCrawl corpus. Some of the filtering methods
feature hyperparameters, which were set empiri-
cally in parallel corpora filtering experiments. The
first part of the filters were originally developed to
increase SMT system quality. The filters are ap-
plied in the following order (for statistics of each
individual filtering step, refer to Table 1):

1. Identical source and target sentence filter
- validates whether the source sentence and
the target sentence in a sentence pair are not
identical. Although it may very well be that
a sentence translates into the same sentence,
it is also a strong indicator of non-translated
sentence pairs.

2. Sentence length ratio filter. The filter vali-
dates whether the longest sentence (in terms
of characters) is less than three times longer
than the shortest sentence. This filter is
meant to identify partially translated sen-
tences. However, it has to be noted that this
filter has been tested only for language pairs
with Latin-based, Cyrillic-based, and Greek

alphabets.

3. Maximum sentence length filter - validates
whether neither the source nor the target sen-
tence is longer than 1000 characters long.

4. Maximum word length filter - validates
whether neither the source nor the target sen-
tence contains tokens that are longer than 50
characters and do not contain directory sepa-
rator characters. When extracting data from,
e.g., PDF or image files, it may happen that
word boundaries are not captured correctly.
This may result in long words being formed
in sentences. This filter is intended to remove
such sentence pairs.

5. Maximum word count filter - validates
whether neither the source nor the target sen-
tence contains more than 400 tokens.

6. Unique sentence pair filter - validates
whether a sentence pair is unique. The shared
task organisers claimed that deduplication
was performed4, however, this filter removes

4http://www.statmt.org/wmt18/parallel-corpus-
filtering.html
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all white-spaces and punctuation marks, re-
places all digit sequences with a numeral
placeholder, and lowercases the sentence be-
fore validating the uniqueness of a sentence
pair. Therefore, it is able to identify more re-
dundant data.

7. Foreign word filter - validates whether the
source sentence contains only words writ-
ten in the alphabet of the source language
and whether the target sentence contains only
words written in the alphabet of the target
language.

The filtering steps, which had been originally
developed for SMT systems, removed a total of
48,887,553 sentence pairs. After these steps,
55,114,968 sentence pairs were left in the corpus.

As NMT systems have shown to be more sensi-
tive to noise (Khayrallah and Koehn, 2018), the
Tilde MT platform implements additional filter-
ing steps that are stricter compared to the previ-
ous filters. Together with the parallel data noise,
these filters may also remove valid sentence pairs.
However, as shown by the results in Section 5, the
amount of the parallel data is less important than
the quality of the data. The following are the addi-
tional filtering steps that are used when preparing
data for NMT systems:

1. Empty sentence filter - validates whether
neither the source nor the target sentence is
empty (or contains only white-space charac-
ters) after decoding HTML entities.

2. Token count ratio filter - The filter validates
whether the token count ratio of the shortest
sentence and the longest sentence is greater
than or equal to 0.3 (in other words, if one
sentence has three times as many tokens as
the other sentence, then the sentence pair is
considered invalid).

3. Corrupt symbol filter - validates whether
neither the source nor the target sentence
contains words that contain question marks
between letters (e.g., ‘flie?en’ instead of
‘fließen’, ‘gr??ere’ instead of ‘größere‘,
etc.). Such words indicate encoding corrup-
tion in data, therefore, sentences containing
such words are deleted.

4. Digit mismatch filter - validates whether all
digits that can be found in the source sentence

can also be found in the target sentence (and
vice versa). Although this filter removes all
sentence pairs where numbers that are writ-
ten in digits have been translated into num-
bers written in words, it is effective for 1)
identification of sentence breaking issues that
are caused by incorrect handling of punctua-
tion marks (e.g., cardinal numbers in some
languages are written with the full stop char-
acter), and 2) identification of non-parallel
content. By ensuring numeral writing con-
sistency in parallel data, we can also ensure
that digits will always be translated by the
NMT systems as digits and numbers written
in words as words.

5. Invalid character filter - validates whether
neither the source nor the target sentence con-
tains characters that have shown to indicate
of encoding corruption issues. As most of
potentially invalid (due to encoding corrup-
tion) sentence pairs are captured by the for-
eign word filter and the corrupt symbol filter,
this filter provides just a minor addition - the
list of invalid characters that are not included
in valid alphabets consists of just four charac-
ters. However, this minor addition invalidates
over 600 thousand sentence pairs.

6. Invalid language filter - validates whether
the source sentence is written in the source
language and whether the target sentence is
written in the target language using a lan-
guage detection tool (Shuyo, 2010). As lan-
guage detection tools tend not to work well
for shorter segments, this filter is applied only
if the content overlap score (see below) be-
tween the source and target sentences is less
than a trustworthy content alignment thresh-
old (in the experiments set to 0.3) and the
longest (source or target) sentence is at most
two times longer than the shortest sentence.

7. Stricter sentence length ratio filter - vali-
dates whether the longest sentence (in terms
of characters is less than two times longer
than the shortest sentence.

8. Low content overlap filter - validates
whether the content overlap according to
the cross-lingual alignment tool MPAligner
(Pinnis, 2013) is over a threshold. Be-
cause the content overlap metric produced by
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MPAligner represents the level of parallelity,
it is used to score sentence pairs. There-
fore, the threshold was also set to a low value
(0.01).

This far, a total of 74,809,736 were removed
from the corpus, leaving a total of 29,192,785 sen-
tence pairs remaining in the corpus.

When training NMT systems with the sub-
sampled datasets, we identified that there were fre-
quent (wrong) many-to-many alignments left in
the corpus even after filtering. We also found that
the corpus contained many entries with text in both
languages on one side (i.e., imagine a translation
where some of the source words are translated, but
the majority is just copied over from the source
segment and left untranslated), which contribute
to parallel data noise. Therefore, we introduced
two additional filters that address these issues:

1. Non-translated sentence filter - validates
whether more than half of the source words
have been translated (i.e., are not present in
the target sentence).

2. Maximum alignment filter - keeps only
those sentence pairs where the target sen-
tence is the highest scored target sentence for
the source sentence (according to the content
overlap scores) and vice versa.

After all filtering steps, there were 13,748,432
sentence pairs left in the Max Filtered+ corpus. In
order to compare whether the full filtering work-
flow produces better results than a part of the
workflow, we also prepared the following interme-
diate datasets:

1. Filtered - the corpus filtered up to and includ-
ing the low content overlap filter. The dataset
consists of 29,192,785 sentence pairs.

2. Max Filtered - the corpus filtered using all fil-
ters except the Non-translated sentence filter.
The dataset consists of 15,613,062 sentence
pairs.

3. Filtered+ - the corpus filtered up to and
including the non-translated sentence filter.
The dataset consists of 26,411,533 sentence
pairs.

4. Max Filtered+ Rescored - the corpus filtered
using all filters and rescored by ranking sen-
tences with a Round-robin-based method ac-
cording to source sentence lengths. I.e., all

sentence pairs were separated into different
lists according to sentence lengths and sorted
according to the content overlap scores in
a descending order. Then, sentences were
ranked by assigning the highest score to the
best-scored unigram sentence, the second
highest score to the best-scored bigram sen-
tence, etc. We performed such rescoring, be-
cause the filtering assigned higher scores to
shorter segments, thereby skewing the sen-
tence length statistics towards shorter sen-
tences. The dataset consists of 16,529,684
sentence pairs.

In each of the datasets (except for the Max
Filtered+ Rescored dataset), sentence pairs were
scored using the content overlap metric produced
by MPAligner. In order to create scores for the raw
dataset (i.e., to create submissions for the shared
task), we scored each sentence pair in the raw
dataset as follows: if a sentence pair was found in
a particular filtered dataset, the sentence pair was
scored using the score produced by MPAligner (or
the rescoring method), otherwise the sentence pair
received the score ‘0’. This means that all sentence
pairs that were filtered out by any of the filtering
steps, received the score ‘0’.

4 Trained Systems

To evaluate, which of the datasets allows achiev-
ing higher translation quality, we performed sub-
sampling of the filtered datasets into 10 million
and 100 million word datasets. For this, we used
the subselect.perl script, which was provided by
the organisers in the dev-tools package5. Then, we
trained attention-based NMT systems with gated
recurrent units in the recurrent layers using the
Marian toolkit (Junczys-Dowmunt et al., 2018).
All systems were trained using the configuration
that is provided in the same package until conver-
gence.

In addition to the filtered dataset systems, we
trained four baseline systems. The first two
baseline systems were trained on datasets, which
were subsampled using the Hunalign (Varga et al.,
2007) scores that were provided by the organisers.
For the other two systems, data subsampling was
performed on randomly assigned scores.

The NMT system training progress (in terms of
BLEU scores on the raw tokenised development

5http://www.statmt.org/wmt18/parallel-corpus-filtering-
data/dev-tools.tgz
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Figure 1: Training progress of NMT systems (10 million word systems - left; 100 million word systems - right)

set) is depicted in Figure 1. The figure shows
that for the small dataset systems, only the sys-
tems with the non-translated sentence filter were
able to achieve results of over 20 BLEU points.
All other systems show rather poor performance,
indicating the necessity of careful data cleaning.
It is also evident that the Filtered and Max Fil-
tered datasets contain too much noise among the
highest scored sentence pairs. The reason for this
is because the content overlap filter (by design)
does not look at whether a sentence pair is a re-
ciprocal translation. It tries to identify, just like
a word alignment tool, which words in the source
sentence correspond to which words in the target
sentence, and non-translated words can be paired
easily.

