
Proceedings of Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 70–80
Santa Fe, New Mexico, USA, August 25, 2018.

70

One Size Fits All? A simple LSTM for Non-literal Token- and
Construction-level Classification

Erik-Lân Do Dinh, Steffen Eger, and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universität Darmstadt
http://www.ukp.tu-darmstadt.de

Abstract

We tackle four different tasks of non-literal language classification: token and construction level
metaphor detection, classification of idiomatic use of infinitive-verb compounds, and classifica-
tion of non-literal particle verbs. One of the tasks operates on the token level, while the three
other tasks classify constructions such as “hot topic” or “stehen lassen” (to allow sth. to stand vs.
to abandon so.). The two metaphor detection tasks are in English, while the two non-literal lan-
guage detection tasks are in German. We propose a simple context-encoding LSTM model and
show that it outperforms the state-of-the-art on two tasks. Additionally, we experiment with dif-
ferent embeddings for the token level metaphor detection task and find that 1) their performance
varies according to the genre, and 2) Mikolov et al. (2013) embeddings perform best on 3 out of
4 genres, despite being one of the simplest tested models. In summary, we present a large-scale
analysis of a neural model for non-literal language classification (i) at different granularities, (ii)
in different languages, (iii) over different non-literal language phenomena.

1 Introduction

Computational research of non-literal phenomena, e.g., metonymy, idiom, and prominently metaphor de-
tection (Veale et al., 2016), has been plentiful. For metaphor detection, most works name the Conceptual
Metaphor Theory (Lakoff and Johnson, 1980) as their underlying framework, in which metaphors are
modeled as cognitive mappings of concepts from a source to a target domain. However, the datasets cre-
ated and used in these works often follow no unified annotation guidelines (compare Steen et al. (2010)
and Tsvetkov et al. (2014)), or even no disclosed guidelines at all, e.g., Heintz et al. (2013), or anno-
tate metaphors at different levels of granularity (Steen et al., 2010; Gutierrez et al., 2016). This is also
true for many works in more general non-literal language detection. Consequently, methods are seldom
compared on related tasks.

Neural networks have been successfully applied to various natural language processing tasks, but few
have applied them to metaphor detection (Do Dinh and Gurevych, 2016; Rei et al., 2017) or detection
of non-literal and figurative language in general. In this paper, we test whether the same simple generic
neural network approach is effective for four different non-literal language detection tasks: token and
construction level metaphor detection, idiom classification and classification of literal and non-literal
German particle verbs. We train a neural model using LSTMs to encode the context of a metaphor
candidate or non-literal compound. We show that our approach outperforms existing state-of-the-art
models on two tasks, while producing competitive results on another task, independent of the mode of
classification (e.g., token vs. construction classification). In demonstrating the applicability of the same,
simple neural network architecture to different non-literal language tasks, we lay the foundation for a
more integrative approach. A joint modeling of these tasks, through data concatenation and multi-task
learning, is investigated in Do Dinh et al. (2018).

Given enough training data, our model renders many of the handcrafted features employed in previous
work unnecessary. This includes e.g., abstractness values to model source and target concepts (Tsvetkov

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

http://www.ukp.tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


71

et al., 2014; Turney and Assaf, 2011), selectional preference violations (Wilks, 1978; Shutova, 2013) or
topic modeling (Heintz et al., 2013; Beigman Klebanov et al., 2014). In contrast, because they are the
only external resource we utilize, we investigate the influence of an important hyper-parameter of our
network—different pre-trained embeddings—on the token-level metaphor detection task and show the
genre-specific effects of these embedding models.

2 Related work

Classification and detection of non-literal language has largely focused on metaphor detection. Another
prominent task is the detection of idiomatic language. Similar features have been employed in those
tasks, even though the specific phenomena differ. However, since the datasets used for these tasks are
annotated differently, it is difficult to compare methods across the different tasks (or even subtasks of,
e.g., metaphor detection). For some tasks, feature-based approaches are still superior to neural models.
For many, more general, non-literal language tasks, neural models have not yet been applied. While
distributed word representations have been used even in feature-based methods, a comparison regarding
the influence of different pre-trained embeddings on these tasks has not been carried out so far.