Although for the large dataset systems the Fil-
tered and Max Filtered datasets contain higher
levels of noise (compared to the more filtered
datasets), they show comparative (however, lower)
results to the more filtered datasets. The fact that
the datasets are approximately 10 times larger than
the smaller datasets allowed for higher quality sen-
tence pairs to be included in the data sub-selected
for NMT system training.

The figure also shows an interesting tendency
for the Max Filtered+ Rescored dataset. In both
experiments (10 million and 100 million word sys-
tems) the quality increases at the beginning, but
then it starts to drop – very noticeably for the small

system and slightly for the large system.

5 Results

Automatic evaluation results in terms of BLEU
(Papineni et al., 2002) scores are provided in Ta-
ble 2. For all systems, we used the ‘test.sh’ script
that was provided by the organisers in order to
translate the test set and evaluate each model’s
translation quality.

The evaluation results illustrate the same dataset
rankings as the training progress chart. The best
results are achieved by using the Max Filtered+
dataset.

We were also interested in seeing whether the
filtering methods (by improving the parallel data
quality) also allow improving out-of-vocabulary
(OOV) word rates on the development set. It is
evident in Table 2 that the OOV rate decreases
by adding more filtering steps. However, there is
one exception – the translation quality of the NMT
systems, which were trained using the Max Fil-
tered+ Rescored dataset, decreases although the
OOV rate drops (especially when calculated for
unique tokens). There may be multiple explana-
tions for the quality decrease. For instance, for
the smaller (10 million word) dataset, the rescor-
ing introduced a higher percentage of lower qual-
ity sentence pairs due to the fact that the frequency
of longer sentences is naturally lower than that of
shorter sentences. E.g., there are 746,480 English
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System BLEU BLEU-C Development data OOV rate
(running) (unique)

10 million token experiments
Hunalign Baseline 0.15 0.14 8.27% 32.08%
Random Baseline 8.41 7.74 3.31% 13.25%
Filtered 4.86 4.32 6.25% 25.28%
Max Filtered 5.00 4.43 5.99% 24.63%
Filtered+ 21.35 19.75 4.54% 18.44%
Max Filtered+ 21.95 20.42 4.27% 17.25%
Max Filtered+ Rescored 20.10 18.75 3.29% 12.87%
100 million token experiments
Hunalign Baseline 3.64 3.28 1.78% 7.16%
Random Baseline 7.26 6.75 1.32% 5.43%
Filtered 27.72 26.14 1.39% 5.65%
Max Filtered 29.06 27.46 1.28% 5.17%
Filtered+ 30.24 28.59 1.32% 5.24%
Max Filtered+ 30.83 29.14 1.31% 5.10%
Max Filtered+ Rescored 30.40 28.78 1.32% 4.95%

Table 2: Evaluation results of NMT systems trained using different sub-sampled filtered datasets (the table shows
case-insensitive BLEU and case-sensitive BLEU (BLEU-C))

sentences that consist of five tokens, compared
to just 2673 sentences of 80 tokens in the Max
Filtered+ dataset (which was used to acquire the
rescored dataset). This means that the rescoring
method was forced to select lower quality longer
sentence pairs simply because of insufficient sen-
tence pairs to select from. For the larger dataset,
the results also show that the running OOV rate
is slightly larger than the unique token OOV rate.
However, the issue with the limited number of
longer sentences did affect also the larger system
as the sub-sampled dataset included all sentence
pairs that were longer than or equal to 42 tokens
regardless of their quality. For future work, it
could be beneficial to investigate whether a fixed
content overlap threshold could allow the rescor-
ing method to perform better.

For the WMT 2018 shared task, we submitted
the following three datasets:

1. tilde-isolated (Filtered+) – this dataset rep-
resents isolated sentence filtering where only
individual sentence pairs are passed to the fil-
tering method.

2. tilde-max (Max Filtered+) – this dataset rep-
resents full corpus filtering where (in addition
to the filtering results of a particular sentence
pair) also information about other sentence
pairs is used to decide whether to keep a sen-
tence pair or not.

3. tilde-max-rescored (Max Filtered+
Rescored) – this dataset represents both
full corpus filtering and (a rather simple) data
selection method.

6 Conclusion

The paper presented parallel corpus filtering meth-
ods that allow reducing the noise in noisy “par-
allel” corpora to a level where the corpus is us-
able in neural machine translation system devel-
opment. Most of the filtering methods are simple
(except for the low content overlap filter) and do
not require any machine learning methods to be
implemented (except for the invalid language fil-
ter). We showed that, by applying stricter filtering
methods, NMT system quality increases.

For the WMT 2018 shared task on corpus filter-
ing, we submitted three scored datasets that rep-
resent isolated sentence filtering (Filtered+), full
corpus filtering (Max Filtered+), and (a rather
simple method for) full corpus filtering with data
selection (Max Filtered+ Rescored).

The filtering methods are integrated into the
Tilde MT platform and serve its users when they
require SMT and NMT system training.

For future work, it may be beneficial to perform
ablation experiments, to identify, which of the in-
dividual filtering methods contributes the most in
order to acquire a higher quality parallel corpus.
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Abstract

This paper describes the submission of RWTH
Aachen University for the De→En parallel
corpus filtering task of the EMNLP 2018 Third
Conference on Machine Translation (WMT
2018). We use several rule-based, heuristic
methods to preselect sentence pairs. These
sentence pairs are scored with count-based
and neural systems as language and translation
models. In addition to single sentence-pair
scoring, we further implement a simple redun-
dancy removing heuristic. Our best perform-
ing corpus filtering system relies on recurrent
neural language models and translation mod-
els based on the transformer architecture. A
model trained on 10M randomly sampled to-
kens reaches a performance of 9.2% BLEU on
newstest2018. Using our filtering and ranking
techniques we achieve 34.8% BLEU.

1 Introduction

In this work we describe the corpus filtering sys-
tem of the RWTH Aachen University for the
WMT 2018 parallel corpus filtering task.

We decided to rank the data using a two-stage
process. During the first stage, we reduce the num-
ber of parallel sentences by applying basic rule-
based heuristics each of whom can reject a sen-
tence as described in Section 3. Afterward, we
apply a variety of models on the remaining sen-
tences to assign a score to each sentence pair. The
details of those models, namely language models
and translation models, can be found in Section 4.

Our final submission consists of three differ-
ent systems on top of rule-based filtering: Two
of them are based on scoring each sentence pair
independently using either only count-based mod-
els or only neural models. The third submission
extends on the neural network-based submission
by removing redundancies before ranking the sen-
tences.

We compare the behavior of neural network
based models to count-based models and find that
the performance differs by more than 1.0 % BLEU

on average across all test sets. In total our best
system reaches a performance of 34.8 % BLEU

compared to 9.2 % BLEU using random sampling
on newstest2018 of the news translation task with
10M token subsampled training data. We report
our findings and results in detail in Section 6.

2 Preprocessing

As a first step, we normalize the data by removing
soft-hyphen and zero-width space symbols. Fur-
thermore, we replace all hash symbols (#) because
we use them as separation symbol. A language
specific tokenizer from Moses (Koehn et al., 2007)
is applied to both sides of the corpus. We later
found out that this language specific splitting can
cause some issues if equal patterns are not split the
same way on source and target side (see Section
3.6).

After tokenization, we search for and replace
any escaped characters with the corresponding
symbol and squeeze repeating whitespaces. We
true-case our words by applying a frequent cas-
ing model from the Jane toolkit (Vilar et al., 2010)
based on the parallel corpora.

If data is used to train the count-based mod-
els or if we apply the count-based models on a
sentence pair, numbers are replaced by a category
symbol. For the neural models, we generate joint
BPE merge operations on the parallel training data
with 20k merge operations (Sennrich et al., 2016).
For the training of the neural scoring models, we
create BPE vocabularies based on the clean paral-
lel data of the WMT news task1, and use a vocabu-
lary threshold of 50. For evaluation of the subsam-
pled data, we did not use a vocabulary threshold.

1CommonCrawl, Europarl, NewsCommentary, Rapid
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3 Rule-based Filtering

As the scoring of 104 million sentence pairs is
hardly feasible with computationally expensive
models like a transformer model (Vaswani et al.,
2017), we need to preselect a smaller subset of
the data. We do this by applying several rule-
based heuristics as a first stage of our data clean-
ing pipeline. A sentence pair is removed from the
corpus if its source side or target side fail to obey
any of these rules. Note that none of these rules
is language specific to either German or English
and that they place only very mild assumptions on
what ‘good data’ should look like.

Besides reducing the amount of data, some of
the heuristic filtering methods can deal with as-
pects that can not be captured with language mod-
els and are hard to cover by translation models (see
Subsection 6.4).

Table 1 shows the amount of remaining sen-
tence pairs and tokens after applying each heuris-
tic in sequential order.

3.1 Minimum Words

Our first heuristic filter ensures that every sentence
contains at least a certain number of words. To do
so, we count the number of tokens (i.e. character
sequence between two spaces) that contain at least
one letter from the alphabet of the language. Thus
numbers or punctuation symbols are not counted
as words according to this definition. A sentence is
only valid if this number reaches a certain thresh-
old (which we set to 3 for all our experiments).

3.2 Average Word Length

In the next step of the filtering process, we remove
long chains of characters and sequences where
only single characters appear. This aims in par-
ticular for lines which consist mainly of a single,
very long URL. Although we did not expect a lot
of sentence pairs to have an average word length
lower than 2 or bigger than 20 characters, we re-
moved about 1% of the sentence pairs with this
procedure.

3.3 Length Ratio

Judging sentence pairs by the ratio of source sen-
tence vs. target sentence length is a very simple
but effective criterion. We limited this length ratio
to be not greater than 1.7. Because of tokeniza-
tion, all punctuation symbols are counted as single
words. To smooth the ratio for shorter sentences,

we always add 1 to the token count, i.e. we reject
the sentence if:

J + 1

I + 1
> 1.7 ∨ I + 1

J + 1
> 1.7

where I is the target and J the source sequence
length.

3.4 Maximum Sentence Length

Because many translation systems have an upper
bound for the sentence length during training and
to reduce the computational cost of our scoring
models, we limited the maximum number of to-
kens to 50.

3.5 Maximum Subword-Token Length

As scoring with Sockeye (Hieber et al., 2017)
transformer model requires a maximum sequence
length as fixed parameter, we enforce a limit on
the number of subword units. The subword merge
operations are computed on the parallel WMT
2018 news training data, excluding the filtered
ParaCrawl data. We limited each sentence to con-
sist of a maximum of 100 subword tokens.

3.6 Levenshtein Distance

In our experiments we observe that the trans-
former model tends to assign a very high score
to sentence pairs in which source and target share
a great number of words. This happens even if
neither the given source nor the given target sen-
tence are in the correct language. It seems that the
model regards copying as a valid form of transla-
tion. To detect sentences where source and target
are too similar, we compute the word-level Lev-
enshtein distance D (Levenshtein, 1966) between
the lowercased sentences . We also take into ac-
count a length normalized Levenshtein distance
D̄ = D

I+J . A sentence is rejected if:

D ≤ 1 ∨ D̄ ≤ 0.15

These values were determined by visually looking
at 100k random examples ranked by D̄ and ensur-
ing that no valid looking sentence gets removed.
The language specific tokenizers sometimes split
the same sequence differently depending on the
language, which increases the distance e.g.:

the do ’ s and don ’ ts of the audience .
the do ’s and don ’ts of the audience .
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Method pairs de tok. en tok. del.% del. total
Original Data 104.0M 1,520M 1,562M
Min. Words (3.1) 61.9M 1,276M 1,313M 40.45% 42.0M
Avg. Word Length (3.2) 61.3M 1,262M 1,298M 0.94% 0.6M
Length Ratio (3.3) 50.6M 1,072M 1,092M 17.60% 10.8M
Max. Seq. Length (3.4) 46.0M 625M 642M 8.91% 4.5M
Max. Seq. Length (BPE) (3.5) 46.0M 622M 638M 0.20% 0.1M
Levenshtein (3.6) 36.6M 512M 528M 20.26% 9.3M
Word Token Ratio (3.7) 28.1M 398M 412M 23.38% 8.6M
Redundancy (3.8) 13.0M 227M 236M 53.84% 15.1M

Table 1: Sizes of datasets after applying the heuristic filtering methods. Sizes are given in sentence pairs, tokens
on German side and tokens on English side. Every heuristic is applied on top of the preceding heuristic. The
last two columns show the percentage (with respect to its input not the original corpus) respectively the absolute
number of lines removed by a heuristic.

Thus, the Levenshtein heuristic sometimes
misses some sentence pairs that should have been
removed.

3.7 Word Token Ratio

We extend the idea of minimum word filtering
from Section 3.1 to scale with sentence length. We
count the number of tokens that contain at least
one character that is a standard alphabet letter. If
this count is less than 60% of the total sentence
length, we reject the sentence. This can be helpful
to remove sentences from languages with different
alphabets or lines which simply consist of a time
and date. Also, sentences with more than 60%
numbers and punctuation symbols are removed.

3.8 Redundancy

To increase the amount of information in the sub-
sampled data, we wanted to remove redundant in-
formation. Checking the redundancy of a sen-
tence in the context of a big corpus is challeng-
ing, as trivial algorithms need to do C2

2 compar-
isons for corpus size C which is not feasible for
large datasets. One simple solution for removing
identical sentences in linear time is to compute a
hash value2 for each sentence, and check for exist-
ing hashes in a set. We extended this approach to
detect ‘similar’ sentences by removing each word
individually and store the hash of the remaining
sentence. By doing this we also remove sentences
that have a word edit distance of one compared
to any previously added sentence. We do not dis-
tinguish between source or target side sentences,

2We use the python3 default hash() function

both are stored in the same set. A simple pseudo-
code description is shown in Algorithm 1.

Algorithm 1: Duplicate checking

hm← empty hashmap()
for each sentence sN1 do

sent hm← empty hashmap()
for each position i ∈ [1, N ] do

h← hash([si−1
1 , sNi+1])

if h ∈ hm then
reject sN1
break

else
sent hm.add(h)

if sN1 not rejected then
hm.add(sent hm)

4 Model-based Scoring

In the second stage of our filtering pipeline we
score each sentence using different kinds of lan-
guage and translation models. Every model as-
signs a probability to each sentence. These scores
are used afterward to rank the corpus and select
the top sentences.

4.1 Count-Based Language Model
To score the remaining sentences, we start by
applying count based language models on each
side of the parallel sentences. The language
models used are 5-gram KenLM (Heafield et al.,
2013) models with singleton tri-gram pruning
and trained with modified interpolated kneser-ney
smoothing (Chen and Goodman, 1996). They
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are trained on the NewsCrawl 2016, Europarl,
NewsCommentary and Rapid corpora from the
WMT 2018 German→ English task. Adding
NewsCrawl 2012-2015 as further monolingual
training sets does not achieve better results.

We apply the preprocessing mentioned in Sec-
tion 2 and we remove any sentence from the train-
ing data that contains token repetitions of length
three or more. This is done to get rid of phe-
nomenons like chains of exclamation marks. For
more details about the data selection see Sec-
tion 6.2.

4.2 IBM1 Dictionary Model

IBM1 models are a simple approach to model the
dependency p(eI1|fJ

1 ), as they assume a uniform
alignment. We train the model with the GIZA++
toolkit (Och and Ney, 2003) on the parallel data
to create an IBM1 table. IBM model 1 scores are
computed as in (Brown et al., 1993):

p(eI1|fJ
1 ) =

1

(J + 1)I

I∏

i=1

J∑

j=0

p(ei|fj) (1)

where I and J are the length of the target re-
spectively source sentence, and f0 is a null to-
ken. We train IBM1 models for both directions
(s2t and t2s) using the bilingual data from the
WMT 2018 German↔English task namely the
Europarl, CommonCrawl, NewsCommentary and
Rapid corpus.

4.3 Neural Network Language Model

We modified the RWTH Aachen translation sys-
tem as described in (Peter et al., 2017) based on the
Blocks framework (van Merriënboer et al., 2015)
and Theano (Theano Development Team, 2016)
to also work as a recurrent language model. The
training data is chosen to be equivalent to the one
used in the training of the count-based models.
The language model has an embedding size of 250
and two LSTM layers (Hochreiter and Schmidhu-
ber, 1997) with a hidden size of 1000. As it is
default in Blocks, it also includes a maxout layer
of factor 2 (Goodfellow et al., 2013) between the
second LSTM and the output softmax. The system
was trained using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.001 for
300k iterations with a batch size of 100 sentences
and a dropout (Srivastava et al., 2014) of 0.2.

4.4 Transformer Translation Model

As neural network-based translation model we use
the transformer architecture (Vaswani et al., 2017)
implemented in the Sockeye toolkit (Hieber et al.,
2017) which is build on top of MXNet (Chen
et al., 2015). Encoder and decoder each consist
of 6 layers. The hidden and embedding size is
set to be 512 and the feed forward layer size is
2048. The number of attention heads is 8. A
dropout of 0.1 is applied, except for the embed-
ding layer. We use an initial learning rate of
0.0002. We save checkpoints every 20k itera-
tions, and reduce the learning rate by factor 0.7
after each non-improving checkpoint (measured
by means of perplexity on newstest2015). The
network is trained on the bilingual data from the
WMT 2018 German↔English task namely the
Europarl, CommonCrawl, NewsCommentary and
Rapid corpus.

5 Evaluation Model

To check the quality of a filtering approach, we
train a transformer model on the top 10M respec-
tively top 100M subwords of the scored training
data. We mainly focus on the 10M-subsampling
results, as this scenario shows clearer differ-
ences in performance between different meth-
ods. Like in Section 4.4 we use the Sockeye
implementation of the transformer architecture
but we train smaller models for evaluation pur-
poses. The decision to use small transformer net-
works was made as they give strong results in a
much shorter amount of time (1 day compared
to 5 days). To verify the generality of the ap-
proach we cross-checked several experiments us-
ing recurrent neural network-based (RNN-based)
translation systems from the Marian framework
(Junczys-Dowmunt et al., 2018) and found their
training behavior to be correlated.

We apply the provided subsampling script on
the filtered data to extract training data. Due to
an error in our filtering setup the input data is tok-
enized and subworded. Since both procedures in-
crease the number of tokens per sentence, we ex-
tract less sentence pairs than intended.

Note that because of these two effects (trans-
former and lower subsampling rate) BLEU scores
reported in this submission can vary in compari-
son to other submissions, if RNN-based systems
are used.

For the transformer model used for evaluation,
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we use only 3 layers in encoder and decoder and
increase the batch size to 8,000 words. We train
for 100k updates evaluating a checkpoint every
10k updates for the 10M word experiments. In the
case of 100M words of training data, 200k update
steps are performed with a checkpoint being writ-
ten every 20k updates. The best checkpoint is se-
lected by computing BLEU (Papineni et al., 2002)
on newstest2015. The beam-size for translation is
12. We report BLEU scores using mteval from the
Moses toolkit (Koehn et al., 2007) and TER scores
(Snover et al., 2006) using TERcom.

During system building most of our design de-
cisions are based on results for the 10M-word-
version of the task, however, we observe very sim-
ilar trends for the 100M-word subsampling. For
brevity we report most results only on the smaller
subsamples.