Tsvetkov et al. (2014) classify adjective-noun pairs and subject-verb-object constructions. Their fea-
tures include imageability, abstractness ratings, supersenses and low-dimensional word representations
trained using an LSA variant. They train their system on English, and test it on four different languages—
English, Russian, Farsi and Spanish—with the help of bilingual dictionaries. Similar, Gutierrez et al.
(2016) examine adjective-noun compounds, specifically those for which the interaction between the com-
ponents is sufficient to determine metaphoricity. To this end, they adapt a compositional distributional
semantic model (CDSM) approach, representing adjectives as matrices and nouns as vectors. By com-
puting distinct representations for literal and metaphorical use of adjectives they introduce a separation
of literal and metaphorical meaning in the CDSM.

Do Dinh and Gurevych (2016) also investigate metaphor detection, however in contrast to the pre-
viously described works on a token level. Specifically, they use a multi-layer perceptron to clas-
sify metaphoric tokens using concatenated pre-trained word embeddings. Their approach is language-
agnostic as it does not use additional features. However, they only test it on English data, on which
it compares favorably to a simple SVM baseline and an existing feature-based method. A more com-
plex neural model is proposed by Rei et al. (2017). They implement a similarity network in which they
modulate the word representation of a token in a possibly metaphoric construction based on the remain-
ing construction tokens. Further, they introduce a mapping from the vector space of the pre-trained
embeddings to a metaphor-specific vector space. While their system performs well, it cannot beat the
feature-based system by Tsvetkov et al. (2014) on adjective-noun constructions.

Zhang and Gelernter (2015) investigate metonymy identification, i.e. identification of instances where
entities replace other associated entities. For example in the sentence “Washington and Beijing enter
new trade talks”, Washington and Beijing are used to refer to the US and Chinese governments. Zhang
and Gelernter (2015) reuse many features commonly used for the metaphor detection task, such as im-
ageability and abstractness ratings. They further test different word representations—word embeddings,
LSA, and one-hot-encoding—to detect metonymy using an SVM.

A different non-literal language task is investigated by Horbach et al. (2016), in which they classify
literal and idiomatic use of different German infinitive-verb compounds based on their context. They em-
ploy Naive Bayes and various features—including local skip-n-grams, POS tags, automatically obtained
subject and object information, selectional preferences, and manually annotated topic information.

Köper and Schulte im Walde (2016) classify literally and non-literally used German particle verbs
across 10 particles. Using a random forest classifier and various features (e.g., unigrams, affective ratings,
distributed word representations), they achieve an accuracy of 85% over all particle verbs, and find that
taking into account particle information additionally increases performance.
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Task dataset size M lang example

Token level
metaphor detection

VUAMC 103,865 15% en Along with Sir James he found the US
much more attractive, [...]

Construction level
metaphor detection

Tsvetkov et
al. (2014)

1,738 47% en Wind and wave power providing the
green energy of the future.

Classification of
idiomatically used
verb compounds

Horbach et
al. (2016)

5,249 64% de ,,Auch eine Uhr, die stehen geblieben
ist, geht zweimal am Tag richtig”, sagt er.
(“A clock that has stopped running is
correct two times a day, too,” he says.)

Classification of
non- literally used
particle verbs

Köper and
Schulte im
Walde (2016)

6,436 35% de Auf Decken sitzt man ums Feuer und
lässt den ereignisreichen Tag
nachklingen.
(One sits on blankets around the fire and
lets the day linger on [lit.: ring on].)

Table 1: Investigated tasks and datasets. Size describes labeled tokens in case of token level metaphor de-
tection (content tokens), and labeled constructions for the other tasks respectively, M denotes percentage
of non-literal labels. Non-literal use of tokens/constructions in the examples is marked bold.

3 Tasks

To investigate if our generic network can successfully tackle different non-literal language detection
tasks, we consider token level metaphor detection, construction level metaphor detection, classification
of idiomatically used infinitive-verb compounds, and classification of particle verbs into literal and non-
literal usage. Table 1 gives an overview along with examples. The corpora differ in size, percentage of
non-literal instances, and language.