6 Experimental Evaluation

In this section we report the results of our filter-
ing experiments. We use newstest2015 and new-
stest2017 as development sets and report the re-
sults on newstest2018. For brevity, we shorten the
names of newstestX to tstX in the header of sev-
eral tables.

All BLEU and TER scores reported in this sec-
tions are obtained by using the system under
consideration as filtering system and training the
transformer system described in Section 5 on the
resulting training data. All processing steps and
experiments are organized with Sisyphus (Peter
et al., 2018) as workflow manager.

6.1 Rule-based Filtering

The purpose of the rule-based heuristics is not to
select perfect training data, but rather to reduce the
original 104M lines of the ParaCrawl corpus down
to an amount that can be handled by stronger,
computationally more complex, methods. Table 2
and Table 3 show the evaluation results for differ-
ent levels of heuristic cleaning for 10M subsam-
pling and 100M subsampling respectively. Since
there is no score-based ranking yet, we sample
the desired amount of data randomly from the fil-
tered corpus. Although a big part of the corpus
is removed (58M sentences or 60% of the origi-
nal corpus), the first 5 heuristic steps (3.1)-(3.5)
have nearly no impact on the data quality. Apply-
ing the Levenshtein distance heuristic (see Section
3.6) resulted in a strong increase of data quality to

Filtering tst15 tst17 tst18
10M BLEU TER BLEU TER BLEU TER

Unfiltered 8.3 87 8.3 87.3 9.2 85
(3.1) - (3.5) 8.4 82.1 8.7 82.1 10.2 79.4
(3.1) - (3.6) 18.7 64.4 19.1 65.1 22.8 59.0
(3.1) - (3.7) 20.1 61.5 20.0 62.7 25.0 56.0
(3.1) - (3.8) 23.3 56.7 23.5 57.3 28.9 50.6

Table 2: Model evaluation of 10M random sampling
from the datasets created by rule-based heuristic filter-
ing.

Filtering tst15 tst17 tst18
100M BLEU TER BLEU TER BLEU TER

Unfiltered 9.1 84.7 8.6 85.2 10.6 80.9
(3.1) - (3.5) 10.8 78.2 10.3 79.5 12.6 75.5
(3.1) - (3.6) 23.2 59.0 23.2 60.8 29.1 52.4
(3.1) - (3.7) 23.8 57.9 23.8 59.4 30.0 50.8
(3.1) - (3.8) 27.2 53.1 27.3 53.5 33.8 45.8

Table 3: Model evaluation of 100M random sampling
from the datasets created by rule-based heuristic filter-
ing.

an average of 20.2% BLEU. This increase occures
despite removing only 20% of the sentence pairs.
Applying the word-token-ratio-heuristic (see Sec-
tion 3.7) has a lesser impact, but still increases the
evaluation scores by about 1.0% BLEU for 10M
and about 0.6% BLEU for 100M subsampled data.
Checking for redundant sentences increases the
scores by up to 3.9% BLEU. This is not supris-
ing, because as more than 50% of the sentences are
removed, we replace 50% of the random selected
data by potentially more informative examples.

6.2 Model-based Scoring

While the heuristics alone already result in quite
satisfying cleaning results, the scoring models are
used to create a ranking of the remaining sen-
tences.

We use the corpus cleaned by the heuris-
tics (3.1)-(3.6) as starting point for the following
experiments.

In our first experiments we test the behavior
of the models presented in Section 4 in isolation.
Note that all our language model experiments al-
ways rely on a source and a target side language
model each scoring the corresponding part of the
sentence pair. All experiments with IBM1 or
transformer models use a combination of a source-
to-target and a target-to-source model. We average
the log probabilities of the models to get a single
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System (10M) newstest15 newstest17 newstest18
BLEU TER BLEU TER BLEU TER

#1 (3.1)-(3.6) random sampling 18.7 64.4 19.1 65.1 22.8 59.0

#2 KenLM 21.3 62.1 21.2 63.6 25.8 56.5
#3 BlocksLM 23.3 59.6 23.2 60.9 28.1 54.6
#4 IBM 24.7 55.2 25.2 55.3 31.3 47.7
#5 Transformer 24.2 55.8 24.2 56.3 30.2 48.7

#6 KenLM + IBM 26.8 53.8 26.9 54.3 33.0 46.7
#7 + Word Token Ratio (3.7) 26.6 53.9 27.0 54.0 33.1 46.2
#8 + Redundancy (3.8) 27.2 53.5 27.1 53.9 33.4 46.2
#9 + IBM retraining1 27.2 53.3 27.6 53.4 33.4 46.1

#10 BlocksLM + IBM 27.2 53.6 27.4 53.7 33.5 46.1
#11 BlocksLM + Transformer 28.1 52.4 28.4 52.4 34.6 45.0
#12 + Word Token Ratio (3.7)2 28.0 52.6 28.3 52.6 34.4 45.1
#13 + Redundancy (3.8)3 28.1 52.3 28.3 52.3 34.8 44.8

#14 KenLM + IBM + BlocksLM + Trans. 27.5 53.0 27.8 53.7 33.5 46.0

Table 4: Results for 10M word subsampling when applying different scoring models on already filtered data.
All models are scoring the data that was filtered with methods described in Section 3.1 to 3.6. For model-based
filtering, both source and target sides are scored.
1: Submission 1 with name rwth-count
2: Submission 2 with name rwth-nn
3: Submission 3 with name rwth-nn-redundant

score, where 0 is the best and all other scores are
negative. For our submission, we added a score of
-1000 for rejected sentence pairs.

From Table 4 we can see that all 4 trained mod-
els improve the heuristic filtering by more than
2.0% BLEU. Note that BlocksLM achieves bet-
ter filtering results than the count-based KenLM
system. However neural systems provide weaker
cleaning when it comes to translation models.
We are not sure why transformer performs up to
1.1% BLEU and 1.0% TER worse than IBM1 mod-
els in standalone comparison. A possible expla-
nation is that the transformer model prefers very
short sentences when not combined with a lan-
guage model. For 10M subsampling, the IBM1
model ranks sentences with an average sentence
length of 20 as best, while for the transformer
model it is only 10.6. Combined with a langauage
model, this value increases to 17.6. As can be
seen from Table 4 Row #10 vs #11 this effect
disappears when both systems are extended with
the same language model. In this case the purely
neural-network-based system has a consistent lead
of roughly 1.0 % BLEU.

From Table 4 we observe that language models
generally perform worse in cleaning than transla-

tion models. This could be due to the fact that
many kinds of noise, which can be detected by
only looking at either the source or the target sen-
tence, are already removed by the heuristics.

Combining KenLM with an IBM1 model im-
proves the BLEU score by 1.8% on average over
IBM1 models and by 6.1% BLEU over KenLM.
Adding the word to token ratio (3.7) does not af-
fect the system performance. Note that word to
token ratio was quite effective when only heuris-
tic filtering is used (Table 2). This underlines
the assumption that our heuristics remove sentence
pairs, which would be sorted out by trained mod-
els anyhow. To close the gap between the count-
based and neural-network-based filtering, we re-
train the IBM model using its original training data
plus the top 500k sentences selected from the to-
be-cleaned ParaCrawl corpus, which was filtered
using transformer. This improves the system by
up to 0.6% BLEU but the results are still more than
0.7% BLEU behind a similar neural-network based
filtering system (see Table 4 Row #9 vs. Row
#12).

We achieve the best performance by combin-
ing the BlocksLM with the transformer translation
systems plus the word token ratio and redundancy
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System perplexity tst17 eval
de en BLEU TER

KenLM 282.2 150.5 26.9* 54.3*
+ CommonCrawl 277.6 146.6 25.8* 55.6*
BlocksLM 111.07 120.62 27.4* 53.7*
+ CommonCrawl 110.55 117.7 26.4* 54.5*

Table 5: Comparison of language model perplexity
with its performance as data cleaning system as well
as the effect of CommonCrawl on LMs.
* For KenLM filtering results we combine the corre-
sponding LM scores of source, target and two fixed
IBM1 scores.

heuristic. The resulting system uses heuristics to
filter a corpus of 104M lines down to 13M sen-
tence pairs without the need to apply any complex
model. This part of the pipeline is cheap and fast,
and already gives a performance of 23.3 % BLEU

on newstest2015 (see Table 2). Applying strong
translation and language models yields an addi-
tional improvement of 4.8% BLEU as is shown in
Table 4.

6.3 Noisy Data Effect

To investigate the effect of noisy training data for
the scoring models, we add the CommonCrawl
corpus to the language model training data. Al-
though the perplexity on the dev set improves
slightly for both model architectures (see Table 5),
the evaluation results for the subsampled data drop
by about 1.0 % BLEU. This indicates that the mod-
els are required to not only recognize good sen-
tences well, but also to give low scores to bad sen-
tences. If the training data contains more noisy
data, a model will give higher scores to bad sen-
tences. While this is usually a smaller problem for
translation models, in terms of sentence ranking it
is an important issue.

6.4 Levenshtein Distance

Table 6 shows the effect of the Levenshtein
heuristic on count-based and neural scoring mod-
els. While removing sentence pairs with simi-
lar source and target does not change the perfor-
mance when ranking with count-based models, it
increases the performance of neural models by up
to 1.0% BLEU. This confirms the assumption from
Section 3.6 that transformer-based models assign
high scores when copying sentences. We regard
Levenshtein-based filtering as a crucial heuristic
when ranking sentence pairs with neural models.

6.5 Submission Results
Table 7 shows the official evaluation results of our
submitted rankings compared to the best submis-
sion from Microsoft. While slightly exceeding
on the SMT 10M evaluation, we are 0.8% BLEU

behind the leading submission on NMT 100M.
For NMT 10M, we have the best results on new-
stest2018, iwslt2017 and Acquis, but perform a
lot weaker on KDE, thus being worse on average.
This might be due to some unavoidable domain
adaptation when training language models with
mono-lingual news data.

7 Conclusion

This paper describes the RWTH Aachen Univer-
sity data-filtering and ranking methods for the
WMT 2018 parallel corpus filtering task. We de-
scribe various rule-based heuristic filtering meth-
ods to reduce the amount of data to be scored,
and to tackle some of the weak spots of neural
language and translation models. We describe 4
different ranking models, two language model ar-
chitectures and 2 translation models, count-based
and neural. Our results indicate that even with-
out ranking the sentence pairs with model scores,
a high quality subset can be extracted.

Among the submissions our best models works
very well for the small data condition, ranking
first on the 10M-subsampled SMT translation and
second on the 10M-subsampled NMT translation.
Also with the 100M-subsampled data condition,
we perform above average, with a gap of 0.7% av-
erage BLEU to the leading submission for NMT
translation.
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System (10M) newstest15 newstest17 newstest18
BLEU TER BLEU TER BLEU TER

(3.1-5) + KenLM + IBM 26.8 53.9 27.0 54.3 32.5 46.9
(3.1-5) + KenLM + IBM + Lev.Sht. 26.8 53.8 26.9 54.3 33.0 46.7
(3.1-5) + BlocksLM + Transformer 27.3 53.2 27.4 53.5 33.6 46.1
(3.1-5) + BlocksLM + Transformer + Lev.Sht. 28.1 52.4 28.4 52.4 34.6 45.0

Table 6: Effect of using the Levenshtein distance heuristic (3.6) on count-based and neural scoring.

Submission System SMT 10M SMT 100M NMT 10M NMT 100M
(3.1)-(3.7) + KenLM + retrained IBM11 23.85 25.91 26.65 31.05
(3.1)-(3.7) + BlocksLM + Transfomer2 24.53 26.18 28.00 31.20
+ Redundancy Heuristic3 24.58 26.21 28.01 31.29

Microsoft 24.45 26.50 28.62 32.06

Table 7: Official submission result for each evaluation method. The scores report the average BLEU % across all
6 test sets.
1: Submission 1 with name rwth-count
2: Submission 2 with name rwth-nn
3: Submission 3 with name rwth-nn-redundant
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Abstract

This paper describes Prompsit Language Engi-
neering’s submissions to the WMT 2018 par-
allel corpus filtering shared task. Our four
submissions were based on an automatic clas-
sifier for identifying pairs of sentences that
are mutual translations. A set of hand-crafted
hard rules for discarding sentences with evi-
dent flaws were applied before the classifier.
We explored different strategies for achiev-
ing a training corpus with diverse vocabulary
and fluent sentences: language model scor-
ing, an active-learning-inspired data selection
algorithm and n-gram saturation. Our sub-
missions were very competitive in comparison
with other participants on the 100 million word
training corpus.

1 Introduction

This paper describes the systems submitted by
Prompsit Language Engineering1 to the parallel
corpus filtering shared task (Koehn et al., 2018)
featured in the Third Conference on Machine
Translation (WMT 2018).

Given a very noisy 1 billion-word German-
English parallel corpus crawled from the web,2

participants have to subselect sentence pairs that
amount to (a) 10 million words (10M dataset), and
(b) 100 million words (100M dataset). In this
shared task, performance of the sentence filter-
ing is estimated as the translation quality (as mea-
sured by BLEU) of phrase-based statistical ma-
chine translation (SMT) and neural machine trans-
lation (NMT) systems built from the subselected
data. Evaluation sets belong to different domains,
which discourages strategies based on domain re-
latedness.

1http://www.prompsit.com
2As part of the Paracrawl project: https://

paracrawl.eu/.

Our submission is built upon the assumption
that a training set that maximizes the quality of
machine translation (MT) must meet the follow-
ing requirements:

• Parallel sentences must be mutual transla-
tions.

• Sentences must be fluent in the correspond-
ing language in order to build a reliable
language model/NMT decoder. We work un-
der the hypothesis that the sentence D0006
Tooth brush A NOELL / F945J
0,21 is less useful for a language model
than I brush my teeth and look
in the mirror, despite containing a
similar amount of tokens.

• Vocabulary must be diverse, since the MT
systems are evaluated with test sets from dif-
ferent domains.

We built a training corpus that meets the afore-
mentioned requirements in a sequential process
that comprises the following steps:

1. As a preprocessing step, deletion of paral-
lel sentences by means of a set of hand-
crafted hard rules implemented in the trans-
lation memory cleaning tool Bicleaner.3

These rules are addressed at detecting evident
flaws such as languages different from En-
glish and German, encoding errors, very dif-
ferent lengths in parallel sentences, etc. and
speeding up the subsequent steps.

2. Detection of misaligned parallel sentences by
means of an automatic classifier.

3. Scoring of sentences based on fluency and di-
versity: four different approaches were tested
and submitted.

3https://github.com/bitextor/bicleaner
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The remainder of the paper is organized as fol-
lows: Section 2 outlines related approaches, Sec-
tions 3 and 4 respectively describe the steps 2 and
3 of our processing pipeline. Section 5 confirms
the positive impact of our processing pipeline
on translation quality by comparing it with other
baseline approaches. Finally, the paper ends with
some concluding remarks and the suggestion of
potential future research directions.

2 Related work

The WMT 2018 parallel corpus filtering shared
task partially shares its objectives with the First
Automatic Translation Memory Cleaning Shared
Task (Barbu et al., 2016), where participants had
to automatically classify translation memory seg-
ments according to whether the target language
(TL) side was translation of the source language
(SL) side or not. This task is, in turn, very sim-
ilar to the detection of parallel sentences in com-
parable corpora, that can be tackled by combining
bilingual data and automatic classifiers (Munteanu
and Marcu, 2005), machine translation (Abdul-
Rauf and Schwenk, 2009) or, more recently, word
embeddings (España-Bonet et al., 2017). In fact,
the approach we follow to detect sentences that
are mutual translations is similar to the work of
Munteanu and Marcu (2005). Their approach dif-
fers from ours in the fact that we make use of a
larger set of shallow features not related to lexical
similarity.

However, since the size of the data sets that par-
ticipants must produce in this task is smaller than
the number of parallel sentences that are mutual
translations, this task is also related to the data
selection: selection of a subset of data that max-
imizes translation quality, avoiding redundancy
and matching a given domain (Eetemadi et al.,
2015). Instead of the widespread language-model
based data selection methods (Axelrod et al.,
2011), we replaced words with placeholders in or-
der to not take into account the domain of the text.

3 Sentence alignment classifier

After applying the hard rules aimed at de-
tecting evident flaws introduced in Section 1,
22 229 462 parallel sentences (21%) out of the ini-
tial 104 002 521 were kept. In order to discard
pairs of sentences that are not mutual translations,
we applied an automatic classifier to the sentence
pairs that passed the hard rule filter. The classi-

fier produces a score for each pair of sentences
that represents the probability that they are mu-
tual translations. This score is used in different
ways depending on the scoring strategy chosen for
achieving vocabulary diversity and fluency (see
next section).

The features we used can be split in two groups:
those that represent the lexical similarity of the
two sides of a parallel sentence by making use of
probabilistic bilingual dictionaries, and those that
are based on shallow properties such as sentence
length, capitalized words, punctuation marks, etc.

Given a bilingual probabilistic dictionary
whose SL is L1 and TL is L2 and a pair
of sentences (s1, s2), written in languages
L1 and L2 respectively, we computed the
four lexical similarity features described next.
The feature DICT-QMAX-L1 is defined as∏

w∈s2 maxw′∈s1 p(w
′, w), where p(w′, w) is the

translation probability from the L1 word w′ to
the L2 word w according to the bilingual dictio-
nary. That is, DICT-QMAX-L1 is the product,
for each word w in s2, of the maximum transla-
tion probability from any word in s1 to w. The
feature DICT-QMAX-L2 is computed in the op-
posite direction (with the help of a bilingual dic-
tionary whose SL is L2 and TL is L1). We also
used two additional features that account respec-
tively for the proportion of words in s1 and s2 that
can be found in the bilingual dictionaries.

Shallow features include, among others:

• For each language, probability of the sen-
tence length according to a Poisson distribu-
tion, given the sentence length ratio observed
in the positive examples of the classifier train-
ing set.4

• Number of tokens in each segment.

• Average token length (in characters) in each
segment.

• Number of punctuation marks in each seg-
ment.

• Number of numerical expressions in each
segment that can be found in the other seg-
ment of the pair.

4 Let ls be the length of the SL sentence, lt the length
of the TL sentence and r the average length of TL sentence
to length of SL sentence ratio observed in the training cor-
pus. The probability of the TL sentence length is computed
as e−lsr lsr

lt!
.
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• Number of capitalized tokens in one segment
that can be found in the other segment of the
pair.