For token-level metaphor detection we use the VU Amsterdam metaphor corpus (VUAMC) (Steen
et al., 2010), a subset of the BNC Baby covering four genres: academia, conversation, fiction, and news.
Metaphors are annotated on a token level using MIPVU (Steen et al., 2010), which in short specifies that
all tokens which are not used in their most basic (concrete, bodily-related, or historically older) sense are
to be labeled as metaphorical if the contextual meaning of the token can be understood in comparison
with its basic sense. Inter-annotator agreement of 0.84 Fleiss’ κ has been reported for this dataset.
Our network is trained on each genre of the VUAMC separately; for each subcorpus we use a random
subset of 76% of the data for training, 12% as a development set and 12% as a test set, reproducing the
experimental setup of Do Dinh and Gurevych (2016). We re-implement their state-of-the-art approach
on this dataset to compare both architectures.

We also examine metaphor detection on construction level utilizing the English data set created
by Tsvetkov et al. (2014), specifically the literal and metaphorical adjective-noun (AN) samples, which
were also used in the neural model by Rei et al. (2017). Originally these were explicitly selected for
their context-independence (i.e., they should be distinguishable as metaphorical or literal based on the
construction’s tokens, without help from their context). We augment the published training set (i.e.,
the constructions) by randomly selecting for each construction a sentence containing it from the British
National Corpus (BNC Consortium, 2007) and ukWac (Baroni et al., 2009). In this way, we attain 1538
sentences in total, on which we train using 10-fold cross validation. For testing, we use the 200 sentences
from the original test set, which was labeled by 5 annotators achieving a Fleiss’ κ of 0.74. The metaphor
definition is broader than for the VUAMC; the annotators where asked to mark all tokens which “in your
opinion, are used non-literally in the following sentences.”

Idiom classification is the task of deciding whether a given phrase is used idiomatically or literally.
As a figurative language classification problem, and because determining whether a given phrase is used
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xl1 ... xlw xc1 ... xcn xr1 ... xrw

LSTMl Dense LSTMr

Concatenation

Multiple dense layers

Softmax

Figure 1: The basic structure of our LSTM, starting with pre-trained word embeddings xi. Hyper-
parameters include number of dense layers before applying softmax, whether or not the same LSTM
layer is being used for encoding the context (i.e., LSTMl = LSTMr), and layer sizes. Center size n is
determined by the corpus (e.g., n = 1 for token classification or n = 2 for adjective-noun classification).

idiomatically is largely context-dependent, this task is closely related to metaphor detection. We use the
corpus introduced by Horbach et al. (2016), comprising 5,249 sentences containing literal and idiomatic
uses of 6 different German infinitive-verb compounds, stemming from the Wahrig corpus (Krome (2010),
covering newspaper and magazine articles). Cohen’s κ for two expert annotators is reported to range
between 0.63 and 0.87, with no explicit guidelines set other than to annotate the compounds as being
used literally or idiomatically in a given context sentence. We run experiments on the 6 compounds
separately and set up the data in a similar way as Horbach et al. (2016), i.e., we directly report accuracy
scores on 10-fold cross validation experiments (averaged over 50 randomly sampled hyper-parameter
configurations), without using a separate test set.

We also evaluate our approach on another task using German data: classification of German particle
verbs into literal and non-literal cases, proposed by Köper and Schulte im Walde (2016). They com-
piled a corpus using 159 German particle verbs across 10 particles, extracting up to 50 sentences for
each particle verb from DECOW14AX (Schäfer and Bildhauer, 2012; Schäfer, 2015). Annotators were
asked to label instances on a 6-point scale from “clearly literal” to “clearly non-literal”. Inter-annotator
agreement of the binarized labels is reported as 0.70 Fleiss’ κ for 3 annotators. We use the same setup as
in the original paper and perform cross validation on the complete dataset; again we report average accu-
racy and F1 over 50 randomly sampled hyper-parameter configurations. We compare our results to their
follow-up paper (Köper and Schulte im Walde, 2017), in which they investigate multi-sense embeddings
for this task.