We trained a Random Forest classi-
fier (Breiman, 2001) with 200 trees and a
maximum depth of 2. The remaining parameters
were the default ones in the Random Forest
implementation of the Scikit-learn library.5

The bilingual dictionaries were obtained from
all the available English–German parallel corpora
from WMT 2018 news translation shared task
(with the exception of 60 000 sentences randomly
removed from news-commentary-v13, which were
used for training the classifier, as explained in the
next paragraph). After concatenating the corpora,
they were word-aligned by means of MGIZA++,6

alignments were symmetrized with the heuristic
grow-diag-final and the probabilities in the bilin-
gual dictionaries were estimated by maximum
likelihood from the symmetrized alignments. Be-
fore building the dictionaries and computing the
lexical features, compounds in German were seg-
mented with the maximum entropy classifier pro-
posed by Dyer (2009).7

The training set for the classifier was built as
follows. From the 60 000 parallel sentences ran-
domly removed from the news-commentary-v13
parallel corpus, 50 000 were used for actually
training the classifier while the remaining 10 000
were used as a validation set. From the train-
ing set, 50 000 positive instances were obtained.
50 000 negative instances were also obtained from
the training set, after randomly shuffling their En-
glish side, i.e., synthetically generating pairs of
sentences that are not mutual translations. The
same strategy was built for obtaining negative in-
stances for the validation set. The accuracy of the
resulting classifier with the score threshold at 0.5
was 0.98.

4 Scoring for fluency and diversity

From the three main issues that need to be tackled
for obtaining a good training corpus for machine
translation, the classifier dealt with sentences that
are not mutual translations. In this section, we de-
scribe the four scoring strategies we submitted to

5http://scikit-learn.org/
6https://github.com/moses-smt/mgiza.

git
7https://github.com/redpony/cdec/tree/

master/compound-split; pre-trained models from
this implementation were used.

the shared task and how they tackle the two re-
maining issues: vocabulary diversity and fluency.

4.1 N-gram saturation
This scoring strategy aims to increase the vocabu-
lary diversity by removing sentence pairs that are
too similar to other pairs in the training corpus.
Each sentence pair is assigned the score returned
by the classifier, with the exception of those sen-
tences deemed as too similar, which are discarded.
The 10M and 100M datasets are just obtained by
selecting the not discarded (not deemed as too
similar) sentences, sorted in descending classifier
score, until the desired token count is achieved.

Too similar sentences are identified by a simple
n-gram saturation algorithm. First, some tokens
are replaced with placeholders. Fully alphabetic
tokens written either in lowercase (all characters
are lowercase) or in titlecase (the first character is
uppercase and the remaining ones are lowercase)
are kept intact and every other token is replaced
with one of the following placeholders:

• ALPHA:UPPER: all characters are upper-
case.

• ALPHA:MIXED: all characters are alpha-
betic, but the token is neither written in low-
ercase, nor in titlecase, nor in full uppercase.

• NUMERIC: all the characters are digits.

• PUNCTUATION: all the characters are punc-
tuation marks.

• MIXED: none of the previous conditions are
met.

Additionally, titlecased words that can be found
in the other sentences of the pair are replaced with
ALPHA:PROPER.

For instance, the sentence the Kari EL22
electrode switch is designed for
the control of conductive liquids
. becomes the ALPHA:PROPER MIXED
electrode switch is designed for
the control of conductive liquids
PUNCTUATION after the replacement is made.8

Once placeholders are introduced in sentences,
sentence pairs are traversed in descending clas-
sifier score order, and those whose full set of
4-grams can be found in sentences with higher

8The word Kari also appears in the German sentence and
it is thus considered as a proper noun.
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scores are classified as too similar and discarded.
Placeholders prevent sentences which differ from
other sentences only in proper nouns, codes, fig-
ures, punctuation, etc. from being accepted.

The number of sentences retained after applying
n-gram saturation was 10 100 275, from which the
top 433 760 and the top 5 121 715 with the highest
classifier scores were respectively selected to build
the 10M and 100M datasets.

4.2 Active learning data selection
A potential limitation of the scoring strategy based
on n-gram saturation is that, when building the
10M word training set, a large proportion of the
sentences which passed the saturation filter were
not considered. From the 6 798 687 sentences re-
sulting from applying n-gram saturation with a
classifier score above 0.5 (i.e., very likely to be
mutual translations), 433 760 were greedily cho-
sen without even considering the remaining ones.
These sentences could contain useful words or ex-
pressions that have been ignored.

In order to overcome that limitation, we de-
signed a data selection strategy that considers the
vocabulary of the whole corpus. Our approach is
an adaptation of the active learning strategy used
for building training corpora for SMT proposed
by Haffari et al. (2009) and it is outlined in Al-
gorithm 1. This algorithm is applied only to sen-
tences with a classifier score ≥ 0.55; those below
that score are discarded.

Algorithm 1 Data selection via active learning
Require: Bilingual corpus C
Ensure: Sorted bilingual corpus S

S ← ∅
blocksize ← 100 000
while |C| > 0 do

Snew ← select(C, S)
C ← C − Snew

S ← S + Snew

blocksize ← increaseBlockSize(blocksize)
end while

It iteratively selects a sequence of sentence pairs
Snew and appends it to the sorted corpus S until no
sentences are available in the corpus C. The func-
tion select(C, S) scores the sentences in C with
the Geom n-gram function (Haffari et al., 2009,
Sec. 3.1.2), sorts them by decreasing score, ap-
plies the n-gram saturation filter described previ-
ously (with a small modification: a sentence pair is

discarded if at least half of the 4-grams have been
observed in not discarded sentence pairs from C
with higher score) and returns the top blocksize
sentences. The Geom n-gram scoring function
assigns the highest scores to sentences with n-
grams that are frequent in C and infrequent in
S. The function increaseBlockSize doubles the
block size every 5 iterations. The datasets were
built by traversing the sorted corpus S until de-
sired token counts were achieved.

4.3 Language modeling

While the two previous approaches aimed at in-
creasing the diversity of the vocabulary, the cor-
pora selected following these approaches may
contain pairs of sentences that are not use-
ful to build a powerful language model, such
as: Brush for Acrylic - blue #06 ↔
Pinsel für Acryl Falten - Rot #6.

In order to include only fluent sentences in the
training sets, we made use of language models. As
we did not want to include a bias towards news
data in the language models, placeholders were
used in a similar way to what has been described
in Section 4.1. The following types of tokens were
replaced with placeholders:

• Tokens made fully of alphabetical char-
acters. They were replaced with a
placeholder that represents its capital-
ization: lowercase (ALPHA:LOWER),
titlecase (ALPHA:TITLE), upper-
case (ALPHA:UPPER) or mixed case
(ALPHA:MIXED).

• Tokens made fully of numeric characters
(ALPHA:NUM).

• Tokens that contain a numeric or alphabetical
character but do not fall into any of the two
previous groups (MIXED).

Consequently, tokens made only of punctu-
ation characters were kept unchanged. The
previous pair of sentences was hence processed
as follows: ALPHA:TITLE ALPHA:LOWER
ALPHA:TITLE - ALPHA:LOWER MIXED
↔ ALPHA:TITLE ALPHA:LOWER
ALPHA:TITLE ALPHA:TITLE -
ALPHA:TITLE MIXED

Each 5-gram language model (one for each lan-
guage) was estimated from 20 000 000 sentences
randomly chosen from the news and Europarl
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monolingual corpora with KenLM (Heafield,
2011) and Knesser-Ney smoothing (Heafield et al.,
2013).

Language models were used to score pairs of
sentences as follows:

1. Pairs of sentences with a classifier score
lower than 0.55 were discarded.

2. Remaining pairs of sentences were sorted in
ascending sum of (English plus German) per-
plexity per word.

3. The n-gram saturation algorithm described in
Section 4.1 was applied. As similar sentences
have similar perplexities, the algorithm is
needed in order to decrease the degree of rep-
etition in the resulting corpus.

Two submissions were based on language
model scoring. In the first one, prompsit-lm,
sentences were truecased before training the lan-
guage model and the saturation algorithm was ap-
plied exactly as described in Section 4.1, i.e. with
the same placeholder replacement strategy. In the
alternative submission, prompsit-lm-nota,
sentences were not truecased for language model
scoring and the saturation algorithm was applied
without placeholder replacement.9

In the submission prompsit-lm, 5 868 776
sentences passed the n-gram saturation filter, from
which the 4 492 314 sentence pairs with the low-
est perplexity per word were selected for build-
ing the 100M tokens training set. In the submis-
sion prompsit-lm-nota, since the saturation
filter is less aggressive, 7 016 169 sentence pairs
passed that filter and 4 491 269 were selected for
the 100M tokens training set.

5 Machine translation experiments

We built MT systems from the four scoring al-
ternatives presented and compared them with two
baseline systems: one in which the sentences were
randomly chosen from the noisy, crawled data

9 Note that, in the prompsit-lm submission, two
different placeholders replacement strategies were applied.
Firstly, that described in Section 4.3 was applied in order to
obtain language model perplexities. Afterwards, the one de-
scribed in Section 4.1 was applied in order to discard similar
sentences. In the prompsit-lm-nota submission, only
the first one was applied. Concerning truecasing, prelimi-
nary experiments showed that it has a limited impact for lan-
guage model scoring, hence the main difference between the
submissions is the strength of n-gram saturation: fewer sen-
tences are discarded if placeholders are disabled.

(random) and another one in which the hard-rule
filtering was applied and each sentence was simply
scored by the classifier (only-classifier;
10M and 100M datasets were built by selecting
sentences in descending classifier score order).

Systems were trained following the official in-
structions from the shared task.10 SMT sys-
tems were built with Moses and tuned with Batch
MIRA (Cherry and Foster, 2012). A 5-gram lan-
guage model was estimated from the TL side of
the training corpus. NMT systems followed the
Transformer architecture (Vaswani et al., 2017)
and were built with Marian (Junczys-Dowmunt
et al., 2018). 49 500 byte pair encoding merge
operations (Sennrich et al., 2016) were applied to
segment the words in the NMT training corpus.
The development set (used for tuning the parame-
ters of the log-linear model in SMT and for early
stopping in NMT) was newstest2016, while the
test set was newstest2017. Table 1 presents the
(cased) BLEU scores obtained by the MT systems
built.