4 Architecture

Our approach separately encodes the context of potential metaphorical tokens or constructions (Figure 1).
More specifically, our neural network is designed to encode the left and right context of tokens/construc-
tions using Long-Short Term Memory layers (LSTMs), to reduce the influence of the context tokens
compared to just concatenating their corresponding word embeddings. This design decision stems from
preliminary experiments in which we included the complete sentence context. However, this amount
of context was too large to obtain reasonable results. Still, we encode the context using LSTMs rather
than fully connected layers, since this provides a more concise model with fewer parameters. The center
consists of one or two embeddings (depending on the task), which are encoded using a fully connected
layer. The output of left context LSTM, center dense layer, and right context LSTM are then concate-
nated, before being fed to additional fully connected layers. We experiment with different network
variations: shared/separate embedding layers (with re-trainable embeddings), shared/separate weights
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Token level
metaphor detection

Construction level
metaphor detection

Classification of idio-
matically used infini-
tive-verb compounds

Classification of non-
literally used particle
verbs

D LSTM R LSTM H LSTM K LSTM

A 0.87 0.86 0.83 0.81 0.86 0.89 – 0.89
F1 0.56 0.59 0.81 0.79 – 0.90 0.88 0.85

Table 2: Accuracy (A) and F1-score of existing methods (D = Do Dinh and Gurevych (2016), R = Rei et
al. (2017), H = Horbach et al. (2016), K = Köper and Schulte im Walde (2017)) and LSTM on the four
investigated tasks. For both metaphor detection tasks, these are results on the test set of the best systems
as determined by dev set (token level) or cross validation (construction level); for the classification of
idiomatically used verb-compounds and the classification of non-literally used particle verbs these are
averages over 50 configurations, since the original papers only report performance on cross validation.
For subcorpus specific results see Table 3 (token level metaphor detection) and Table 4 (classification of
idiomatically used infinitive-verb compounds).

for the context-LSTMs, different context representation sizes, and differing number and size of the fully-
connected layers.

We adapt the input for our network to each corpus, since the context can differ depending on the task.
For example, for the infinitive-verb classification, the annotated instance can consist of two tokens, thus
we can have two center embeddings. To illustrate, consider the example:

“Kinder sollten nicht mehr sitzen bleiben müssen, sondern gefördert werden.”

In this sentence, we use (Kinder,sollten,nicht,mehr) as left context, (sitzen,bleiben) as center, and
(müssen,sondern,gefördert,werden) as right context (see Figure 1).

For the tasks with German data we use the word embeddings of Reimers et al. (2014). For construction
level metaphor detection we employ the embeddings of Komninos and Manandhar (2016) as preliminary
cross validation experiments on the training set show that they work well. On the other hand, preliminary
experiments on the development set for token level metaphor detection show an advantage of the Google
News word2vec embeddings (Mikolov et al., 2013) for this task, which is why we use them to work on
the VUAMC (a more in-depth analysis validates our decision, Section 6). We conduct our experiments
using Keras1 and Theano2. We make our code publicly available3.

5 Results

The main results are laid out in Table 2, results broken down into subcorpora are shown in Table 3
(token level metaphor detection) and Table 4 (classification of particle verbs). We see that our LSTM
model outperforms the existing approaches on both token-level metaphor detection and classification of
idiomatically used infinitive-verb compounds. The results on the remaining two tasks are slightly below
the state-of-the-art, but are comparable despite not using handcrafted features. The results for the two
German tasks are generally higher for all approaches, because multiple instances—both for non-literal
and literal use—of each construction are available in these datasets. Further, they only consider few given
terms/phrases. In contrast, the English datasets provide annotations for many more different tokens (or
constructions). For a closer analysis, we look into the best system for each task.

5.1 Token level metaphor detection
For the token level metaphor detection task, our LSTM yields better results on all subcorpora compared
to the re-implemented MLP approach (Table 3). This is not only a matter of choosing the right hyper-
parameter combination, as displayed in the much larger spread for the MLP (an example shown for the
news subcorpus in Figure 2), which is similarly large for both academia and fiction subcorpora.

1v2.0.0, github.com/fchollet/keras
2v0.9.0, deeplearning.net/software/theano
3https://github.com/UKPLab/latech-cflf-2018-nonliteral

github.com/fchollet/keras
deeplearning.net/software/theano
https://github.com/UKPLab/latech-cflf-2018-nonliteral
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Figure 2: Token level metaphor detection.
Whisker plot comparing MLP and LSTM con-
figurations performance spread according to de-
velopment set F1-score on the news subcorpus of
the VUAMC. Whiskers extend to 1.5 interquartile
range below the first and above the third quartile.

Do Dinh and
Gurevych (2016)

LSTM

academia 0.5916 0.6341
conversation 0.5023 0.5410
fiction 0.5259 0.5555
news 0.6251 0.6448

mean 0.5612 0.5939

Table 3: Token level metaphor detection. F1-
score of the MLP and the LSTM on the genre-
specific VUAMC test sets.

In contrast, both networks show comparably high variance for the conversation subcorpus. We at-
tribute this to the often short sentence context in this subcorpus. For example, in 1/3 of the 159 instances
in which both MLP and LSTM wrongly classify a token, sentence length is shorter than 9 tokens. This is
only the case for roughly 1/9 of the correctly classified tokens. However, theoretically sufficient length
does not guarantee sufficient context. Consider, e.g., the sentence

“you see put John, one of us start trussing early [...]” (metaphor in bold),

where ungrammaticality, omissions, and missing wider context make classification difficult, even for
humans. This is true to a lesser extent also for the remaining corpus.

Investigating specific word forms indicates that in some cases the networks do not learn enough from
the context. For example, 64 (out of 209) instances of the verb form “see” are annotated as being
metaphorical in the training set, but the MLP seems unable to incorporate this information, labeling only
1 instance in the test set as metaphorical. In contrast, the LSTM labels only 1 instance of “take” as literal,
even though the training set contains 50 (out of 119) literal examples.

5.2 Construction level metaphor detection
In this task, our generic model is slightly outperformed by a more complex task-tailored network (Rei
et al., 2017). The original feature-based approach (Tsvetkov et al. (2014), F1-score of 0.85) is still not
in reach for both neural network approaches. However, since the original test set is quite small (200
instances), the results of all those approaches have to be interpreted carefully.

Our approach yields considerably lower recall (0.720) than precision (0.878) for this dataset. Ten
constructions are wrongly labeled as metaphorical. Of those, four contain adjectives that are also part
of wrongly literally labeled constructions: honest opinion, unruly behavior, cool [dry] air, Clear [blue]
skies are wrongly labeled metaphorical. In contrast, honest meal, unruly hair, cool feature, clear ex-
planations are misclassified as literal. Looking at nouns in the constructions, we observe that all pairs
containing “voice” (silky voice (M), shrill voices (L), quiet voice (L)) are labeled as metaphor, while all
the instances containing “brain” (foggy brain, rusty brain) are mislabeled as being literally used.

These examples illustrate that for construction level metaphor detection the interaction between the
construction components is more important than the remaining context. Also, misclassified constructions
appear at the beginning or end only in 24% of their containing sentences, compared to 28% of the
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correctly labeled ones. This further confirms that larger context is less important for this task than the
immediate interaction between adjective and noun. Since we do not model this interaction explicitly, our
network is outperformed by the approach of Tsvetkov et al. (2014) on the sparse amount of training data.
However, even without this explicit modeling, our simple neural approach performs nearly as well as the
much more specialized approach of Rei et al. (2017) which models this interaction specifically.

5.3 Classification of idiomatically used infinitive-verb compounds

For this task, we not only outperform the approach of Horbach et al. (2016) averaged over all infinitive-
verb compounds, but for each individual compound. This is most pronounced for “hängen bleiben” and
“liegen bleiben”.

We examine the compounds on which our network performs best (“sitzen lassen” – leave sitting)
and worst (“stehen bleiben” – stay standing) on average (Table 4). For “stehen bleiben” we see that
for 48% of the instances which the LSTM mislabels the compound appears at the end of the sentence,
meaning that basically no right context is available. This is only the case for 44% of the correctly labeled
instances, indicating that further hyper-parameter optimization without changing the architecture can
only increase performance to a degree. “sitzen lassen” has a highly skewed label distribution of only 44
of 881 instances being annotated as literal. The large number of false positive classifications in relation to
actual literal instances (18 of the 44 literal instances are classified as non-literal) thus has only negligible
impact on precision and F1-score. 2/3 of those false positives contain the construction directly or very
near the end of the sentence, highlighting again the problem with the windowed approach.

Horbach
et al. (2016)

LSTM

hängen+bleiben 0.836 0.875
liegen+bleiben 0.847 0.881
sitzen+bleiben 0.875 0.904
sitzen+lassen 0.946 0.970
stehen+bleiben 0.812 0.817
stehen+lassen 0.847 0.861

average 0.861 0.885

Table 4: Classification of idiomatically
used infinitive-verb compounds. Accuracy
values for Horbach et al. (2016) and LSTM
(averaged over 50 configurations).