It can be observed that the scores of NMT
systems trained on random subsamples (random
baseline) are very low if we compare them with
SMT. This confirms that NMT is very sensitive to
noisy training data (Belinkov and Bisk, 2017). An
important increase in BLEU for all systems can be
observed when filtering with hard rules and clas-
sifier (only-classifier system). After this
filtering, NMT outperforms SMT for both training
set sizes.

Concerning our submissions, results show
that adding n-gram saturation (prompsit-sat)
slightly improves the results in the four datasets,
which confirms that vocabulary diversity is rele-
vant for this task. We can also observe in Ta-
ble 3 that the number of unknown words in the
test set was slightly reduced. Our active learn-
ing strategy for achieving vocabulary diversity
(prompsit-al), however, brought a degrada-
tion in the 10M dataset and a light improvement in
the 100M one. If we analyze vocabulary sizes (dis-
played in Table 2), it was reduced (in comparison
with prompsit-sat) only for the 10M dataset,
and the number of unknown words in the test set
increased. A potential solution for this issue could
be reducing the block size for the first iterations of
the active learning algorithm, so that more itera-

10http://www.statmt.org/wmt18/
parallel-corpus-filtering.html
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System SMT 10M SMT 100M NMT 10M NMT 100M
random 14.92 18.51 7.70 7.66
only-classifier 20.22 23.96 21.46 29.32
prompsit-sat 20.77 24.12 22.82 29.55
prompsit-al 20.02 24.46 22.50 29.64
prompsit-lm 19.09 24.37 18.50 29.79
prompsit-lm-nota 18.61 24.36 18.60 29.85

Table 1: BLEU scores obtained by our 4 submissions and two baseline approaches.

tions are executed before obtaining the 10M train-
ing set.

The submissions that aimed at increasing the
fluency of the training corpus brought a light im-
provement in translation quality for the NMT sys-
tem trained on the 100M dataset. On the contrary,
they further reduced the vocabulary sizes and in-
creased the unknown rate for the 10M dataset. We
believe this is due to the fact that, with this ap-
proach, fluency had a stronger influence than vo-
cabulary diversity in the criterion for selecting sen-
tences for the small dataset. Only the top 836 520
sentences with smallest perplexity were explored
for building the final 10M training corpus obtained
with prompsit-lm, which contained 551 098
sentences.11 A manual inspection of the sentences
included in the 100M dataset but not in the 10M
one showed that they were perfectly fluent. This
means fluent sentences which are more interest-
ing (from a vocabulary point of view) have been
ignored when building the 10M dataset, since the
process is mainly guided by perplexity. This prob-
lem disappears in the large data set, that is large
enough to contain diverse vocabulary.

The BLEU scores reported in this section do
not exactly match those published in the official
results (Koehn et al., 2018) because, unlike the
scores reported in this paper, the official scores
were averaged over multiple training runs and
multiple evaluation corpora. Nevertheless, the rel-
ative performance of our four submissions remains
the same. Our active learning and language model
scoring strategies were very competitive for the
100M dataset and were ranked very close to the
top performing systems, while our best perform-
ing submissions for the 10M dataset were in the
middle of the ranking.

11The difference between these two numbers is the amount
of sentences removed by the n-gram saturation algorithm.

6 Concluding remarks

This paper described Prompsit Language Engi-
neering’s submissions to the WMT 2018 paral-
lel corpus filtering shared task. Our four sub-
missions stemmed from a strategy based on hand-
crafted filtering rules and an automatic classifier
that selects those sentences that are mutual trans-
lations. Our submissions explored different ways
of achieving vocabulary diversity and fluency in
the selected training corpora. The strategies based
on an active learning algorithm (aimed at achiev-
ing vocabulary diversity) and language model per-
plexity combined with n-gram saturation (aimed
at achieving fluency and vocabulary diversity) al-
lowed our submissions to be ranked close to the
top performing system for the 100M dataset.

Our strategies were less successful for the 10M
tasks, as they were placed in the middle of the
ranking. An analysis of out of vocabulary words
in the test set for the language model-based ap-
proaches suggests that fluency has a stronger influ-
ence than vocabulary diversity. A scoring scheme
that balances them better should improve the re-
sults and designing it could be a future research
direction. The active learning algorithm could also
be tuned for smaller datasets by decreasing the
block size parameter.
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System de 10M en 10M de 100M en 100M
random 904K 789K 3 810K 3 364K
only-classifier 561K 382K 2 197K 1 274K
prompsit-sat 585K 365K 2 246K 1 174K
prompsit-al 403K 228K 2 329K 1 162K
prompsit-lm 359K 99K 2 022K 910K
prompsit-lm-nota 364K 103K 1 969K 879K

Table 2: Vocabulary sizes, expressed in thousands of words, after tokenization with the Moses tokenizer, of the
training corpora produced with our four submissions and two baseline approaches.

System # unks 10M # types 10M # unks 100M # types 100M
random 2 580 2 012 1 132 913
only-classifier 2 852 2 207 1 199 921
prompsit-sat 2 639 2 027 1 148 877
prompsit-al 3 084 2 266 1 114 848
prompsit-lm 4 307 2 744 1 178 882
prompsit-lm-nota 4 183 2 682 1 182 896

Table 3: Unknown words in the source language (German) size of the newstest2017 test set. The columns labeled
as # unks represent the number of instances of unknown words, while # types stands for the number of unique
unknown words.
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Abstract
This paper presents the NICT’s participation
in the WMT18 shared parallel corpus filtering
task. The organizers provided 1 billion words
German-English corpus crawled from the web
as part of the Paracrawl project. This corpus
is too noisy to build an acceptable neural ma-
chine translation (NMT) system. Using the
clean data of the WMT18 shared news trans-
lation task, we designed several features and
trained a classifier to score each sentence pairs
in the noisy data. Finally, we sampled 100
million and 10 million words and built cor-
responding NMT systems. Empirical results
show that our NMT systems trained on sam-
pled data achieve promising performance.

1 Introduction

This paper describes the corpus filtering system
built for the participation of the National Institute
of Information and Communications Technology
(NICT) to the WMT18 shared parallel corpus fil-
tering task.

NMT has shown large gains in quality over Sta-
tistical machine translation (SMT) and set several
new benchmarks (Bojar et al., 2017). However,
NMT is much more sensitive to domain (Wang
et al., 2017) and noise (Khayrallah and Koehn,
2018). The reason is that NMT is a single neu-
ral network structure, which would be affected by
each instance during the training procedure (Wang
et al., 2017). In comparison, SMT is a combina-
tion of distributed models, such as a phrase-table
and a language model. Even if some instances in
the phrase-table or the language model are noisy,
they can only affect part of the models and would
not affect the entire system so much. To the best
of our knowledge, there are only few works inves-
tigating the impact of the noise problem in NMT
(Xu and Koehn, 2017; Belinkov and Bisk, 2017).

∗The first two authors have equal contributions.

In this paper, we focus on the performance of
NMT trained on noisy parallel data. We adopt the
clean data of WMT18 News Translation Task to
train a classifier and compute informative features.
Using this classifier, we score each sentence in the
noisy data and sample the top ranked sentences to
construct the pseudo clean data. The new pseudo
clean data are used to train a robust NMT system.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce the task and data.
In Section 3, we introduce the features that we de-
signed to score sentences in the noisy corpus. We
use these features to train a classifier and the sen-
tences in the noisy corpus are scored by this classi-
fier. Empirical results produced with our systems
are showed and analyzed in Section 4, and Section
5 concludes this paper.

2 Task Description

WMT18 shared parallel corpus filtering task1

(Koehn et al., 2018) provides a very noisy 1 bil-
lion words (English word count) German-English
(De-En) corpus crawled from the web as a part of
the Paracrawl project. Participants are asked to
provide a quality score for each sentence pair in
the corpus. Computed scores are then evaluated
given the performance of SMT and NMT systems
trained on 100M and 10M words sampled from
data using the quality scores computed by the par-
ticipants. newstest2016 is used as the develop-
ment data and the test data include newstest2018,
iwslt2017, Acquis, EMEA, Global Voices, and
KDE.2 The statistics of the noisy data to filter are
shown in Table 1.

The participants may use the WMT18 News

1http://www.statmt.org/wmt18/
parallel-corpus-filtering.html

2Note that, except for newstest2018, all testsets remained
unknown from the participants until the submission deadline.
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Language #lines #words #tokens

En 104.00 M 1.00B 1.66B
De 104.00 M 0.96B 1.62B

Table 1: Statistics of the noisy data to filter. “#words”
indicates the word count before tokenization.

Translation Task data3 for German-English (with-
out the Paracrawl parallel corpus) to train compo-
nents of their method. In addition, to participate
in the shared task, participants have to submit a
file with quality scores, one score per line, corre-
sponding to the sentence pairs. The scores do not
have to be meaningful, except that higher scores
indicate better quality.

3 Sentence Pairs Scoring

The task requires to give a score to each sentence
pair in the corpus to filter. We performed first an
aggressive filtering (Section 3.1) to avoid scoring
sentence pairs that are clearly too noisy to be used
during the training of MT systems. Then, we com-
puted informative features (Section 3.2) for each
one of the remaining sentence pairs. Then, ac-
cording to the feature scores, a classifier computes
a global score for each sentence pair that can be
used to rank them.