Figure 3: Particle verb classification. Accuracy
across the ten different particles. Average macro-
accuracy is 90.4%.

5.4 Classification of non-literal particle verbs

Classification error rates for the non-literal particle verbs are similar across the particles. Figure 3 shows
that three particles stand out, namely: “durch” and “mit” exhibit a far lower error rate (6.8% and 6.3%
respectively) and the particle “vor” higher (16.7%) than average (9.6%).

The corpus contains instances for two verbs that start with the particle “vor”. While “vordrängen”
(to press forward) is represented by mainly literal instances (91%), the distribution for “vorschalten”
(to prepose) is rather balanced (literal: 46%). However, our model produces more classification errors
for the former. For the particle “zu”, “zustopfen” (to plug) is the only verb which also shows a fairly
balanced label distribution. However, it also is responsible for almost half of the misclassifications made
for verbs with “zu”. Other balanced verbs show again different behavior; e.g., “einbrechen” (to break
in) is misclassified only in 4 of 44 instances. We see that the amount of literal or non-literal training
instances for one particular verb is not the deciding factor for classification accuracy. Instead, the network
apparently manages to abstract over verbs, however, also introduces some errors in the process.
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Embeddings training data type / method coverage

word2vec (Mikolov et
al., 2013)

Google News texts skip-gram with negative sampling 87.6%

GloVe (Pennington et al.,
2014)

Wikipedia,
newswire

word-word co-occurrence statistics 92.0%

Conceptnet Numberbatch
(Speer et al., 2017)

word2vec, GloVe,
knowledge bases

combination of existing embeddings
and knowledgebases using retrofitting

84.8%

Levy and Goldberg (2014) Wikipedia dependency-based 87.8%

Komninos and Manandhar
(2016)

Wikipedia dependency-based and token windows 89.6%

Table 5: Embeddings tested with classification, and their coverage of the VUAMC.

6 Effects of different embeddings

Next, we analyze more closely the effects of a special hyper-parameter on the detection of non-literal
language: the pre-trained word embeddings used in our network. Our intuition is that embeddings trained
on a similar domain as the test data lead to better results. To test this, we replicate the token level
metaphor detection experiments using different word embedding models and sample ten hyper-parameter
configurations, from which we choose the best performing (development set) respectively. We use the
pre-trained embeddings detailed in Table 5 (all have 300 dimensions).

Coverage, i.e., how many of the tokens in the corpus have an embedding representation, only has
a minimal effect on performance. This is illustrated, e.g., by the Glove embeddings, which have the
highest coverage but by far the worst overall performance. Recall from Table 3 that metaphors from the
conversation and fiction genres seem to be harder to detect in general, owing to larger context depen-
dence, higher ambiguity, and in case of conversation to fragmented sentences and omission. Indeed, we
find that conversation and fiction texts exhibit the largest differences and the worst results regardless of
embeddings used. We note that arguably, those genres are the most different from the news texts and
Wikipedia articles that the embeddings are trained on. Independently of the concrete embeddings used,
the network performs consistently best on the news subcorpus, followed by the academic texts.

Looking more closely into the classifications on the fiction subcorpus, we observe a large performance
difference between Glove and the remaining embeddings. This is mainly due to low recall (0.356, see
also Table 6), especially compared to the word2vec embeddings (0.710). The results on the conversa-
tion subcorpus are similarly noteworthy, because here both embedding models that encode dependency
information, from Levy and Goldberg (2014) and Komninos and Manandhar (2016), perform worse
than the remaining models (also due to lower recall). This is in line with our findings from Section 5.1
where we note that our network struggles with omissions or ungrammatical sentences—as the structure
of the conversation sentences is more likely to be irregular, including “correct” syntactic information can
apparently be detrimental.

academic conversation fiction news avg
P R F1 P R F1 P R F1 P R F1 F1

word2vec .576 .706 .634 .567 .518 .541 .456 .710 .555 .640 .650 .645 .592
GloVe .544 .594 .568 .470 .584 .521 .553 .356 .433 .598 .580 .589 .504
ConceptNet .604 .654 .628 .595 .478 .530 .570 .486 .524 .621 .706 .661 .576
Levy .652 .535 .588 .629 .439 .517 .485 .545 .513 .636 .645 .640 .553
Komninos .634 .628 .631 .652 .396 .493 .511 .587 .547 .601 .712 .652 .569

Table 6: System precision (P), recall (R), and F1-score for the VUAMC using different embeddings.
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At the end, while e.g., the embeddings by Komninos and Manandhar (2016) perform close to the
word2vec embeddings in most genres, the fact that they perform relatively poorly on the conversation
transcripts make them a bad fit for general metaphor identification. The Conceptnet embeddings show
better performance on the news subcorpus, however this is no substantial improvement over the generally
better performing word2vec embeddings—which do not rely on further knowledgebases.

7 Conclusion

We conducted a large scale study on distinguishing literal from non-literal language on four different
tasks, using a generic neural network. These tasks were: token level metaphor detection, construction
level metaphor detection, classification of idiomatically used infinitive-verb compounds, and classifica-
tion of literally or non-literally used particle verbs. Our tasks comprised two languages: English and
German. We find that, while the tasks differ with regards to annotation scheme and supposed context
dependence, and their respective datasets differ with regards to size and label balance, our generic simple
neural model outperforms existing state-of-the-art models on two of four tasks using only pre-trained em-
beddings, and on the remaining tasks produces competitive results to more task-tailored or feature-based
approaches.

Further, we investigated the influence of different pre-trained word embeddings for one of the tasks,
token level metaphor classification. We find that performance depends less on the underlying genre than
on the architecture used.

In future work, we want to explore how commonalities between the investigated and similar tasks can
be exploited, e.g., using multi-task learning (Collobert and Weston, 2008), where we not only share the
architecture, but also the parameters of the network among the investigated tasks.

Acknowledgements

This work has been supported by the German Federal Ministry of Education and Research (BMBF)
under the promotional reference 01UG1816B (CEDIFOR).

References
Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. 2009. The WaCky wide web: a

collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation,
43(3):209–226.

Beata Beigman Klebanov, Chee Wee Leong, Michael Heilman, and Michael Flor. 2014. Different Texts, Same
Metaphors: Unigrams and Beyond. In Proceedings of the Second Workshop on Metaphor in NLP, pages 11–17,
Baltimore, MD, USA. Association for Computational Linguistics.

The BNC Consortium. 2007. The British National Corpus, version 3 (BNC XML Edition). Distributed by Oxford
University Computing Services on behalf of the BNC Consortium.

Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural Language Processing: Deep Neural
Networks with Multitask Learning. In Proceedings of ICML 2008, pages 160–167, Helsinki, Finland. ACM.

Erik-Lân Do Dinh and Iryna Gurevych. 2016. Token-Level Metaphor Detection using Neural Networks. In
Proceedings of the Fourth Workshop on Metaphor in NLP, pages 28–33, San Diego, CA, USA. Association for
Computational Linguistics.

Erik-Lân Do Dinh, Steffen Eger, and Iryna Gurevych. 2018. Killing Four Birds with Two Stones: Multi-Task
Learning for Non-Literal Language Detection. In Proceedings of COLING 2018, page (to appear), Santa Fe,
NM, USA. ICCL.

Elkin Dario Gutierrez, Ekaterina Shutova, Tyler Marghetis, and Benjamin Bergen. 2016. Literal and Metaphorical
Senses in Compositional Distributional Semantic Models. In Proceedings of ACL 2016, pages 183–193, Berlin,
Germany. Association for Computational Linguistics.

Ilana Heintz, Ryan Gabbard, Donald S Black, Marjorie Freedman, Ralph Weischedel, and San Diego. 2013.
Automatic Extraction of Linguistic Metaphor with LDA Topic Modeling. In Proceedings of the First Workshop
on Metaphor in NLP, pages 58–66, Atlanta, GA, USA. Association for Computational Linguistics.



79

Andrea Horbach, Andrea Hensler, Sabine Krome, Jakob Prange, Werner Scholze-Stubenrecht, Diana Steffen, Ste-
fan Thater, Christian Wellner, and Manfred Pinkal. 2016. A Corpus of Literal and Idiomatic Uses of German
Infinitive-Verb Compounds. In Proceedings of LREC 2016, pages 836–841, Portorož, Slovenia. European Lan-
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