3.1 Aggressive Filtering

After a quick observation of the data, we first de-
cided to perform an aggressive filtering since it ap-
peared that many of the sentence pairs are obvi-
ously too noisy to be used to train MT systems.
For instance, many sentences in the corpus are
made of long sequences of numbers or punctua-
tion marks. We decided to give a score of 0.0 to
all the sentence pairs that contain a sentence made
of tokens that are, for more than 25% them, num-
bers or punctuation marks. We also had to take
into account the sentence length: very short source
sentences are more likely to be paired with a good
translation in the corpus, and our classifier may
give to such pairs very high scores. Then, in or-
der to avoid a filtering that keeps sentences made
in majority of very short and redundant sentences,
that are not very useful to train NMT systems, we
also give a score of 0.0 to all sentence pairs that
contain a source or a target sentence that contains
less than four tokens. We also give a score of 0.0

3http://www.statmt.org/wmt18/
translation-task.html

to all the sentence pairs that contain a sentence
longer than 80 tokens since the default parameters
of the SMT system used for evaluation filter out
sentences longer than that.

This aggressive filtering excluded 69% of the
sentence pairs, leaving us a much reduced quantity
of sentence pairs to be scored by our classifier.

3.2 Features

We scored each of the remaining sentence pairs
with four NMT transformer models, trained with
Marian (Junczys-Dowmunt et al., 2018)4, on all
the parallel data provided for the shared news
translation task (excluding the “paracrawl” cor-
pus). We trained left-to-right and right-to-left
models for German-to-English and English-to-
German translation directions. We used these four
model scores as features in our classifier.

We also trained lexical translation probability
with Moses and used them to compute a sentence-
level translation probability, for both transla-
tion directions, as proposed by Marie and Fujita
(2017).

To evaluate the semantic similarity between the
source and target sentence, we compute a feature
based on bilingual word embeddings as follows.
First, we trained monolingual word embeddings
with FastText (Bojanowski et al., 2017)5 on the
monolingual English and German data provided
by the WMT organizers. Then, we aligned En-
glish and German monolingual word embedding
spaces in a bilingual space using the unsupervised
method proposed by Artetxe et al. (2018).6 Given
the bilingual word embeddings, we computed em-
beddings for the source and target sentence by do-
ing the element-wise addition of the bilingual em-
bedding of the words they contain. Finally, we
computed the cosine similarity between the em-
beddings of source and target sentence for each
sentence pair, and used it as a feature.

Other features are computed to take into ac-
count the sentence length: the number of tokens
in the source and target sentences, and the differ-
ence, and its absolute value, between them. We
summarize the features that we used in Table 2.

4https://marian-nmt.github.io/
5We used the default parameters for skipgram, with 512

dimensions.
6We used the implementation provided by the authors,

with default parameters, at: https://github.com/
artetxem/vecmap.
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Feature Description

L2R (2) Scores given by the left-to-right German-to-English and English-to-German NMT models
R2L (2) Scores given by the right-to-left German-to-English and English-to-German NMT models
LEX (4) Lexical translation probabilities, for both translation directions
WE (1) Bilingual sentence embedding similarity
LEN (4) Length-based features

Table 2: Set of features used by our classifier.

3.3 Classifier

We chose a logistic regression classifier to com-
pute a score for each sentence pair using the fea-
tures presented in Section 3.2. We trained our clas-
sifier on Newstest2014, that we used as positive
examples of good sentence pairs, and created the
same number of negative examples using the fol-
lowing procedure. We created three-type of nega-
tive examples, each of which contains one third of
the sentence number of Newstest2014:

• Misaligned: The target sentences are
wrongly aligned to the previous or following
source sentences.

• Wrong translation: some words in a sentence
are replaced by random words from the vo-
cabulary.

• Misordered words: we shuffled the words in
a sentence.

We used the same procedure to create training data
with Newstest2015, and used it to tune the regular-
ization parameter of our classifier. The classifier
accuracy is 78.9% on Newstest2015.

We used the probability returned by the classi-
fier for each sentence pair as the score to be used
to perform filtering.

4 NMT Systems and Results

For this task, we did not conduct experiments with
a state-of-the-art NMT system, because the orga-
nizers fixed the data and systems settings for a fair
comparison.

4.1 NMT Systems

For the data preprocessing, we strictly followed
the data preparation (including tokenization, true-
casing, and byte pair encoding) provided by the
organizers. To train NMT systems, we used the
provided official settings of Marian, which can be

found at the WMT offical website7 and the Ap-
pendix A. All our NMT systems were trained on
four Nvidia Tesla P100 GPUs.

Our settings were the same for all of the NMT
systems. For each method, we use their score to
select the top 100M and 10M sentences to train the
corresponding NMT systems. In Table 4, “Origi-
nal” means the original corpus without any filter-
ing. “Aggressive Filtering” is the method which
we introduced in Section 3.1. “Hunalign” indi-
cates the baseline corpus filtering method (Varga
et al., 2007)8 given by the organizers. “Classi-
fier” indicates the classifier that we proposed in
Section 3.3. “Classifier + LangID” indicates that
we also use a language identification tool, LangID
(Lui and Baldwin, 2012)9, to filter the sentence
pairs containing sentences that are not German or
English. The results were evaluated on the devel-
opment data newstest2016.

4.2 NMT Performance

From the results in Table 4, we have the following
observations:

• The proposed “Aggressive Filtering” reduced
69% sentences and improved 1.5 BLEU com-
pared to using the original corpus. This indi-
cates that most of the noisy data can be fil-
tered by the aggressive filter.

• The baseline “Hunalign” did not perform
very well, the performance decreased to
3.6/0.03 by selecting 100/10M sentences. Es-
pecially when selecting 10M sentences, the
NMT system nearly did not work.

• The proposed “Classifier” significantly im-
proved NMT performance by more than 20

7http://www.statmt.org/wmt18/
parallel-corpus-filtering-data/
dev-tools.tgz

8http://mokk.bme.hu/resources/
hunalign/

9https://github.com/saffsd/langid.py
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System newstest2018 iwslt2017 Acquis EMEA Global Voices KDE average

SMT-10M 27.79 20.94 19.27 25.89 21.38 25.51 23.46
SMT-100M 30.79 22.76 21.98 30.39 23.63 26.55 25.98
NMT-10M 32.93 23.67 21.67 27.60 25.13 24.65 25.94
NMT-100M 37.28 25.83 26.11 34.13 27.62 29.25 30.04

Table 3: WMT official results.

Methods #tokens (En) #lines #BLEU

Original 1.6B 104.0M 7.4
Aggressive Filtering 584M 31.9M 8.8
Hunalign 100M 8.7M 3.6
Classifier 100M 9.1M 26.1
Classifier + LangID 100M 6.7M 31.6
Hunalign 10M 2.6M 0.03
Classifier 10M 1.2M 25.6
Classifier + LangID 10M 0.9M 27.8

Table 4: Results on the development data.

Methods #tokens (En) #Time

Original 1.6B 43 hours
Aggressive Filtering 584M 47 hours
Classifier + LangID 100M 55 hours
Classifier + LangID 10M 11 hours

Table 5: Training efficiency.

BLEU. This indicates that the proposed clas-
sifier can rank sentence by a proper order and
the more useful sentences are selected.

• The “Classifier + LangID” achieved fur-
ther approximately 2∼5 BLEU improve-
ment. This indicates there are several sen-
tences which are not proper languages and
they can be detected by the LangID.

• For the proposed method, the systems built
from 100M sentences performed much bet-
ter than the ones built from 10M sentences.
This indicates that filtering too many sen-
tences will harm the NMT performance.

4.3 Training Efficiency
Besides the NMT performances, we also showed
the training efficiency in Table 5.

The results in Table 5 showed:

• The training time of using 1.6B, 584M, and
100M sentences was very close.

• The training time of using 10M sentences
was quite faster than the other ones. Together
with the performance results in Table 4, it
show that these 10M contains most of the

useful information in the entire corpus and
can accelerate NMT training significantly.

4.4 Official Results
We reported the official results of our submitted
system “Classifier + LangID” in Tables 3. In the
official results, both SMT and NMT results were
reported.

From the results in Table 3, we have the follow-
ing observations:

• The NMT system performed much better
than corresponding SMT systems. This in-
dicates that the proposed method can help
NMT in overcoming the noise problem.

• The systems built from 100M sentences per-
formed much better than the ones built from
10M sentences. This is consistent with the
results obtained on the development data.

• Compared with other teams, the rankng of
our SMT systems performed better than our
NMT systems. The reason may be that we
used several features from SMT. We ranked
the first in the KDE SMT-10M task.

5 Conclusion and Future Work

In this paper, we investigated the noisy data prob-
lem in NMT. We designed a classification system
to filter the noisy data for the WMT18 shared par-
allel corpus filtering task and built NMT systems
using the selected data.

The empirical results showed that most of the
sentence pairs in the corpus are noisy. By remov-
ing these sentence pairs, the training corpus can be
reduced up to 1% of the original one while training
a significantly better NMT system than the origi-
nal NMT system trained on all the data. In our
future work, we would like to investigate the im-
pact of each type of noise and the effect of each
feature used by our classifier.

In this paper, we focused on supervised classi-
fication methods. That is, we used clean data as a
gold standard. In our future work, we would like
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to investigate this task using unsupervised meth-
ods. That is, we only use the noisy data and let
NMT itself detect noisy sentence pairs.
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A Marian Settings

To train NMT systems, we used
the provided settings of Marian:
--sync-sgd -T --devices 0
1 2 3 --mini-batch-fit -w
3000 --dim-vocabs 50000
50000 --layer-normalization
--dropout-rnn 0.2 --dropout-src
0.1 --dropout-trg 0.1
--learn-rate 0.0001
--after-epochs 0 --early-stopping
5 --max-length 80 --valid-freq
20000 --save-freq
20000 --disp-freq 2000
--valid-mini-batch 8
--valid-metrics cross-entropy
perplexity translation --seed
1111 --exponential-smoothing
--normalize=1 --beam-size=12
--quiet-translation.
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